
Towards edge-caching for image recognition
Utsav Drolia*, Katherine Guo†, Jiaqi Tan*, Rajeev Gandhi*, Priya Narasimhan*

*Carnegie Mellon University, †Bell Labs, Nokia
udrolia@andrew.cmu.edu, kguo@bell-labs.com, jiaqit@andrew.cmu.edu, rgandhi@ece.cmu.edu, priya@cs.cmu.edu

Abstract—With the available sensors on mobile devices and
their improved CPU and storage capability, users expect their
devices to recognize the surrounding environment and to provide
relevant information and/or content automatically and immedi-
ately. For such classes of real-time applications, user perception
of performance is key. To enable a truly seamless experience for
the user, responses to requests need to be provided with minimal
user-perceived latency.

Current state-of-the-art systems for these applications require
offloading requests and data to the cloud. This paper proposes an
approach to allow users’ devices and their onboard applications
to leverage resources closer to home, i.e., resources at the edge of
the network. We propose to use edge-servers as specialized caches
for image-recognition applications. We develop a detailed formula
for the expected latency for such a cache that incorporates the
effects of recognition algorithms’ computation time and accuracy.
We show that, counter-intuitively, large cache sizes can lead to
higher latencies. To the best of our knowledge, this is the first
work that models edge-servers as caches for compute-intensive
recognition applications.

I. INTRODUCTION

With the large number of sensors available on mobile
devices and their improved CPU and storage capability, users
expect their devices and applications to be smarter, i.e., recog-
nize the surrounding environment and to provide relevant in-
formation and/or content automatically and immediately [17],
[7]. Users need a more seamless way of fetching information,
and are moving away from typing text into devices. Vision-
based applications help users augment their understanding of
the physical world by querying it through the camera(s) on
their mobile devices. Applications such as face recognition,
augmented reality, place recognition [6], object recognition,
vision-based indoor localization, all fall under this category.
There are a number of mobile applications available which
do one or more of these [3], [1], [5]. Specialized augmented
reality hardware is also available to the public now, such as
Google’s Glass [2] and Microsoft’s Hololens [4], to augment
their vision of their surroundings.

This class of applications has a real-time nature - user
perception of performance is of primary importance; users
will find delays unacceptable and will cease using the ap-
plication when that happens. We want to enable a truly
seamless experience for the users by providing instantaneous
responses to user’s requests, with minimal user-perceived
latency. Moreover, with devices like Glass and Hololens, users
will not make explicit requests - objects will have to be
recognized in the stream of images captured while the user
is looking at something. This further makes the case for real-
time performance of vision-based recognition.

Currently, such services and applications rely on cloud
computing. These services are compute- and data- intensive
since image data needs to be processed to make sense of it,
e.g. a captured image has to be recognized as a specific person.
Cloud computing enables running these intensive services
on powerful servers and allows mobile devices to use them
remotely. Devices capture the data and upload it to the remote
servers, where the data is processed, and then the results are
returned to the devices. This network-based interaction already
induces latency and the ever-increasing number of mobile
devices and other Internet-capable things will further aggravate
this model of computing. Such large numbers of devices,
especially in high densities, can cause network congestion in
the Internet backbone, and will inundate remote servers with
a deluge of data. This will increase user-perceived latency as
user-requests fight for network and compute resources. The
centralized model of cloud computing cannot satisfy the low-
latency requirements of such applications for the growing
number of users.

One proposed approach towards meeting this challenge has
been to place more compute resources at the edge of the
network, e.g. fog computing [9] and cloudlets [23], both sug-
gest placing and utilizing compute resources at the edge, near
the user, alongside last-mile network elements. It is proposed
that computation can be offloaded from users’ devices to
these edge-resources instead of offloading to the cloud. This
would possibly reduce the expected end-to-end latency for
applications.

Our work proposes an alternative in which we use an edge-
server as a “cache with compute resources”. Using a caching
model gives us an established framework and parameters to
reason about the performance of the system. This model makes
the edge-server transparent to the client, and self-managed -
administrators do not need to place content on it manually. The
key insight lies in the fact that an edge-server serves a limited
physical area, dictated by the network element it is attached to,
and thus experiences spatiotemporal locality in requests and
data from users. It has already been established that document
retrieval systems over the Internet, i.e. the World Wide Web
(WWW), can reap extensive benefits with caches at the edge
[10] by leveraging locality in requests. Recognition applica-
tions are similar to such retrieval systems and our proposed
cache for recognition can accelerate applications transparently
by leveraging locality as well. In fact, we believe, recognition
applications will benefit even more from caching, since many
users will be making requests related to the same physical
objects in the area. The challenge is that, unlike requests



in the WWW that use identifiers that deterministically map
to specific content being requested, e.g. Uniform Resource
Identifier (URI), requests in recognition applications are not
deterministic. The object in the image needs to be recognized
before the related content can be fetched. This is a compute-
intensive task. This property has direct implications on how
an edge-cache for recognition is designed.

In this work we develop a detailed model for expected
latency for a cloud-backed recognition cache. We incorporate
the effects of computation time and recognition accuracy into
the model. The intention is that a detailed model can help in
understanding tradeoffs and be used for prediction purposes
in the future, to dynamically adjust the cache. As a first step
towards that goal, we show the impact of changing the cache
size on image-recognition applications. To the best of our
knowledge, this is the first work that models edge-servers
as caches for compute-intensive recognition applications and
shows how offline analysis can help decide important model
parameters. We do not propose any new computer vision or
image-recognition algorithms themselves. Instead we show
how we can take existing algorithms and applications, and
use edge-resources effectively to reduce their user-perceived
latency. Also, our approach does not involve the users’ mobile
devices. Instead we address the interaction between edge-
servers and backend servers (a.k.a the cloud).

In the next section we provide background on mobile image-
recognition and edge-computing. In Section III we model the
edge-server as an image-recognition cache. We then discuss
future work in Section IV. Section V presents related work,
and we conclude in Section VI.

II. BACKGROUND

image-recognition.pdf

Fig. 1: Example architecture for mobile image-recognition
applications

A. Mobile Image Recognition

To understand the latencies involved in recognition appli-
cations, one needs to understand how these image-recognition
algorithms work.

Figure 1 shows a typical image-recognition architecture. A
basic overview is as follows.
Feature extraction. First a set of features are extracted from
the request image. One can think of this collection of features
as a signature of the image. Some notable features used in
image recognition are SIFT [20], SURF [8] and ORB [22].
Feature matching. Next, these extracted features are compared
to a database of features of training images of all possible
objects that can be queried. This database is collated offline.

It can contain features from more than one image of each
object. The more objects one wants to recognize, the bigger
this database will be. The matching procedure boils down
to finding the nearest-neighbor feature in the database for
each feature of the input image. To accelerate this process,
approximate nearest-neighbor searches have been proposed,
such as Locality Sensitive Hashing [13] and kd-trees [24].
Best match selection. Once the closest features are found, they
are analyzed to predict the object contained in the request
image. The object that has the most feature-matches with the
input image, is chosen. This can be followed by geometric
verification for confirmation.

This high level procedure, of extraction, matching with an
object-features set and verification, is common across vision-
based recognition algorithms [25].

These stages for mobile image-recognition applications are
typically carried out in the cloud. As shown in Figure 1,
the image is captured by the mobile device, uploaded over a
wireless network and sent across the Internet to the cloud. The
image-recognition procedures are then carried out in the cloud,
and the response is returned to the device. These responses are
typically of some form of information or content.

In this architecture, overall latency consists of two main
factors: (a) Network latency, and (b) Compute time.
(a) Network Latency: Applications incur this latency since

they need to upload significant amounts of data to the
cloud, over the Internet, for each recognition request.
This latency can be reduced if the distance between the
computing entity, currently the cloud, and the mobile
device is reduced.

(b) Compute Time: Image recognition algorithms are com-
pute intensive. The main contributor to latency is the
matching of request-image features against the object-
features set. Moreover, the size of this set has a direct
impact on the latency. For a large number of objects, the
computation time can lead to high latency and hence a
poor user experience.

B. Web Caching

Caching at the edge is a widely used technique for reduc-
ing user-perceived latency when retrieving information from
across the World Wide Web. This is not compute-intensive -
users’ requests contain the specific identifier for the content
they want to view, e.g. URI, and if the cache contains the
indicated content, it is returned to the user, else the request is
forwarded to the backend servers. In such systems, the cache
has to maximize the amount of relevant content it can serve
directly, and minimize the number of requests forwarded to
the backend. This is how it can minimize the expected latency
for users, reduce network load and backend load.

C. Edge Computing

Computing on servers at the edge of the network has been
recently proposed [9], [23].Since it is not feasible for all the
increasing number of devices and “things” to communicate
with cloud-based backends [9], edge computing proposes



that devices can offload compute-intensive tasks to compute
resources placed at the edge of the network. Instead of just
placing content and data near the user, edge-computing opens
up the edge-resources to also provide compute-resources at the
edge.

In this work, we show how we can take the idea of caching
at the edge, leverage the compute-resources now available at
the edge, and create an image-recognition (IR) cache.

III. EDGE-CACHE FOR IMAGE RECOGNITION

We model edge-resources and their interaction with the
cloud using principles from caching systems, instead of the
computation-offloading model proposed in earlier systems. A
caching model provides a framework for analyzing the system,
along with knobs to tune the cache to minimize different
kinds of costs. Caching systems are inherently hierarchical
and hence fit the edge-cache and cloud interaction. They are
also extendable - more caches can be added in the hierarchy.

The primary metric for mobile image recognition is the
user-perceived latency. In this paper, we are concerned about
the latency in the wired part of the network, i.e. between the
wireless networking infrastructure, to which the edge-cache
is attached, and the cloud. The latency from the edge-cache’s
perspective is the duration between the reception of a request at
the cache and the transmission of the response from the cache.
The formula for reasoning about this latency is given by the
Average Memory Access Time (AMAT) formula: H+m∗M ,
where H = Hit latency, M = Miss latency and m = Miss
ratio. However, for an IR cache at the edge of the network,
backed by the cloud, each component of this formula needs
to be broken down. In this section we present our formulation
for the expected latency of an IR cache. We believe this is the
first work to present such a formulation for edge-caching for
image-recognition.

A. Overall Operation

We believe that an IR cache should be (1) transparent to the
user, and (2) it should populate itself autonomously, similar
to a web cache. However, these two caches are not inter-
changeable. Figure 2 presents the overall operation of an IR
cache alongside a web cache.

An image-recognition cache receives images, which them-
selves do not deterministically map to the content or informa-
tion that needs to be returned to the user. The object within
the image needs to be recognized using the known features
set, and then the object’s identifier is used to return related
content, if locally present, unlike a typical web cache, whose
requests are deterministic. This is illustrated in Figure 2(a). On
a miss (Figure 2(b)), the web cache forwards the request to
the backend, receives the response, stores it locally and sends
the response to the user. The image-recognition cache does the
same, but along with the response, the backend also sends the
features needed to recognize this request in the future. This is
inserted into the features set.

(a) Cache hit

(b) Cache miss

Fig. 2: Request look-up in a web cache and in an image-
recognition cache. The incoming request for the web cache
has a specific I.D. (C), while for the IR cache, the request is
an image containing the object C. The IR cache needs to first
use recognition to know that the image contains C in it and
then look-up C in the cache.

Fig. 3: Location of an edge-cache, backed by the cloud.

B. Expected Cache Latency

In order to understand how this difference impacts latency,
we can model the expected latency for an edge-cache (web or
recognition), by extending the AMAT formula. For an edge-
cache, this is given by:

E[L] = LCache +m ∗ (LNet + LCloud) (1)

Where LCache = cache lookup latency, i.e. time taken by the
cache to match a request to the related response, LNet = edge-
server-to-cloud network latency, i.e. time taken for a request
to reach the cloud after being issued from the edge-server,
LCloud = cloud lookup latency, i.e. time taken by the cloud
to match a request to the related response, and m = Miss
ratio. This is depicted in Figure 3.

Lookup is trivial in web caches and hence latency (LCache)
is small. The size of the cache has negligible impact on this
latency for web-caches. This is not the case in an IR cache.
In the IR cache, lookup involves the image-recognition phase.
Firstly, recognition is compute-intensive, and lookup time is
significant. Secondly, number of objects being recognized,
which is the cache size here, impacts the latency. Thus, for
an IR cache, LCache = f(k), f(k) = function of cache size,
k. Replacing in Equation (1),

E[L] = f(k) +m ∗ (LNet + LCloud) (2)



To investigate further, we evaluated an IR edge-cache with
a Least Frequently Used (LFU) cache-eviction policy, for in-
creasing cache sizes, deployed as shown in Figure 3. Figure 4
shows the results for that experiment. In this experiment, the
cloud is a resourceful server (12 cores, 24 Hyper-Threads,
32GB RAM) while the edge-server is a powerful PC (4
cores, 8 Hyper-Threads, 8GB RAM). The request distribution
is a Zipf distribution with α = 0.8. We chose the Zipf
distribution since user requests over the WWW tend to have a
Zipf distribution [10]. The network conditions between the
edge and cloud is fixed at 5 Mpbs and 40ms RTT. The
cloud contains features for all the objects that can be present
in images (400 objects). The cache is warmed to be full
before the measurements are taken. This setup is relatively
conservative, especially with respect to the distribution. We
expect that actual request distributions will be even more
skewed, and thus lead to even more gains due to the cache.

Initially, as the cache size (k) increases, the hit ratio
increases, i.e. the cache serves more items locally and avoids
sending requests to the cloud, and the overall latency de-
creases. Although the cloud is computationally powerful, it
needs to classify incoming images as one of 400 known
objects. The cache, on the other hand, knows of only those k
objects whose features it has cached. Hence it tries to classify
incoming images as one of k objects, where k < 400. This
lowered computational load, combined with the effects of the
network conditions, favors having a cache.

0 20 40 60 80 100

Cache Size

0

100

200

300

400

500

600

La
te

n
cy

 (
m

s)

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
a
ti

o

Latency
Hit Ratio

Fig. 4: Overall latency and hit ratio for LFU-based IR edge-
cache, over different cache sizes.

However, this is only true up to a point. For cache sizes
over 30, the latency starts to increase. In fact, for cache sizes
80 and above, the latency is worse than when there is no
cache at all (cache size is 0). This is counter-intuitive - for
a typical cache, a bigger size implies lower latency. For an
IR-cache, however, there are other factors in play. The size at
which the inflection occurs is affected by multiple factors -
the nature of f(k), the request distribution, the network and
cloud conditions (LNet and LCloud). These factors are inter-
dependent, e.g. even if f(k) is very high, a cache can still
lower latency if the request distribution is skewed and LNet

and LCloud are high. Thus a simple, static LFU cache cannot
be used for image recognition applications, since it does not
incorporate the effects of all these factors.

Next, we discuss the nature of f(k) and we deconstruct the
miss ratio (m) further to incorporate the effect of recognition

accuracy into the expected latency, a factor that does not affect
typical caches.

C. Understanding Expected Latency for IR Cache

The formulation in Equation (2) is dominated by two key
components, (1) the effect of cache size on latency, f(k), and
(2) miss ratio, m. In this section we discuss the effects of
these parameters to construct a detailed formulation.

1) Effect of cache size on lookup latency: The number of
objects represented in the trained, local feature set in the edge-
server, i.e. the cache size, has a direct impact on the lookup
latency. This relationship is captured by f(k). This relationship
depends on the type of feature, the number of features ex-
tracted per object image and the recognition/search algorithm
utilized to look for the input features in the object-features set.
For recognition algorithms f(k) is a monotonically increasing
function - as the number of recognizable objects increases,
the time taken to process one input increases. Figure 5(a)
depicts f(k) for object recognition using two algorithms
over two different datasets. Figure 6 shows the training and
query images from the datasets. Each query in the experiment
goes through the aforementioned image recognition pipeline,
running on the PC. We see that for both datasets and both
algorithms, the computation time increases as the number of
objects, i.e. the cache size, increases. This is the reason we
saw the inflection point in Figure 4. For larger cache sizes,
f(k) was too high and led to an overall increase in latency.
This implies that simply providing a large cache size to an
IR-cache is not enough. It should only be done if needed, i.e.
the cache size should be dynamic and controllable.

2) Miss ratio: Typically the miss ratio, m, depends on the
cache size, the cache replacement policy and the underlying
request distribution. In an IR cache, along with these factors,
accuracy of the recognition algorithms also impacts misses -
when the cache fails to respond to a request even though the
requested object is in the cache. This needs to be captured in
the formulation.

Now, m = 1 − P (hit), where P (hit) = P (recognized ∩
cached) is the probability of a cache hit, i.e. a query
being recognized successfully when the corresponding ob-
ject is in the cache. Then, P (recognized ∩ cached) =
P (recognized|cached) ∗ P (cached).
P (cached) is the probability that a randomly chosen object

is in the cache and depends on the cache size, the cache
replacement policy and the underlying request distribution.
P (recognized|cached) is the probability that a randomly

selected query will be recognized given that the queried object
is in the cache. This is also known as recall. It is the ratio
of number of correct responses to number of queries whose
corresponding object is in the trained model/dataset being
queried. This incorporates the accuracy of the recognition
algorithm into the miss ratio and is dependent on the number
of objects in the cache. Given this dependence, we denote
this as recall(k). Figure 5(b) shows how recall(k) varies for
different number of objects (k) for object recognition using
two algorithms over two different datasets, while keeping the



50 100 150 200 250 300 350 400

Cache Size

0

1000

2000

3000

4000

5000
La

te
n
cy

 (
m

s)
Stanford-BF
Stanford-LSH
UMiss-BF
UMiss-LSH

(a) Effect on latency

50 100 150 200 250 300 350 400

Cache Size

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Stanford-BF
Stanford-LSH
UMiss-BF
UMiss-LSH

(b) Effect on recall

50 100 150 200 250 300 350 400

Cache Size

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Stanford-BF
Stanford-LSH
UMiss-BF
UMiss-LSH

(c) Effect on precision

Fig. 5: Effect of varying the number of objects in the cache, i.e. the cache size, for object recognition using two datasets
(Stanford [11] and UMiss [26]) and two matching algorithms (Brute-force and Locality Sensitive Hashing [13].

Fig. 6: Top: Training images from the dataset. Bottom: Cor-
responding query images in dataset, taken by mobile devices.

precision of the recognition close to 1.0 (Figure 5(c)). By
keeping precision high, we ensure that the cache will rather
categorize a request as “unknown” and forward it to the cloud
than return an incorrect result. As the number of objects in
the cache increases, the accuracy tends to drop, i.e. it is more
difficult to precisely recognize the correct object when there
are many options to choose from.

Putting this formulation back in Equation (2),

E[L] = f(k)+(1−recall(k)∗P (cached))∗(LNet+LCloud)
(3)

This formulation presents a detailed model of the expected
latency in a cloud-backed IR cache that incorporates the
effects of the compute intensive recognition algorithms in
terms of computation time and accuracy. This model presents
an alternative perspective to look at edge-servers, along with
the computation-offloading model.

IV. FUTURE WORK

We pointed out earlier that typical caching policies cannot
be used for an IR cache due to the effects of the recognition
algorithms. We also showed through Figure 4 that simply
using the largest cache size is not useful. The cache size will
be dependent on multiple factors and hence will need to be
adjusted in a dynamic manner. Now that a detailed model for
the latency in an IR cache has been developed, it can be used
to find the correct cache size. By finding the k that minimizes
the formulation presented in Equation (3), we can find that
cache size. To be able to do this, the other parameters of the
formulation will need to be estimated. In future work, we will
develop methods to estimate each component and find their

relationship with the cache size, k, such that k is the only
unknown variable in the formulation and can be set through the
minimization. We expect that estimating P (cached) will be
challenging but will also capture the underlying spatiotemporal
locality. We expect that the minimization will have to be
carried out at regular intervals to incorporate changes in
P (cached), LNet, and LCloud. By doing so, we will be able
to develop a dynamic system that can react to changes, predict
what the optimal cache size should be and adjust accordingly
such that overall latency is minimized.

V. RELATED WORK

Web caching. Our work has drawn inspiration from web-
caching and CDN systems. These systems cache content at
the edge of the network and serve requests from it to avoid
going to a centralized server. [10] showed that requests have
spatiotemporal locality, and this is why caching works well.
People tend to query for similar web pages and this popularity
has a Zipf-like distribution. We claim that recognition-based
applications present even higher spatial and temporal locali-
ties, and caching can drastically reduce their latency. However,
our approach to minimize latency is different compared to
other caching systems. CDN systems try to optimize for
different objectives, such as byte-hit-rate [21], i.e. maximize
the hit rate and the number of bytes served per hit. We are
proposing to minimize latency too, but by taking into account
the added compute time and inaccuracy due to the recognition
algorithms.
Edge-computing. The dilemma of relying on cloud com-
puting for perception and recognition applications has been
highlighted in literature [7], [23], [9]. [14] showcases why
offloading these applications to the cloud can increase per-
ceived latency. They present “cloudlets”, an edge-server that
is connected the wireless infrastructure. It makes the case for
moving compute resources close to the user to avoid network
latency. However, in such an offloading approach, how does
the cloudlet know the set of recognizable objects? In [14], the
feature set is placed explicitly on the cloudlet. We believe that
the cloudlet should be able to do this autonomously, and our
caching approach will enable that. [9] presents a generalized
computing paradigm called fog computing. It proposes to
diffuse the concept of cloud computing across the network
infrastructure between the cloud and the user, thus bringing



computational resources closer to the user and making the
network smarter.

We have used this idea of “computing at the edge” proposed
by these authors, and proposed a new way to utilize these
resources at the edge for image recognition applications.
Computer vision. The rise in the ubiquity of mobile devices
has led to numerous optimizations for computer vision and
image recognition algorithms to enable efficient processing
locally on mobile devices. Feature extractors and descriptors
such as SURF [8] have performed decently in mobile settings,
but the new binary features such as ORB [22] have made it
possible to do extraction in near real-time on the devices.
However, local recognition does not scale beyond tens of
images [16], [12], and we want to achieve recognition of
thousands of objects. Recent thrusts in deep learning and
convolutional neural networks have achieved high recognition
accuracy [19], and it has been optimized for mobile devices
as well [18], but again the device alone cannot achieve the
diverse recognition that is desired [15].

Given that mobile devices alone cannot support recognition
across more than a few categories, external resources and data
from the cloud will be necessary. Our IR cache will make that
interaction seamless and ensure low-latency.

VI. CONCLUSION

Users expect to use mobile recognition applications by
querying their environment using their mobile devices and
expect immediate responses. To live up to these expectations,
applications choose to offload intensive tasks to the cloud.
However, this adds network latency and reduces overall re-
sponsiveness. Edge-computing proposes to meet this challenge
by placing compute-resources at the edge of the network to
avoid going to the cloud for all tasks, thus reducing latency.
The state-of-the-art model to use edge-resources is similar to
how applications use the cloud, i.e. offload intensive tasks to
the edge-servers. In this paper, we propose a new model to use
edge-resources. Instead of offloading, we propose to use them
as recognition caches, backed by the cloud. A caching model
provides a framework to reason about the performance of the
system and also makes the edge transparent to the application
itself. We develop a model for expected latency in an image-
recognition cache and show how to incorporate the effects of
compute-intensive recognition algorithms. We show how the
cache size effects the expected latency through experiments
with different algorithms and datasets. We believe that this is
the first work that models edge-servers as image-recognition
caches, and provides a formulation for expected latency that
incorporates the effects of recognition algorithms in a caching
system.

REFERENCES

[1] Bing Vision. https://en.wikipedia.org/wiki/Bing Vision.
[2] Google Glass. https://en.wikipedia.org/wiki/Google Glass.
[3] Google Goggls. https://en.wikipedia.org/wiki/Google Goggles.
[4] Microsoft Hololens. https://www.microsoft.com/microsoft-hololens/

en-us.
[5] Nokia Point & Find. https://en.wikipedia.org/wiki/Nokia Point %26

Find.

[6] Wikitude. http://www.wikitude.com/.
[7] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan. Advancing the

state of mobile cloud computing. In ACM Workshop on Mobile Cloud
Computing and Services, 2012.

[8] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16,
New York, NY, USA, 2012. ACM.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, volume 1, pages 126–134.
IEEE, 1999.

[11] V. R. Chandrasekhar, D. M. Chen, S. S. Tsai, N.-M. Cheung, H. Chen,
G. Takacs, Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, et al. The
stanford mobile visual search data set. In Proceedings of the second
annual ACM conference on Multimedia systems, pages 117–122. ACM,
2011.

[12] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan.
Glimpse: Continuous, real-time object recognition on mobile devices.
In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168. ACM, 2015.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry, SCG ’04,
pages 253–262, New York, NY, USA, 2004. ACM.

[14] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and
M. Satyanarayanan. The impact of mobile multimedia applications on
data center consolidation. In Cloud Engineering (IC2E), 2013 IEEE
International Conference on, pages 166–176. IEEE, 2013.

[15] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy. Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services, pages 123–136. ACM, 2016.

[16] P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay: Practical mobile
augmented reality. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
’15, pages 331–344, New York, NY, USA, 2015. ACM.

[17] W. Kelly. Computer vision and the future of
mobile devices. http://www.techrepublic.com/article/
computer-vision-and-the-future-of-mobile-devices/, August 2014.

[18] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar. Deepx: A software accelerator for low-power
deep learning inference on mobile devices. In 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), pages 1–12. IEEE, 2016.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[20] D. G. Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, volume 2, pages 1150–1157. Ieee, 1999.

[21] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review, 45(3):52–
66, 2015.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer
vision, pages 2564–2571. IEEE, 2011.

[23] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct 2009.

[24] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image
descriptor matching. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[25] R. Szeliski. Computer vision: algorithms and applications. Springer
Science &; Business Media, 2010.

[26] X. Wang, M. Yang, T. Cour, S. Zhu, K. Yu, and T. X. Han. Contextual
weighting for vocabulary tree based image retrieval. In 2011 Interna-

tional Conference on Computer Vision, pages 209–216. IEEE, 2011.


