
The Dirty-Block Index

Vivek Seshadri,Abhishek Bhowmick,Onur Mutlu,
Phillip B. Gibbons†,Michael A. Kozuch†, Todd C. Mowry

Carnegie Mellon University †Intel Pittsburgh

Abstract
On-chip caches maintain multiple pieces of metadata about

each cached block—e.g., dirty bit, coherence information, ECC.
Traditionally, such metadata for each block is stored in the
corresponding tag entry in the tag store. While this approach
is simple to implement and scalable, it necessitates a full tag
store lookup for any metadata query—resulting in high latency
and energy consumption. We Vnd that this approach is ineX-
cient and inhibits several cache optimizations.

In this work, we propose a new way of organizing the dirty
bit information that enables simpler and more eXcient im-
plementations of several optimizations. In our proposed ap-
proach, we remove the dirty bits from the tag store and orga-
nize it diUerently in a separate structure, which we call the
Dirty-Block Index (DBI). The organization of DBI is simple: it
consists of multiple entries, each corresponding to some row in
DRAM. A bit vector in each entry tracks whether or not each
block in the corresponding DRAM row is dirty.

We demonstrate the beneVts of DBI by using it to simul-
taneously and eXciently implement three optimizations pro-
posed by prior work: 1) Aggressive DRAM-aware writeback,
2) Bypassing cache lookups, and 3) Heterogeneous ECC for
clean/dirty blocks. DBI, with all three optimizations enabled,
improves performance by 31% compared to the baseline (by
6% compared to the best previous mechanism) while reducing
overall cache area cost by 8% compared to prior approaches.

1. Introduction

On-chip caches in modern processors maintain multiple
pieces of metadata about cached blocks—e.g., dirty bit, coher-
ence state, ECC. Traditionally, caches store such metadata for
each block in the corresponding tag entry in the tag store.
Although this approach is straightforward and scalable, even
simple metadata queries require a full tag store lookup, which
incurs high latency and energy [33]. In this work, we focus
our attention on the dirty bit information in writeback caches.

We Vnd that the existing approach of organizing the dirty
bit information in the tag entry inhibits several cache opti-
mizations. More speciVcally, we Vnd that several cache opti-
mizations require the cache to quickly and eXciently 1) de-
termine if a block is dirty [33, 44, 49], and 2) identify the list
of all spatially co-located dirty blocks—i.e, dirty blocks from
the same DRAM row [27, 47, 51]. However, checking the dirty
status of even a single cache block with the existing cache or-
ganization requires an expensive tag store lookup.

In this work, we propose a new way of organizing the dirty
bit information. In our proposed organization, we remove the
dirty bits from the cache tag entries and organize them diUer-
ently in a separate structure, which we call the Dirty-Block In-
dex (DBI).1 All queries regarding the dirty status are directed
to the DBI. The organization of the DBI is simple. It has mul-
tiple entries, each tracking the dirty bit information of all the
blocks in some DRAM row. Each entry contains a row tag
indicating which DRAM row the entry corresponds to, and a
bit vector indicating whether each block in the DRAM row is
dirty. A cache block is dirty if and only if the DBI has a valid
entry corresponding to the DRAM row containing the block
and the bit corresponding to the cache block in the associated
bit vector is set.

DBI has three nice properties. First, since it is much smaller
than the main tag store, it can identify whether a block is dirty
much faster than the main tag store. Second, since the dirty
bit information of all blocks of a DRAM row are stored to-
gether, DBI can list all dirty blocks of a DRAM row with a
single query (whereas the main tag store requires one query
for each block of the row). Finally, since DBI is organized
independently of the main tag store, it can be used to limit
the number of dirty blocks to a small fraction of the number
of blocks in the cache. These properties allow DBI to eX-
ciently implement and accelerate several cache optimizations.
In this work, we quantitatively evaluate the beneVts of DBI
using three previously proposed optimizations.

First, prior works [27, 51] have shown that proactively writ-
ing back all dirty blocks of a DRAM row in a single burst per-
forms signiVcantly better compared to writing them back in
the order that they are evicted from the cache. DBI allows
the cache to eXciently identify all dirty blocks of a DRAM
row, enabling a simpler implementation of this optimization.
Second, prior works [33, 44] have proposed mechanisms to
bypass the cache lookup for accesses that are likely to miss in
the cache. However, since accesses to dirty blocks cannot be
bypassed, previously proposed implementations of this opti-
mization incur high complexity. In contrast, DBI, with its abil-
ity to quickly identify if a block is dirty, enables a very simple
and eXcient implementation of this optimization. Third, prior
works [30, 58, 59] have proposed mechanisms to reduce the
overhead of ECC in caches by storing only a simple error de-
tection code for each clean block and a strong error correction
1Many cache coherence protocols may maintain the dirty status implicitly in
the cache coherence states. Section 2.3 discusses how diUerent cache coher-
ence protocols can be seamlessly adapted to work with DBI.

1

978-1-4799-4394-4/14/$31.00 © 2014 IEEE

code for each dirty block. However, since any block in the
cache can be dirty, prior approaches require complex changes
to implement this optimization. In our proposed organization,
since DBI decouples the dirty bit information from the tag
store, it is suXcient to maintain strong ECC for only blocks
tracked by the DBI. Section 3 discusses these optimizations
and our proposed implementations using DBI.

We compare DBI (with diUerent combinations of these op-
timizations) to two baseline mechanisms (a cache employing
the Least Recently Used policy and one employing the Dy-
namic Insertion Policy [18, 42]), and three previous mech-
anisms that employ individual optimizations (DRAM-aware
writeback (DAWB) [27], Virtual Write Queue (VWQ) [51],
and Skip Cache [44]). The results show that DBI, with all
optimizations enabled, outperforms all prior approaches (6%
compared to the best previous mechanism and 31% compared
to the baseline for a 8-core system) while also signiVcantly re-
ducing overall cache area (8% compared to the baseline for a
16MB cache). Section 6 discusses these results in more detail.

While we discuss three optimizations enabled by DBI in
detail, DBI can be used to enable several other mechanisms.
Section 7 brieWy describes some of these mechanisms.
The main contributions of this paper are as follows.
• We propose a new way of tracking dirty blocks that
maintains dirty bit information of cache blocks in a sepa-
rate structure called the Dirty-Block Index (DBI), instead
of in the main tag store.

• We show that our new dirty-bit organization using DBI
enables eXcient implementation of several previously
proposed optimizations that involve dirty blocks. DBI si-
multaneously enables all these optimizations using a sin-
gle structure whereas prior approaches require separate
structures for each optimization.

• We quantitatively compare the performance and area
beneVts of DBI using three optimizations to prior ap-
proaches [18, 27, 44, 51]. Our evaluations show that DBI
with all optimizations outperforms all previous mecha-
nisms while reducing cache area cost. The performance
improvement is consistent across a wide variety of sys-
tem conVgurations and workloads.

2. The Dirty-Block Index (DBI)

We conceived the idea of the Dirty-Block Index based on two
key principles motivated by two previously proposed opti-
mizations related to dirty blocks: cache lookup bypass [33, 44]
and DRAM-aware writeback [27, 51]. First, prior works have
shown that bypassing the cache lookup for an access that is
likely to miss in the cache can reduce average latency and en-
ergy consumed by memory accesses [33]. However, the cache
must not be bypassed for a dirty block. This motivates the
need for a mechanism that can quickly check if a block is
dirty (without looking up the entire tag store). Second, prior
works have shown that writing back spatially co-located dirty
blocks (i.e., those that belong to the same DRAM row [45, 60])
together improves system performance signiVcantly. This mo-
tivates the need for a mechanism to quickly and eXciently
identify spatially co-located dirty blocks.

Based on these principles, we propose to remove the dirty
bits from the main tag store and store them in a separate struc-
ture, called the Dirty-Block Index (DBI). DBI reorganizes the
dirty bit information such that the dirty bits of blocks of the
same DRAM row are stored together in a single entry.

2.1. DBI Structure

Figure 1 compares the conventional tag store organization
with a tag store augmented with a DBI. In the conventional
organization (shown in Figure 1a), each tag entry contains
a dirty bit that indicates whether the corresponding block is
dirty or not. For example, to indicate that a block B is dirty,
the dirty bit of the corresponding tag entry is set.

In contrast, in a cache augmented with a DBI (Figure 1b),
the dirty bits are removed from the main tag store and orga-
nized diUerently in the DBI. The organization of DBI is simple.
It consists of multiple entries. Each entry corresponds to some
row in DRAM—identiVed using a row tag present in each en-
try. Each DBI entry contains a dirty bit vector that indicates if
each block in the corresponding DRAM row is dirty or not.

DBI Semantics. A block in the cache is dirty if and only
if the DBI contains a valid entry for the DRAM row that con-
tains the block and the bit corresponding to the block in the

Tag Entry

Tag Store

1 1 B

Valid Bit Dirty Bit Cache Block Tag

(a) Conventional cache tag store

Tag Entry

Tag Store

1 B

Valid Bit Cache Block Tag

DBI Entry

Dirty Block Index

1 R 0 1 0 0

Valid Bit Row Tag
(log2 # rows
in DRAM)

Dirty Bit Vector
(# of blocks in
a DRAM row)

(b) Cache tag store augmented with a DBI

Figure 1: Comparison between conventional cache organization and a cache augmented with a DBI. The Vgure shows how each
organization represents the dirty status of a block B. Block B is assumed to be the second block in the DRAM row R.

2

bit vector of that DBI entry is set. For example, assuming that
block B is the second block of DRAM row R, to indicate that
block B is dirty, the DBI contains a valid entry for DRAM row
R, with the second bit of the corresponding bit vector set.2

2.2. DBI Operation

Figure 2 pictorially describes the operation of a cache aug-
mented with a DBI. The focus of this work is on the on-chip
last-level cache (LLC). Therefore, for ease of explanation, we
assume that the cache does not receive any sub-block writes
and any dirty block in the cache is a result of a writeback gen-
erated by the previous level of cache.3 There are four possible
operations, which we describe in detail below.

2.2.1. Read Access to the Cache

The addition of DBI does not change the path of a read access
in any way. On a read access, the cache simply looks up the
block in the tag store and returns the data on a cache hit.
Otherwise, it forwards the access to the memory controller.

2.2.2. Writeback Request to the Cache

In a system with multiple levels of on-chip cache, the LLC will
receive a writeback request when a dirty block is evicted from
the previous level of cache. Upon receiving such a writeback
request, the cache performs two actions (as shown in Figure 2).
First, it inserts the block into the cache if it is not already
present. This may result in a cache block eviction (discussed
in Section 2.2.3). If the block is already present in the cache,
the cache just updates the data store (not shown in the Vgure)
with the new data. Second, the cache updates the DBI to indi-
cate that the written-back block is dirty. If the DBI already has
an entry for the DRAM row that contains the block, the cache
simply sets the bit corresponding to the block in that DBI en-
try. Otherwise, the cache inserts a new entry into the DBI for
the DRAM row containing the block and with the bit corre-
sponding to the block set. Inserting a new entry into the DBI
may require an existing DBI entry to be evicted. Section 2.2.4
discusses how the cache handles such a DBI eviction.

2.2.3. Cache Eviction

When a block is evicted from the cache, it has to be written
back to main memory if it is dirty. Upon a cache block evic-
tion, the cache consults the DBI to determine if the block is
dirty. If so, it Vrst generates a writeback request for the block
and sends it to the memory controller. It then updates the DBI
to indicate that the block is no longer dirty—done by simply
resetting the bit corresponding to the block in the bit vector
of the DBI entry. If the evicted block is the last dirty block
in the corresponding DBI entry, the cache invalidates the DBI

2Note that the key diUerence between the DBI and the conventional tag store
is the logical organization of the dirty bit information. While some processors
store the dirty bit information in a separate physical structure, the logical
organization of the dirty bit information is same as the main tag store.
3Sub-block writes typically occur in the primary L1 cache where writes are
at a word-granularity, or at a cache which uses a larger block size than the
previous level of cache. The DBI operation described in this paper can be
easily extended to caches with sub-block writes.

entry so that the entry can be used to store the dirty block
information of some other DRAM row.

Tag
Store

DBI

Read
Access

Ê

Writeback
Request

Ë

Cache
Eviction Ì

Look up tag store
for hit/miss

Insert/update block in
tag store

Insert/update metadata in DBI

Check DBI.
Writeback if
dirty

DBI Eviction
Generate writebacks for all dirty blocks

marked by the evicted entry Í

Figure 2: Operation of a cache with DBI

2.2.4. DBI Eviction

The last operation in a cache augmented with a DBI is a DBI
eviction. Similar to the cache, since the DBI has limited space,
it can only track the dirty block information for a limited
number of DRAM rows. As a result, inserting a new DBI en-
try (on a writeback request, discussed in Section 2.2.2) may re-
quire evicting an existing DBI entry. We call this event a DBI
eviction. The DBI entry to be evicted is decided by the DBI
replacement policy (discussed in Section 4.3). When an entry
is evicted from the DBI, all the blocks indicated as dirty by
the entry should be written back to main memory. This is be-
cause, once the entry is evicted, the DBI can no longer main-
tain the dirty status of those blocks. Therefore, not writing
them back to memory will likely lead to incorrect execution,
as the version of those blocks in memory is stale. Although
a DBI eviction may require evicting many dirty blocks, with
a small buUer to keep track of the evicted DBI entry (until all
of its blocks are written back to memory), the DBI eviction
can be interleaved with other demand requests. Note that
on a DBI eviction, the corresponding cache blocks need not
be evicted from the cache—they only need to be transitioned
from the dirty state to clean state.

2.3. Cache Coherence Protocols

Many cache coherence protocols implicitly store the dirty sta-
tus of cache blocks in the cache coherence states. For example,
in the MESI protocol [37], the M (modiVed) state indicates that
the block is dirty. In the improved MOESI protocol [52], both
M (modiVed) and O (Owner) states indicate that the block is
dirty. To adapt such protocols to work with DBI, we propose
to split the cache coherence states into multiple pairs—each
pair containing a state that indicates the block is dirty and the
non-dirty version of the same state. For example, we split the
MOESI protocol into three parts: (M, E), (O, S) and (I). We can
use a single bit to then distinguish between the two states in
each pair. This bit will be stored in the DBI.

3

3. Optimizations Enabled by DBI

We demonstrate the eUectiveness of DBI by describ-
ing eXcient implementations of three cache optimizations:
1) DRAM-aware writeback, 2) cache lookup bypass, and
3) ECC overhead reduction. Note that while prior works have
proposed these optimizations [23, 27, 30, 33, 44, 51, 58, 59],
DBI has two key advantages over prior proposals. First, im-
plementing these optimizations using DBI is simpler and more
eXcient than prior works. Second, while combining prior
proposals is either impossible or further increases complexity,
DBI can simultaneously enable all three optimizations (and
many more described in Section 7). Our evaluations (Sec-
tion 6) show that DBI performs signiVcantly better than any
individual optimization, while also reducing the overall area
cost. We now describe the three optimizations in detail.

3.1. EXcient DRAM-Aware Aggressive Writeback

The Vrst optimization is referred to as DRAM-Aware Write-
back. This optimization is based on two observations. First,
each DRAM bank has a structure called the row buUer that
caches the last accessed row from that bank [26]. Requests
to the row buUer (row buUer hits) are much faster and more
eXcient than other requests (row buUer misses) [26, 45, 60].
Second, the memory controller buUers writes to DRAM in a
write buUer and Wushes the writes when the buUer is close to
full [27]. Based on these observations, Vlling the write buUer
with blocks from the same DRAM row will lead to a faster
and more eXcient writeback phase.

Unfortunately, the write sequence to DRAM primarily de-
pends on the order in which dirty blocks are evicted from the
LLC. Since blocks of a DRAM row typically map to diUerent
cache sets, dirty blocks of the same row are unlikely to be
evicted together. As a result, writing back blocks in the order
in which they are evicted will cause a majority of writes to
result in row misses [27]. To address this problem, a recent
work [27] proposed a mechanism to proactively write back all
dirty blocks of a DRAM row when any dirty block from that
row is evicted from the cache. However, this requires multi-
ple tag store lookups to identify if blocks of the row are dirty.
Many of these lookups may be unnecessary as the blocks may
actually not be dirty or may not even be in the cache.

Virtual Write Queue (VWQ) [51] proposed to address this
problem by using a Set State Vector (SSV) to Vlter some of
such unnecessary lookups. The SSV indicates if each cache
set has any dirty block in the LRU ways. VWQ looks up a
set for dirty blocks only if the SSV indicates that the set has
dirty blocks in the LRU ways. Since VWQ only checks the
LRU ways to generate proactive writebacks, we Vnd that it
is not signiVcantly more eXcient compared to DRAM-Aware
Writeback [27]. Our evaluations show that, as a result of the
additional tag lookups, both DAWB and VWQ perform sig-
niVcantly more tag lookups than the baseline (1.95x and 1.88x
respectively—Section 6.1).

In contrast to these mechanisms, implementing such a
proactive writeback scheme is straightforward using DBI.
When a block is evicted from the cache, the cache Vrst con-
sults the DBI to Vnd out if the block is dirty. If so, the bit
vector of the corresponding DBI entry also provides the list
of all dirty blocks of the same row. In addition to generat-
ing a writeback for the evicted block, the cache also generates
writebacks for the other dirty blocks of the row. We call this
scheme the Aggressive Writeback (AWB) scheme.

Figure 3 pictorially shows the operation of AWB. As shown,
AWB looks up the tag store only for blocks that are actually
dirty, thereby reducing the contention for the cache port. This
reduced contention enables AWB to further improve perfor-
mance compared to prior approaches [27, 51], especially in
multi-core systems, where a tag lookup in the shared cache
can delay requests from all applications (Section 6.2).4

DBI

1 R 0 1 0 1 0 0 0 1

DBI entry corresponding to evicted block

Evicted Block
Address (B)

Check DBI

Lookup only these
blocks and write them

back to memory

Figure 3: Aggressive writeback using DBI. Block B (the evicted
block) is the second block of the DRAM row R and is dirty.

3.2. EXcient Cache Lookup Bypass

The second optimization is based on a simple idea: if an access
to the cache is likely to miss, we can potentially bypass the
cache lookup, thereby reducing the overall latency and energy
consumed by the access [33, 44]. This optimization requires a
mechanism to predict whether an access will hit or miss in the
cache. The key challenge in realizing this optimization is that
when the cache contains dirty blocks, the mechanism cannot
bypass the lookup for a block that is dirty in the cache.

Prior works address this problem by either using a write-
through cache [44] (no dirty blocks to begin with) or by ensur-
ing that the prediction mechanism has no false positives (no
access is falsely predicted to miss in the cache). Both of these
approaches have shortcomings: using the write-through pol-
icy can signiVcantly increase the memory write bandwidth re-
quirement, and ensuring that there are no false positives in the
miss prediction requires complex hardware structures [33].

In contrast to the above approaches, using DBI to main-
tain the dirty block information enables a simpler approach
to bypassing cache lookups that works with any prediction

4We always prioritize a demand lookup over a lookup for generating aggres-
sive writeback (similar to prior work [27]). However, once started, a lookup
cannot be preempted and can delay other queued requests.

4

mechanism. Our approach is based on the fact that the DBI
is much smaller than the main tag store and hence, has lower
latency and energy per access. Figure 4 pictorially depicts our
proposed mechanism. As shown, our mechanism uses a miss
predictor to predict if each read access misses in the cache. If
an access is predicted to miss in the cache, our mechanism
checks the DBI to determine if the block is dirty in the cache.
If so, the block is accessed from the cache. Otherwise, the ac-
cess is forwarded to the next level of the hierarchy. Our mech-
anism does not modify any of the other cache operations. We
refer to this optimization as Cache Lookup Bypass (CLB).

CLB can be used with any miss predictor [33, 44, 49, 57]. In
our evaluations (Section 6), we employ CLB with the predic-
tor used by Skip Cache [44] as it is simpler to implement and
has lower hardware overhead compared to other miss predic-
tors (e.g., [33, 49]). Skip Cache divides execution into epochs
and monitors the miss rate of each application/thread in each
epoch (using set sampling [41]). If an application’s miss rate
exceeds a threshold (0.95, in our experiments), all accesses of
the application (except those that map to the sampled sets) are
predicted to miss in the cache in the next epoch.

Tag
Store

Find block
in cache?

Block is
dirty?

Miss in
cache?

DBI

Miss Predictor

Read
Access

Forward to next level

no

yes

yes

no

Figure 4: Cache lookup bypass mechanism using DBI

3.3. Reducing ECC Overhead

The third optimization is an approach to reduce the area over-
head of Error-Correction Codes (ECC) employed in many pro-
cessors. With small feature sizes, data reliability is a major
concern in modern processors [9]. Therefore, to ensure the
integrity of the data in the on-chip caches, processors store
ECC (e.g., SECDED – Single Error Correction Double Error
Detection code) along with each cache block. However, stor-
ing such ECC information comes with an area cost.

This optimization to reduce ECC overhead is based on a
simple observation: only dirty blocks require a strong ECC;
clean blocks only require error detection. This is because,
if an error is detected in a clean block, the block can be re-
trieved from the next level of the memory hierarchy. On the
other hand, if an error is detected in a dirty block, then the
cache should also correct the error as it has the only copy of
the block. To exploit this heterogeneous ECC requirement for
clean and dirty blocks, prior works proposed to use a sim-
ple Error Detection Code (EDC) for all blocks while storing
the ECC only for dirty blocks in a separate structure [30] or

in main memory [58, 59]. While these mechanisms are suc-
cessful in reducing the ECC overhead, they require signiVcant
changes to the error correction logic (such as two-tiered er-
ror protection [58, 59]), even though errors might be rare to
begin with. In contrast to these prior works, in our proposed
cache organization, since the DBI is the authoritative source
for determining if a block is dirty, it is suXcient to keep ECC
information for only the blocks tracked by the DBI.

Figure 5 compares the ECC organization of the baseline
cache and a cache augmented with DBI. While the baseline
stores ECC for all blocks in the tag store, our mechanism
stores only EDC for all blocks and stores additional ECC in-
formation for only blocks tracked by the DBI . As our evalua-
tions show (Section 6), with the two previously discussed op-
timizations (AWB and CLB), DBI signiVcantly improves per-
formance while tracking far fewer blocks than the main tag
store. Therefore, maintaining ECC for only blocks tracked by
the DBI signiVcantly reduces the area overhead of ECC with-
out signiVcant additional complexity.

Tag
Store EC

C Tag
Store ED
C

ECC

DBI

Baseline Cache Cache with DBI

Figure 5: Reducing ECC overhead using DBI. In this example,
the cumulative number of blocks tracked by the DBI is 1/4th the
number of blocks tracked by the tag store.

4. DBI Design Choices

The DBI design space can be deVned using three key param-
eters: 1) DBI size, 2) DBI granularity and 3) DBI replacement
policy.5 These parameters determine the eUectiveness of the
three optimizations discussed in the previous section. We now
discuss these parameters and their trade-oUs in detail.

4.1. DBI Size

The DBI size refers to the cumulative number of blocks
tracked by all the entries in the DBI. For ease of analysis across
systems with diUerent cache sizes, we represent the DBI size
as the ratio of the cumulative number of blocks tracked by
the DBI and the number of blocks tracked by the cache tag
store. We denote this ratio using α. For example, for a 1MB
cache with a 64B block size (16k blocks), a DBI of size α = 1/2
enables the DBI to track 8k blocks.

The DBI size presents a trade-oU between the size of write
working set (set of frequently written blocks) that can be cap-
tured by the DBI, and the area, latency, and power cost of the

5Similar to the main tag store, DBI is also a set-associative structure and has a
Vxed associativity. However, we do not discuss the DBI associativity in detail
as its trade-oUs are similar to any other set-associative structure.

5

DBI. A large DBI has two beneVts: 1) it can track a larger
write working set, thereby reducing the writeback bandwidth
demand, and 2) it gives more time for a DBI entry to accumu-
late writebacks to a DRAM row, thereby better exploiting the
AWB optimization. However, a large DBI comes at a higher
area, latency and power cost. On the other hand, a smaller
DBI incurs lower area, latency and power cost. This has two
beneVts: 1) lower latency in the critical path for the CLB opti-
mization and 2) ECC storage for fewer dirty blocks. However,
a small DBI limits the number of dirty blocks in the cache and
thus, result in premature DBI evictions, reducing the poten-
tial to generate aggressive writebacks. It can also potentially
lead to thrashing if the write working set is signiVcantly larger
than the number of blocks tracked by the small DBI.

4.2. DBI Granularity

The DBI granularity refers to the number of blocks tracked
by a single DBI entry. Although our discussion in Section 2.1
suggests that this is same as the number of blocks in each
DRAM row, we can design the DBI to track fewer blocks in
each entry. For example, for a system with DRAM row of size
8KB and cache block of size 64B, a natural choice for the DBI
granularity is 8KB/64B = 128. Instead, we can design a DBI
entry to track only 64 blocks, i.e. one half of a DRAM row.

The DBI granularity presents another trade-oU between the
amount of locality that can be extracted during the write-
back phase (using the AWB optimization) and the size of write
working set that can be captured using the DBI. A large gran-
ularity leads to better potential for exploiting the AWB opti-
mization. However, if writes have low spatial locality, a large
granularity will result in ineXcient use of the DBI space, po-
tentially leading to write working set thrashing.

4.3. DBI Replacement Policy

The DBI replacement policy determines which entry is evicted
on a DBI eviction, described in Section 2.2.4. A DBI eviction
only writes back the dirty blocks of the corresponding DRAM
row to main memory, and does not evict the blocks themselves
from the cache. Therefore, a DBI eviction does not aUect the
latency of future read requests for the corresponding blocks.
However, if the previous cache level generates a writeback
request for a block written back due to a DBI eviction, the
block will have to be written back to memory again, leading
to an additional write to main memory. Therefore, the goal
of the DBI replacement policy is to ensure that blocks are not
prematurely written back to main memory.

The ideal DBI replacement policy is to evict the DBI en-
try that has a writeback request farthest into the future.
However, similar to Belady’s optimal replacement policy for
caches [10], this ideal policy is impractical to implement in
real systems. We evaluated Vve practical replacement policies
for DBI: 1) Least Recently Written (LRW)—similar to the LRU
policy for caches, 2) LRW with Bimodal Insertion Policy [42],
3) Rewrite-interval prediction policy—similar to the RRIP pol-

icy for caches [19], 4) Max-Dirty—entry with the maximum
number of dirty blocks, 5) Min-Dirty—entry with the mini-
mum number of dirty blocks. We Vnd that the LRW policy
works comparably or better than the other policies and use it
for all our evaluations in the paper.

5. Evaluation Methodology

System. We use an in-house event-driven x86 multi-core
simulator that models out-of-order cores, coupled with a
DDR3 [20] DRAM simulator. The simulator faithfully mod-
els all processor stalls due to memory accesses. All the simu-
lated systems use a three-level cache hierarchy. The L1 data
cache and the L2 cache are private to each core. The L3
cache is shared across all cores. All caches uniformly use a
64B cache block size. We do not enforce inclusion in any
level of the cache hierarchy. We implement DBI and prior
approaches [27, 44, 51] for the aggressive writeback and cache
lookup bypass optimizations at the shared last-level cache. We
use CACTI [1] to model the area, latency, and power for the
caches and the DBI. Table 1 lists the main conVguration pa-
rameters in detail.

Benchmarks and Workloads. Our evaluations use bench-
marks from the SPEC CPU2006 suite [3] and STREAM [4]. We
use Pinpoints [38] to collect instruction traces from the repre-
sentative portion of these benchmarks. We run each bench-
mark for 500 million instructions—the Vrst 200 million in-
structions for warmup and the remaining 300 million instruc-
tions to collect the results. For our multi-core evaluations, we
classify the benchmarks into nine categories based on read
intensity (low, medium, and high) and write intensity (low,
medium, and high), and generate multi-programmed work-
loads with varying levels of read and write intensity. The read
intensity of a workload determines how much a workload can
get aUected by interference due to writes and the write inten-
sity determines how much interference a workload is likely to
cause to read accesses. In all, we present results for 102 2-core,
259 4-core, and 120 8-core workloads.

Metrics. We use instruction throughput to evaluate single-
core performance, and weighted speedup [50] to evaluate
multi-core performance. We also present a detailed analy-
sis of our single-core experiments using other statistics (e.g.,
MPKI, read/write row hit rates). For multi-core workloads, we
present other performance and fairness metrics—instruction
throughput, harmonic speedup [32], and maximum slow-
down [14, 24]. Weighted and harmonic speedup were shown
to correlate with system throughput and response time [15].

6. Results

We evaluate nine diUerent mechanisms, including the base-
line, four prior approaches (Dynamic Insertion Policy [18, 42],
Skip Cache [44], DRAM-aware Writeback [27], and Virtual
Write Queue [51]), and four variants of DBI with diUerent
combinations of the two performance optimizations (AWB
and CLB). Table 2 lists all the mechanisms, the labels used

6

Processor 1-8 cores, 2.67 GHz, Single issue, Out-of-order, 128 entry instruction window

L1 Cache
Private, 32KB, 2-way set-associative, tag store latency = 2 cycles, data store latency = 2 cycles, parallel tag and
data lookup, LRU replacement policy, number of MSHRs = 32

L2 Cache
Private, 256KB, 8-way set-associative, tag store latency = 12 cycles, data store latency = 14 cycles, parallel tag and
data lookup, LRU replacement policy

L3 Cache
Shared, 2MB/core. 1/2/4/8-core, 16/32/32/32-way set-associative, tag store latency = 10/12/13/14 cycles, data store
latency = 24/29/31/33 cycles, serial tag and data lookup, LRU replacement policy

DBI Size (α) = 1/4, granularity = 64, associativity = 16, latency = 4 cycles, LRW replacement policy (Section 4.3)

DRAM Controller Open row, row interleaving, FR-FCFS scheduling policy [45, 60], 64-entry write buUer, drain when full policy [27]

DRAM and Bus DDR3-1066 MHz [20], 1 channel, 1 rank, 8 banks, 8B-wide data bus, burst length = 8, 8KB row buUer

Table 1: Main conVguration parameters used for our evaluation

for them in our evaluations, and the values for their key de-
sign parameters. All mechanisms except the baseline use TA-
DIP [42] to determine the insertion policy for the incoming
cache blocks. We do not present detailed results for Skip
Cache in our Vgures as Skip Cache performs comparably to or
worse than the baseline/TA-DIP (primarily because it employs
the write-through policy). We evaluate the third optimization
enabled by DBI—reducing ECC overhead—separately in Sec-
tion 6.3 as it has no Vrst order eUect on performance.

6.1. Single-Core Results

Figure 6 presents the IPC results for our single core experi-
ments. The Vgure also plots the memory write row hit rate,
LLC tag lookups per kilo instructions, memory writes per kilo
instructions, and memory read row hit rate for all the bench-
marks to illustrate the underlying trends that result in the per-
formance improvement of various mechanisms. For clarity,
the Vgure does not show results for the Baseline LRU policy
and for benchmarks with LLC MPKI < 1 or Baseline IPC >
0.9. For these benchmarks, there is no (negative) impact on
performance due to any of the mechanisms. We draw several
conclusions from our single core results.

First, DBI+AWB signiVcantly outperforms TA-DIP (13% on
average), and performs similarly to DAWB and VWQ for al-
most all benchmarks (Figure 6a). This performance improve-
ment is due to the signiVcant increase in the memory write

row hit rate—DAWB, VWQ, and DBI+AWB write back blocks
of the same DRAM row together. These mechanisms improve
write row hit rate from 35% (TA-DIP) to 88%, 82% and 81%,
respectively (Figure 6b).

Second, the key diUerence between DBI+AWB and the
other two mechanisms is brought out by the number of tag
lookups they perform. Figure 6c plots the number of tag
lookups per kilo instructions for all the mechanisms. DAWB
signiVcantly increases the number of tag lookups compared to
TA-DIP (by 1.95x on average). This is because, when a dirty
block is evicted from the cache, DAWB indiscriminately looks
up the tag store for every other block of the corresponding
DRAM row to check if each block is dirty, leading to a sig-
niVcant number of unnecessary lookups for blocks that are
not dirty. As described in Section 3.1, although VWQ aims to
reduce the number of unnecessary tag lookups, by checking
only the LRU ways for dirty blocks on each dirty eviction, it
performs such additional lookups multiple times. Hence, it is
not much more eUective compared to DAWB (1.85x more tag
store lookups compared to TA-DIP). In contrast to both DAWB
and VWQ, DBI looks up the tag store for only blocks that are
actually dirty. As a result, DBI (with AWB) obtains the bene-
Vts of aggressive DRAM-aware writeback without increasing
tag store contention. Although this reduction in contention
does not translate to single-core performance over DAWB
and VWQ, DBI+AWB signiVcantly improves multi-core per-

Mechanism Description

Baseline Baseline cache using the Least Recently Used (LRU) replacement policy

TA-DIP Thread-aware dynamic insertion policy [18], 32 dueling sets, 10-bit policy selector, bimodal insertion probability = 1
64

DAWB Cache using the DRAM-aware writeback policy [27] and the TA-DIP policy [18] for read accesses

VWQ Virtual Write Queue [51], cache employs TA-DIP [18]

Skip Cache Per-application lookup bypass [44], cache employs TA-DIP [18], threshold = 0.95, epoch length = 50 million cycles

DBI Plain DBI without any optimizations, cache employs TA-DIP [18], DBI parameters listed in Table 1

DBI+AWB DBI with the aggressive writeback optimization (described in Section 3.1)

DBI+CLB DBI with the cache lookup bypass optimization (described in Section 3.2), same miss predictor as Skip Cache [44]

DBI+AWB+CLB DBI with both the aggressive writeback and the cache lookup bypass optimizations

Table 2: List of evaluated mechanisms

7

TA-DIP DAWB VWQ DBI DBI+AWB DBI+CLB DBI+AWB+CLB

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

mcf lbm GemsFDTD soplex omnetpp cactusADM stream leslie3d milc sphinx3 libquantum bzip2 astar bwaves gmean

In
st
ru
ct
io
ns

pe
r
C
yc
le

0.2

0.4

0.6

0.8

1.0

W
ri
te
R
H
R

130 64 117

10
20
30
40
50

mcf lbm GemsFDTD soplex omnetpp cactusADM stream leslie3d milc sphinx3 libquantum bzip2 astar bwaves gmean

Ta
g
Lo

ok
up

s
PK

I

3
6
9
12
15
18
21

M
em

or
y
W
PK

I

0.2

0.4

0.6

0.8

1.0

mcf lbm GemsFDTD soplex omnetpp cactusADM stream leslie3d milc sphinx3 libquantum bzip2 astar bwaves gmean

R
ea
d
R
H
R

Figure 6: (top to bottom) a) Instructions per cycle (IPC), b) Write Row Hit Rate (Write RHR), c) LLC tag lookups per kilo instructions
(Tag lookups PKI), d) Memory Writes per Kilo Instructions (WPKI), e) Read Row Hit Rate (Read RHR). The benchmarks on the x-axis
are sorted based on increasing order of baseline IPC.

formance compared to DAWB and VWQ (Section 6.2).

Third, Figure 6c also illustrates the beneVts of the cache
lookup bypass (CLB) optimization. For applications that do
not beneVt from the LLC, CLB avoids the tag lookup for ac-
cesses that will likely miss in the cache. As a result, the CLB
optimization signiVcantly reduces the number of tag lookups
for several applications compared to TA-DIP (14% on average).
Although this reduction in the number of tag lookups does not
improve single core performance, it signiVcantly improves the
performance of multi-core systems (Section 6.2).

Fourth, although one may expect DBI (and its variants) to
increase the number of writebacks to main memory (due to
its proactive writeback mechanism), this is not the case. Even
with the aggressive writeback optimization (AWB) enabled,
with the exception of mcf and omnetpp, DBI does not have
any visible impact on the number of memory writes per kilo
instruction (Figure 6d—Memory WPKI). Although not shown
in the Vgure, DBI and its variants have no impact on the
LLC MPKI (read misses per kilo instructions) compared to the
TA-DIP policy. This is expected as these mechanisms do not

change the cache replacement policy for read requests—they
only proactively write back the dirty blocks.

Finally, as a side eUect of the increase in write row hit rate,
DBI (and its variants) also increase the read row hit rate (Fig-
ure 6e). This is because, with a high write row hit rate, very
few rows are deactivated during the writeback phase of the
memory controller. As a result, many DRAM rows opened
by read requests are likely to remain open when the memory
controller moves back to the read phase.

In summary, our Vnal mechanism, DBI+AWB+CLB, which
combines both the optimizations, provides the best single-core
performance compared to all other mechanisms while signiV-
cantly reducing the number of tag lookups.

6.2. Multi-Core Results

Figure 7 plots the average weighted speedup of diUerent
mechanisms for 2-core, 4-core and 8-core systems. We do not
show results for VWQ as DAWB performs better than VWQ.
The key takeaway from the Vgure is that DBI with both AWB
and CLB optimizations provides the best system throughput

8

across all mechanisms for all the systems (31% better than the
baseline and 6% better than DAWB for 8-core systems).

Baseline TA-DIP DAWB DBI

DBI+AWB DBI+CLB DBI+AWB+CLB

0.5
1.0
1.5
2.0
2.5
3.0
3.5

2-Core 4-Core 8-Core

W
ei
gh
te
d
Sp
ee
du

p

Figure 7: Multi-core system performance

We draw four other conclusions. First, across the many
multi-core workloads, TA-DIP performs similarly to the base-
line LRU on average. This is because TA-DIP makes sub-
optimal decisions for some workloads, oUsetting the beneVt
gained in other workloads. Second, DBI by itself performs
slightly better than DAWB for all three multi-core systems.
This is because, in contrast to DAWB, DBI evictions pro-
vide the beneVt of DRAM-aware writeback without increas-
ing contention for the tag store. Third, adding the AWB opti-
mization further improves performance by more aggressively
exploiting the DRAM-aware writebacks. Across 120 8-core
workloads, DBI+AWB improves performance by 3% compared
to DAWB. Fourth, the CLB optimization further reduces the
contention for tag store lookups. This reduction in contention
enables CLB to further improve the performance of DBI (with
and without the AWB optimization).

To better understand the beneVts of reducing tag store con-
tention, let us consider a case study of the 2-core system
running the workload GemsFDTD and libquantum. For this
workload, DAWB performs signiVcant number of unneces-
sary tag store lookups (2.2x increase in tag store lookups com-
pared to baseline for GemsFDTD—Figure 6c). On the other
hand, the CLB optimization signiVcantly reduces the num-
ber of tag store lookups (3x reduction in tag store lookups for
libquantum compared to baseline). As a result of reducing
contention for tag store, we expect DBI to perform signiV-
cantly better than DAWB and the CLB optimization to further
improve performance. DAWB improves performance com-
pared to baseline by 40%. DBI (even without any optimiza-
tion) improves performance by 83% compared to baseline (30%
compared to DAWB). This is because the DBI evictions obtain
the beneVt of DRAM-aware writebacks, even without AWB.
In fact, enabling the AWB optimization does not buy much
performance for this workload (< 1%). Enabling the CLB op-
timization, as expected, further improves performance (92%
compared to baseline and 37% compared to DAWB).

Figure 8 compares the system performance of DAWB with
DBI+AWB+CLB for all the 259 4-core workloads. The work-
loads are sorted based on the weighted speedup improvement
of DBI+AWB+CLB. There are two key takeaways from the

Vgure. First, the average performance improvement of DBI
over AWB is not due to a small set of workloads. Rather, ex-
cept for a few workloads, DBI+AWB+CLB consistently out-
performs DAWB. Second, DBI slightly degrades performance
compared to the baseline only for 7 workloads (mainly due to
the additional writebacks generated by DBI).

Baseline DAWB DBI+AWB+CLB

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

W
ei
gh
te
d
Sp
ee
du

p

Figure 8: 4-core system performance for all 259 workloads

Table 3 presents three other multi-core performance
and fairness metrics: instruction throughput, harmonic
speedup [32], and maximum slowdown [14, 24, 25]. As our
results indicate, DBI+AWB+CLB improves both system per-
formance and fairness for all multi-core systems.

Number of Cores 2 4 8

Number of workloads 102 259 120

Weighted Speedup [50] Improvement 22% 32% 31%

Instruction Throughput Improvement 23% 32% 30%

Harmonic Speedup [32] Improvement 23% 36% 35%

Maximum Slowdown [14, 24] Reduction 18% 29% 28%

Table 3: Multi-core: Performance and fairness of DBI with both
AWB and CLB optimizations compared to baseline

Based on our performance results, we conclude that DBI
is a simple and eUective mechanism to concurrently enable
multiple optimizations that signiVcantly improve system per-
formance. In the next section, we show that DBI achieves this
while reducing overall cache area cost.

6.3. Area and Power Analysis (with and without ECC)

A cache augmented with DBI can reduce cache area cost com-
pared to conventional organization due to two reasons. First,
DBI tracks far fewer blocks than the main tag store, thereby
directly reducing the storage cost for dirty bits. Even when
tracking only 1/4

th as many blocks as the main tag store, DBI
signiVcantly improves performance (as shown in Section 6.2).
Second, as we discussed in Section 3.3, DBI can enable a sim-
ple mechanism to reduce the ECC overhead, further reducing
the cache area cost.

In our evaluations, we assume the ECC organization shown
in Figure 5. The baseline cache stores SECDED ECC (12.5%
overhead) for all cache blocks, whereas the cache augmented
with DBI stores only parity EDC (1.5% overhead) for all cache
blocks and SECDED ECC for only blocks tracked by the DBI.

9

Note that our performance evaluations do not include any
overhead of computing EDC or ECC.

Table 4 summarizes the reduction in the tag store and over-
all cache storage cost due to DBI. Since we scale the DBI size
with the cache size, the storage savings of using DBI, in terms
of the total number of bits, is roughly independent of the
cache size. As highlighted in the table, with α = 1/4 and
with ECC enabled, DBI reduces the tag store cost (in terms of
number of bits) by 44% and the overall cache by 7%.

DBI Size (α)
Without ECC With ECC

Tag Store Cache Tag Store Cache

1/4 2% 0.1% 44%* 7%
1/2 1% 0.0% 26%* 4%

Table 4: Bit storage cost reduction of cache with DBI compared
to conventional cache (with and without ECC). *We assume ECC
is stored in the main tag store (or DBI)

We perform a more detailed area and power analysis of a
cache with DBI using CACTI [1]. Our results show that the
reduction in bit storage cost translates to commensurate re-
duction in the overall cache area. For a 16MB cache with ECC
protection, our mechanism reduces the overall cache area by
8% and 5% for α = 1/4 and α = 1/2, respectively. We expect
the gains to increase with stronger ECC, which will be likely
be required in future systems [7, 9].

Table 5 shows the percentage increase in the static and dy-
namic power consumption of DBI. DBI leads to a marginal in-
crease in both static and dynamic power consumption of the
cache. However, our analysis using DDR3 SDRAM System-
Power Calculator [2] shows that as a result of increasing the
DRAM row hit rate, our mechanism reduces overall memory
energy consumption of single-core system by 14% on average
compared to the baseline.

Cache size 2 MB 4 MB 8 MB 16MB

Static 0.12% 0.21% 0.21% 0.22%

Dynamic 4% 1% 1% 2%

Table 5: DBI power consumption (fraction of total cache power)

6.4. Sensitivity to DBI Design Parameters

In Section 4, we described three key DBI design parameters
that can potentially aUect the eUectiveness of the diUerent op-
timizations: 1) DBI granularity, 2) DBI size (α), and 3) DBI
replacement policy. As brieWy mentioned in that section, the
Least Recently Written (LRW) policy performs comparably or
better than the other policies. In this section, we evaluate
the sensitivity of DBI performance to the DBI granularity and
size, which are more unique to our design. We individually
analyze the sensitivity of the two performance optimizations,
AWB and CLB, to these parameters.

Table 6 shows the sensitivity of the AWB optimization to
DBI size and granularity. The table shows the average IPC im-
provement of DBI+AWB compared to baseline for the single-
core system. As expected, the performance of AWB increases
with increasing granularity and size. However, a smaller DBI
size enables more reduction in the ECC area overhead (as
shown in Section 6.3), presenting a trade-oU between perfor-
mance and area.

Granularity 16 32 64 128

Si
ze α = 1/4 10% 12% 12% 13%

α = 1/2 10% 12% 13% 14%

Table 6: Sensitivity of AWB to DBI size and granularity. Values
show the average IPC improvement of DBI+AWB compared to
baseline for our single-core system.

The eUectiveness of the CLB optimization depends on the
eUectiveness of the miss predictor and the latency of looking
up the DBI (Section 3.2). As described in that section, the
eUectiveness of our miss predictor, Skip Cache, depends on
the epoch length and the miss threshold. The access latency
of the DBI primarily depends on the size of the DBI. We ran
extensive simulations analyzing the sensitivity of the CLB op-
timization to these parameters. For reasonable values of these
parameters (bypass threshold—0.5 to 0.95, epoch length—10
million cycles to 250 million cycles, and DBI size—0.25 to 0.5),
we did not Vnd a signiVcant diUerence in performance im-
provement of the CLB optimization.

6.5. Sensitivity to Cache Size and Replacement Policy

Table 7 plots the improvement in weighted speedup of DBI
(with both AWB and CLB) compared to the Baseline with
two diUerent cache sizes for each of the multi-core systems
(2MB/Core and 4MB/core). As expected, the performance im-
provement of DBI decreases with increasing cache size, as
memory bandwidth becomes less of an issue with larger cache
sizes. However, DBI signiVcantly improves performance com-
pared to the baseline even for large caches (25% for 8-core
systems with a 32MB cache).

Cache Size 2-Core 4-Core 8-Core

2MB/Core 22% 32% 31%

4MB/Core 20% 27% 25%

Table 7: EUect of varying cache size. Values indicate perfor-
mance improvement of DBI+AWB+CLB over baseline.

Since DBI modiVes only the writeback sequence of the
cache, it does not aUect the read hit rate. As a result, we
expect the beneVts of DBI to complement any beneVts from
an improved replacement policy. As expected, even when us-
ing a better replacement policy, Dynamic Re-reference Inter-
val Prediction policy (DRRIP) [19], DBI signiVcantly improves
performance (7% over DAWB for 8-core systems).

10

7. Other Optimizations Enabled by DBI

Although we have quantitatively evaluated only three opti-
mizations enabled by DBI, there are several other applications
for DBI. Our approach can also be employed at other cache
levels to organize the dirty bit information to cater to the
write access pattern favorable to each cache level—similar to
the DRAM row oriented organization in our proposal. In this
section, we list a few other potential applications of DBI.

Load Balancing Memory Accesses. A recent prior
work [49] proposed a mechanism to load balance memory re-
quests between an on-chip DRAM cache and oU-chip memory
to improve bandwidth eXciency. For this purpose, they use
costly special structures: a counting Bloom Vlter [16] to keep
track of heavily written pages and a small cache to keep track
of pages that are likely dirty in the DRAM cache. In our pro-
posed organization, DBI can seamlessly serve both purposes—
it can track heavily written pages using its replacement policy
and can track pages that are dirty in the cache.

Fast Lookup for Dirty Status. DBI can eXciently answer
queries of the nature “Does DRAM row R have any dirty
blocks?”, “Does DRAM bank/rank X have any dirty blocks?”,
etc. As a result, DBI can be used more eUectively with many
opportunistic memory scheduling algorithms that schedule
writes based on rank idle time [55], with reads to the same
row [21], or other eager writeback mechanisms [28, 35, 48].

Cache Flushing. In many scenarios, large portions of the
cache should be Wushed—e.g., powering down banks to save
power [6, 11], persistent memory updates [13]. In such cases,
current systems have to writeback dirty blocks in a brute force
manner—by looking up the tag store. In contrast, DBI, with its
compact representation of dirty bit information, can improve
both the eXciency and latency of such cache Wushes.

Direct Memory Access (DMA). DMA operations are often
performed in bulk to amortize software overhead. A recent
work [47] also proposed a memory-to-memory DMA mecha-
nism to accelerate bulk copy operations. When a device reads
data from memory, the memory controller must ensure that
the data is not dirty in the cache [5]. DBI can accelerate this
coherence operation, especially in case of a bulk DMAwhere a
single DBI query can provide the dirty status of several blocks
involved in the DMA.

Metadata about Dirty Blocks. DBI provides a compact,
Wexible framework that enables the cache to store information
about dirty blocks. While we demonstrate the beneVt of this
framework by reducing the overhead of maintaining ECC, one
can use DBI in other similar scenarios which require the cache
to store information only about dirty blocks (e.g., compression
information in main memory compression [39]).

8. Related Work

To our knowledge, this is the Vrst work that proposes a diUer-
ent way of organizing the dirty bit information of the cache
to enable several dirty-block-related optimizations. We have
already provided comparisons to prior works [23, 27, 29, 30,

33, 44, 51, 58, 59] that have explored these optimizations. In
this section, we discuss other related work.

Loh and Hill [31] proposed a data structure called MissMap
with the aim reducing the latency of a cache miss by avoid-
ing the need to look up the tag store (maintained in a DRAM
cache). DBI can be favorably combined with MissMap to ac-
celerate costly MissMap entry evictions [31].

Wang et al. [54] propose a mechanism to predict last writes
to cache blocks to improve writeback eXciency. This mech-
anism can be combined with DBI to eliminate premature ag-
gressive writebacks.

Khan et al. propose a mixed-cell architecture [22]—most
of the cache built with small cells and a small portion built
with larger, more reliable cells. By storing dirty blocks in the
more reliable portion of the cache, the amount and strength of
ECC required for the cache can be reduced. This approach, al-
though eUective, limits the number of dirty blocks in each set,
thereby increasing the number of writebacks. DBI, in con-
trast, reduces ECC overhead without requiring any changes
to the cache data store design. Having said that, DBI can be
combined with such mixed-cell designs to enable all the other
optimizations discussed in Sections 3 and 7.

Several prior works (e.g., [12, 17, 19, 40, 43, 46, 53, 56]) have
proposed eXcient cache management strategies to improve
overall system performance. Our proposed optimizations can
be used to both improve the writeback eXciency (AWB) and
bypass the cache altogether for read accesses of applications
(CLB) for which these cache management strategies are not
eUective. Similarly, AWB can also be combined with diUerent
memory read scheduling algorithms (e.g., [8, 24, 25, 34, 36]).

9. Conclusion

We presented the Dirty-Block Index (DBI), a new and sim-
ple structure that decouples the dirty bit information from
the main cache tag store. This decoupling allows the DBI
to organize the dirty bit information independent of the tag
store. More speciVcally, DBI 1) groups the dirty bit informa-
tion of blocks in the same DRAM row in the same DBI entry,
and 2) tracks far fewer blocks than the main tag store. We
presented simple and eXcient implementations of three opti-
mizations related to dirty blocks using DBI. DBI, with all three
optimizations, performs signiVcantly better than individually
employing any single optimization (6% better than best pre-
vious mechanism for 8-core systems across 120 workloads),
while also reducing overall cache area by 8%.

Although we have demonstrated the beneVts of DBI using
these three optimizations applied to the LLC, this approach
is an eUective way of enabling several other optimizations at
diUerent levels of caches by organizing the DBI to cater to the
write patterns of each cache level. We believe this approach
can be extended to more eXciently organize other metadata
in caches (e.g., cache coherence states), enabling more opti-
mizations to improve performance and power-eXciency.

11

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments. We thank the members of the SAFARI and LBA
research groups for their feedback and the stimulating re-
search environment they provide. We acknowledge the gen-
erous support from our industry partners: IBM, Intel, Qual-
comm, and Samsung. This research was partially funded by
NSF grants (CAREER Award CCF 0953246, CCF 1212962, and
CNS 1065112), Intel Science and Technology Center for Cloud
Computing, and the Semiconductor Research Corporation.

References
[1] CACTI 6.0. http://www.cs.utah.edu/~rajeev/cacti6/.
[2] Micron Technologies, Inc., DDR3 SDRAM system-power calculator.

http://www.micron.com/products/support/power-calc/.
[3] SPEC CPU2006 Benchmark Suite. www.spec.org/cpu2006.
[4] STREAM Benchmark. http://www.streambench.org/.
[5] Intel 64 and IA-32 Architectures Software Developer’s Manual, vol-

ume 3A, chapter 11, page 12. April 2012.
[6] Software techniques for shared-cache multi-core systems.

http://software.intel.com/en-us/articles/software-
techniques-for-shared-cache-multi-core-systems, 2012.

[7] A. R. Alameldeen et al. Energy-eXcient cache design using variable-
strength error-correcting codes. In ISCA, 2011.

[8] R. Ausavarungnirun et al. Staged Memory Scheduling: Achieving high
performance and scalability in heterogeneous systems. In ISCA, 2012.

[9] R. Baumann. Soft errors in advanced computer systems. IEEE Design
Test of Computers, 22(3):258–266, 2005.

[10] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78 –101, 1966.

[11] K. Chang et al. Enabling eXcient dynamic resizing of large DRAM
caches via a hardware consistent hashing mechanism. Technical Report
Safari TR 2013-001, Carnegie Mellon University, 2013.

[12] J. D. Collins and D. M. Tullsen. Hardware identiVcation of cache conWict
misses. In MICRO, 1999.

[13] J. Condit et al. Better I/O through byte-addressable, persistent Memory.
In SOSP, 2009.

[14] R. Das et al. Application-aware prioritization mechanisms for on-chip
networks. In MICRO, 2009.

[15] S. Eyerman and L. Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE Micro, 2008.

[16] L. Fan et al. Summary Cache: A scalable wide-area web cache sharing
protocol. IEEE/ACM ToN, 8(3):281–293, June 2000.

[17] E. G. Hallnor and S. K. Reinhardt. A fully associative software managed
cache design. In ISCA, 2000.

[18] A. Jaleel et al. Adaptive insertion policies for managing shared caches.
In PACT, 2008.

[19] A. Jaleel et al. High performance cache replacement using re-reference
interval prediction (RRIP). In ISCA, 2010.

[20] JEDEC. DDR3 SDRAM, JESD79-3F, 2012.
[21] M. Jeon. Reducing DRAM row activations with eager writeback. Mas-

ter’s thesis, Rice University, 2012.
[22] S. M. Khan et al. Improving multi-core performance using mixed-cell

cache architecture. In HPCA, 2013.
[23] S. Kim. Area-eXcient error protection for caches. In DATE, 2006.
[24] Y. Kim et al. ATLAS: A scalable and high-performance scheduling al-

gorithm for multiple memory controllers. In HPCA, 2010.
[25] Y. Kim et al. Thread Cluster Memory Scheduling: Exploiting diUerences

in memory access behavior. In MICRO, 2010.
[26] Y. Kim et al. A case for exploiting subarray-level parallelism (SALP) in

DRAM. In ISCA, 2012.
[27] C. J. Lee et al. DRAM-aware last-level cache writeback: Reducing

write-caused interference in memory systems. Technical Report TR-
HPS-2010-2, University of Texas at Austin, 2010.

[28] H. S. Lee et al. Eager writeback - a technique for improving bandwidth
utilization. In MICRO, 2000.

[29] L. Li et al. Soft Error and Energy Consumption Interactions : A Data
Cache Perspective. In ISLPED, 2004.

[30] G. Liu. ECC-Cache: A novel low power scheme to protect large-capacity
L2 caches from transient faults. IAS, 2009.

[31] G. H. Loh and M. D. Hill. EXciently enabling conventional block sizes
for very large die-stacked DRAM caches. In MICRO, 2011.

[32] Kun Luo et al. Balancing thoughput and fairness in SMT processors. In
ISPASS, 2001.

[33] G. Memik et al. Just Say No: BeneVts of early cache miss determination.
In HPCA, 2003.

[34] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En-
hancing both performance and fairness of shared DRAM systems. In
ISCA, 2008.

[35] C. Natarajan et al. A study of performance impact of memory controller
features in multi-processor server environment. InWMPI, 2004.

[36] K. J. Nesbit et al. Fair queuing memory systems. In MICRO, 2006.
[37] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution

for multiprocessors with private cache memories. In ISCA, 1984.
[38] H. Patil et al. Pinpointing Representative Portions of Large Intel Itanium

Programs with Dynamic Instrumentation. In MICRO, 2004.
[39] G. Pekhimenko et al. Linearly Compressed Pages: A low-complexity,

low-latency main memory compression framework. In MICRO, 2013.
[40] M. K. Qureshi et al. The V-way cache: Demand based associativity via

global replacement. In ISCA, 2005.
[41] M. K. Qureshi et al. A case for MLP-aware cache replacement. In ISCA,

2006.
[42] M. K. Qureshi et al. Adaptive insertion policies for high performance

caching. In ISCA, 2007.
[43] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

[44] K. Raghavendra et al. SkipCache: Miss-rate aware cache management.
In PACT, 2012.

[45] S. Rixner et al. Memory access scheduling. In ISCA, 2000.
[46] V. Seshadri et al. The Evicted-Address Filter: A uniVed mechanism to

address both cache pollution and thrashing. In PACT, 2012.
[47] V. Seshadri et al. RowClone: Fast and energy-eXcient in-DRAM bulk

data copy and initialization. In MICRO, 2013.
[48] J. Shao and B. T. Davis. A burst scheduling access reordering mecha-

nism. In HPCA, 2007.
[49] J. Sim et al. A mostly-clean DRAM cache for eUective hit speculation

and self-balancing dispatch. In MICRO, 2012.
[50] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultane-

ous multithreaded processor. In ASPLOS, 2000.
[51] J. Stuecheli et al. The Virtual Write Queue: Coordinating DRAM and

last-level cache policies. In ISCA, 2010.
[52] P. Sweazey and A. J. Smith. A class of compatible cache consistency

protocols and their support by the IEEE futurebus. In ISCA, 1986.
[53] G. Tyson et al. A modiVed approach to data cache management. In

MICRO, 1995.
[54] Z. Wang et al. Improving writeback eXciency with decoupled last-write

prediction. In ISCA, 2012.
[55] Z. Wang and D. A. Jiménez. Exploiting rank idle time for scheduling

last-level cache writeback. In PACT, 2011.
[56] Y. Xie and G. H. Loh. PIPP: Promotion/insertion pseudo-partitioning of

multi-core shared caches. In ISCA, 2009.
[57] A. Yoaz et al. Speculation techniques for improving load related instruc-

tion scheduling. In ISCA, 1999.
[58] D. H. Yoon and M. Erez. Flexible cache error protection using an ECC

FIFO. In SC, 2009.
[59] D. H. Yoon and M. Erez. Memory mapped ECC: Low-cost error protec-

tion for last level caches. In ISCA, 2009.
[60] W. K. ZuravleU and T. Robinson. Controller for a synchronous DRAM

that maximizes throughput by allowing memory requests and com-
mands to be issued out of order. US Patent 5630096, 1997.

12

