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ABSTRACT
New abstractions are simplifying the programming of large
clusters, but diagnosis nontheless gets more and more chal-
lenging as cluster sizes grow: Debugging information in-
creases linearly with cluster size, and the count of intercom-
ponent relationships grows quadratically. Worse, the new
abstractions which simplified programming can also obscure
the relationships between high-level (application) and low-
level (task/process/disk/CPU) information flows. In this pa-
per we analyze the workflow of several users and systems ad-
ministrators connected with a large academic cluster (based
the popular Hadoop implementation of the MapReduce ab-
straction) and propose improvements to the diagnosis-relevant
information displays. We also offer a preliminary analysis of
the efficacy of the changes we propose that demonstrates a
40% reduction in the time taken to accomplish 5 representa-
tive diagnostic tasks as compared to the current system.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User-centered design

General Terms
Human Factors
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1. INTRODUCTION
MapReduce [7] is a programming paradigm, proposed

by Google, that enables scalable analysis of large datasets
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by distributing data processing across a cluster of nodes.
MapReduce simplifies parallel programming using two
abstractions namely: maps which breakdown the data-
processing task into manageable chunks that run in par-
allel across the cluster, and reduces which consolidate
the results generated by maps. MapReduce clusters can
process large amounts of data–at Google alone, more
than 100,000 MapReduce jobs process more than 20
PB of data daily [7]. An open-source implementation
of MapReduce, known as Hadoop [18], is widely used
for data processing at companies such as Yahoo! and
Facebook, as well as for academic research [10].

Even though MapReduce makes developing parallel
applications simpler, the complex interactions between
components can cause errors to propagate across the
system, obscuring the root-cause of the problem. In
addition, poorly-written MapReduce applications can
degrade the performance of other applications running
concurrently on the cluster. These complex failure pat-
terns, coupled with the sheer scale of clusters make it
challenging to diagnose problems in a timely fashion.

To better understand the obstacles to diagnosis, we
interviewed Hadoop users and system administrators of
a large academic cluster. We had initially planned to
focus our interface re-design efforts to support diagnos-
tic workflows of system administrators. However, after
conducting several interviews with system administra-
tors, we discovered that they were already efficient at
diagnosing infrastructural problems, e.g., disk failures
or network congestion, due to their years of experience.
The administrators were less familiar with Hadoop so
the task of troubleshooting MapReduce problems often
fell to Hadoop users. We decided that the focus of
an improved diagnostic interface should be to support
Hadoop users so that they do not have to approach the
system administrators every time they had a problem.

At present, the users diagnose problems by monitor-
ing resource consumption, and browsing Hadoop logs
using disparate web-based interfaces. We observed that
users had to constantly switch between interfaces to
perceive connections between the data and draw conclu-
sions about the fault state of the system. Even with the



combination of interfaces, certain information was not
discernable and users had to resort to querying system
state via the command-line interface of the underlying
operating system.

This paper articulates the design principles for build-
ing a consolidated interface that improves the diagnostic
workflow of Hadoop users by offering a “one-stop-shop”
for visualizing the state of system. We illustrate these
principles using an interface prototype, and perform
a preliminary evaluation using keystroke-level model-
ing [4] to estimate the time taken to perform a set of
tasks. We observed that the prototype achieved a 40%
reduction in the time-taken to accomplish 5 diagnostics
tasks when compared to the existing system.

2. ENVIRONMENT, USERS, AND TOOLS

Environment. Our study analyzed the diagnostic work-
flows of Hadoop users and system administrators of a
64-node cloud-computing cluster for data-intensive re-
search at a university, which supports over 100 users.
Hadoop [18] is an open-source implementation of Google’s
MapReduce [7] framework that enables distributed, data-
intensive, parallel applications by decomposing a mas-
sive job into smaller (Map and Reduce) tasks and a mas-
sive data-set into smaller partitions, such that each task
processes a different partition in parallel.

A Hadoop job consists of a group of Map and Re-

duce tasks performing some data-intensive computa-
tion. Hadoop automates job scheduling and allows mul-
tiple users to share the cluster. Users of the cluster
run a diverse set of data-intensive workloads such as
large-scale graph mining, text and web mining, natural
language processing, machine translation problems, and
data-intensive file system applications.

Users. During our study, we interviewed 3 Hadoop users,
and 2 system administrators. The Hadoop users were
researchers familiar with configuring Hadoop, writing
and running MapReduce jobs, and analyzing the out-
put generated by their jobs. The users had varying
levels of experience with Hadoop: one of the users was
a novice user, while the other two were advanced users.
Hadoop users troubleshoot their MapReduce jobs when
they suspect that the job has been running longer than
usual, or when their jobs fail due to exceptional condi-
tions such as insufficient file privileges. The root-causes
of these problems range from bugs in their MapReduce
jobs (e.g. infinite loops), configuration problems such as
allocating insufficient memory to complete their jobs, to
the occasional disk failure. As users share the cluster,
they sometimes experience contention for resources with
other jobs. The cluster currently does not support task
preemption in which runaway tasks are killed to make
room for other tasks in the system.

The system administrators were responsible for main-
taining the overall health of the cluster by: (i) setting up
hardware and software on the cluster; (ii) troubleshoot-
ing infrastructural problems (e.g., hardware failures,
misconfigurations); (iii) upgrading hardware and soft-
ware; and (iv) maintaining user accounts. Both admin-
istrators we inteviewed had more than 5 years of expe-
rience managing clusters. The administrators were also
less familiar with Hadoop, so the task of troubleshoot-
ing MapReduce problems was typically performed by
Hadoop users.

The Hadoop users try to diagnose problems either on
their own, by soliciting help from the cluster mailing
list, or by escalating the problem to the system admin-
istrators. The users were interested in distinguishing
between the following diagnostic scenarios:

1. Bugs in their MapReduce jobs: Users sometimes
make mistakes when developing their MapReduce
jobs, such as referencing incorrect files, assigning
insufficient file permissions, and software bugs such
as infinite loops. Once they identify the bug, they
can fix their code and re-run their jobs.

2. Legitimately slow jobs: Some tasks within their
MapReduce jobs are legitimately slower than oth-
ers because they are processing more data. Users
can ignore these discrepancies in task durations,
and allow their jobs to run to completion.

3. Contention with other jobs: As users share the
cluster, sometimes buggy MapReduce jobs can de-
grade the performance of other jobs running in
the cluster. For example, infinite loops in tasks
or jobs which inadvertently fill up the temporary
directories on nodes can interfere with other jobs
in the system. Users can contact the owners of
these buggy jobs or system administrators to re-
solve these issues.

4. Infrastructural problems: Users can escalate prob-
lems to the system administrators especially if they
suspect an infrastructural problems, e.g., disk fail-
ures, insufficient disk space or a cluster-wide mis-
configuration.

Tools. Users primarily rely on three tools to diagnose
problems in their jobs namely: (i) Ganglia (version
3.1.7) [9], a scalable distributed system monitor tool
for high-performance computing systems such as clus-
ters and grids that allows users to remotely view live
or historical statistics (such as CPU load averages or
network utilization as illustrated in Figure 1(a)); (ii)
the Hadoop (version 0.20.1) web interface [18] that al-
lows users to browse application logs and monitor the
progress of the map and reduce tasks that constitute
their jobs, as illustrated in Figure 1(b); and (iii) the



(a) Screenshot of Ganglia monitoring tool showing CPU uti-
lization on several nodes over the past hour.

(b) Screenshot of Hadoop web interface showing progress of
Map and Reduce tasks in a single job.

Figure 1: Users query disparate interfaces to track resource usage and progress of MapReduce jobs.

operating system terminal that facilitates more power-
ful exploration such as querying the real-time resource
usage (e.g., CPU utilization), of nodes and processes,
pinging remote nodes to determine their status, tail-
ing logs to track the real-time job progress, and dump-
ing the process state of Hadoop jobs.

In addition, system administrators use Nagios [14], an
open-source application that monitors nodes and ser-
vices and alerts administrators when things go wrong.
They also make use of a ticketing system that allows
them to keep track of both open and resolved problems.

3. HUMAN-CENTERED DESIGN
We used a human-centered design methodology [3] to

explore the diagnostic workflows of Hadoop users. Our
aim was to identify common workflows in their day-to-
day tasks, and identify breakdowns and opportunities
for improving the existing diagnostic interfaces. Be-
fore conducting our research, we performed an affinity
diagramming session and identified focii that provided
direction for our user studies. During the diagramming
session, we noted questions we had about the work pro-
cess, attitudes, and needs of system administrators and
Hadoop users.

We consolidated these notes into themes and iden-
tified two primary areas of inquiry: (i) discovery, the
process in which Hadoop users realize a problem exists
in the system; and (ii) diagnostics, the process in which
administrators find the root cause of a problem. The
diagnostics focus included questions such as when are
problems escalated to other administrators? and who is
involved in a problem response?

We recruited five participants for our study: 3 Hadoop
users, and 2 system administrators. To understand the
diagnostic workflows of these users, we conducted con-
textual inquiries [3]. Contextual inquiry is a human-
centered research method in which researchers observe
users performing their work in context and interrupt

briefly to ask questions as they arise. We believe that
what the user says he does, and what he actually does
can be very different things. By observing users and
their work flows, we gathered data that informed a de-
sign process supporting their everyday tasks and goals.

We initially expected that system administrators would
be the primary target of our research. However, after
conducting two contextual inquiry sessions, we decided
to focus on Hadoop users rather than system admin-
istrators. Hadoop users were less aware of the overall
state of the system, had fewer access privileges, and
were more confused by problems when they arose. The
challenges that Hadoop users faced provided opportuni-
ties to develop tools to improve their workflow efficiency.

4. USE CASES
Through our contextual inquiries, we identified com-

mon workflows of Hadoop users when diagnosing prob-
lems in their jobs. In what follows, we describe cases
that illustrate important aspects of the diagnostic work-
flow, focusing on breakdowns because these are areas
that require the most immediate attention.

4.1 Case 1: Misleading application bug
Bob1 begins a Hadoop job from the terminal. He

monitors the job progress from the terminal window. “I
like to monitor progress from the terminal. If there is
a problem, I can see it faster.” After receiving sporadic
feedback about job progress, Bob switches windows to
the Hadoop web interface and refreshes the page. “I
think I’m competing with another job”. He sees that
another job is being run by a different user and restarts
his job to test his theory. To do this, he must scroll
through the job output on his terminal to find the kill
command, then copy and paste the command in the
terminal. “If the job is very long, you have to go back
several screens to get it.”

1Not his real name.
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(b) Sequence diagram showing the steps taken to di-
agnose slow Hadoop jobs. Users often switch between
multiple interfaces to accomplish their goals.

Figure 2: Examples of models generated during the contextual design process.

After modifying his code, Bob attempts the job again,
but this time the job fails. The terminal tells him that
the job failed, but it does not contain sufficient infor-
mation to diagnose the problem. Bob returns to the
web interface to gather more information and refreshes
the job page again. He determines there is a problem
by noticing that the number of failed tasks on his job
is greater than zero. “If this number is non-zero, ba-
sically there is something wrong with your program. If
the number is low, two or three, the node may be unsta-
ble.” He then clicks on the number of failed tasks in the
web interface to view the error messages, but he must
navigate to another page to access a full error log. “It’s
kind of painful to do this”. From this he determines the
cause to be due to a syntax error in his code.

4.2 Case 2: Overloaded node
Jeff2 retrieves an email message posted to the clus-

ter mailing list requesting assistance with troubleshoot-
ing a job that is failing. Jeff examines the failed job
in the Hadoop web interface. He selects the job from
the job list and subsequently clicks on the number of
killed tasks from the job summary page. He observes
the list of killed tasks and identifies the node on which
the task was killed, “ahh, this was the machine”, which
is labeled as node 13, “sometimes it’s not that obvious”.
Jeff changes browser tabs to the Ganglia web interface
where the individual cluster nodes are monitored. He
scrolls through the list of nodes to find node 13, which
he identified as being troublesome in the Hadoop inter-
face and selects it. He explains, “Sometimes it’s not just
your job that caused the problem, sometimes someone
else might cause you a problem”. The resulting page
displays hourly plots of all the metrics collected from
node 13. He glances at the first few graphs, “these are

2Not his real name.

more likely to be important”, he quickly scrolls the rest of
the page, “this is too much detail, there is too much data
to look at”. Back at the summarized node 13 graphs,
he synthesizes the information from multiple graphs to
determine that the node was under heavy load during
the period over which his task ran.

5. IDENTIFYING WORKFLOW GAPS
We consolidated the interview transcripts from the

five contextual inquiries, and built models in accordance
with the contextual design process namely: flow, se-
quence, cultural, artifact, and physical models. These
five models expose common themes in the Hadoop users’
environment and workflows. We present brief descrip-
tions of these models, and their significance in exposing
aspects of Hadoop users’ workflows.

Flow models. Flow models help us to understand the
roles of different users, detailing the interactions be-
tween them while performing their duties. The flow
models motivated the need for a consolidated diagnos-
tic interface that displayed both the Hadoop job infor-
mation and the associated resource consumption, since
users often used these tools in conjunction with each
other when diagnosing problems (see Figure 2(a)).

Sequence models. Sequence models provide insight into
the steps users take to perform each of their tasks.
These models help researchers to understand what trig-
gers a user to perform a particular step and exposes the
breakdowns the user faces while trying to accomplish
their goals. For example, the sequence models revealed
that Hadoop users must often switch between multiple
interfaces such as Hadoop, Ganglia and a terminal win-
dow to accomplish their goals (see Figure 2(b)).



Cultural models. Cultural models identify the social
and behavioral influences that affect users’ actions. Our
consolidated cultural model revealed that system ad-
ministrators were already efficient because of their fa-
miliarity with the workflow and years of experience.
The models also revealed an interesting mismatch be-
tween the expectations of system administrators and
users–Hadoop users thought that more issues should
be escalated to administrators, whereas administrators
thought that many issues could be resolved without
their help. We decided that the focus of an improved
diagnostic interface should be to support Hadoop users
so that they do not have to approach the system ad-
ministrators every time they had a problem.

Artifact models. Artifact models expose the role of phys-
ical tools, documents, and other artifacts in the day-to-
day work of the user. In our investigation of Hadoop
users and system administrators, the prominent arti-
facts were the web browser, and the terminal window.

Physical models. Physical models highlight properties
of the physical environment that impact the user’s abil-
ity to accomplish their tasks. These models helped us
analyze screenshots from the existing diagnostic inter-
face to identify the features and functionality employed
by Hadoop users. They revealed that many important
displays of data were hidden or took multiple steps to
reach. For example, viewing the data associated with a
task required copying the task ID, switching to another
view several clicks away, and then pasting the task ID.

5.1 Gaps in existing interfaces
The contextual inquiries revealed several important

breakdowns in existing diagnostic interfaces used by
Hadoop users, namely:

No single point for diagnosis-relevant information. We
observed that users spent an inordinate amount of time
locating key pieces of data spread across multiple sys-
tems. Users often juggled between multiple browser tab
views to obtain the desired information.

Lack of information prioritization. In many cases, im-
portant data needed by the user is not displayed promi-
nently and conveniently. The user often must go through
several levels of navigation to find needed information.

Users unaware of the computational cost of their jobs.
The Hadoop users in our cluster had no way of know-
ing how effectively they were managing resources on the
Hadoop cluster. They were unable to assess their usage
of the cluster, and were not motivated to limit their use
of system resources in a way that would be beneficial
to everyone in the user community. Displaying a vi-

sualization of resource consumption that indicates how
the user is doing compared to the rest of the commu-
nity would make users aware of their role in a larger
context, and allow users to schedule their jobs more
considerately.

Information overload. Another major breakdown we
observed was the copious amount of information dis-
played to the user due to the large number of nodes
in the cluster, and the approximately hundred different
performance metrics collected from each node. Users
were presented with stacks of graphs that commingled
meaningful information with irrelevant data. For exam-
ple, we observed that users were sometimes interested
in viewing real-time statistics about resource consump-
tion on a node. The real-time information is available
as an annotation beneath each graph in the Ganglia in-
terface. However, due to the sheer number of graphs
displayed for each node, we found that users would by-
pass Ganglia, open a terminal window, and monitor the
real-time resource via the top command. The top com-
mand succintly displays real-time resource consumption
for processes running on a node.

6. DESIGN RECOMMENDATIONS
We propose five key themes to guide the design of an

improved interface that supports the diagnostic work-
flow of Hadoop users. These themes were drawn from
our observations of the major pain-points experienced
by Hadoop users when diagnosing problems. The ex-
isting Hadoop and Ganglia interfaces have enough in-
formation for users to effectively diagnose problems–
however, these interfaces are limited because certain
metrics are not displayed well. The key design themes
are: (i) personalize interfaces; (ii) prioritize information
display; (iii) consolidate information; (iv) support data
exploration; and (v) illustrate communal context.

6.1 Personalize interfaces
Different users need access to different types of in-

formation based on their level of experience, and their
role within the system. Hadoop users are primarily
concerned with making sure their individual jobs are
running as expected, while system administrators are
concerned with monitoring the overall health of the en-
tire cluster. Support for personalized interfaces would
ensure that the user’s individual needs are met.

6.2 Prioritize information display
The data displayed on the interfaces must distill the

most crucial information as quickly and as easily as pos-
sible. Users often consulted an interface looking for
specific information, or intending to scan particular vi-
sualizations to detect anomalies. In both scenarios, the
most important information should be displayed promi-



nently to allow users to quickly and accurately trou-
bleshoot problems in their system. Organizing infor-
mation using a hierarchy that fits the users’ notion of
priority can improve the users’ workflows. For example,
users had to click through several pages in the Hadoop
web interface to access the error logs showing why their
job failed. Displaying a snippet of the most recent ex-
ceptions in the logs alongside the failed job would ease
the troubleshooting process. Another critical piece of
information requested by Hadoop users was an indica-
tion of how long their current job had been running,
and an estimate of how much more time was needed
before it completed.

6.3 Consolidate information
The current interfaces lacked a single point for access-

ing diagnosis-relevant information. The Hadoop web
interface provided information about a user’s jobs and
tasks, while Ganglia provided aggregate information about
resource consumption at both the node and cluster level.
Users constantly switched between interfaces to iden-
tify connections between the data. Even with a com-
bination of interfaces, certain levels of information are
not discernable. For example, users could not view the
progress of tasks running on a particular node, and the
associated resource consumption on the same interface.

6.4 Support data exploration
We observed that Hadoop users coped with the copi-

ous amounts of information available in the system by
adopting top-down strategies for diagnosis. For exam-
ple, a user would first identify the job that failed before
zeroing in on the tasks that failed. If a user suspects
that the problem is due to resource contention, the user
would identify the nodes that the tasks were running on
and look up their resource consumption on Ganglia.

Diagnostic interfaces should support data exploration
strategies that allow users to form, and confirm their
hypotheses on the root-cause of the problem. Devel-
oping dynamic and interactive visualizations, which al-
low clicking and hovering, would facilitate greater ex-
ploration. In addition, hyperlinks would allow users
dynamic access to related information without entering
a new query, or manually launching a new interface.
Support for sorting, filtering and searching would allow
users to find information (e.g., nodes or tasks) easily.

6.5 Illustrate communal context
The existing interfaces do not provide Hadoop users

with enough information to understand the impact of
their jobs on the cluster. For example, an indication
that the current user’s job is consuming 60% of cluster-
wide memory, or that a user’s task is running concur-
rently with 3 other tasks from unrelated jobs could help
users distinguish between problems due to their jobs,

Figure 3: The prototype allows users to view all
failed tasks for particular job, grouped by node.

and problems due to contention with other jobs. This
would be particularly helpful in non-virtualized environ-
ments where resource isolation is not strictly enforced.

7. INTERFACE PROTOTYPE
We developed a prototype of a diagnostic interface

that incorporates 4 of the 5 key design themes identified
by our consolidated models. The prototype does not ad-
dress how to visualize the impact of a user’s job on the
community, but rather focuses on testing our recom-
mendations for improving how users identify problems
in their individual jobs.

We iteratively refined the design of the prototype us-
ing wireframes of the interfaces, and storyboards that
helped us uncover flaws in our proposed designs. We im-
plemented the interface prototype as a set of clickable
screens using CogTool [5]. CogTool is an interface pro-
totyping and evaluation tool that allows user interface
designers to compare prototypes by predicting how long
it will take a user to complete tasks in each prototype.

We describe how we incorporated 4 key design themes
into our prototype through: (i) personalization; (ii)
more prominent error notification, and data visualiza-
tions that prioritize information display; (iii) consoli-
dation of job information and associated resource con-
sumption in a single interface; and (iv) support for data
exploration through search and filtering.

7.1 Personalization
The prototype personalizes information display by

prioritizing the information displayed based on their
username. Upon accessing the home page, the user is
immediately presented with any errors that occurred on
jobs that ran under their username. Each of the job cat-
egories (i.e, running, completed and failed) are sorted
to display the user’s jobs first so that information rele-
vant to them is not obscured by jobs from other users.

7.2 Prominent error notification
We observed that users had to click through multiple

screens to access error logs that they were interested
in. The prototype prominently highlights failed jobs on
the user’s home page along with a snippet of the most
recent task exception thrown prior to the job failure.
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Figure 5: Progress bars display the overall pro-
portion of tasks that are completed (dark blue)
and currently running (light blue) for each job.

We display the time of the job failed, as well as the
node on which the most recent task failed. In addition,
we provide a link that allows users to view all failed
tasks for a particular job, grouped by node. A snippet
of the exception is displayed next to each failed task
and is highlighted in red as shown in Figure 3. Users
access the detailed error log containing the exception by
clicking the error notification.

7.3 Improved data visualization
The current Hadoop web interface does not adequately

visualize the large quantities of task data associated
with each job. We observed that the users in our study
ignored the visualizations because they did not capture
the information they were looking for. Instead, users
opted to glean information on task progress from the
text descriptions available via the interface. We in-
corporated new visualizations into the prototype that
succintly displayed the information requested by users
namely: swimlane graphs, progress bars, and sparklines.

Swimlane graphs. Swimlane graphs [17] provide a more
comprehensive representation of the performance of in-
dividual tasks in a job by charting the start and end
times of individual tasks, while also receiving instanta-

Map (Ä/value)

Bytes written

Records written

RandomWriter job
13,958,720,317

1,329,589

Figure 6: Sparklines showing the amount of data
read by Map tasks over time next to each job.

neous feedback about task duration (see Figure 7.2).
Users in our study indicated that determining the root
cause of individual poorly performing tasks was the
most elusive problem they encountered. Swimlanes al-
low users to quickly identify long-running tasks that
might be contributing to the performance slowdown.
In a functional implementation of our prototype, these
lanes would be interactive allowing users to navigate to
the task-specific page when a swimlane is selected.

Progress bars. We used a tiered, horizontal progress
bar to visualize the overall proportion of tasks that are
completed, and that are currently still running, for each
job in the cluster (see Figure 5). The Hadoop web
interface only displayed completed tasks.

Sparklines. Users expressed a need for visualizations
that tracked historical trends in job performance, which
was lacking in the Hadoop web interface. We addressed
this need by visualizing the progress indicators, e.g.,
the amount of data read by Map tasks over time us-
ing sparklines next to each job as shown in Figure 6.
Sparklines [19] are small, high resolution graphics em-
bedded in a context of words, numbers, images. Users
can detect whether a job is experiencing poor perfor-
mance by looking for flat lines or stutters in the sparkline.

7.4 Consolidating disparate interfaces
The prototype incorporates information from the ex-

isting diagnostic interfaces available to the user into a
common workflow that eliminates the need for multiple
disparate interfaces. Cluster-wide resource consump-
tion, e.g., CPU and memory utilization, traditionally
displayed using Ganglia interface are now prominently
displayed alongside information on job progress.

We observed that users were highly dependent on the
terminal window to initiate and kill jobs, to navigate
to specific logs, and to read error messages. However,
the workflow for extracting job information from the
Hadoop web interface for use in the terminal window
was tedious– often involving copying and pasting of key
information such as job IDs. The prototype addresses
this by providing interactive access to common terminal
tasks such as initiating and killing jobs.

7.5 Filtering and sorting data
The prototype allows users to explore the copious

amounts of data available in the cluster by enabling



Table 1: Tasks performed during think alouds.
No. Task
1 Locate the 6th line of the error log of a task for the job

that failed
2 Kill the job that you were running previously
3 Determine the duration of the longest-running map

task associated with your job
4 Determine the load average of the node that has the

longest running map task
5 Identify the 5th data record read by the longest running

map task

users to sort columns of data in-page, as well as filter by
key term using a contextual search field. We organized
data using tabs that grouped tasks based on whether
they were completed, running, or failed. The proto-
type also features a simple checkbox to group tasks by
node. This allows for users to quickly see if long-running
or problematic tasks are endemic to a specific machine
during troubleshooting. A search field is also available
on job and task lists to allow for the quick filtering of
specific users or task ranges on tables that can grow to
span many pages. The prototype allows users to quickly
sort tasks by duration to determine the longest run-
ning tasks, whose identification could serve as a starting
point for troubleshooting performance problems.

8. EVALUATION OF PROTOTYPE
To evaluate the effectiveness of our interface redesign,

we performed Think Aloud Usability Analysis [3], a
human-centered design approach also known as think
alouds. Think alouds are particularly effective in un-
derstanding breakdowns in interfaces, content and user
flow. During think alouds, the user is given a predefined
scenario and a set of tasks to complete. They are then
asked to speak their thought process as they perform
each of these tasks. Observing the user in this process
produces valuable data about which tasks the user finds
difficult to accomplish, or fails to accomplish and what
are the problematic parts that caused this.

As part of our interface assessment, we also performed
keystroke-level modeling [4] using the CogTool [5] inter-
face prototyping and evaluation framework. Keystroke-
level modeling is a method of estimating the time taken
to perform each of the input tasks (usually through key-
board and mouse), and identifying inefficiencies in the
sequence of tasks. Keystroke-level modeling also en-
ables comparison of task durations across two different
interfaces.

We conducted 3 think-aloud usability tests on the
prototype interface with 3 different Hadoop users. Users
were asked to perform the 5 tasks listed in Table 1.
Our preliminary evaluation showed that our interface
prototype achieved a 40% reduction in the time-taken
to accomplish the 5 tasks in comparison to the existing
interfaces.

8.1 Usability aspect reports
We analyzed screen capture and audio recordings from

the think alouds, and generated usability aspect reports
for each user, listing breakdowns and assigning severity
ratings to each of the breakdowns. We consolidated the
usability-aspect reports and used them as a guide to
refine the prototype. The findings from the usability
aspect reports are:

Need for appropriate sorting and filtering of tables.
We found sorting and filtering to be a useful and fa-
miliar function for think-aloud participants. However,
we did encounter some breakdowns when participants
attempted to use sorting and filtering. Sorting and fil-
tering were not always enabled for the columns that
the user desired or expected. We found that our initial
prototype did not clearly indicate which columns were
sortable and which were not. Future iterations of the
interface will clearly highlight filterable columns.

Error notifications need more context and less ambigu-
ity. The design of the error notifications to display the
stack trace when a notification is clicked was successful.
However, some users were confused by what clicking on
the error notification would display. Changing the error
label to something more meaningful may help clear up
this confusion. Users mentioned that error notifications
were useful data, rightly positioned at the beginning of
the navigation, and well-paired with the associated jobs
or tasks. They also felt that it would be even more valu-
able to display larger snippets of error logs, along with
recommended troubleshooting tips.

Provide instructions that explain unfamiliar visualiza-
tions. Swimlane visualizations provided a comprehen-
sive representation of task durations. However, some
users were not familiar with their use and took some
time to figure out what the data meant. However, once
familiar, they were able to quickly determine relative
task lengths, identify short and long-running tasks, and
identify how many tasks they had run. Providing in-
struction, or context upon interacting with the graph
may make future revisions more successful in utilizing
swimlanes visualizations.

8.2 Implementation recommendations
In addition to addressing the breakdowns in the pro-

totype identified by the usability aspect reports, we pro-
pose the following recommendations when implement-
ing the ful-fledged diagnostic interface.

Enable multiple access points to data. Our prototype
provides access to node-level information via the task
pages. This was a design decision based on user studies
which informed us that Hadoop users rarely start off in



diagnosis by looking at node-level information. How-
ever node-level information is more useful for system
administrators who are concerned with overall cluster
health. A future prototype should contain provisions
for accessing the node-level information through other
navigation paths.

Re-configurable widgets. Our prototype uses a widget-
styled layout for its web pages. We found that the way
each user looks for information is different. Since the
layout contains widget-styled blocks of data, the inter-
face can be easily modified to provide a modular, re-
configurable experience, so that each user can have cus-
tomized pages based on their needs.

Platform for communication. We observed that there
was no support within the current diagnostic interfaces
for users to consult each other about troubleshooting
problems. Moreover the system administrators were
heavily in need of communication to check if long-running
jobs started by other users can be safely killed. They
currently use email for this communication and it usu-
ally involves a long response time. An internal messag-
ing system helping Hadoop users to communicate with
other users in the same cluster would enable greater un-
derstanding of the health of the system, and of the jobs
that others are running.

9. RELATED WORK
A number of tools and techniques for system admin-

istrators have used visualizations to present system in-
formation to help them manage their systems. Some
of these visualizations specifically target request flows
in distributed systems and applications. Magpie [1],
X-trace [8], and Dapper [15] are techniques for tracing
causal request paths in distributed systems, but they
also offer support for visualizing requests whose causal
structure or duration are anomalous to aid in diagnosis.
These tools are designed for general distributed systems.
In contrast, Mochi [17] is a Hadoop-specific log-analysis
tool. It correlates Hadoop’s behavior in space, time
and volume, and extracts a causal, unified control- and
data-flow model of behavior across the nodes of a clus-
ter. The above visualizations can be incorporated in
our designs, and in particular, we have used the Swim-
lanes visualization of Hadoop job behaviour from [17]
in our design. SCUBA [11] is an interactive focus and
context visualization framework for diagnosis in metro-
mesh wireless health networks. While these tools have
presented specific visualization techniques for various
distributed systems, in this work, we use a human fac-
tors approach to study the challenges facing users of
MapReduce systems, and present tailored visualizations
and interfaces for helping end-users better use and man-
age their MapReduce jobs.

Some work has also used human factors approaches
to study and design visualization for systems manage-
ment. LiveRAC [13] is one such tool for browsing and
correlating time-series data in large-scale systems. The
authors built LiveRAC using a staged development pro-
cess which incorporated interviews to solicit require-
ments, which they refined using various stages of pro-
totypes. LiveRAC’s main target users were Life Cycle
Engineers (LCE), who were highly technical staff man-
aging systems for of customers, whereas our target users
were Hadoop end-users who are not system administra-
tors, but due to the large scale of MapReduce clusters
they need to understand the mechanics of the system
to use the clusters effectively.

A secondary contribution of LiveRAC in in the use of
a reorderable matrix of charts, with semantic zooming
adapting each chart’s visual representation to the avail-
able space. In addition, Ganglia [9] and Nagios [14] also
use a reorderable matrix to display time-series data av-
eraged over the past hour, day, week, month, or year.
Ganglia web front-end caters to system administrators
and users. These elements of interface design can all
be incorporated in our designs to address the relevant
challenges facing MapReduce users.

A number of commercial tools also visualize error
logs, as compared to presenting regular system behaviour
in the above techniques. Splunk [16] is a commercial
tool that searches, monitors and analyzes log data in
real time. It can also index data from multiple sources
(logs, config data, ps, systat, top), and search or query
data for specific strings. Artemis [6] provides a plug-
gable framework for distributed log collection, data anal-
ysis, and visualization. In addition, NetClinic [12] vi-
sualizes data from computer networks using directed
graphs integrated with a multi-level automated analytic
reasoning engine. However, these tools are targeted at
system administrators rather than regular users, as we
have targeted.

[2] conducted field studies observing and interviewing
system adminstrators and presented 4 case studies. The
sysadmins interviewed were seasoned professionals, and
the systems that these sysadmins managed are likely
to be on the scale of the MapReduce clusters our inter-
viewed users work with. However, our targeted MapRe-
duce end-users are likely to possess less technical depth
than the sysadmins interviewed in [2], and nodes in a
MapReduce cluster are likely to be more tightly cou-
pled than in other typical server environments, increas-
ing the complexity of understanding MapReduce system
behavior for our users. [20] presented a method for em-
pirically determining the user satisfaction of sysadmins
of new tools which are deployed for for their use. They
also identified four features of sysadmin tools that they
would find helpful: accuracy of data, verification, reli-
ability and credibility. These features are complemen-



tary to our findings, although our findings are specific
to end-users of MapReduce clusters, albeit whose re-
quirements of a diagnosis/management tool would be
similar to those for sysadmins.

10. CONCLUSION
In this work, we have utilized a human-centered de-

sign methodology to develop an improved user-interface
for end-users of the Hadoop MapReduce system to en-
able quick and effective diagnosis of performance prob-
lems of user jobs on MapReduce clusters. Through our
user interviews and contextual inquiries, we found that
although end-users of Hadoop MapReduce clusters are
not system administrators, they often require system-
level information, which is typically only available to
system administrators, to help determine the source of
a problem in their MapReduce jobs, and that users are
confronted with large amounts of information due to
the potentially large scales of MapReduce clusters. In
this work, we have also made five design recommen-
dations: (i) personalized interfaces; (ii) consolidated
information; (iii) prioritized information display; (iv)
support for data exploration; and (v) illustrating the
communal context of each user’s jobs. We implemented
a prototype of the diagnostic interface, and evaluated
the prototype using Keystroke-level modeling while in
use by users, and using Think Aloud Usability Analy-
sis. We found that our prototype interface was able to
reduce the time taken for 3 common diagnostic tasks
which we identified by 40%.
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