
43

Agents of Autonomy: A Systematic Study of Robotics on
Modern Hardware
MOHAMMAD BAKHSHALIPOUR, Carnegie Mellon University, USA
PHILLIP B. GIBBONS, Carnegie Mellon University, USA

As robots increasingly permeate modern society, it is crucial for the system and hardware research community
to bridge its long-standing gap with robotics. This divide has persisted due to the lack of (i) a systematic
performance evaluation of robotics on different computing platforms and (ii) a comprehensive, open-source,
cross-platform benchmark suite.

To address these gaps, we present a systematic performance study of robotics on modern hardware and
introduce RoWild, an open-source benchmark suite for robotics that is comprehensive and cross-platform. Our
workloads encompass a broad range of robots, including driverless vehicles, pilotless drones, and stationary
robotic arms, and we evaluate their performance on a spectrum of modern computing platforms, from low-end
embedded CPUs to high-end server-grade GPUs. The source code of the benchmark suite is available in
https://cmu-roboarch.github.io/rowild/.

Our findings reveal that current architectures experience significant inefficiencies when executing robotic
workloads, highlighting the need for architectural advancements that satisfy the primary requirements of
robotic tasks. We discuss approaches for meeting these requirements, offering insights for improving the
performance of robotics.

CCS Concepts: • Computing methodologies → Robotic planning; Modeling methodologies; • General
and reference → Measurement; Evaluation; Performance; • Computer systems organization →
Real-time system architecture; Architectures.

Additional Key Words and Phrases: Robotics, Computer Architecture, Benchmarking

ACM Reference Format:
Mohammad Bakhshalipour and Phillip B. Gibbons. 2023. Agents of Autonomy: A Systematic Study of Robotics
on Modern Hardware. Proc. ACM Meas. Anal. Comput. Syst. 7, 3, Article 43 (December 2023), 30 pages.
https://doi.org/10.1145/3626774

1 INTRODUCTION
The advancement of robotics technology is rapidly changing the world we live in. With predictions
of 20 million robots by 2030 [3] and a market capitalization of US$210 billion by 2025 [171], it is
clear that robotics will play an increasingly important role in society. To become widespread, robots
need to meet the demands of real-world environments, which necessitates them being autonomous
and capable of performing complex artificial intelligence (AI) tasks in real-time [124].
Computer hardware and architecture play a paramount role in realizing real-time robotics,

evidenced by the deployment of robot-specific hardware accelerators in the architecture of the
latest edge processors. Recent robotic platforms [81, 82, 109, 113] include hardware accelerators

Authors’ addresses: Mohammad Bakhshalipour, bakhshalipour@cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, USA; Phillip B. Gibbons, gibbons@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2023/12-ART43
https://doi.org/10.1145/3626774

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://cmu-roboarch.github.io/rowild/
https://doi.org/10.1145/3626774
https://doi.org/10.1145/3626774
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626774&domain=pdf&date_stamp=2023-12-12

43:2 Mohammad Bakhshalipour and Phillip B. Gibbons

for operations like tree-extension and ray-casting that have massive usage in robotics; Intel’s
multi-robot system [81] has a full-fledged “Robot SoC.”
Surprisingly, the computer system and architecture research community has under-explored

robotics. Despite the ever-growing importance of robots in our technological society, as well as the
surge of industrial “robotic processors,” there is a large gap between robotics and the computer
systems research community, borne out by the scant few publications.1 The gap deprives robotics
of many improvements achievable by system-level techniques, as we will show in this paper.
The gap is largely because of the lack of (i) a systematic performance study and (ii) a compre-

hensive, open-source, cross-platform benchmark suite. As a result of (i), the robotic tasks, their
performance requirements, and their system-level implications are unclear to the community.
And, due to (ii), the few research papers include only one [60, 129, 142] or a couple of applica-
tions [87, 91, 158] in their evaluations, leaving the impact on other applications unknown.

This paper aims to bridge this gap by introducing RoWild2 , a comprehensive, open-source, cross-
platform robotic benchmark suite. The challenge of benchmarking robotics lies in the vast array of
applications, from self-driving cars to home-assistant robots, with more to come in the future. It is
impractical to represent all of these applications in a single benchmark suite. RoWild overcomes this
challenge by exploiting the fact that different robots, despite their different applications, perform a
finite set of common “robotic tasks” such as scene understanding and pathfinding. For instance,
both self-driving cars and home-assistant robots require scene understanding. Nevertheless, the
algorithms and constraints in conducting such tasks can vary widely across different applications.

RoWild comprises a wide range of individual robotic tasks, encompassing the software pipeline of
practically all autonomous robots (§3). With versatility in mind, RoWild implements each task with
various algorithms and parameters. This flexible approach enables the configuration and pipelining
of tasks to model the end-to-end computation of diverse robotic applications. By including a broad
set of tasks and algorithms, RoWild is capable of modeling numerous robotic applications, thus
providing a comprehensive benchmark suite.

Our choice of implemented tasks and algorithms stems from an analysis of 29 industrial robots,
encompassing a diverse range from arm manipulators and home-cleaning robots to self-driving
vehicles. This analysis was undertaken to ensure a broad yet relevant selection. Additionally, we
also incorporate state-of-the-art research algorithms (e.g., deep learning-based pathfinding) into
RoWild, positioning it as a suitable suite for future robotics. We develop RoWild with essential
considerations that distinguish it from previous work, making it suitable for systems research.
Specifically, RoWild is high-performance, simulator-friendly, versatile, and modular.

This paper’s second contribution is to investigate the system-level implications of robotics (§4).
Using RoWild’s tasks, we model six different end-to-end robotic applications and evaluate them on
a spectrum of platforms, ranging from low-end embedded CPUs to high-end server-grade GPUs.
While previous studies [66, 127, 181] have conducted some system-level analysis (e.g., CPU vs.
GPU) specific to their applications, these analyses remained at a high level. In contrast, our study
delves deeper to investigate low-level implications, including the efficacy of caching, prefetching,
and vectorization. This research is the first of its kind in the realm of robotics.
Our system-level investigations reveal significant inefficiencies in the architecture of today’s

prevailing compute platforms when executing robotic workloads (§5). Specifically, we find:

1In 2022, out of the tens of thousands of papers published in the top systems conferences (according to csrankings
categorization, e.g., computer architecture, HPC, computer networks), only a handful were related to robotics.
2The name RoWild is derived from “Robotics in the Wild,” signifying our focus on evaluating robotic performance in natural
and unpredictable settings.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:3

• Vectorization Is Ineffective. Despite the large silicon real-estate it occupies, CPU vectorization
does little for robotic tasks: in the common case of an axis-unaligned orientation, the robot’s
memory layout is not vectorization-friendly.

• On-Edge Parallelism Hits The Memory Wall.Massive parallelism on edge platforms (e.g.,
Nvidia’s Jetson Nano) is bottlenecked by memory: the memory wall is hit well before Amdahl’s
law.

• Simple Prefetchers Are Inadequate. While simple data prefetchers can help with robotics
workloads, complex AI algorithms used in robotics use irregular data structures, producing
memory patterns that defeat commercial prefetchers.

• Caches Perform Significant Unnecessary Data Movements. Hardware caches are unaware
of the robots’ software semantics; in many cases, caches work in opposition to them. As a conse-
quence, caches perform excessive data movements, utilizing the memory hierarchy inefficiently.

We discuss potential solutions to address these inefficiencies and unveil untapped opportunities.

2 PRELIMINARIES AND RELATEDWORK
2.1 The Software Pipeline of Robots

Perception

Compute

Planning ControlSe
ns
e

Ac
t.

Fig. 1. The operation model of a generic autonomous robot.

Fig. 1 shows the software pipeline
of a generic autonomous robot. It
consists of three stages: perception,
planning, and control.
The perception stage is responsi-

ble for comprehending the state of
the robot and its surrounding environment. It reads raw sensory data and infers the robot’s state (e.g.,
position, orientation) and the surrounding environment (e.g., obstacles around the robot). Inferring
the state of the robot and the environment are called localization and mapping, respectively.

The planning stage uses the perception stage’s output and finds an efficient (e.g., short), collision-
free path from the robot’s current position toward the goal position.
The control stage generates commands for the robot’s actuators based on kinematics and dy-

namics, such as velocity and torque, to enable efficient execution of the planned path.

2.2 Terminology
Below, we define some of the terminology we employ throughout this paper:

• Robotic Tasks: The term “robotic tasks” pertains to generic high-level operations such as
scene understanding and pathfinding. The range of these operations is finite within the field of
robotics, but the ways they are carried out can vary from one robot to another. For instance, both
autonomous vehicles and home-assistant robots undertake the task of pathfinding. However, the
employed algorithms and the constraints could significantly differ in these two scenarios.

• Robotic Algorithms: By “robotic algorithms,” we refer to specific algorithms implemented to
carry out robotic tasks; e.g., the A★ algorithm [154] for pathfinding. There are hundreds, or even
thousands, of such algorithms proposed in the robotics community to accomplish robotic tasks.

• Robotic Applications: The term “robotic applications” denotes the end-to-end software pipeline
of a specific robotic system, for instance, an autonomous drone. The scope of robotic applications
is vast, extending from self-driving vehicles to home-assistant robots, and the spectrum continues
to widen with future advancements in robotics.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:4 Mohammad Bakhshalipour and Phillip B. Gibbons

2.3 Prior Work
Recent research [66, 67, 96, 181, 184] has highlighted the crucial role that robots’ compute capabilities
play in their overall performance, energy efficiency, and safety, dispelling the myth that the
importance of computation in robots is secondary to their mechanical components. For instance,
PerceptIn, a startup that specializes in autonomous vehicles, has reported that a staggering 88% of
the operation latency of their vehicles is attributed to the compute system [181]. Similarly, in a
study conducted by Boroujerdian et al. [67], it was found that enhancing the compute platform
(e.g., increasing the number of cores from two to four) resulted in a three-fold improvement in the
flight time and energy consumption of autonomous drones.

Spurred by these findings, recent systems research proposes design methodologies [68, 118, 145–
147] and hardware acceleration [60, 134, 142, 166] to achieve efficient, real-time robotics.

Several prior works [66, 127, 181] report the characteristics of a particular application of robotics.
For instance, Lin et al. [127] and Yu et al. [181] study autonomous driving, and MAVBench [66]
studies micro aerial vehicles. Each of these studies targets a particular application of robotics,
leaving out many others (e.g., stationary arms, humanoid robots).

Similarly, prior work proposes benchmark suites [50, 72, 105] and studies the efficacy of different
algorithms [73, 85, 96] for particular robotic tasks. For instance, OMPL [50] is a suite for sampling-
based planning, and RLBench [105] is a suite for robot learning. Each of these suites targets a
specific task, not the entire robotic software pipeline. Also, combining these suites into a broad set
of workloads is not straightforward, because they use unalike setups (e.g., C++ vs. Python).

ROS [46] is a robotic middleware, offering codes for package management, device control, and
software libraries. Nonetheless, ROS does not consider performance as the main objective: over
three-quarters of the codes are written in Python, and even those written in C++ are not all high-
performance. Further, the use of Python and TCP-based inter-process communication primitives in
ROS conflicts with many microarchitectural simulators, such as [75, 78, 104, 137, 155].

Table 1. Feature comparison of related work and RoWild. More ✔ is better.

End-to High- Simulator Multi- Versatile Open- System-LevelPaper/Repository Scope -End Perf. -Friendly Platform & Modular Source Analysis

Lin et al. [127] Self-Driving
Yu et al. [181] Cars ✔ ✔✔ Unknown ✔✔ Unknown ✘ ✔

MAVBench [66] Drones ✔ ✔ ✣ ✔ ✘ ✔ ✔

One-off [50, 72, 105] Single Task ✘ ✣ ✣ ✘ ✔ ✔ ✘

ROS [46] Broad ✘ ✣ ✘ ✘ ✔ ✔ ✘

Educational [13, 42] Broad ✘ ✘ ✣ ✘ ✘ ✔ ✘

RTRBench [61] Broad ✘ ✔ ✔ ✘ ✔ ✔ ✘

RoWild Broad ✔ ✔✔ ✔ ✔✔ ✔ ✔ ✔✔

✣ Depending on the case (e.g., kernel, simulator), it can be ✘ or ✔.

Educational repositories, such as [13, 42], implement various robotic tasks. Nevertheless, the
performance of these repositories are orders of magnitude far from real-time [61]. Our prior
work RTRBench [61], a code collection of 16 robotic algorithms, featured some improvements
in performance over previous suites; however, it is single-threaded and lacks essential features,
such as end-to-end application modeling, cross-platform compatibility, and detailed system-level
evaluations. RoWild extends RTRBench, rectifying these limitations and establishing itself as an
apt benchmark suite for exploring the nexus between robotics and systems.
Table 1 puts RoWild in the context of prior work. In §3, we detail how RoWild overcomes the

shortcomings of prior work, establishing it as a highly-valuable robotic suite for systems research.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:5

3 THE ROWILD APPROACH
3.1 Workloads
To model a variety of robotic applications, RoWild implements a rich set of individual robotic tasks
and algorithms. Table 2 lists these tasks and the algorithms implemented to execute them, with
symbols indicating the real-world robots that either come pre-packaged with the software where
the algorithm is used or are custom-programmed in the literature to use the algorithm to perform
a specific mission.3

Stage Task Algorithm(s) in RoWild

State Estimation MCL†‡Υ¶𝜂𝜎 [183], AMCL𝜁 [172]

Localization and Mapping EKFΥ§𝜏𝜙Λ [173], Fast‡¶𝜁 [139], Graph𝜗𝜑 [164], ORB𝜍𝜚 [74]

Scene Reconstruction Point-Based Fusion†‡Υ𝜅𝜐 [178]

Grid Generation Probabilistic Occupancy Map†𝜅𝜗 [94]Pe
rc
ep
tio

n

Object Detection MobileNet-SSD‡Υ𝜚 𝜒Λ [180]

2D/3D Navigation WA★†¶𝜁𝜂𝛼ΠΛ [154], GA★ [186], RA★ [62], IDA★𝜍 [115] , DQN [138]

Timed Search WA★†¶𝜁𝜂𝛼ΠΛ [154] + Backward Dijkstra [63]

2D/3D 𝑛-DoF Search RRT†‡Υ𝜅 [93], RRT★Υ𝜔𝛾𝛿 [95], PRMΥ𝜗𝜓 [168], Shortcut [97]

Reactive Planning Behavior Tree†𝜆𝜗𝜙 [98]Pl
an
ni
ng

Task Scheduling Symbolic Planning§𝜗𝛿 [64]

Motion Control MPCΥΠ𝜗†𝜅𝛼𝜓𝜀 [89] PIDΥ𝜗𝜁𝜃𝜙 [177], PP‡Υ𝜅𝜙 [148]

Ct
rl.

Parameter Learning DMPΥ𝜗𝜉𝛼𝜃𝜄 [116], CEM§𝜆 [151], BO𝜚 [106]

Table 2. RoWild’s workloads. Algorithms in color are characterized in this paper in the
context of end-to-end robotic applications.

Real-World Robots:

†Spot [8]
‡DJI Phantom [38]

ΥLoCoBot [2]
§Atlas [7]

¶AMR [43]
ΠAscTec Pelican [6]
𝜁 Roomba 980 [44]
𝜐Roomba i7+ [45]

𝜂Husky [18]
𝜗YuMi [58]
𝜅 Jackal [25]

𝜉 LBR [30]
𝜚 Pepper [48]

𝜎TurtleBot [55]
𝜍TurtleBot3 [56]

𝜏MiR [31]
𝜙AG [28]

ΛPioneer 3-DX [40]
𝜑UR10e [52]
𝜒TALOS [49]
𝜓KR60-3 [29]
𝜔Grizzly [12]
𝛾 Skydio [47]

𝛿M-200iA/2300 [15]
𝜀PerceptIn [180]

𝛼Boxbot [9]
𝜃UR5e [53]

𝜄Franka Panda [16]
𝜆PAL TIAGo [54]

Our selection of algorithms is the result of an exhaustive examination of the 29 real-world robots
listed in Table 2 (symbols), ensuring that they represent a broad majority of robots employed in
practical scenarios. We incorporate algorithms that (i) are applicable to real-time environments,
(ii) have proven efficacy within the robotics community, and (iii) enable RoWild to emulate a wide
and diverse array of end-to-end robotic applications (see §4).
Importantly, while RoWild emphasizes state-of-the-art algorithms, it also includes seminal al-

gorithms that have stood the test of time and remain highly relevant in robotics. This is aligned
with the interests of system manufacturers who strive to accelerate these algorithms. For example,
[81], [113], and [82] fabricate hardware accelerators for the classic EKF [172], IDA★ [115], and RRT
algorithms [121], respectively.

RoWild uses these tasks to model various robotic applications. For each robotic application mod-
eled, RoWild selects the necessary tasks, specializes each task to suit the application’s requirements
(see §3.2), and integrates them into a pipeline to model the end-to-end functionality of the robot.

3.2 Key Features and Considerations
Our development of RoWild involves essential considerations that make it suitable for systems and
hardware research, as outlined below:

3In some cases, the algorithms are identified based on the demystification of other works. However, it should not be assumed
that the robots listed are certainly/exclusively using these algorithms.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:6 Mohammad Bakhshalipour and Phillip B. Gibbons

Comprehensive: As discussed in §3.1, RoWild includes a diverse range of robotic workloads. This
feature is crucial from a computer architecture perspective; it is unlikely that hardware vendors
will fabricate a specific processor for every robotic application.
High-Performance: Performance is at the heart of RoWild’s design, setting it apart from other
open-source robotic repositories that face issues like Python overhead [46, 105, 159] and a lack of
modern software techniques [13].

To optimize performance, we develop codes from scratch in native languages and use industry-
standard profilers [20, 36] to identify execution bottlenecks and focus on accelerating them.

We make use of various high-performance software techniques including constexpr branches
and constexpr functions that enable the compiler to perform calculations at compile time, thereby
improving execution by eliminating not-taken branches. We employ built-in functions provided
by GCC for aligning and prefetching data, providing branch prediction hints, and maximizing
loop unrolling to enable efficient out-of-order execution. Additionally, we make use of the high-
performance VCL [4] for manual code vectorization.
Simulator-Friendly: Because most hardware research uses simulators, we develop RoWild to be
compatible with existing architectural simulators (e.g., no Python runtime, no TCP-based inter-
process communications as in ROS). By default, RoWild codes are integrated with zsim [161].
Cross-Platform: RoWild caters to a wide range of compute resources by developing applications
in C++, CUDA, and Verilog. This is particularly relevant for modern AI/robotic platforms that come
equipped with heterogeneous compute resources [21, 22, 32–35, 37, 51, 57].
Versatile: RoWild is a versatile repository that not only comprises diverse robotic workloads but
also develops each of them in a configurable manner. This configurability empowers users to
perform each task using a range of algorithms and parameters, enabling the study of realistic robots
that feature specialized software components for specific robotic applications and environments.

RoWild is designed to seamlessly integrate with a wide variety of sensor models and actuation
systems. It means that whether a robot employs optical sensors for vision, acoustic sensors for
auditory perception, or tactile sensors to detect physical contact, RoWild is able to interface with it.
In terms of movement and actions, RoWild is compatible with diverse actuators, from traditional
electric motors to pneumatic systems and even cutting-edge actuation mechanisms.
Modular: RoWild embodies modularity in its design, enabling the seamless pipelining of different
tasks to model end-to-end robotic applications. In each of the applications exemplified in §4, the
integration of the various tasks into the pipeline required fewer than 20 lines of C++ code.
Open-Source: RoWild is distributed under the MIT License and is available as open-source software.

3.3 Compute Platforms

Table 3. The evaluated compute platforms (October 2023 prices).

Freq. TDP Memory PriceAcronym Platform Cores (GHz) (W) (GB) (US $)
LC ARM Cortex A57 CPU 4 1.43 10 4 149

LG Nvidia Maxwell GPU 128 0.92 10 4 149

HC Intel Xeon Gold CPU 20 (×2) 2.10 125 384 1493

HG Nvidia Titan X GPU 3584 1.41 250 12 999

Various compute platforms
can be used in robotics. For
example, safety-critical self-
driving cars might use server-
grade, high-end GPUs; on the
other hand, low-cost surveil-
lance robots might use afford-
able, low-end CPUs. RoWild
evaluates a range of proces-
sors, as shown in Table 3 and
detailed below:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:7

LC: A low-end, quad-core ARM Cortex A57 CPU available on Nvidia’s Jetson Nano board [27]. It
uses a 4 GB LPDDR4 memory with up to 25.6 GB/s bandwidth.

LG: A low-end, 128-core GPU with Maxwell architecture available on Nvidia’s Jetson Nano
board [27]. It shares the 4 GB LPDDR4 memory system with the ARM CPU.

HC: A high-end, server-grade Intel Xeon Gold 5218R CPU [24] with 20 two-way cores. It uses six
64 GB DDR4 memory modules, each with up to 38 GB/s bandwidth.

HG: A high-end, super-clocked Nvidia Titan X GPU [14] with 3072 CUDA cores featuring the
Pascal architecture. It has a 12 GB GDDR5 memory with up to 336 GB/s bandwidth.

3.4 Software Workflow and Validation
We develop CPU codes with C++17. We compile programs with GCC 11 with -O3 and run them
under Ubuntu 22.04. We develop GPU codes with CUDA 11 and compile them with NVCC. We set
the number of thread blocks and threads-per-block empirically to obtain the fastest execution time
for every application.
To model the producer-consumer execution model (i.e., pipelining the tasks), we use C++’s

asynchronous execution primitives. Tasks run on separate threads (host or device), and producer-
consumer pairs communicate through shared future objects. This way, different tasks are effectively
pipelined, maximizing resource utilization.

3.4.1 Verification. We rigorously verify RoWild. We cross-check the end-to-end results with other
repositories [1, 13, 42] and mathematical expectations (e.g., confirming the final path is the shortest).
Furthermore, RoWild operates in two modes: verification mode and high-performance mode. The
verification mode incorporates extensive, fine-grained assertions to confirm correctness. This
feature will assist future researchers in modifying the programs and ensuring that their changes
do not lead to errors. In the high-performance mode, these assertions are removed to expedite
execution.

3.4.2 Performance Validation. Because many factors (e.g., inputset, environment, configuration)
affect the robotic workloads’ performance, we refrain from making exact performance comparisons
with other suites, and leave such task to potential users. Nevertheless, our measurements of RoWild
(as detailed in §4) show that it is 1–3 orders of magnitude faster than the reported performance of
open-source repositories like RTRBench [61], PythonRobotics [42], CppRobotics [13], and ROS [46]
(and by extension, those that use them [66, 147]). These repositories suffer from the high overheads
of Python runtime [42, 105], network communications (publisher-subscriber communication model
in ROS [46]), and unoptimized software (e.g., single-threaded code [13, 42, 46, 61, 105], spinner
callbacks [46], poor memory management [13]).

Compared to open-source real-world robots (e.g., [2, 41, 55]), RoWild offers significantly superior
performance. Such robots typically are developed with objectives such as ease of programming
in mind, and frequently utilize software not necessarily optimized for real-time performance. For
example, running LoCoBot [2] with its pre-packaged pyrobot results in planning times exceeding
seconds, while RoWild delivers millisecond-scale planning on identical hardware (see §4.3).

Finally, drawing direct comparisons between RoWild and industrial-grade real-time robots (e.g.,
[15, 28, 58]) is not viable due to the undisclosed specifics of the hardware and software utilized
in these robots. However, the scattered data we have been able to gather suggest that RoWild’s
performance is competitive. It aligns closely with the publicly reported performance numbers of
PerceptIn [181], as well as performance numbers measured by other researchers across multiple
real-world robots [132].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:8 Mohammad Bakhshalipour and Phillip B. Gibbons

3.5 Measurements
We measure the performance (𝑝) by how inversely proportional it is to the execution time (𝑡); i.e.,
𝑝 ∝ 1

𝑡
. After running each program multiple times, we calculate the average execution time based

on wall clock time. 𝑝 quantifies how efficiently a robotic system operates by measuring the speed
at which tasks are completed, making it a valuable tool for assessing performance and making
direct comparisons between different approaches. In robotics, where real-time responsiveness is
often crucial (see §6.1), this metric is particularly essential as it reflects a system’s ability to process
information and make decisions swiftly.
We do not conduct detailed power measurements since compute is not a significant consumer

of power in robots [66, 67, 117]. In robots, over 95% of the power is consumed by the mechanical
components, rendering computation’s role in power (not energy) trivial. For example, in 3DR
Solo Drone [5], rotors consume over 286W, while computation consumes less than 13W [66].
When computation’s power consumption is negligible (i.e., 𝑃𝑜𝑤𝑒𝑟𝑇𝑜𝑡𝑎𝑙 ≈ 𝑃𝑜𝑤𝑒𝑟𝑅𝑜𝑡𝑜𝑟𝑠), the overall
energy-efficiency is proportional to the computation performance (i.e., 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟 × 𝑡).

4 THE MODELED APPLICATIONS

Table 4. The modeled end-to-end applications.

Name Mission Resembling Environment
DeliBot Delivery Spot [8] Our Campus

PatrolBot Patrolling Pioneer 3-DX [40] Our Campus

MoveBot Manipulation LoCoBot [2] Synthetic

HomeBot Cleaning Roomba i7+ [45] Hypersim [156]

FlyBot Photography AscTec Pelican [6] FR Campus [17]

CarriBot Transportation Boxbot [9] Intel Lab [23]

With the rich set of robotic tasks and algo-
rithms that RoWild provides (§3), users can
model a broad spectrum of robotic applications.
In this paper, we make a concerted effort to
model and study a substantial and representa-
tive range of robotic applications. Detailed in
Table 4 are the modeled robotic applications,
with corresponding references to analogous in-
dustrial robots4 in terms of algorithms and mis-
sions, and the tested environments.
Importantly, the robots we model are not

only diverse in their applications, ranging from home assistance to campus patrolling, they also
demonstrate a variety of computational behaviors. More specifically, we model robots that experi-
ence performance bottlenecks at different stages of the software pipeline. This offers two significant
benefits to the hardware and systems community:
• It allows the examination of the effects of different techniques across a broader field of robotics.
In recent years, several research proposals have targeted one specific robotic pipeline stage
(e.g., perception [96, 181], planning [60, 166], and control [158]) and modified the architecture
accordingly. While this benefits the specific robotic application studied (e.g., self-driving cars),
the impact of such architectural changes has remained unknown for other robotic applications
(e.g., home-assistant robots). By providing a benchmark with robots bottlenecked at different
pipeline stages, we clarify such impacts.

• Identifying architectural bottlenecks shared across robots with differing computational behaviors
and devising efficient hardware solutions makes for a more compelling case for adoption of the
solutions by industry than addressing bottlenecks arising only in one or two similar robots.

4This is not to say that they utilize identical software. According to data from our industry partners, industrial-grade
real-time robots operate on proprietary software infrastructures. These infrastructures, even when bearing core similarities
to RoWild such as CUDA usage, diverge in facets like library usage. Given the proprietary nature of these systems, specifics
are undisclosed and remain out of reach for the broader research community. In contrast, RoWild is developed using
open-source software, with the goals of maximizing performance, closely emulating real-world robots, and maintaining
public availability. The same holds true for the robots’ hardware. Many robots do not disclose information about their
processors and hardware peripherals for reasons ranging from cyber-attack prevention to competitive edge maintenance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:9

Below, we describe the modeled robots, analyze their computational behaviors, and report
the average execution time for one complete cycle of the software pipeline, from sensor reading
to actuation. This includes the inter-stage communication overheads, though they are typically
negligible. Finally, notice while we evaluated the applications in specific environments, they are
adaptable to a wide range of other environments.

4.1 DeliBot: Legged Robot Delivering Items
DeliBot is a legged robot capable of transporting loads. It navigates CMU’s Wean Hall [11] and
delivers items to various locations. As the robot already has a map of the building, it does not need
to perform any mapping. Fig. 2.a shows an overview of the application.

4.1.1 Setting. Accurate localization is vital for DeliBot to navigate effectively through the building
while avoiding obstacles. The robot uses a laser rangefinder and an odometer to measure distances to
obstacles (blue arrows in Fig. 2.a) and track its distance traveled (red arrow in Fig. 2.a), respectively.
These sensors work in tandem to provide data for position estimation, allowing the robot to navigate
reliably in the building.

(a) DeliBot and Its Sensors

O
bs

ta
cl

e
Odom.

Robot

Laser

(b) Execution Time

0

200

400

600

LC LG HC HG

Ti
m

e
(m

s)

Perc. Plan. Ctrl.

1100

Fr
ee

Fig. 2. DeliBot operating in our campus building.

DeliBot uses Monte Carlo Lo-
calization (MCL) [183], a.k.a.
particle filter, to accurately de-
termine its location and orien-
tation within the building. MCL
is a robust technique that can
handle various sensor models
(e.g., non-linear, non-Gaussian),
which makes it suitable for complex environments like the building’s narrow corridors.

MCL maintains multiple particles, each representing a particular hypothesis about the robot’s
state. Initially, all particles are assigned random beliefs, implying that the robot can be located
anywhere in the building. As the robot moves and collects sensory data, MCL continuously resamples
the particles: particles whose beliefs do not match sensory data are replaced with those that do.
Over time, the beliefs of the particles converge towards the actual state of the robot.

We fine-tune MCL’s parameters (e.g., the number of particles) such that it achieves a localization
error—the difference between the robot’s estimated and actual location—of a few centimeters or
less, which is satisfactory for the application.
Because the environment is known and structured, DeliBot’s planning is relatively simple,

especially as the application does not require an optimal path. The robot simply selects a set of
waypoints and navigates between them using a greedy search algorithm that directs it towards the
nearest one.
Similarly, DeliBot’s control stage is straightforward, with the controller simply selecting the

leg to pull the robot forward. DeliBot’s limited dynamics, such as fixed velocity and acceleration,
contribute to the ease of control.

4.1.2 Evaluation. Fig. 2.b showsDeliBot’s compute time on different platforms, where the planning
and control stages are processed only on CPUs, while the perception stage leverages GPUs when
available. The perception stage is the main contributor to the end-to-end latency, taking more than
97% of execution time. To ensure high localization accuracy in complex environments like the
evaluated building, maintaining numerous particles in MCL is required. This improves accuracy
by offsetting the effect of noisy measurements during the resampling process (§4.1.1), but it also
results in a higher computational workload, making perception the computational bottleneck.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:10 Mohammad Bakhshalipour and Phillip B. Gibbons

Fortunately, particles are independent and can be processed in parallel, which GPUs exploit to
offer significantly higher performance compared to CPUs. Additionally, as particles converge and
their hypotheses align, their control flow in response to sensor readings becomes similar, reducing
branch divergence to near-zero, helping GPUs to offer superior performance during the steady
stage. Comparing end-to-end times, LG/HG outperforms LC/HC by 7.9×/2.1×.

Ray-casting is the dominant operation performed by particles, accounting for 58%–83% of percep-
tion latency. It is performed in order to correspond laser measurements with particles’ hypotheses
and involves a cell-by-cell traversal of the environment map in different directions. Intel fabricates
a “ray-casting hardware” [109] to accelerate this process.
Perhaps counter-intuitively, we find CPU vectorization ineffective for ray-casting. The reason

being the generation of axes-unaligned memory accesses (blue arrows in Fig. 2.a) due to the varying
orientation of the robot with respect to the environment axes, which current vectorization engines
cannot handle. Further details on this observation are provided in §5.1.
Finally, as DeliBot employs a simple planner and controller, their impact on the end-to-end

execution time is insignificant (up to 2.3% of execution time).
On the memory front, when the application is effectively parallelized, the memory bandwidth

consumption can become substantial. On the low-end platforms, this reaches a peak bandwidth
utilization of 4 GB/s, which is significant (see §5.2). On the high-end platforms, while the absolute
memory bandwidth consumption is even greater due to increased parallelism, the relative impact
on performance is less pronounced due to the expansive bandwidth resources inherent to the
hardware.

Takeaways

• DeliBot’s perception stage is a bottleneck, as it requires costly ray-casting operations within hundreds of
particles to achieve acceptable localization accuracy in challenging environments, such as the narrow corridors
of our building.

• LC’s limited support for parallelism results in poor performance, making it unsuitable for time-critical
applications with high accuracy demands.

4.1.3 Breadth. DeliBot’s computation is designed to provide precise localization for robots oper-
ating in harsh environments. Examples of such robots include autonomous vehicles navigating
through wilderness terrain [125] and agriculture robots used for crop monitoring and harvesting
in challenging conditions [108].

4.2 PatrolBot: Wheeled Robot Patrolling Campus
PatrolBot is a wheeled robot that is responsible for patrolling our campus and detecting suspicious
objects. Due to the dynamic nature of the environment, PatrolBot does not rely on a static map
to navigate. Instead, it performs simultaneous localization and mapping (SLAM), which involves
creating a map of the environment as it moves around and determining its own position in that
map. To accomplish this task, PatrolBot uses six identified landmarks throughout the campus. An
overview of the modeled application is shown in Fig. 3.a.

4.2.1 Setting. PatrolBot is equipped with range and angle sensors, which provide distance and
angle measurements relative to the landmarks, respectively. PatrolBot uses these measurements as
input to the Extended Kalman Filter (EKF) algorithm [173] to solve the SLAM problem.

EKF is a popular SLAM algorithm handling various sensors and providing accurate estimates of
the robot’s position and the environment’s map, despite noise and uncertainties. It linearizes non-
linearmotion andmeasurementmodels, enabling aGaussian probability distribution to represent the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:11

system’s state. This allows recursive state estimation using the Bayes’ rule, which is computationally
efficient and capable of handling uncertainties in the measurements.
While performing SLAM, PatrolBot also analyzes images from the surrounding area to detect

suspicious objects. To accomplish this, it uses MobileNet-SSD [180], a lightweight neural network
(NN) feature extraction algorithm, pre-trained on the MS COCO dataset [128]. MobileNet-SSD
predicts object bounding boxes and classes using classifiers, and it is optimized for mobile devices
with high accuracy. MS COCO is a widely-used, large-scale dataset with over 80 object categories,
commonly used for image recognition.

(a) PatrolBot and Its Trajectory

Robot

Land-
mark

(b) Execution Time

Tr
aj

ec
to

ry

0

100

200

LC LG HC HG

Ti
m

e
(m

s)Inference
Perc.
Ctrl.

1080

Fig. 3. PatrolBot operating in our campus.

If the NN cannot confidently
categorize an object close to the
robot or if it detects weaponry,
PatrolBot infers that the object
may be suspicious. If the object
remains in the robot’s view for
a certain time, PatrolBot alerts
the security personnel.

PatrolBot follows a pre-determined
path around the landmarks, without the need for online path planning. It utilizes the Pure Pursuit
algorithm [148] to determine the optimal steering angle and speed for efficiently following the
pre-determined path. Also, PatrolBot is equipped to detect obstacles, and it automatically stops
and resumes its movements accordingly to avoid collisions.

4.2.2 Evaluation. Fig. 3.b shows PatrolBot’ compute time across platforms. Notice, NN inference
runs concurrently with the robot’s software pipeline, not as a part of it. Therefore, the robot’s
overall performance is determined by the greater of the pipeline latency or the NN inference latency.
The software pipeline runs entirely on CPUs, while the NN inference runs on GPUs when available.

On CPUs, NN inference determines the robot’s performance. On GPUs, however, the inference is
significantly accelerated, leading to the performance bottleneck being shifted to robot perception.
GPUs run NN inference 6.5×–336× faster than CPUs, due to their massively-parallel architectures.

The perception stage, which runs EKF, is the second major compute component of PatrolBot. EKF
heavily utilizes linear algebra, for instance, in computing the Jacobian matrix of state variables and
propagating the covariance matrix to depict state uncertainty. The size of matrices and accordingly
EKF’s execution time scale with increasing the number of measurements; with six landmarks and
two measurements per landmark in our setup, EKF becomes moderately time-consuming.

Finally, Pure Pursuit is relatively simple and fast, taking up to 3.2% of the end-to-end execution
time. It calculates the robot’s steering angle, which only requires computationally simple geometric
calculations such as distance and angle calculations.

Takeaways

•Multiple compute platforms greatly improve a robot’s real-time performance. LG, priced at $149, outperforms
HC, priced at $1493, by running the NN on GPU and the rest on CPU. However, without the GPU (i.e., LC), it
lags significantly.

4.2.3 Breadth. PatrolBot’s computation represents robots that perform significant work beyond
their software pipeline. Examples include security [185] and condition/environmental monitor-
ing [107] robots, which continuously analyze sensory data to detect changes or potential hazards.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:12 Mohammad Bakhshalipour and Phillip B. Gibbons

4.3 MoveBot: Arm Manipulator Moving Items
MoveBot is a manipulator equipped with a 5-degree-of-freedom (5-DoF) robotic arm that excels at
moving objects with speed and precision. Its real-world applications are primarily in the manufac-
turing and warehousing industries, where products need to be moved quickly and efficiently. We
evaluate MoveBot in a cluttered, synthetic environment, depicted in Fig. 4.a. We carefully model
MoveBot after our in-house, open-source LoCoBot [2].

4.3.1 Setting. The environment is mostly static: the robot’s base and the obstacles (walls) remain
stationary. However, items are relocated by the robot itself. Hence, the robot performs perception
only once offline, and keeps track of the moved objects to avoid collisions at runtime.

MoveBot is repeatedly queried to pick and place items. Upon a query, it performs path planning
to move its end-effector to the designated position while avoiding obstacles. The planning is done
in the joint angle space of the arm, which has five links. The planner finds a sequence of angles
(𝛼1, 𝛼2, . . . , 𝛼5) that moves the end-effector towards the goal position. Since the configuration space
is high-dimensional, MoveBot’s planner samples the space to find a path in a reasonable time.

(a) MoveBot and The Modeled Obstacles

Robot

End-
Effector

(b) Execution Time

0

500

1000

1500

2000

LC LG HC HG

Ti
m

e
(m

s)

Plan. Ctrl.
O

bs
ta

cl
e

Fig. 4. MoveBot operating in a synthetic environment.

Rapidly-exploring RandomTrees
(RRT) [120] is a popular algo-
rithm for high-dimensional plan-
ning. Chung et al. [82] fabricate
a full-fledged RRT-based path
planning processor in 40nm
CMOS. RRT builds a tree from
the start point to the goal by ran-
domly sampling the configura-
tion space and connecting the samples to the nearest nodes in the tree, ensuring that the path is
collision-free. This requires numerous collision detection operations to check whether the robot
will collide with obstacles as it moves from one configuration to another.

Accurate collision detection is a time-consuming process [61, 62, 65].While hardware accelerators
have been proposed [60, 126, 141–143], they are not widely adopted yet. On the software side,
“reworked” methods have been developed that bound obstacles in the environment with simpler
shapes like cubes and exploit their geometric properties to speed up collision detection [10, 88, 149,
176]. While these methods underestimate free space, they offer far faster performance. ForMoveBot,
we use the cuboid-cuboid collision detection (CCCD) algorithm [176], which bounds obstacles and
the robot body with cubes and checks for intersection during movement planning. We find that
CCCD strikes a good balance between accuracy and execution time for MoveBot.

Finally, MoveBot employs a simple PID controller [177] to move its arm by taking desired joint
positions as input and generating control signals to the motors based on the difference between
desired and actual joint positions.

4.3.2 Evaluation. Fig. 4.b showsMoveBot’s compute time on different platforms, where the control
stage runs on CPUs, while the planning stage leverages GPUs when available.
Collision detection, even in its reworked form, remains the most time-consuming aspect of

planning, taking more than 85% of the end-to-end time. Each collision detection involves checking
the intersection of four cubes around the robot’s body (joints and peripherals) with nine cubes
surrounding obstacles. LC offers limited parallelism support, resulting in the lowest performance,
while HC utilizes both coarse-grained and fine-grained parallelism to achieve high performance.
Coarse-grained parallelism occurs when different cuboid-cuboid checks are performed in parallel
using different threads. Fine-grained parallelism happens because HC’s large instruction window

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:13

can extract high instruction-level parallelism (ILP) from operations like finding multiple independent
neighbors at each RRT iteration.
We use Bialkowski et al.’s approach [65] to parallelize collision detections on GPUs, which we

find to be more effective than other methods such as [102, 150]. This improves the performance of
collision detection, especially on HG, which has larger on-chip caches and more cores. However,
significant branch divergence occurs during collision detection. Our profiling with NVIDIA Nsight
Compute [36] reveals that over 18% of branches are divergent, which is considered high [112]. This
is due to CCCD conducting multiple checks (e.g., edges, normals, axes) on every configuration to
determine collision status, and the outcome of checks differ, resulting in taking divergent flows.
As the configurations are dynamically shaped at runtime, warp-synchronous programming is not
applicable, and further improvements require dynamic techniques.
Finally, PID controller is simple and fast, taking up to 1.6% of execution time. It uses a linear

combination of three terms, proportional, integral, and derivative, to calculate the control signal.
Each term needs only basic arithmetic operations, such as subtraction, making the algorithm
computationally cheap.

Robotic arm manipulators’ memory demands can become substantial when they requires a large
number of drawn samples. This often arises when the planner necessitates a fine resolution to ensure
safe and accurate navigation in densely packed settings. Additionally, as DoF increase, memory
consumption grows exponentially—a phenomenon termed the “curse of dimensionality.” Even a
minor uptick in DoF can drastically amplify the potential configurations the planner must account
for, thereby escalating memory demands.
However, for the given application model and evaluation setting, the memory system is not

the primary constraint. In the evaluated platforms, the 5-DoF robot operating within the tested
environment does not significantly tax the memory bandwidth, with the exception of LG. On
LG, memory is communally allocated between the host and the device. When collision detection
undergoes massive parallelization on the GPU, the surge in memory requests places substantial
strain on the bandwidth. This results in a notable performance drop, as elaborated in §5.2.

Takeaways

• Collision detection is costly and can pose a risk to real-time constraints, especially when running on low-end
platforms. Safety-critical applications use a separate path to throttle robots directly in case of real-time collision
detection failure [181].

4.3.3 Breadth. MoveBot’s computation represents robots whose performance is bottlenecked by
collision detection. This includes most arm manipulators with a high DoF, which find applications
in domains like automotive manufacturing (e.g. welding [175]) and construction (e.g. bricklay-
ing [133]).

4.4 HomeBot: Assistant Robot Cleaning House
HomeBot is a home-assistant robot performing missions like collecting debris. We use ai_001_001
from Hypersim [156] (shown in Fig. 5.a) to model a dense indoor environment. HomeBot mimics
the functionality of home-cleaning robots like Roomba [45]. The complexity of such robots is
rapidly increasing [160] to enable them to be deployed effectively in intricate indoor settings.

4.4.1 Setting. The environment is dense and dynamic. To have an accurate and up-to-date un-
derstanding of the environment, HomeBot captures a series of images by its RGB-D camera, as it
moves. These images are then processed to create a 3D model of the scene (3D scene reconstruction
(3DSR)). HomeBot employs point-based fusion [110, 167, 178] to perform 3DSR. It involves using
point clouds, collections of 3D points that represent surfaces and features in a scene, and merging

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:14 Mohammad Bakhshalipour and Phillip B. Gibbons

them together to create a detailed map of the environment. To achieve this, the method needs to
align the point clouds: it finds the best transformation between two overlapping point clouds and
then iteratively refines the alignment until the two clouds are as closely aligned as possible. After
that, the point clouds are fused into a single map; HomeBot uses this map to perform its missions.

(a) HomeBot Performing Cleaning (b) Execution Time

0

1000

2000

3000

LC LG HC HG

Ti
m

e
(m

s)Perc.

Plan.+Ctrl.

12240

Fig. 5. HomeBot operating in a benchmark environment [156].

During the alignment of point
clouds, nearest-neighbor search
(NNS) is performed to find the
closest points in one point cloud
to each point in the other point
cloud. The goal of this search is
to identify the best possible cor-
respondences between points,
which are pairs of points that are likely to represent the same physical feature in the real world.

The images are 768×1024 pixels, high-quality enough for accurate mapping. We run our experi-
ments on 100 frames of the dataset.

HomeBot employs a reactive planning and control to clean the house, where the cleaning method
is determined based on the size of the dirty spot. For small stains, the robot applies a small amount
of cleaning solution and uses brushes, while for larger spots, it switches to vacuuming. Once the
spot is clean, the robot moves along the free paths to check the rest of the house.
To implement the reactive approach, we use Behavior Tree (BT) [98]. BT is a computational

model that is widely used for planning and control in robotics. It is structured as a tree consisting of
interconnected nodes, which define conditions (e.g., small or large stain) and actions (e.g., brushing
or vacuuming) that must be taken in response to external stimuli.

4.4.2 Evaluation. Fig. 5.b shows HomeBot’s compute time on different platforms, where planning
and control run on CPUs, and perception runs on GPUs when available. Perception, which performs
3DSR, takes more than 99% of the entire execution time.
3DSR is a hugely data-intensive and highly demanding task. With higher-resolution images,

e.g., 12-megapixel iPhone 14 images, which may find applications in fields like Unmanned Little
Birds [19], 3DSR will be even more intensive. Recent architecture work [77, 152] suggests hardware
acceleration as a promising solution for accelerating 3DSR.
The irregular nature of the algorithm and data structures involved in 3DSR generate irregular

data references, rendering it a memory-bound task. During reconstruction, the algorithm needs to
process the 3D point cloud data, leading to accessing data at irregular intervals based on the point
locations being processed. Similarly, in the alignment stage (§4.4.1), the algorithm needs to match
and align multiple point clouds from various views, which requires accessing data in non-linear
ways—3D points that are semantically close to each other in the scene, can be spread arbitrarily
across the memory layout.
GPUs’ high parallelization power make them a superior platform for 3DSR. By partitioning

the data and processing each partition simultaneously, 3DSR’s operations such as alignment are
parallelized, resulting in a significant acceleration—GPUs outperform CPUs by up to 17×.

Moreover, HG outperforms LG by a factor of 8 due to its larger memory capacity and bandwidth,
which can handle the bandwidth-intensive irregular data references generated during 3DSR. On the
other hand, LG has a weaker memory system that hits the “memory wall” when fully parallelizing
the task—the concurrent allocation of large thread-private dynamic data objects and their irregular
referencing creates an overwhelming demand for the limited memory capacity and bandwidth of
LG. §5.2 provides details on this phenomenon.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:15

Finally, BT is fast, taking up to 0.6% of the end-to-end execution, since it selects parameters from
a discrete set of options instead of a continuous spectrum. This eliminates the need for sophisticated
methods to determine optimal parameters, making the algorithm computationally cheap.

Takeaways

• 3DSR is a resource-intensive task that can only be harnessed by HG to achieve real-time performance while
being accurate.

• The performance of the memory system is crucial for HomeBot, particularly in its perception stage, which
involves many irregular data accesses.

4.4.3 Breadth. HomeBot’s computation represents robots that need to precisely understand their
surrounding environment and perform subtle tasks. Examples include caregiving robots for elderly
and handicapped [179], agriculture robots for crop maintenance [108], and inspection robots for
infrastructure upkeep [144].

4.5 FlyBot: Drone Performing Aerial Photography
FlyBot is a pilotless drone that covers sports events on the Freiburg campus [17], tracking a specific
object such as a ball and adjusting its position to maintain a seamless view of the target area. Fig. 6.a
shows an overview of the environment.

4.5.1 Setting. FlyBot uses a radar sensor to track the ball’s position and maintain it in the camera
frame in real-time. The sensor emits radio waves that bounce back from the ball to determine its
location, based on its radar cross-section, which measures its reflectivity to radar waves. The sensor
is calibrated to detect only the ball, as it bounces off the ball and not on other objects, which absorb
or scatter the waves.

(a) FlyBot Tracking a Ball

Robot

Waves

(b) Execution Time

0

200

400

600

LC LG HC HG
Ti

m
e

(m
s)Perc. Plan. Ctrl.

Fig. 6. FlyBot operating in a benchmark environment [17].

A lookup table approach, sim-
ilar to [140], is employed to de-
termine the position of the ball
quickly based on sensor data.
The table is created by storing
readings from the radar sensor
for different ball positions of-
fline. During online detection,
the table is used to locate the ball. While the table’s accuracy may not be high, its performance
justifies its use in this application where the exact ball location is not crucial.

FlyBot uses the weighted A★ (WA★) [154] algorithm to plan paths in the (𝑥,𝑦, 𝑧) space. WA★ uses
a heuristic function to guide the search towards the goal. It creates an environment graph where
each node is assigned a cost representing its distance from the starting point. A weight factor, 𝜀, is
applied to the heuristic function to balance the exploration and exploitation of the search space:
large 𝜀 values prioritize faster search, while small 𝜀 values prioritize a more optimal path. We use
Euclidean norm as the heuristic function and set 𝜀 = 4.

FlyBot utilizes model predictive control (MPC) [89] to follow the path identified by the planner.
MPC formulates motion control as a convex optimization problem, solving it to identify a feasible
path that adheres to the robot’s constraints. By controlling FlyBot’s velocity and acceleration, MPC
ensures the robot stays on course while minimizing any deviations from the planned path.

4.5.2 Evaluation. Fig. 6.b shows FlyBot’s compute time on different platforms, where the perception
and planning stages run on CPUs, while the control stage runs on GPUs when available. Both

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:16 Mohammad Bakhshalipour and Phillip B. Gibbons

planning and control stages contribute significantly to the overall pipeline latency. Planning
takes 31%–63%, and control takes 37%–68% of the execution time, depending on the platform.
The perception stage involves a computationally cheap table lookup, taking less than 1% of the
end-to-end time.

During path planning, the environment graph is searched by generating nodes corresponding to
(𝑥,𝑦, 𝑧) locations within the environment area and checking whether they are free from collisions.
The checking of nodes for collision is inexpensive due to the altitude at which FlyBot operates, which
is relatively free from clutter. Therefore, the time taken for path planning is largely determined by
the generation of nodes, which is proportional to the size of the environment.

WA★ is difficult to parallelize [71], especially when collision detection is inexpensive. The over-
heads of multi-threading (e.g., locks) may not be justified by the relatively light workloads of nodes.
Consequently, single-thread performance is crucial, and this is why high-end computing platforms
far outperform low-end ones—the instruction-per-clock (IPC) of HC is 2.8, while that of LC is 1.2.
The MPC algorithm for generating control commands is expensive. RoBoX [158] proposes a

full-fledged hardware for accelerating this process. More than 80% of the control time is spent
on solving a constrained vector-valued function through an optimization process. This process
involves solving a set of linear equations at each time step, but it can be parallelized and solved
through smaller sub-problems. GPUs can take advantage of this parallelism, resulting in high
performance.

Notably, MPC benefits from CPU vectorization due to the optimization process involving solving
linear equations and performing matrix factorization—both can be readily vectorized. The CPU
can perform multiple calculations at once by utilizing SIMD instructions, such as the AVX-512
instructions available in HC, resulting in faster computation (see §5.1).

Takeaways

• FlyBot’s performance is bottlenecked by both planning and control stages, with throughput determined
by the longest stage. This is influenced by the presence or absence of GPUs in the planning and control platforms.

• The planning stage of FlyBot requires high single-threaded performance.

4.5.3 Breadth. FlyBot’s computation represents drones that need fast path planning to perform
missions like aerial photography [169], package delivery [135], and traffic monitoring [174].

4.6 CarriBot: Driverless Vehicle Transporting Goods
CarriBot is a driverless vehicle designed to optimize transport processes for time-sensitive materials
such as those used in chip manufacturing. In our modeled application, CarriBot navigates Intel’s
Lab [23] and carries goods, minimizing travel time while avoiding obstacles. Fig. 7.a shows an
overview of the application.

(a) CarriBot and The Environment Map

O
cc

up
ie

d

(b) Execution Time

0

500

1000

LC LG HC HG

Ti
m

e
(m

s)Perc.
Plan.
Ctrl.

Fr
ee

1300 6800

Fig. 7. CarriBot operating in a benchmark environment [23].

4.6.1 Setting. CarriBot operates
in a known area: the factory’s
aerial map is furnished to the
robot ahead of transportation.
Nevertheless, it must perform
real-time mapping to compre-
hend its immediate vicinity, in-
cluding the workers and other
vehicles in the area, thereby avoiding collisions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:17

A monocular camera is mounted on CarriBot to perform mapping. The camera captures images
of the environment, which are then processed to generate “occupancy grids.”
Occupancy grids are a way of representing the environment as a grid of cells, where each cell

is assigned a value indicating whether it is occupied by an obstacle or not. We use Probabilistic
Occupancy Map (POM) [94] to generate occupancy grids from camera images. POM divides the
environment into a grid of cells and assigns each cell a probability value that represents the
likelihood of it being occupied by an obstacle; cells with probability values above a certain threshold
are deemed to be occupied, while those below it are considered to be free.

CarriBot utilizes an Inertial Measurement Unit (IMU) [136] consisting of accelerometers, gy-
roscopes, and magnetometers. The accelerometers measure linear acceleration, the gyroscopes
measure the rate of rotation around axes, and the magnetometers measure the Earth’s magnetic
field, aiding in determining the vehicle’s orientation relative to the magnetic north pole. The EKF
algorithm (see §4.2.1) processes the IMU data to localize the vehicle (without mapping).

CarriBot explores the (𝑥,𝑦, 𝜃) space to find the shortest path to the goal. Due to the presence of
narrow pathways in the environment and the use of a probabilistic map, CarriBot uses accurate
brute-force collision detection to avoid any collision. Different algorithms are used for different
platforms: WA★ (see §4.5.1) is used for low-end devices, while RA★ [62] and GA★ [186] are used for
HC and HG, respectively. All the algorithms use the Euclidean distance heuristic with 𝜀 = 1.

RA★ and GA★ improve parallelism in the search process by introducing speculative parallelism
on CPUs and proposing a new parallelization method on GPUs, respectively. They improve perfor-
mance when collision detection is costly (unlike §4.5.2), but are resource-intensive and unsuitable
for low-end devices. Notice, they are research state-of-the-art, not established algorithms. We
include them to showcase the potential of powerful computing systems to enable sophisticated
algorithms for significant speedups in future robotics.

CarriBot uses Dynamic Movement Primitive (DMP) [116, 162] to control its movements along
the planned path. DMP is a machine learning technique that decomposes a movement into simpler
sub-movements. It uses Gaussian bias functions and shape parameters to define the trajectory shape.
These parameters are acquired through imitation learning [103] and linear regression. Once the
parameters are acquired, the final trajectory, including velocity and acceleration, is computed.

4.6.2 Evaluation. Fig. 7.b shows CarriBot’s compute time across the platforms, where perception
and control run on CPUs, and planning runs on GPUs when available. As noted above, HC and HG
run different planning algorithms.
Processing monocular camera images using POM is computationally cheap, as it relies on a

simple probabilistic model instead of expensive 3D reconstruction (see §4.4). Similarly, EKF-based
localization is also simple. Unlike EKF-based SLAM (see §4.2), EKF-based localization only estimates
the robot’s state without including all the landmarks on the map. This significantly reduces the
state space (3 variables instead of 15), resulting in a large reduction in compute workload. Overall,
perception accounts for less than 1% of the end-to-end execution time.
Path planning is the major component of computation time across all platforms, with collision

detection taking up more than 80% of the time. This involves checking many environment locations
corresponding to the projected vehicle location to ensure no collision occurs during planning,
which is resource-intensive due to the relatively large robot body in the operating environment.
RACOD [60] proposes a hardware accelerator for accelerating this process.

RA★ and GA★ significantly improve search performance by parallelizing intensive collision
detection operations on high-end processors, but their resource demands render them unsuitable
for low-end devices. RA★ lacks the requisite number of cores for speculative parallelization on LC,
while LG fails to run GA★ due to its limited memory capacity; the algorithm needs to maintain

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:18 Mohammad Bakhshalipour and Phillip B. Gibbons

thousands of min heaps to find the solution in parallel, which overwhelms the existing memory
capacity of LG (see §5.2). RA★ on HC outperforms WA★ on LC by 4.6×, and GA★ on HG outperforms
WA★ on LG by 18.2×.

We find CPU vectorization ineffective for collision detection, despite the memory locations
checked being nearby and running the same check. This is due to the arbitrary orientations of
the robot during planning rendering the layout of memory references axes-unaligned (similar to
ray-casting; see §4.1.2), which makes vectorization inapplicable (see §5.1 for details).

Also, the search algorithm’s use of irregular data structures like min heaps causes many irregular
cache misses, beyond the realm of the evaluated processors’ prefetchers (see §5.3). Cache misses
are significantly more in GA★, as it employs thousands of min heaps, irregularly traversing them.
Finally, DMP’s online computation is inexpensive due to its offline learning of motor control

primitives, which are stored as weights in a set of basis functions. Online execution involves simply
generating newmovements using a weighted sum of these basis functions, which is computationally
inexpensive: up to 4.1% of the end-to-end execution time.

Takeaways

• Accurate collision detection in planning can be computationally demanding, and low-end platforms may not
offer sufficient performance for time-critical applications.

• Algorithmic advancements can lead to the full utilization of hardware potential, resulting in transformative
improvements in robotics.

4.6.3 Breadth. CarriBot’s computation represents the class of mobile robots that operate in the
wild and need to avoid any collision. This includes autonomous vehicles used in transportation
such as self-driving cars [153] and delivery robots [163].

5 SYSTEM-LEVEL IMPLICATIONS OF ROBOTICS
Robotics involves diverse workloads, and no single hardware can serve all of them equally well. It
is unlikely that vendors will fabricate a specific processor for each robotic application. However,
designing processors based on shared characteristics across a range of robotic workloads is practical.
This section studies the system- and hardware-level implications of robotics, gaining insights into
designing “robotics processors.”

5.1 Vectorization and Irregular Memory Layouts
All modern CPUs feature vector instructions and large vector registers, such as LC andHC with 2 KB
and 44 KB vector registers respectively. Vectorization is shown to remarkably enhance performance
across various workloads [99, 114].

Fig. 8 shows execution time using manual and compiler vectorization, normalized to that without
vectorization. We write vectorized code using VCL [4], utilizing input from Intel Advisor [20].
Compiler vectorization is primarily used to enhance the vectorization of third-party codes.
We conclude that, despite the large silicon it occupies, vectorization does little for most robotic

workloads. FlyBot is an exception to this trend, experiencing 5% speedup with vectorization. FlyBot
benefits from vectorization, as it optimizes a vector-valued function in its control stage, as explained
in §4.5.2.
Our investigation shows that vectorization is ineffective for operations like ray-casting and

collision detection, despite their perceived suitability. The varying orientation of the robot with
respect to the environment axes leads to axes-unaligned memory accesses (blue arrows in Fig. 2.a),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:19

which current vectorization engines cannot handle.5 This issue will become more significant for
future advanced robots, such as surgical robots that require higher accuracy [59]: operations like
collision detection will be more computationally intensive, but current vectorization approaches
will not provide a solution.

Ra
y-

ca
st

in
g

Co
ll.

 D
et

ec
tio

n

0.00

0.50

1.00

LC HC LC HC LC HC LC HC LC HC LC HC LC HC

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot GMean

N
or

m
. T

im
e

None Manual Manual+Compiler

Fig. 8. Vectorization’s impact on LC and HC.

To address this issue, current
vector architectures can incorpo-
rate an additional operand into
vector instructions: a register
containing the traversal orienta-
tion. This would enable the hard-
ware to compute thememory ad-
dresses corresponding to the ro-
bot’s current layout and vector-
ize fetching them. Investigating such approaches will be a part of our future work.

5.2 Parallelism and The Memory Barrier
We find that massive parallelism on the edge, i.e., LG, hits the memory wall. The memory problem
is twofold: (i) limited DRAM capacity and (ii) limited DRAM bandwidth.

In detail, we observe that massively parallelizing memory-intensive applications like HomeBot
overwhelms the limited DRAM capacity: in-parallel allocation of mega-scale thread-private data
(e.g., bookkeeping 3D pixels) dwarfs the available few gigabytes of DRAM. Further, the limited
DRAM capacity prevents employing some massively-parallel algorithms (see §4.6.2).

Ba
nd

w
id

th
 W

al
l

Ca
pa

ci
ty

 W
al

l

0
2
4
6
8
10

0

5

10

1 2 4 8 16 32 64 12
8

Ba
nd

w
id

th
 (G

B/
s)

N
or

m
. P

er
f.

Number of Threads (Log-scale)

0

5

10

15

0

4

8

12

1 2 4 8 16 32 64 12
8

Ba
nd

w
id

th
 (

GB
/s

)

N
or

m
. P

er
f.

Number of Threads (Log-scale)

8.
7×3.2× 1.
8×

LG

Am
da

hl
Ex

tr
ap

ol
at

io
n

Fig. 9. Performance scaling hits the memory wall. The difference
between Amdahl and LG is named AG, and the difference between

Amdahl and Extrapolation is named EAG.

Additionally, on-edge parallelism
encounters the memory band-
width wall, where performance
scaling is limited even with in-
creasing cores. Fig. 9 shows the
performance ofHomeBot, RoWild’s
most memory-intensive applica-
tion (on the left side of the
graph), and the average of three
other memory-intensive applica-
tions, namely DeliBot, MoveBot,
and FlyBot (on the right side of the graph), with varying the number of threads normalized to
single-thread performance. The corresponding bandwidth utilization is shown by yellow dots on
the graph.
The complex architecture of GPUs makes it challenging to precisely quantify the impact of

memory bandwidth on performance scaling [83, 84]. To estimate this impact, we employ the
following methodology: First, we subtract the execution time of the program’s serial components
from the total execution time to isolate the execution time of the parallel section (𝑡𝑝). Then, we
compute the disparity between the execution time of an 𝑛-threaded execution and ideal scaling
as defined by Amdahl’s law (𝑡𝑝

𝑛
); this disparity is termed the architecture gap (AG). Using a linear

function, we extrapolate AG from when the bandwidth utilization is low (involving just a few
threads) to when it is high (with all threads in use); we name it the extrapolated AG (EAG). Because
EAG is derived from scenarios featuring low bandwidth, it is likely unaffected by the memory

5The VPMULTISHIFTQB instruction, introduced in Intel’s Cannon Lake, still cannot capture these patterns as the generated
memory references exceed the quadword range.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:20 Mohammad Bakhshalipour and Phillip B. Gibbons

bandwidth wall. Consequently, the contrast between EAG and AG in high-bandwidth settings
effectively represents the impact of the memory bandwidth wall.

The results show that performance scaling on the edge is hindered by the memory wall. The memory
capacity/bandwidth wall alone prevents up to 8.7×/3.2× performance scaling (in HomeBot).
It is worth noting that certain edge platforms have recognized the need for increased memory

bandwidth and have substantially improved their offerings [157]. For example, Nvidia’s Jetson
AGX Orin [26] provides a remarkable 204.8 GB/s of memory bandwidth, which is eight times more
than LG’s offering. However, this enhancement comes at a considerable cost difference, with AGX
Orin’s solution priced at $1999 compared to LG’s $149, making it cost-prohibitive for many robotic
applications. Therefore, we advocate for system-level techniques, such as enhanced data sharing,
to improve bandwidth utilization and achieve cost-effective performance scaling. Lastly, high-end
platforms like HC and HG are already overprovisioned in terms of memory bandwidth and do not
exhibit this issue.

5.3 Data Prefetching and Complex Access Patterns
LC and HC include simple stride/stream hardware prefetchers. Also, software prefetching is im-
plemented through compiler optimizations and manual profiler-driven programming (see §3.2).
Fig. 10 shows the execution time6 with prefetching normalized to without it.

0.00

0.50

1.00

LC HC LC HC LC HC LC HC LC HC LC HC LC HC

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot GMean

N
or

m
. T

im
e

None HW HW+SW

Fig. 10. Prefetching’s impact on LC and HC.

The results show disabling
hardware prefetchers causes
a significant slowdown: stride
prefetching is effective for robot-
ics. This contrasts with prior
workswhich find stride prefetch-
ing to be highly ineffective for
various workloads, including
commercial [170], cloud [92],
and scientific [182].
Stride prefetching is effective for two reasons: first, many robotic computations, such as linear

algebra, inherently involve strided memory accesses. Second, we deliberately use static data struc-
tures, such as arrays, instead of dynamic ones like linked-lists, wherever possible to enable memory
accesses to occur in fixed-sized blocks due to the contiguous nature of memory locations. While
this approach may reduce the generality of each program’s binary and require recompilation for
different robots, it is justified by the performance improvement and the application nature, where
the robot is aware of its components (e.g., camera) and can specialize software based on them.

Nevertheless, simple prefetchers are inadequate for memory-intensive robotic applications, as they
do not capture complex memory patterns generated by the employed irregular data structures
like min heaps and hashmaps. This results in a large post-prefetch LLC misses per kilo instruction
(MPKI), with CarriBot having an MPKI of 1.5 (2.1) and HomeBot having an MPKI of 3.5 (1.4) on
LC (HC, respectively).
Finally, software prefetching offers little improvements. In DeliBot, PatrolBot, FlyBot, and

CarriBot, there is insignificant opportunity for software prefetching. InMoveBot and HomeBot,
there is some opportunity, but prefetches are not timely–they hide the latency of one or a few loop

6Hit ratio is not a good indicator of prefetching effectiveness in HC, as different prefetchers are for different cache levels:
Hardware Prefetcher (L2), Adjacent Cache Prefetch (L1), DCU Streamer Prefetcher (L1), DCU IP Prefetcher (L1),
and LLC Prefetcher (L3).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:21

iterations. In HomeBot, additionally, excessive software prefetching can degrade performance due
to a full L1D fill buffer of pending misses [100].

5.4 Caches and Data Movements
Prior work [69, 123, 130, 165] reports “data movement” as the primary cause of slowdown and
inefficiency in processors. Fig. 11 shows the percentage of used bytes out of all fetched bytes for
every program. We get the trace of memory accesses using Intel Pin 3.25 [39] and process them
offline. We consider 64 B cachelines, which is the configuration of the CPUs.

The results show that caches perform excessive unnecessary data movements (UDMs). In HomeBot,
only 33% of the fetched data is used; and, on average across all, only 56% of the fetched data is used
(cf. 76%, 92%, 80% average utilization reported for SQL [80], scientific [79], SPEC [111] workloads,
respectively). This shows how caches are overprovisioned and are unaware of robotic semantics.

0%

50%

100%

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot Mean

Fe
tc

he
d

Da
ta Used Unused

Fig. 11. Data movement.

Caches are architected partly
based on the “traditional spatial
locality” concept; they use large
blocks to capture (i) large data
types (e.g., 8-byte double), and
(ii) nearby data items (e.g., 1D
arrays). However, memory ac-
cesses are not always so in ro-
botics. For example, in ray-casting and collision detection—two dominant kernels—memory is
traversed mostly in an oriented manner (see §5.1), and every memory request accesses only one bit;
caches are in fact working against application semantics, resulting in significant UDMs.

Notice, in this experiment, we do not model (i) hardware prefetches (Pin traces lack) and (ii) cache
size (infinite-size cache is modeled). Hence, 44% useless fetches we report is an underestimate. Also,
with larger cachelines (e.g., in GPUs), UDMs increase; e.g., by 1.22× with 128 B lines.

To address this, caches need awareness of the robot’s body and traversal. This could be achieved
by extending classic approaches like [119] that fetch likely-to-be-used parts of cachelines or [86] that
dynamically adjust cache block sizes. Either way, the semantics must be transferred to hardware.

6 DISCUSSION
In this section, we delve into two important questions in robotic benchmarking, highlighting
the performance specifications future computing platforms must meet in order to facilitate the
widespread rollout of real-time robotics.

6.1 What Performance Is Needed for “Real-Time” Robotics?
The designation of “real-time” performance in the multi-staged software pipeline of robotics hinges
on its specific application. Various studies highlight differing latency benchmarks: for example,
the perception stages have reported constraints from 30ms [90] to 200ms [76], while the planning
stages have ranged from sub-millisecond [142] to 250ms [70]. Given these disparities, it is imperative
to tailor the architecture of the robotic processor for each stage, ensuring it meets the real-time
demands of diverse applications.
Moreover, robotic tasks often present a trade-off between accuracy and execution duration.

Greater accuracy demands more computational resources, leading to extended execution times.
Through targeted optimization of platforms for specific tasks, it is possible to achieve real-time
performance without significantly sacrificing accuracy.

Real-time performance is also a function of the speed at which the robot moves (and hence must
react to changes in its environment): autonomous vehicles traveling at highway speeds have stricter

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

43:22 Mohammad Bakhshalipour and Phillip B. Gibbons

performance requirements than legged robots moving at walking pace. Furthermore, the more
complex and dynamic the environment, the greater the challenge to achieve real-time performance.
Thus, the need for accelerating robot computation will continue unabated into the foreseeable
future.

6.2 Ranking The Computers: Which Platform Should I Buy for My Robot?
As illustrated in §4, the computational needs of diverse robotic tasks and applications vary sub-
stantially, indicating that certain platforms may be better suited for specific contexts. Further, as
detailed in §3.3, these platforms differ in cost and TDP (among other key features), prompting
deliberation about the most effective computational platform for robotics.
In other domains, existing research suggests quantitative criteria for evaluating computational

platforms, withmetrics like performance per watt and performance per unit area [131] being notably
recognized. However, in robotics, these metrics often fall short in encapsulating the actual demands.
For instance, in robotics, the power allocated to computing, unlike in, say, data centers, forms a
minor portion of the overall power usage (§3.5). Similarly, the metric of performance per area might
not be fully representative. Even when considering metrics like performance relative to the total
cost of ownership (TCO) [101], it is essential to note that a robot’s price may be heavily influenced
by non-computational components. To illustrate, a self-driving car priced at over $100,000 might
easily incorporate processors costing thousands of dollars, whereas a budget-constrained wildlife
conservation robot might not.
Determining the best computational platforms for robotics is a complex endeavor, especially

as real-time functionality is not just pivotal for user experience but also for safety. For instance,
the prompt detection of obstacles and timely response can be lifesaving in autonomous vehicles.
Continued research in robotic-architecture will introduce quantitative criteria for designing efficient
robotic processors. This will involve the consideration of elements like safety, raw performance,
cost per user ownership, projected revenue, and more.

7 CONCLUSION
In this paper, we introduced RoWild, a comprehensive benchmark suite for robotics, and used it to
conduct a systematic study of robotics on modern hardware. With this suite and this study, we
aim to drive research at the intersection of robotics and systems to improve the performance of
robotics.
The realm of robotics is in a state of constant transformation, producing myriad research

publications and industrial innovations annually. One cannot hope to encompass the entirety
of the field in a single study and static benchmark suite. Hence, our future work will continuously
augment RoWild with additional algorithms, applications, and analyses as the field progresses, and
we welcome contributions by the open-source community.

Our results show that many robotic applications struggle to achieve real-time performance,
especially when running on low-end platforms. As a result, current robots often have to sacrifice
accuracy to meet real-time requirements. For instance, EureCar URV, a self-driving car, uses an
imprecise collision detection to maintain acceptable execution time [122]. However, this trade-off
will not be sustainable for future robots with high responsiveness and accuracy demands. Moreover,
in the coming years, robotic computation is set to become more intense and complex due to the
increasing demand for robots to perform sophisticated tasks, particularly in critical applications such
as medical procedures or in crowded public settings. Achieving the required level of responsiveness
and accuracy will necessitate advanced algorithms and more intense computation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:23

All this underscores the pressing need to identify and address architectural inefficiencies—
vectorization, prefetching, data movement, and many more to come—in order to achieve real-time
performance in the robots of tomorrow.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation grant CCF-2028949, by a VMware
University Research Fund Award, and by the Parallel Data Lab (PDL) Consortium (Alibaba, Amazon,
Datrium, Facebook, Google, Hewlett-Packard Enterprise, Hitachi, IBM, Intel, Microsoft, NetApp,
Oracle, Salesforce, Samsung, Seagate, and TwoSigma). Mohammad Bakhshalipour was supported by
the Apple CMU ECE Ph.D. Fellowship in Integrated Systems.We would like to thank the anonymous
reviewers and our shepherd, Y.C. Tay, for their valuable feedback.

REFERENCES
[1] [n. d.]. Search-Based Planning Lab. http://www.sbpl.net/.
[2] 2012. LoCoBot: An Open Source Low Cost Robot. http://www.locobot.org/.
[3] 2019. How Robots Change the World. https://resources.oxfordeconomics.com/how-robots-change-the-world/.
[4] 2022. C++ Vector Class Library Version 2. https://www.agner.org/optimize/vcl_manual.pdf.
[5] n.d.. 3DR Solo Drone. https://uavsystemsinternational.com/products/3dr-solo-drone.
[6] n.d.. AscTec Pelican. https://www.aeroexpo.online/prod/ascending-technologies/product-181442-24426.html.
[7] n.d.. Boston Dynamics’ Atlas. https://www.bostondynamics.com/atlas.
[8] n.d.. Boston Dynamics’ Spot Robot. https://www.bostondynamics.com/products/spot.
[9] n.d.. Boxbot Launches Last-Mile, Self-Driving Parcel Delivery System. https://www.roboticsbusinessreview.com/

supply-chain/boxbot-launches-last-mile-self-driving-parcel-delivery-system/.
[10] n.d.. Bullet Collision Detection & Physics Library. https://pybullet.org/Bullet/BulletFull/.
[11] n.d.. Carnegie Mellon University, Wean Hall (WEH). https://www.cmu.edu/computing/services/teach-learn/tes/

classrooms/locations/wean.html.
[12] n.d.. Clearpath Robotics’ Grizzly Robot. https://clearpathrobotics.com/blog/tag/grizzly/.
[13] n.d.. CppRobotics. https://github.com/onlytailei/CppRobotics/.
[14] n.d.. EVGAGeForce GTXTITANXSuperclockedGraphics Card. EVGAGeForceGTXTITANXSuperclockedGraphicsCard.

[15] n.d.. FANUC’s M-2000iA/2300 Robot. https://www.fanucamerica.com/products/robots/series/m-2000ia/m-2000ia-
2300-heavy-payload-robot.

[16] n.d.. Franka Emika’s Panda Robot. https://www.pomorobotics.com/robots/frankpanda/.
[17] n.d.. Freiburg Campus 360 Degree 3D Scans. http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/.
[18] n.d.. HUSKY UGV. https://clearpathrobotics.com/assets/guides/foxy/husky/index.html.
[19] n.d.. In a First, Full-Sized Robo-Copter Flies With No Human Help. https://www.wired.com/2010/07/in-a-first-full-

sized-robo-copter-flies-with-no-human-help/.
[20] n.d.. Intel Advisor: Design Code for Efficient Vectorization, Threading, Memory Usage, and Accelerator Offloading.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html.
[21] n.d.. Intel Movidius Vision Processing Units. https://www.intel.com/content/www/us/en/products/details/processors/

movidius-vpu.html.
[22] n.d.. Intel RealSense Technology. https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-

overview.html.
[23] n.d.. Intel Reserach Lab; The Raw Log Data Was Provided by Dirk Haehnel. http://www2.informatik.uni-freiburg.de/

%7Estachnis/datasets/datasets/intel-lab/intel.gfs.png.
[24] n.d.. Intel Xeon Gold 5218R Processor. https://ark.intel.com/content/www/us/en/ark/products/199342/intel-xeon-

gold-5218r-processor-27-5m-cache-2-10-ghz.html.
[25] n.d.. JACKAL UNMANNED GROUND VEHICLE. https://clearpathrobotics.com/jackal-small-unmanned-ground-

vehicle/.
[26] n.d.. Jetson AGXOrin Series. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/.
[27] n.d.. Jetson Nano Developer Kit. https://developer.nvidia.com/embedded/jetson-nano-developer-kit.
[28] n.d.. KUKA. https://www.kuka.com/en-us.
[29] n.d.. KUKA KR 60-3 Robot. https://robodk.com/robot/KUKA/KR-60-3.
[30] n.d.. LBR Iiwa. https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

http://www.sbpl.net/
http://www.locobot.org/
https://resources.oxfordeconomics.com/how-robots-change-the-world/
https://www.agner.org/optimize/vcl_manual.pdf
https://uavsystemsinternational.com/products/3dr-solo-drone
https://www.aeroexpo.online/prod/ascending-technologies/product-181442-24426.html
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/products/spot
https://www.roboticsbusinessreview.com/supply-chain/boxbot-launches-last-mile-self-driving-parcel-delivery-system/
https://www.roboticsbusinessreview.com/supply-chain/boxbot-launches-last-mile-self-driving-parcel-delivery-system/
https://pybullet.org/Bullet/BulletFull/
https://www.cmu.edu/computing/services/teach-learn/tes/classrooms/locations/wean.html
https://www.cmu.edu/computing/services/teach-learn/tes/classrooms/locations/wean.html
https://clearpathrobotics.com/blog/tag/grizzly/
https://github.com/onlytailei/CppRobotics/
EVGA GeForce GTX TITAN X Superclocked Graphics Card
https://www.fanucamerica.com/products/robots/series/m-2000ia/m-2000ia-2300-heavy-payload-robot
https://www.fanucamerica.com/products/robots/series/m-2000ia/m-2000ia-2300-heavy-payload-robot
https://www.pomorobotics.com/robots/frankpanda/
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
https://clearpathrobotics.com/assets/guides/foxy/husky/index.html
https://www.wired.com/2010/07/in-a-first-full-sized-robo-copter-flies-with-no-human-help/
https://www.wired.com/2010/07/in-a-first-full-sized-robo-copter-flies-with-no-human-help/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www2.informatik.uni-freiburg.de/%7Estachnis/datasets/datasets/intel-lab/intel.gfs.png
http://www2.informatik.uni-freiburg.de/%7Estachnis/datasets/datasets/intel-lab/intel.gfs.png
https://ark.intel.com/content/www/us/en/ark/products/199342/intel-xeon-gold-5218r-processor-27-5m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199342/intel-xeon-gold-5218r-processor-27-5m-cache-2-10-ghz.html
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.kuka.com/en-us
https://robodk.com/robot/KUKA/KR-60-3
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa

43:24 Mohammad Bakhshalipour and Phillip B. Gibbons

[31] n.d.. Maximize the Efficiency of Your Logistics Operations with Robots from MiR. https://www.mobile-industrial-
robots.com/.

[32] n.d.. NVIDIA Clara. https://docs.nvidia.com/clara/index.html.
[33] n.d.. NVIDIA DRIVE End-To-End Solutions for Autonomous Vehicles. https://developer.nvidia.com/drive.
[34] n.d.. NVIDIA Isaac: The Accelerated Platform for Robotics and AI. https://www.nvidia.com/en-us/deep-learning-

ai/industries/robotics/.
[35] n.d.. NVIDIA Jetson: Accelerating Next-Gen Edge AI and Robotics. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/.
[36] n.d.. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-systems.
[37] n.d.. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt.
[38] n.d.. Phantom 4 Pro - DJI. https://www.dji.com/phantom-4-pro.
[39] n.d.. Pin 3.25 Release Notes. https://software.intel.com/sites/landingpage/pintool/docs/98650/README.
[40] n.d.. Pioneer 3-DX. https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf.
[41] n.d.. PR2. https://www.wevolver.com/specs/pr2.
[42] n.d.. PythonRobotics. https://github.com/AtsushiSakai/PythonRobotics/.
[43] n.d.. Robotics Automation for Warehousing, 3PLs, Distribution, Manufacturing. https://fetchrobotics.com/.
[44] n.d.. Roomba 980 Robot Vacuum. https://www.irobot.com/en_US/roomba-vacuuming-robot-irobot-roomba-restored-

980/R980R99.html.
[45] n.d.. Roomba I7+ Self-Emptying Robot Vacuum. https://www.irobot.com/en_US/roomba-vacuuming/robot-vacuum-

irobot-roomba-i7-plus/I755020.html.
[46] n.d.. ROS - Robot Operating System. https://www.ros.org/.
[47] n.d.. Skydio. https://www.skydio.com/.
[48] n.d.. SoftBank Robotics’ Pepper Robot. https://us.softbankrobotics.com/pepper.
[49] n.d.. TALOS: The Walking Humanoid Robot That Integrates the Latest Cutting-Edge Robotics Technology. https:

//pal-robotics.com/robots/talos/.
[50] n.d.. The Open Motion Planning Library. http://ompl.kavrakilab.org/.
[51] n.d.. The Parallella Board. https://parallella.org.
[52] n.d.. The UR10e. https://www.universal-robots.com/products/ur10-robot/.
[53] n.d.. The UR5e. https://www.universal-robots.com/products/ur5-robot/.
[54] n.d.. TIAGo. https://pal-robotics.com/robots/tiago/.
[55] n.d.. TurtleBot. https://www.turtlebot.com/.
[56] n.d.. TurtleBot3. https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
[57] n.d.. Xilinx Adaptive SoCs. https://www.xilinx.com/products/silicon-devices/soc.html.
[58] n.d.. YuMi - IRB 14000 | Collaborative Robot. https://new.abb.com/products/robotics/robots/collaborative-robots/

yumi/irb-14000-yumi.
[59] Aleks Attanasio, Bruno Scaglioni, Elena De Momi, Paolo Fiorini, and Pietro Valdastri. 2021. Autonomy in Surgical

Robotics. Annual Review of Control, Robotics, and Autonomous Systems 4 (2021), 651–679. https://doi.org/10.1146/
annurev-control-062420-090543

[60] Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, Maxim Likhachev, and Phillip B
Gibbons. 2022. RACOD: Algorithm/Hardware Co-Design for Mobile Robot Path Planning. In Int’l Symp. in Computer
Architecture (ISCA). IEEE/ACM. https://doi.org/10.1145/3470496.3527383

[61] Mohammad Bakhshalipour, Maxim Likhachev, and Phillip B. Gibbons. 2022. RTRBench: A Benchmark Suite for
Real-Time Robotics. In IEEE Int’l Symp. on Performance Analysis of Systems and Software (ISPASS). https://doi.org/10.
1109/ISPASS55109.2022.00024 https://cmu-roboarch.github.io/rtrbench/.

[62] Mohammad Bakhshalipour, Mohamad Qadri, Dominic Guri, Seyed Borna Ehsani, Maxim Likhachev, and Phillip
Gibbons. 2023. Runahead A*: Speculative Parallelism for A* with Slow Expansions. In Int’l Conf. on Automated
Planning and Scheduling (ICAPS).

[63] Gelareh Bakhtyar, Vi Nguyen, Mecit Cetin, and Duc Nguyen. 2016. Backward Dijkstra Algorithms for Finding the
Departure Time Based on the Specified Arrival Time for Real-Life Time-Dependent Networks. Journal of Applied
Mathematics and Physics 4, 1 (2016). https://doi.org/10.4236/jamp.2016.41001

[64] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J Pappas. 2007. Symbolic
Planning and Control of Robot Motion [grand Challenges of Robotics]. IEEE Robotics & Automation Magazine 14, 1
(2007), 61–70. https://doi.org/10.1109/MRA.2007.339624

[65] Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli. 2011. Massively Parallelizing the RRT and the RRT∗. In Int’l
Conf. on Intelligent Robots and Systems (IROS). IEEE, 3513–3518. https://doi.org/10.1109/IROS.2011.6095053

[66] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra Faust, and Vijay Reddi. 2018.
MAVBench: Micro Aerial Vehicle Benchmarking. In Int’l Symp. on Microarchitecture (MICRO). IEEE, 894–907.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://www.mobile-industrial-robots.com/
https://www.mobile-industrial-robots.com/
https://docs.nvidia.com/clara/index.html
https://developer.nvidia.com/drive
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/tensorrt
https://www.dji.com/phantom-4-pro
https://software.intel.com/sites/landingpage/pintool/docs/98650/README
https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
https://www.wevolver.com/specs/pr2
https://github.com/AtsushiSakai/PythonRobotics/
https://fetchrobotics.com/
https://www.irobot.com/en_US/roomba-vacuuming-robot-irobot-roomba-restored-980/R980R99.html
https://www.irobot.com/en_US/roomba-vacuuming-robot-irobot-roomba-restored-980/R980R99.html
https://www.irobot.com/en_US/roomba-vacuuming/robot-vacuum-irobot-roomba-i7-plus/I755020.html
https://www.irobot.com/en_US/roomba-vacuuming/robot-vacuum-irobot-roomba-i7-plus/I755020.html
https://www.ros.org/
https://www.skydio.com/
https://us.softbankrobotics.com/pepper
https://pal-robotics.com/robots/talos/
https://pal-robotics.com/robots/talos/
http://ompl.kavrakilab.org/
https://parallella.org
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur5-robot/
https://pal-robotics.com/robots/tiago/
https://www.turtlebot.com/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.xilinx.com/products/silicon-devices/soc.html
https://new.abb.com/products/robotics/robots/collaborative-robots/yumi/irb-14000-yumi
https://new.abb.com/products/robotics/robots/collaborative-robots/yumi/irb-14000-yumi
https://doi.org/10.1146/annurev-control-062420-090543
https://doi.org/10.1146/annurev-control-062420-090543
https://doi.org/10.1145/3470496.3527383
https://doi.org/10.1109/ISPASS55109.2022.00024
https://doi.org/10.1109/ISPASS55109.2022.00024
https://cmu-roboarch.github.io/rtrbench/
https://doi.org/10.4236/jamp.2016.41001
https://doi.org/10.1109/MRA.2007.339624
https://doi.org/10.1109/IROS.2011.6095053

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:25

https://doi.org/10.1109/MICRO.2018.00077
[67] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Bardienus Pieter Duisterhof, Brian Plancher, Kayvan Man-

soorshahi, Marcelino Almeida, Wenzhi Cui, Aleksandra Faust, and Vijay Janapa Reddi. 2022. The Role of Compute in
Autonomous Micro Aerial Vehicles: Optimizing for Mission Time and Energy Efficiency. ACM Trans. Comput. Syst.
39, 1–4, Article 3 (jul 2022), 44 pages. https://doi.org/10.1145/3511210

[68] Behzad Boroujerdian, Ying Jing, Devashree Tripathy, Amit Kumar, Lavanya Subramanian, Luke Yen, Vincent Lee,
Vivek Venkatesan, Amit Jindal, Robert Shearer, et al. 2023. FARSI: An Early-Stage Design Space Exploration Framework
to Tame the Domain-Specific System-On-Chip Complexity. ACM Transactions on Embedded Computing Systems
(TECS) 22, 2 (2023), 1–35. https://doi.org/10.1145/3544016

[69] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun
Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer
Devices: Mitigating Data Movement Bottlenecks. In Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 316–331. https://doi.org/10.1145/3173162.3173177

[70] Chris Bowen and Ron Alterovitz. 2014. Closed-Loop Global Motion Planning for Reactive Execution of Learned Tasks.
In Int’l Conf. on Intelligent Robots and Systems (IROS). IEEE, 1754–1760. https://doi.org/10.1109/IROS.2014.6942792

[71] Sandy Brand and Rafael Bidarra. 2012. Multi-Core Scalable and Efficient Pathfinding with Parallel Ripple Search.
computer animation and virtual worlds 23, 2 (2012), 73–85. https://doi.org/10.1007/978-3-642-25090-3_25

[72] Mihai Bujanca, Paul Gafton, Sajad Saeedi, Andy Nisbet, Bruno Bodin, Michael FP O’Boyle, Andrew J Davison, Paul HJ
Kelly, Graham Riley, Barry Lennox, Mikel Luján, and Steve Furber. 2019. SLAMBench 3.0: Systematic Automated
Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding. In Int’l Conf. on
Robotics and Automation (ICRA). IEEE, 6351–6358. https://doi.org/10.1109/ICRA.2019.8794369

[73] Wolfram Burgard, Cyrill Stachniss, Giorgio Grisetti, Bastian Steder, Rainer Kümmerle, Christian Dornhege, Michael
Ruhnke, Alexander Kleiner, and JuanDTardös. 2009. AComparison of SLAMAlgorithms Based on aGraph of Relations.
In Int’l Conf. on Intelligent Robots and Systems (IROS). IEEE, 2089–2095. https://doi.org/10.1109/IROS.2009.5354691

[74] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and Juan D Tardós. 2021. ORB-SLAM3:
An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Transactions on Robotics 37,
6 (2021), 1874–1890. https://doi.org/10.1109/TRO.2021.3075644

[75] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the Level of Abstraction for Scalable
and Accurate Parallel Multi-Core Simulation. In Int’l Conf. for High Performance Computing, Networking, Storage and
Analysis (SC) (Seattle, Washington) (SC ’11). ACM, NY, Article 52, 12 pages. https://doi.org/10.1145/2063384.2063454

[76] Aayush K Chaudhary, Rakshit Kothari, Manoj Acharya, Shusil Dangi, Nitinraj Nair, Reynold Bailey, Christopher
Kanan, Gabriel Diaz, and Jeff B Pelz. 2019. RITnet: Real-Time Semantic Segmentation of The Eye for Gaze Tracking.
In Int’l Conf. on Computer Vision Workshop (ICCVW). IEEE, 3698–3702. https://doi.org/10.1109/ICCVW.2019.00568

[77] Faquan Chen, Rendong Ying, Jianwei Xue, Fei Wen, and Peilin Liu. 2023. ParallelNN: A Parallel Octree-Based Nearest
Neighbor Search Accelerator for 3D Point Clouds. In Int’l Symp. on High-Performance Computer Architecture (HPCA).
IEEE, 403–414. https://doi.org/10.1109/HPCA56546.2023.10070940

[78] Jainwei Chen, Lakshmi Kumar Dabbiru, Daniel Wong, Murali Annavaram, and Michel Dubois. 2010. Adaptive and
Speculative Slack Simulations of CMPs on CMPs. In Int’l Symp. on Microarchitecture (MICRO) (MICRO ’43). IEEE
Computer Society, 523–534. https://doi.org/10.1109/MICRO.2010.47

[79] Yen-Hao Chen and Yi-Yu Liu. 2013. Dual-Addressing Memory Architecture for Two-Dimensional Memory Access
Patterns. In 2013 Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 71–76. https://doi.org/10.
7873/DATE.2013.029

[80] Trishul M Chilimbi, Bob Davidson, and James R Larus. 1999. Cache-Conscious Structure Definition. In Proceedings
of the ACM SIGPLAN 1999 conference on Programming Language Design and Implementation (PLDI). 13–24. https:
//doi.org/10.1145/301618.301635

[81] Chieh Chung and Chia-Hsiang Yang. 2019. A Distributed Autonomous and Collaborative Multi-Robot System
Featuring a Low-Power Robot SoC in 22nm CMOS for Integrated Battery-Powered Minibots. In Int’l Solid-State
Circuits Conf. (ISSCC). IEEE, 48–50. https://doi.org/10.1109/ISSCC.2019.8662463

[82] Chieh Chung andChia-Hsiang Yang. 2020. A 1.5-𝜇J/Task Path-Planning Processor for 2-D/3-DAutonomousNavigation
of Microrobots. IEEE Journal of Solid-State Circuits (JSSC) 56, 1 (2020), 112–122. https://doi.org/10.1109/JSSC.2020.
3037138

[83] Sina Darabi, Mohammad Sadrosadati, Negar Akbarzadeh, Joël Lindegger, Mohammad Hosseini, Jisung Park, Juan
Gómez-Luna, Onur Mutlu, and Hamid Sarbazi-Azad. 2022. Morpheus: Extending the Last Level Cache Capacity in
GPU Systems Using Idle GPU Core Resources. In Int’l Symp. on Microarchitecture (MICRO). IEEE, 228–244.

[84] Sina Darabi, Ehsan Yousefzadeh-Asl-Miandoab, Negar Akbarzadeh, Hajar Falahati, Pejman Lotfi-Kamran, Mohammad
Sadrosadati, and Hamid Sarbazi-Azad. 2022. OSM: Off-Chip Shared Memory for GPUs. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 33, 12 (2022), 3415–3429. https://doi.org/10.1109/TPDS.2022.3154315

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1109/MICRO.2018.00077
https://doi.org/10.1145/3511210
https://doi.org/10.1145/3544016
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1109/IROS.2014.6942792
https://doi.org/10.1007/978-3-642-25090-3_25
https://doi.org/10.1109/ICRA.2019.8794369
https://doi.org/10.1109/IROS.2009.5354691
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/ICCVW.2019.00568
https://doi.org/10.1109/HPCA56546.2023.10070940
https://doi.org/10.1109/MICRO.2010.47
https://doi.org/10.7873/DATE.2013.029
https://doi.org/10.7873/DATE.2013.029
https://doi.org/10.1145/301618.301635
https://doi.org/10.1145/301618.301635
https://doi.org/10.1109/ISSCC.2019.8662463
https://doi.org/10.1109/JSSC.2020.3037138
https://doi.org/10.1109/JSSC.2020.3037138
https://doi.org/10.1109/TPDS.2022.3154315

43:26 Mohammad Bakhshalipour and Phillip B. Gibbons

[85] Jeffrey Delmerico and Davide Scaramuzza. 2018. A Benchmark Comparison of Monocular Visual-Inertial Odometry
Algorithms for Flying Robots. In IEEE international conference on robotics and automation (ICRA). IEEE, 2502–2509.
https://doi.org/10.1109/ICRA.2018.8460664

[86] Czarek Dubnicki and Thomas J LeBlanc. 1992. Adjustable Block Size Coherent Caches. In Int’l Symp. in Computer
Architecture (ISCA). 170–180. https://doi.org/10.1109/ISCA.1992.753314

[87] Sankeerth Durvasula, Raymond Kiguru, Samarth Mathur, Jenny Xu, Jimmy Lin, and Nandita Vijaykumar. 2022.
VoxelCache: Accelerating Online Mapping in Robotics and 3D Reconstruction Tasks. arXiv preprint arXiv:2210.08729
(2022). https://doi.org/10.1145/3559009.3569675

[88] Christer Ericson. 2004. Real-Time Collision Detection. CRC Press. https://doi.org/10.1201/b14581
[89] Farbod Farshidian, Edo Jelavic, Asutosh Satapathy, Markus Giftthaler, and Jonas Buchli. 2017. Real-Time Motion

Planning of Legged Robots: A Model Predictive Control Approach. In IEEE-RAS Int’l Conf. on Humanoid Robotics
(Humanoids). IEEE, 577–584. https://doi.org/10.1109/HUMANOIDS.2017.8246930

[90] Yu Feng, Nathan Goulding-Hotta, Asif Khan, Hans Reyserhove, and Yuhao Zhu. 2022. Real-Time Gaze Tracking
with Event-Driven Eye Segmentation. In IEEE Conf. on Virtual Reality and 3D User Interfaces (VR). IEEE, 399–408.
https://doi.org/10.1109/VR51125.2022.00059

[91] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu. 2020. Mesorasi: Architecture Support
for Point Cloud Analytics Via Delayed-Aggregation. In Int’l Symp. on Microarchitecture (MICRO). IEEE, 1037–1050.
https://doi.org/10.1109/MICRO50266.2020.00087

[92] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu
Kaynak, AdrianDaniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-Out Workloads on Modern Hardware. In Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (London, England, UK). ACM, NY, 37–48. https://doi.org/10.1145/2150976.2150982

[93] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. 2006. Replanningwith RRTs. In Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 1243–1248. https://doi.org/10.1109/ROBOT.2006.1641879

[94] Chaitanyavishnu S Gadde, Mohitvishnu S Gadde, Nishant Mohanty, and Suresh Sundaram. 2021. Fast Obstacle
Avoidance Motion in Small Quadcopter Operation in a Cluttered Environment. In 2021 IEEE Int’l Conf. on Electronics,
Computing and Communication Technologies (CONECCT). IEEE, 1–6. https://doi.org/10.1109/CONECCT52877.2021.
9622631

[95] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2014. Informed RRT*: Optimal Sampling-Based
Path Planning Focused Via Direct Sampling of an Admissible Ellipsoidal Heuristic. In Int’l Conf. on Intelligent Robots
and Systems (IROS). IEEE, 2997–3004. https://doi.org/10.1109/IROS.2014.6942976

[96] Yiming Gan, Yu Bo, Boyuan Tian, Leimeng Xu, Wei Hu, Shaoshan Liu, Qiang Liu, Yanjun Zhang, Jie Tang, and Yuhao
Zhu. 2021. Eudoxus: Characterizing and Accelerating Localization in Autonomous Machines Industry Track Paper. In
Int’l Symp. on High-Performance Computer Architecture (HPCA). IEEE, 827–840. https://doi.org/10.1109/HPCA51647.
2021.00074

[97] Roland Geraerts and Mark H Overmars. 2007. Creating High-Quality Paths for Motion Planning. The international
journal of robotics research 26, 8 (2007), 845–863. https://doi.org/10.1177/0278364907079280

[98] Razan Ghzouli, Swaib Dragule, Thorsten Berger, Einar Broch Johnsen, and Andrzej Wasowski. 2022. Behavior Trees
and State Machines in Robotics Applications. arXiv preprint arXiv:2208.04211 (2022).

[99] Constantino Gómez, Filippo Mantovani, Erich Focht, and Marc Casas. 2021. Efficiently Running SpMV on Long Vector
Architectures. In Proceedings of the 26th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming
(PPoPP). 292–303. https://doi.org/10.1145/3437801.3441592

[100] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas.
2022. Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques.
In Proceedings of the 49th Annual Int’l Symp. on Computer Architecture (NY) (ISCA ’22). ACM, NY, 916–931. https:
//doi.org/10.1145/3470496.3527403

[101] Boris Grot, Damien Hardy, Pejman Lotfi-Kamran, Babak Falsafi, Chrysostomos Nicopoulos, and Yiannakis Sazeides.
2012. Optimizing Data-Center TCO with Scale-Out Processors. IEEE Micro 32, 5 (2012), 52–63. https://doi.org/10.
1109/MM.2012.71

[102] Alejandro Hidalgo-Paniagua, Juan Pedro Bandera, Manuel Ruiz-de Quintanilla, and Antonio Bandera. 2018. Quad-RRT:
A Real-Time GPU-Based Global Path Planner in Large-Scale Real Environments. Expert Systems with Applications 99
(2018), 141–154. https://doi.org/10.1016/j.eswa.2018.01.035

[103] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017. Imitation Learning: A Survey of
Learning Methods. Comput. Surveys 50, 2 (2017), 1–35. https://doi.org/10.1145/3054912

[104] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. 2008. CMP$im: A Pin-Based On-The-Fly Multi-Core
Cache Simulator. In Proceedings of the Fourth Annual Workshop on Modeling, Benchmarking and Simulation (MoBS),
co-located with ISCA. 28–36.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1109/ICRA.2018.8460664
https://doi.org/10.1109/ISCA.1992.753314
https://doi.org/10.1145/3559009.3569675
https://doi.org/10.1201/b14581
https://doi.org/10.1109/HUMANOIDS.2017.8246930
https://doi.org/10.1109/VR51125.2022.00059
https://doi.org/10.1109/MICRO50266.2020.00087
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1109/ROBOT.2006.1641879
https://doi.org/10.1109/CONECCT52877.2021.9622631
https://doi.org/10.1109/CONECCT52877.2021.9622631
https://doi.org/10.1109/IROS.2014.6942976
https://doi.org/10.1109/HPCA51647.2021.00074
https://doi.org/10.1109/HPCA51647.2021.00074
https://doi.org/10.1177/0278364907079280
https://doi.org/10.1145/3437801.3441592
https://doi.org/10.1145/3470496.3527403
https://doi.org/10.1145/3470496.3527403
https://doi.org/10.1109/MM.2012.71
https://doi.org/10.1109/MM.2012.71
https://doi.org/10.1016/j.eswa.2018.01.035
https://doi.org/10.1145/3054912

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:27

[105] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. 2020. RLBench: The Robot Learning
Benchmark & Learning Environment. IEEE Robotics and Automation Letters 5, 2 (2020), 3019–3026. https://doi.org/10.
1109/LRA.2020.2974707

[106] Noémie Jaquier, Leonel Rozo, Sylvain Calinon, and Mathias Bürger. 2020. Bayesian Optimization Meets Riemannian
Manifolds in Robot Learning. In Conf. on Robot Learning. PMLR, 233–246. https://doi.org/10.48550/arXiv.1910.04998

[107] Katharin R Jensen-Nau, Tucker Hermans, and Kam K Leang. 2020. Near-Optimal Area-Coverage Path Planning of
Energy-Constrained Aerial Robots with Application in Autonomous Environmental Monitoring. IEEE Transactions
on Automation Science and Engineering 18, 3 (2020), 1453–1468.

[108] Ailian Jiang and Tofael Ahamed. 2023. Navigation of an Autonomous Spraying Robot for Orchard Operations Using
LiDAR for Tree Trunk Detection. Sensors 23, 10 (2023), 4808.

[109] Monodeep Kar, Amit Agarwal, Steven Hsu, David Moloney, Gregory Chen, Raghavan Kumar, Huseyin Sumbul,
Phil Knag, Mark Anders, Himanshu Kaul, Jonathan Byrne, Luca Sarti, Ram Krishnamurthy, and Vivek De. 2020. A
Ray-Casting Accelerator in 10nm CMOS for Efficient 3D Scene Reconstruction in Edge Robotics and Augmented
Reality Applications. In IEEE Symp. on VLSI Circuits (VLSIC). IEEE, 1–2. https://doi.org/10.1109/VLSICircuits18222.
2020.9163067

[110] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and Andreas Kolb. 2013. Real-Time
3D Reconstruction in Dynamic Scenes Using Point-Based Fusion. In Int’l Conf. on 3D Vision (3DV). IEEE, 1–8.
https://doi.org/10.1109/3DV.2013.9

[111] Georgios Keramidas, Michail Mavropoulos, Anna Karvouniari, and Dimitris Nikolos. [n. d.]. Instruction Based
Management of Faulty Data Caches. http://students.ceid.upatras.gr/~mavropoulo/abstract_acaces.pdf. ([n. d.]).

[112] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2009. A Characterization and Analysis of GPGPU Kernels.
Technical Report. Georgia Institute of Technology.

[113] Youchang Kim, Dongjoo Shin, Jinsu Lee, Yongsu Lee, and Hoi-Jun Yoo. 2016. A 0.55V 1.1mW Artificial-Intelligence
Processor with PVT Compensation for Micro Robots. In Int’l Solid-State Circuits Conf. (ISSCC). IEEE, 258–259.
https://doi.org/10.1109/ISSCC.2016.7418005

[114] Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro Musa, Mitsuo Yokokawa, Toshikazu
Aoyama, Masayuki Sato, and Hiroaki Kobayashi. 2018. Performance Evaluation of a Vector Supercomputer SX-Aurora
TSUBASA. In Int’l Conf. for High Performance Computing, Networking, Storage and Analysis (SC). IEEE, 685–696.
https://doi.org/10.1109/SC.2018.00057

[115] Richard E Korf. 1985. Depth-First Iterative-Deepening: An Optimal Admissible Tree Search. Artificial intelligence 27,
1 (1985), 97–109. https://doi.org/10.1016/0004-3702(85)90084-0

[116] Leonidas Koutras and Zoe Doulgeri. 2020. Dynamic Movement Primitives for Moving Goals with Temporal Scaling
Adaptation. In Int’l Conf. on Robotics and Automation (ICRA). IEEE, 144–150. https://doi.org/10.1109/ICRA40945.2020.
9196765

[117] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Ninad Jadhav, Aleksandra Faust, and Vijay Janapa Reddi. 2022.
Roofline Model for UAVs: A Bottleneck Analysis Tool for Onboard Compute Characterization of Autonomous
Unmanned Aerial Vehicles. In IEEE Int’l Symp. on Performance Analysis of Systems and Software (ISPASS). https:
//doi.org/10.1109/ISPASS55109.2022.00023

[118] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra Faust, Sabrina Neuman, Gu-Yeon
Wei, David Brooks, and Vijay Janapa Reddi. 2022. Automatic Domain-Specific SoC Design for Autonomous Unmanned
Aerial Vehicles. In Int’l Symp. on Microarchitecture (MICRO). IEEE, 300–317. https://doi.org/10.1109/MICRO56248.
2022.00033

[119] Sanjeev Kumar and Christopher Wilkerson. 1998. Exploiting Spatial Locality in Data Caches Using Spatial Footprints.
In Int’l Symp. in Computer Architecture (ISCA). IEEE, 357–368. https://doi.org/10.1109/ISCA.1998.694794

[120] Steven M LaValle. 1998. Rapidly-Exploring Random Trees: A New Tool for Path Planning. (1998).
[121] Steven M LaValle and James J Kuffner Jr. 2001. Randomized Kinodynamic Planning. The international journal of

robotics research 20, 5 (2001), 378–400. https://doi.org/10.1109/ROBOT.1999.770022
[122] Unghui Lee, Jiwon Jung, Seunghak Shin, Yongseop Jeong, Kibaek Park, David Hyunchul Shim, and In-so Kweon. 2016.

EureCar Turbo: A Self-Driving Car That Can Handle Adverse Weather Conditions. In Int’l Conf. on Intelligent Robots
and Systems (IROS). IEEE, 2301–2306. https://doi.org/10.1109/IROS.2016.7759359

[123] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, Butler W Lampson, Daniel Sanchez, and
Tao B Schardl. 2020. There’s Plenty of Room at the Top: What Will Drive Computer Performance After Moore’s Law?
Science 368, 6495 (2020), eaam9744.

[124] John J Leonard, David A Mindell, and Erik L Stayton. 2020. Autonomous Vehicles, Mobility, and Employment Policy:
The Roads Ahead. Massachusetts Institute of Technology, Cambridge, MA, Rep. RB02-2020 (2020).

[125] Qingqing Li, Jorge Peña Queralta, Tuan Nguyen Gia, Zhuo Zou, and Tomi Westerlund. 2020. Multi-Sensor Fusion for
Navigation and Mapping in Autonomous Vehicles: Accurate Localization in Urban Environments. Unmanned Systems

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1109/LRA.2020.2974707
https://doi.org/10.1109/LRA.2020.2974707
https://doi.org/10.48550/arXiv.1910.04998
https://doi.org/10.1109/VLSICircuits18222.2020.9163067
https://doi.org/10.1109/VLSICircuits18222.2020.9163067
https://doi.org/10.1109/3DV.2013.9
http://students.ceid.upatras.gr/~mavropoulo/abstract_acaces.pdf
https://doi.org/10.1109/ISSCC.2016.7418005
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1109/ICRA40945.2020.9196765
https://doi.org/10.1109/ICRA40945.2020.9196765
https://doi.org/10.1109/ISPASS55109.2022.00023
https://doi.org/10.1109/ISPASS55109.2022.00023
https://doi.org/10.1109/MICRO56248.2022.00033
https://doi.org/10.1109/MICRO56248.2022.00033
https://doi.org/10.1109/ISCA.1998.694794
https://doi.org/10.1109/ROBOT.1999.770022
https://doi.org/10.1109/IROS.2016.7759359

43:28 Mohammad Bakhshalipour and Phillip B. Gibbons

8, 03 (2020), 229–237.
[126] Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang Xiao. 2018. Dadu-P: A Scalable Accelerator for Robot

Motion Planning in a Dynamic Environment. In Design Automation Conf. (DAC). IEEE, 1–6.
[127] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason Mars. 2018. The

Architectural Implications of Autonomous Driving: Constraints and Acceleration. In Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 751–766. https://doi.org/10.1145/3173162.3173191

[128] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. 2014. Microsoft COCO: Common Objects in Context. In European Conf. on Computer Vision (ECCV). Springer,
740–755. https://doi.org/10.48550/arXiv.1405.0312

[129] Weizhuang Liu, Bo Yu, Yiming Gan, Qiang Liu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. 2021. Archytas: A Framework
for Synthesizing and Dynamically Optimizing Accelerators for Robotic Localization. In Int’l Symp. on Microarchitecture
(MICRO). 479–493. https://doi.org/10.1145/3466752.3480077

[130] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru Stanescu, Shashwat Gupta, Daniel Sanchez,
and Nathan Beckmann. 2020. Livia: Data-Centric Computing Throughout the Memory Hierarchy. In Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS). 417–433. https://doi.org/10.1145/
3373376.3378497

[131] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocberber, Javier Picorel, Almutaz Adileh,
Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and Babak Falsafi. 2012. Scale-Out Processors. In Int’l Symp. in Computer
Architecture (ISCA). 500–511. https://doi.org/10.1145/2366231.2337217

[132] A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra. 2018. Benchmarking
Reinforcement Learning Algorithms on Real-World Robots. In Conf. on Robot Learning. PMLR, 561–591.

[133] AV Malakhov, DV Shutin, and SG Popov. 2020. Bricklaying Robot Moving Algorithms at a Construction Site. In IOP
Conf. Series: Materials Science and Engineering, Vol. 734. IOP Publishing, 012126.

[134] Víctor Mayoral-Vilches, Sabrina M Neuman, Brian Plancher, and Vijay Janapa Reddi. 2022. Robotcore: An Open
Architecture for Hardware Acceleration in Ros 2. In IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS). IEEE,
9692–9699. https://doi.org/10.1109/IROS47612.2022.9982082

[135] Mohit Mehndiratta and Erdal Kayacan. 2019. A Constrained Instantaneous Learning Approach for Aerial Package
Delivery Robots: Onboard Implementation and Experimental Results. Autonomous Robots 43 (2019), 2209–2228.

[136] Xiaoli Meng, Heng Wang, and Bingbing Liu. 2017. A Robust Vehicle Localization Approach Based on
GNSS/IMU/DMI/LIDAR Sensor Fusion for Autonomous Vehicles. Sensors 17, 9 (2017), 2140. https://doi.org/10.
3390/s17092140

[137] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beckmann, Christopher Celio, Jonathan
Eastep, and Anant Agarwal. 2010. Graphite: A Distributed Parallel Simulator for Multicores. In Int’l Symp. on
High-Performance Computer Architecture (HPCA). IEEE, 1–12. https://doi.org/10.1109/HPCA.2010.5416635

[138] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino, Misha Denil, Ross
Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. 2016. Learning to Navigate in Complex Environments. arXiv
preprint arXiv:1611.03673 (2016). https://doi.org/10.48550/arXiv.1611.03673

[139] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. 2003. FastSLAM 2.0: An Improved Particle
Filtering Algorithm for Simultaneous Localization and Mapping That Provably Converges. In Int’l Joint Conf. on
Artificial Intelligence (IJCAI), Vol. 3. 1151–1156. https://dl.acm.org/doi/10.5555/1630659.1630824

[140] Mircea Paul Muresan, Ion Giosan, and Sergiu Nedevschi. 2020. Stabilization and Validation of 3D Object Position Using
Multimodal Sensor Fusion and Semantic Segmentation. Sensors 20, 4 (2020), 1110. https://doi.org/10.3390/s20041110

[141] Sean Murray, Will Floyd-Jones, George Konidaris, and Daniel J Sorin. 2019. A Programmable Architecture for Robot
Motion Planning Acceleration. In 2019 IEEE 30th Int’l Conf. on Application-specific Systems, Architectures and Processors
(ASAP), Vol. 2160. IEEE, 185–188. https://doi.org/10.1109/ASAP.2019.000-4

[142] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin. 2016. The Microarchitecture of
a Real-Time Robot Motion Planning Accelerator. In Int’l Symp. on Microarchitecture (MICRO). IEEE, 1–12. https:
//doi.org/10.1109/MICRO.2016.7783748

[143] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin, and George Dimitri Konidaris. 2016. Robot Motion Planning
on a Chip. In Robotics: Science and Systems, Vol. 6.

[144] Keiji Nagatani and Yozo Fujino. 2019. Research and Development on Robotic Technologies for Infrastructure
Maintenance. Journal of Robotics and Mechatronics 31, 6 (2019), 744–751.

[145] Sabrina M. Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, and Vijay Janapa Reddi. 2023. RoboShape:
Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots. In Int’l Symp. in Computer
Architecture (ISCA) (FL) (ISCA ’23). ACM, NY, Article 69, 13 pages. https://doi.org/10.1145/3579371.3589104

[146] Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe, Srinivas Devadas, and Vijay Janapa Reddi.
2021. Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1145/3173162.3173191
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1145/3466752.3480077
https://doi.org/10.1145/3373376.3378497
https://doi.org/10.1145/3373376.3378497
https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1109/IROS47612.2022.9982082
https://doi.org/10.3390/s17092140
https://doi.org/10.3390/s17092140
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.48550/arXiv.1611.03673
https://dl.acm.org/doi/10.5555/1630659.1630824
https://doi.org/10.3390/s20041110
https://doi.org/10.1109/ASAP.2019.000-4
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1145/3579371.3589104

Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware 43:29

Morphology. In Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(ASPLOS ’21). ACM, NY, 674–686. https://doi.org/10.1145/3445814.3446746

[147] Dima Nikiforov, Shengjun Chris Dong, Chengyi Lux Zhang, Seah Kim, Borivoje Nikolic, and Yakun Sophia Shao.
2023. RoSÉ: A Hardware-Software Co-Simulation Infrastructure Enabling Pre-Silicon Full-Stack Robotics SoC
Evaluation. In Int’l Symp. in Computer Architecture (ISCA) (FL) (ISCA ’23). ACM, NY, Article 64, 15 pages. https:
//doi.org/10.1145/3579371.3589099

[148] Hiroki Ohta, Naoki Akai, Eijiro Takeuchi, Shinpei Kato, and Masato Edahiro. 2016. Pure Pursuit Revisited: Field
Testing of Autonomous Vehicles in Urban Areas. In Int’l Conf. on Cyber-Physical Systems, Networks, and Applications
(CPSNA). IEEE, 7–12. https://doi.org/10.1109/CPSNA.2016.10

[149] Jia Pan, Sachin Chitta, and Dinesh Manocha. 2012. FCL: A General Purpose Library for Collision and Proximity
Queries. In Int’l Conf. on Robotics and Automation (ICRA). IEEE, 3859–3866. https://doi.org/10.1109/ICRA.2012.6225337

[150] Jia Pan and Dinesh Manocha. 2012. GPU-Based Parallel Collision Detection for Fast Motion Planning. The Int’l
Journal of Robotics Research 31, 2 (2012), 187–200. https://doi.org/10.1177/0278364911429335

[151] Luka Petrović, Juraj Peršić, Marija Seder, and Ivan Marković. 2020. Cross-Entropy Based Stochastic Optimization of
Robot Trajectories Using Heteroscedastic Continuous-Time Gaussian Processes. Robotics and Autonomous Systems
133 (2020), 103618. https://doi.org/10.1016/j.robot.2020.103618

[152] Reid Pinkham, Shuqing Zeng, and Zhengya Zhang. 2020. Quicknn: Memory and Performance Optimization of K-D
Tree Based Nearest Neighbor Search for 3d Point Clouds. In 2020 IEEE Int’l symposium on high performance computer
architecture (HPCA). IEEE, 180–192. https://doi.org/10.1109/HPCA47549.2020.00024

[153] Jelena L Pisarov and Gyula Mester. 2021. The Use of Autonomous Vehicles in Transportation. Tehnika 76, 2 (2021),
171–177.

[154] Ira Pohl. 1970. Heuristic Search Viewed As Path Finding in a Graph. Artificial intelligence 1, 3-4 (1970), 193–204.
https://doi.org/10.1016/0004-3702(70)90007-X

[155] Pengju Ren, Mieszko Lis, Myong Hyon Cho, Keun Sup Shim, Christopher W Fletcher, Omer Khan, Nanning Zheng,
and Srinivas Devadas. 2012. Hornet: A Cycle-Level Multicore Simulator. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 31, 6 (2012), 890–903. https://doi.org/10.1109/TCAD.2012.2184760

[156] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. 2021. Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding.
In Int’l Conf. on Computer Vision (ICCV). https://doi.org/10.48550/arXiv.2011.02523

[157] Nezam Rohbani, Sina Darabi, and Hamid Sarbazi-Azad. 2021. PF-DRAM: A Precharge-Free DRAM Structure. In Int’l
Symp. in Computer Architecture (ISCA). IEEE, 126–138.

[158] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. 2018. RoboX: An End-To-End Solution
to Accelerate Autonomous Control in Robotics. In Int’l Symp. in Computer Architecture (ISCA). IEEE, 479–490.
https://doi.org/10.1109/ISCA.2018.00047

[159] Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin Raffin, and Alexis Paques. 2018. PythonRobotics:
A Python Code Collection of Robotics Algorithms. arXiv preprint arXiv:1808.10703 (2018). https://doi.org/10.48550/
arXiv.1808.10703

[160] Yuki Sakata and Takuo Suzuki. 2023. Coverage Motion Planning Based on 3D Model’s Curved Shape for Home
Cleaning Robot. Journal of Robotics and Mechatronics 35, 1 (2023), 30–42.

[161] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-
Core Systems. In Int’l Symp. in Computer Architecture (ISCA). https://doi.org/10.1145/2508148.2485963

[162] Stefan Schaal. 2006. Dynamic Movement Primitives-A Framework for Motor Control in Humans and Humanoid
Robotics. In Adaptive Motion of Animals and Machines. Springer, 261–280. https://doi.org/10.1007/4-431-31381-8_23

[163] Tilmann Schlenther, Kai Martins-Turner, Joschka Felix Bischoff, and Kai Nagel. 2020. Potential of Private Autonomous
Vehicles for Parcel Delivery. Transportation Research Record 2674, 11 (2020), 520–531.

[164] Cornelia Schulz and Andreas Zell. 2020. Real-Time Graph-Based SLAM with Occupancy Normal Distributions
Transforms. In Int’l Conf. on Robotics and Automation (ICRA). IEEE, 3106–3111. https://doi.org/10.1109/ICRA40945.
2020.9197325

[165] Brian C Schwedock, Piratach Yoovidhya, Jennifer Seibert, and Nathan Beckmann. 2022. Täkō: A Polymorphic Cache
Hierarchy for General-Purpose Optimization of Data Movement. In Int’l Symp. in Computer Architecture (ISCA). 42–58.
https://doi.org/10.1145/3470496.3527379

[166] Deval Shah, Ningfeng Yang, and Tor M. Aamodt. 2023. Energy-Efficient Realtime Motion Planning. In Int’l Symp. in
Computer Architecture (ISCA) (FL) (ISCA ’23). ACM, NY, Article 57, 17 pages. https://doi.org/10.1145/3579371.3589092

[167] Shihao Shen, Yilin Cai, Jiayi Qiu, and Guangzhao Li. 2022. Dynamic Dense RGB-D SLAM Using Learning-Based
Visual Odometry. arXiv preprint arXiv:2205.05916 (2022).

[168] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. 2004. Manipulation Planning with Probabilistic
Roadmaps. The Int’l Journal of Robotics Research 23, 7-8 (2004), 729–746. https://doi.org/10.1177/0278364904045471

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1145/3445814.3446746
https://doi.org/10.1145/3579371.3589099
https://doi.org/10.1145/3579371.3589099
https://doi.org/10.1109/CPSNA.2016.10
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1177/0278364911429335
https://doi.org/10.1016/j.robot.2020.103618
https://doi.org/10.1109/HPCA47549.2020.00024
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1109/TCAD.2012.2184760
https://doi.org/10.48550/arXiv.2011.02523
https://doi.org/10.1109/ISCA.2018.00047
https://doi.org/10.48550/arXiv.1808.10703
https://doi.org/10.48550/arXiv.1808.10703
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1109/ICRA40945.2020.9197325
https://doi.org/10.1109/ICRA40945.2020.9197325
https://doi.org/10.1145/3470496.3527379
https://doi.org/10.1145/3579371.3589092
https://doi.org/10.1177/0278364904045471

43:30 Mohammad Bakhshalipour and Phillip B. Gibbons

[169] Vadym Slyusar, Mykhailo Protsenko, Anton Chernukha, Vasyl Melkin, Oleh Biloborodov, Mykola Samoilenko, Olena
Kravchenko, Halyna Kalynychenko, Anton Rohovyi, and Mykhaylo Soloshchuk. 2022. Improving The Model Of
Object Detection On Aerial Photographs And Video In Unmanned Aerial Systems. Eastern-European Journal of
Enterprise Technologies 1, 9 (2022), 115.

[170] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi. 2009. Spatio-Temporal Memory
Streaming. In Proceedings of the 36th Annual Int’l Symp. on Computer Architecture (TX) (ISCA ’09). ACM, NY, 69–80.
https://doi.org/10.1145/1555754.1555766

[171] Statista Research Department. 2021. Global Robotics Market Revenue 2018–2025. https://www.statista.com/statistics/
760190/worldwide-robotics-market-revenue/.

[172] Sebastian Thrun. 2002. Probabilistic Robotics. Commun. ACM 45, 3 (2002), 52–57.
[173] InamUllah, Xin Su, Xuewu Zhang, and Dongmin Choi. 2020. Simultaneous Localization andMapping Based on Kalman

Filter and Extended Kalman Filter. Wireless Communications and Mobile Computing 2020 (2020), 2138643:1–2138643:12.
https://doi.org/10.1109/SIU.2009.5136492

[174] Jingyao Wang, Manas Ranjan Pradhan, and Nallappan Gunasekaran. 2022. Machine Learning-Based Human-Robot
Interaction in ITS. Information Processing & Management 59, 1 (2022), 102750.

[175] Xuewu Wang, Xin Zhou, Zelong Xia, and Xingsheng Gu. 2021. A Survey of Welding Robot Intelligent Path Optimiza-
tion. Journal of Manufacturing Processes 63 (2021), 14–23.

[176] Yifan Wang, Long Zhang, and Gang Chen. 2019. Optimal Sensor Placement for Obstacle Detection of Manipulator
Based on Relative Entropy. In 2019 14th IEEE Conf. on Industrial Electronics and Applications (ICIEA). IEEE, 702–707.
https://doi.org/10.1109/ICIEA.2019.8833986

[177] John T Wen and Steve H Murphy. 1990. PID Control for Robot Manipulators. (1990).
[178] Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, and Andrew Davison. 2015. ElasticFusion:

Dense SLAM without a Pose Graph. Robotics: Science and Systems. https://doi.org/10.1177/0278364916669237
[179] Ruolin Ye, Wenqiang Xu, Haoyuan Fu, Rajat Kumar Jenamani, Vy Nguyen, Cewu Lu, Katherine Dimitropoulou, and

Tapomayukh Bhattacharjee. 2022. RCare World: A Human-Centric Simulation World for Caregiving Robots. In 2022
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS). IEEE, 33–40.

[180] Ayesha Younis, Li Shixin, Shelembi Jn, and Zhang Hai. 2020. Real-Time Object Detection Using Pre-Trained Deep
Learning Models MobileNet-SSD. In Int’l Conf. on Computing and Data Engineering (ICCDE). 44–48. https://doi.org/
10.1145/3379247.3379264

[181] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. 2020. Building the Computing System
for Autonomous Micromobility Vehicles: Design Constraints and Architectural Optimizations. In Int’l Symp. on
Microarchitecture (MICRO). IEEE, 1067–1081. https://doi.org/10.1109/MICRO50266.2020.00089

[182] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas. 2015. IMP: Indirect Memory Prefetcher.
In Int’l Symp. on Microarchitecture (MICRO). 178–190. https://doi.org/10.1145/2830772.2830807

[183] Qi-bin Zhang, Peng Wang, and Zong-hai Chen. 2019. An Improved Particle Filter for Mobile Robot Localization
Based on Particle Swarm Optimization. Expert Systems with Applications 135 (2019), 181–193. https://doi.org/10.1016/
j.eswa.2019.06.006

[184] Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou, and Jishen Zhao. 2019. Towards
Safety-Aware Computing System Design in Autonomous Vehicles. arXiv preprint arXiv:1905.08453 (2019). https:
//doi.org/10.48550/arXiv.1905.08453

[185] Jianfeng Zheng, Shuren Mao, Zhenyu Wu, Pengcheng Kong, and Hao Qiang. 2022. Improved Path Planning for
Indoor Patrol Robot Based on Deep Reinforcement Learning. Symmetry 14, 1 (2022), 132.

[186] Yichao Zhou and Jianyang Zeng. 2015. Massively Parallel A* Search on a GPU. In Proceedings of the AAAI Conf. on
Artificial Intelligence (Austin, Texas) (AAAI’15). AAAI Press, 1248–1254. https://doi.org/10.1609/aaai.v29i1.9367

Received August 2023; revised October 2023; accepted October 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 43. Publication date: December 2023.

https://doi.org/10.1145/1555754.1555766
https://www.statista.com/statistics/760190/worldwide-robotics-market-revenue/
https://www.statista.com/statistics/760190/worldwide-robotics-market-revenue/
https://doi.org/10.1109/SIU.2009.5136492
https://doi.org/10.1109/ICIEA.2019.8833986
https://doi.org/10.1177/0278364916669237
https://doi.org/10.1145/3379247.3379264
https://doi.org/10.1145/3379247.3379264
https://doi.org/10.1109/MICRO50266.2020.00089
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1016/j.eswa.2019.06.006
https://doi.org/10.1016/j.eswa.2019.06.006
https://doi.org/10.48550/arXiv.1905.08453
https://doi.org/10.48550/arXiv.1905.08453
https://doi.org/10.1609/aaai.v29i1.9367

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 The Software Pipeline of Robots
	2.2 Terminology
	2.3 Prior Work

	3 The RoWild Approach
	3.1 Workloads
	3.2 Key Features and Considerations
	3.3 Compute Platforms
	3.4 Software Workflow and Validation
	3.5 Measurements

	4 The Modeled Applications
	4.1 DeliBot: Legged Robot Delivering Items
	4.2 PatrolBot: Wheeled Robot Patrolling Campus
	4.3 MoveBot: Arm Manipulator Moving Items
	4.4 HomeBot: Assistant Robot Cleaning House
	4.5 FlyBot: Drone Performing Aerial Photography
	4.6 CarriBot: Driverless Vehicle Transporting Goods

	5 System-Level Implications of Robotics
	5.1 Vectorization and Irregular Memory Layouts
	5.2 Parallelism and The Memory Barrier
	5.3 Data Prefetching and Complex Access Patterns
	5.4 Caches and Data Movements

	6 Discussion
	6.1 What Performance Is Needed for ``Real-Time'' Robotics?
	6.2 Ranking The Computers: Which Platform Should I Buy for My Robot?

	7 Conclusion
	Acknowledgments
	References

