
Optimal Scheduling for Jobs with Progressive
Deadlines

Kristen Gardner
Computer Science Department

Carnegie Mellon University
ksgardne@cs.cmu.edu

Sem Borst
Alcatel-Lucent Bell Labs

sem@research.bell-labs.com

Mor Harchol-Balter
Computer Science Department

Carnegie Mellon University
harchol@cs.cmu.edu

Abstract—This paper considers the problem of server-side
scheduling for jobs composed of multiple pieces with consecutive
(progressive) deadlines. One example is server-side scheduling
for video service, where clients request flows of content from
a server with limited capacity, and any content not delivered
by its deadline is lost. We consider the simultaneous goals of
1) minimizing overall loss, and 2) differentiating loss fractions
across classes of flows in proportion to relative weights. State-
of-the-art policies, like Discriminatory Processor Sharing and
Weighted Fair Queueing, use a fixed static proportional allocation
of service rate and fail to achieve both goals. The well-known
Earliest Deadline First policy minimizes overall loss, but fails to
provide proportional loss across flows, because it treats packets
as independent jobs.

This paper introduces the Earliest Progressive Deadline First
(EPDF) class of policies. We prove that all policies in this broad
class minimize overall loss. Furthermore, we demonstrate that
many EPDF policies accurately differentiate loss fractions in
proportion to class weights, satisfying the second goal.

I. INTRODUCTION

Real-time scheduling theory deals with a server that receives
requests from clients, where each request has a deadline. In
contrast to traditional scheduling theory, in which the goal
typically is to minimize response time, the primary goal of
real-time scheduling is to find a server-side schedule that
completes each request by its deadline, if possible.

In all prior work on real-time scheduling, each job (request)
has only a single deadline. In this paper, we introduce the
concept of progressive deadlines. A job with progressive
deadlines consists of multiple pieces of work, each with its
own deadline. Thus, there is a series of deadlines associated
with a single job. We assume that progressive deadlines are
hard deadlines to the end of service; if a piece of a job is not
complete by its deadline, that piece is dropped/lost, though
subsequent pieces of the job continue to be delivered, and
those may still complete on time. Throughout, we define the
overall loss fraction as the total amount of work (content) that
is lost divided by the total amount of work that is requested.

Jobs with progressive deadlines are actually quite common
in many networking applications. As an example throughout
this paper, we discuss the problem of server-side scheduling

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowshow Program under Grant No. DGE-
1252522. The early stages of the work were done in an internship project at
Bell Labs.

This work was funded in part by NSF-CMMI-1334194 as well as a
Computational Thinking grant from Microsoft Research.

Fig. 1: A single server must provide video content to multiple
clients with progressive deadlines, subject to a fixed capacity
limit. When more content is being requested than the server
can provide, the server must decide which content to drop.

algorithms for video service. Consider a single server that must
provide video content to multiple clients (see Figure 1). Each
client i plays its video at rate di. A client must receive each
packet of her video in time for it to be played, and any packet
not delivered on time is lost (clients are known to be intolerant
to rebuffering [7]). The server can deliver packets to clients
early; however, there is a limit to how much content a client
can store since the client has a limited buffer. Servers are aware
of the limit at each client and thus will not send content to a
client with a full buffer faster than di.

Ideally, the server is able to meet all progressive deadlines.
However, the server has a fixed bandwidth/capacity, C, that
limits the amount of service that it can provide and thus its
ability to satisfy all clients’ requests on time. At all times,
the server-side scheduling decision is to determine to which
clients to provide service, and how to split its limited capacity
among these clients. The goal of these scheduling policies is
to enhance clients’ Quality of Experience (QoE). There are
many components that influence a client’s QoE; however, one
key factor is the fraction of the client’s content that is lost.
Furthermore, clients may have different tolerances to loss;
for example, some classes of clients may have paid more to
receive a better QoE.

In this paper, we consider two equally important goals for
improving client QoE. First, we want to minimize the overall
loss fraction across all clients. Second, we want to distribute
loss fraction inversely proportionally to class weights. For
example, if the high weight class has twice the weight of the
low weight class, then the loss fraction for the high weight



class should equal half that for the low weight class. Although
existing server-side scheduling policies consider each of these
goals individually, none consider them together.

Servers typically use Discriminatory Processor Sharing
(DPS) or its discretized approximations to provide different
levels of service to different classes of clients (see Section II
for more detail). DPS-like policies set service rates according
to class weights. These policies are deadline-agnostic and thus
DPS neither minimizes the overall loss fraction, nor is it able
to control per-class loss fractions.

The Earliest Deadline First (EDF) policy is known to
minimize the overall loss fraction (see Section II). However,
EDF cannot provide different service levels to different classes
because, under EDF, each packet is considered its own job and
has its own deadline; packets are not associated with flows.

Progressive deadlines allow us to achieve both our goals.
Each packet is associated with its flow, and the deadlines for
the packets within a flow are the progressive deadlines for the
flow. By grouping packets at the flow level, a scheduling policy
can make decisions based on the properties of entire flows,
rather than just individual packets, as in EDF. This enables us
to define a broad class of policies that considers both packet
deadlines and flow weights.

We introduce the Earliest Progressive Deadline First (EPDF)
class of policies. Policies in this class always provide content
to the flow(s) with the soonest upcoming deadline(s). This
is equivalent to serving the flow(s) with the least content in
the client buffer(s), where content is viewed in terms of the
duration stored - not the number of bytes stored. We assume
that the server is aware of each client’s buffer contents at
all times, since it knows the buffer limit at each client and
how much it has sent to each client (this is an approximation
ignoring TCP technicalities). When the server has insufficient
capacity to meet all progressive deadlines, and there are
multiple flows with empty buffers (i.e., flows that will incur
loss if they do not receive content immediately), EPDF policies
may distribute loss among these flows according to any rule.
In Section IV, we define several rules that work toward the
goal of distributing loss fraction in proportion to class weights.

In this paper, we address three central questions:
1) Is the entire EPDF class optimal with respect to

minimizing the overall loss fraction? Intuitively, the
optimality of the entire EPDF class may seem to be a
consequence of the optimality of the traditional EDF
policy, since EDF is a member of EPDF. However,
EPDF is a much broader class of policies that allows
for a considerable amount of flexibility in scheduling
decisions. For example, an EPDF policy might choose
to entirely starve one flow, while meeting all of another
flow’s progressive deadlines. In Section V, we prove that
the entire EPDF class is in fact optimal for minimizing
overall loss fraction.

2) How does the performance of EPDF compare to that
of state-of-the-art policies, like DPS, with respect
to allocating loss fraction in proportion to class
weights? We show that EPDF is able to achieve a

Fig. 2: A subset of our results indicating the difficulties in
meeting the dual goals of minimizing overall loss fraction and
allocating loss fraction in proportion to class weights. Only
EPDF is able to achieve both goals simultaneously.

specified target loss ratio between classes, while DPS
is not (see Figure 2). This is because DPS provides
service in proportion to weights, which is not the same
as providing loss in proportion to weights (see Figure 3).
Furthermore, we show that DPS is extremely sensitive to
fluctuations in system parameters, making it even more
difficult to choose appropriate DPS weights.

3) Are the EPDF policies practically feasible? While we
do not pursue implementation issues in detail, several
policies in the EPDF class are easy to implement be-
cause they require only minimal state information. We
show that these attain nearly the same performance as
the best EPDF policies with respect to allocating loss in
proportion to class weights.

II. PRIOR WORK

Neither the goal of minimizing the overall loss fraction, nor
the goal of differentiating among classes, is new to server-side
scheduling. The Earliest Deadline First (EDF) policy is known
to minimize the overall fraction of content lost [13], [17].
Under EDF, each packet is viewed as a separate job and has its
own deadline. At all times, the server sends the packet with the
soonest deadline. EDF is a well-studied policy, the optimality
of which has been proven in a wide variety of scenarios [1],
[10], [11], [12], [13], [14], [17]. However, because EDF allows
only a single deadline per job, it cannot associate packets
with flows, and it therefore cannot achieve our second goal
of allocating loss fraction in proportion to class weights. The
Weighted Earliest Due Date (WEDD) policy extends EDF
by using class weights to determine which packet(s) should
be sent when the server has insufficient capacity to meet all
deadlines [4]. Fluid versions of both EDF and WEDD are
members of the EPDF class, which we introduce in Section IV.

Historically, the IntServ and DiffServ paradigms aimed to
provide differentiated service levels among classes of clients,
favoring clients of higher classes [3], [5]. However, such
paradigms only guarantee that the quality of service experi-
enced by different classes of clients will differ, not the factor



Fig. 3: Proportional service 6= proportional loss. A server with
capacity C = 2 provides content to four clients, each with
bitrate d = 1 and no stored buffer contents. Clients 1, 2, and 3
have weight 1, and client 4 has weight 2. If the server allocates
its capacity in proportion to weight, as in DPS, clients 1, 2,
and 3 each receive rate 0.4, and client 4 receives rate 0.8. Thus,
clients 1, 2, and 3 all lose a 0.6 fraction of their content, while
client 4 loses a 0.2 fraction of its content. Loss fractions are
not in proportion to class weights.

by which it will differ. Our goal is to provide a specific ratio
of loss fraction among different classes.

Under state-of-the-art policies like Discriminatory Processor
Sharing (DPS), each client i is assigned a fixed share, φi [8].
At all times, flow i is allocated rate φi∑

j φj
C, where the sum is

taken over all flows currently competing for service. While φi
may be set to take into account class weights, φi is deadline-
agnostic. As a result, DPS achieves neither of our two goals.
With respect to minimizing the overall loss fraction, a DPS
server has no flexibility to provide additional service to clients
that are losing content. Thus, DPS has no control over the
total content lost. DPS is also unable to allocate loss fraction
in proportion to class weights. The first issue is illustrated in
Figure 3: providing service rate in proportion to class weights
is not equivalent to distributing loss fraction in proportion
to class weights, and finding a mapping between these is
difficult. Secondly, as we will see, DPS is highly sensitive
to fluctuations in system parameters (load, service capacity,
relative class loads), meaning that as these parameters change,
the weights would have to be constantly readjusted. Hence,
DPS and the discretized approximations that are currently in
use - including Weighted Fair Queueing (WFQ) [6], [15],
Worst-Case Fair Weighted Fair Queueing [2], Self-Clocked
Fair Queueing [9], and others (see [18] and [16] for a review
of additional policies) - achieve neither of our two goals.

III. MODEL

Throughout, we assume that there is a single server with
finite capacity C. Clients arrive to the system with average
rate λ. Each client i arrives at time Ai and requests a video
of duration Bi, which it will watch at a constant rate of di
bytes/second (see Table I). Each client also has an associated

weight wi indicating its importance. Each client i has a buffer
that can store at most V max

i seconds of content. We denote
the duration of the content stored in the buffer of the ith

flow at time t by Vi(t). Note that Vi(t) is not the number
of bytes in buffer i, but rather the number of seconds of
video in buffer i, which takes into account the bitrate di at
which flow i is being played. V max

i (t) denotes the maximum
duration of content that could be stored by flow i at time t,
namely, V max

i (t) = min{Bi− (t−Ai) , V max
i }. For example,

if flow i arrives at time Ai = 0s with duration Bi = 60s
and V max

i = 10s, then V max
i (t) = 10s for 0 ≤ t < 50s, but

V max
i (t) = 60− t for 50 ≤ t ≤ 60s.

For each flow i, the server is aware of V max
i , wi, di, Ai,

and Bi, and therefore is also able to infer Vi(t), the exact
buffer state at time t. It is the server’s decision alone when to
deliver content and to whom. In practice, clients might request
additional content when their buffers are low; however, for the
purpose of this paper, we leave all decisions up to the server,
since the server is aware of all clients’ states.

Observe that in practice, a flow is composed of multiple
small chunks. For example, a 2 hour movie may consist of
3600 2-second chunks. Our model instead considers an ide-
alized fluid system, whereby the “chunks” are infinitesimally
small. This is the natural convention used in the analytical
modeling of flows (see [15]). We also assume that clients
remain in the system for the duration of their video and wish
to play content continuously; they do not pause and resume
the video, and they do not depart before the video has ended.

The rate di determines the progressive deadlines for flow
i: a video that is requested at time Ai and has duration Bi
requires di(t − Ai) bytes by time t, for Ai ≤ t ≤ Ai + Bi.
A flow is active from its arrival time Ai until time Ai +
Bi, at which time it becomes expired. Active flows may be
incomplete or complete. An active-incomplete flow (denoted
by act&inc) has not yet received all of its content, whereas an
active-complete flow (denoted by act&comp) has received all
of its content, but still has video remaining in its buffer. For
both types of active flows, there remains content that the client
has yet to watch. The server splits its capacity, C, among
active-incomplete flows only, according to some scheduling
policy, which must answer two questions:

1) At all times t, which set of flows should receive service?
2) How much service should each of these flows receive?

We will denote by ci(t) the service rate provided to flow
i at time t.

If a flow i does not have any content in its buffer at time t,
and receives service rate < di, then the flow will lose content.
The instantaneous loss rate at t is di − ci(t), the difference
between the rate at which the client needs content and the
rate at which the server provides it. The instantaneous loss
fraction at t is di−ci(t)

di
. The total loss fraction from a flow is

the ratio of the total amount of content lost to the total amount



Ai The arrival time of flow i
Bi The duration of flow i
C The total available service rate
ci(t) The service rate allocated to flow i at time t
di The rate at which flow i requires content
Vi(t) The duration of the content in flow i’s buffer at time t, in units of time
V max
i The fixed capacity limit of flow i’s buffer, in units of time

V max
i (t) The maximum duration of content that can be stored in flow i’s buffer at time t, in units of time

wi The weight of flow i

TABLE I: Summary of notation

of content requested:

Total fraction lost from flow i =
1

diBi

∫
t∈[Ai,Ai+Bi]

s.t. Vi(t)=0

(di − ci(t))+dt. (1)

The total loss fraction from a set of flows is the ratio of the
total amount of content lost from all flows in the set to the
total amount of content requested by all flows in the set (this
is not the same as the average of the total fractions lost from
each flow in the set).

Limitations of our Model. Our model does not address some
practical considerations. Firstly, our server may be part of
a Content Delivery Network (CDN) from which it obtains
content, and its own buffer might be limited, causing the server
to drop content. We ignore this loss at the server by assuming
that the server’s buffer is unlimited. Secondly, we assume that
all server scheduling decisions are made at the application
layer, and ignore TCP considerations below this layer.

IV. EARLIEST PROGRESSIVE DEADLINE FIRST

We propose the Earliest Progressive Deadline First (EPDF)
class of scheduling policies. At a high level, the idea behind
all EPDF policies is to allocate the full C to the active-
incomplete flow(s) with the earliest progressive deadline(s).
An equivalent, and perhaps more intuitive, way of thinking
about this policy is that C is always shared equally among
the active-incomplete flows with the smallest Vi(t), i.e., the
smallest buffer contents. These are also the flows with the
next progressive deadline, because a flow’s next progressive
deadline is the time at which that flow would begin dropping
content if it receives no additional service. This is exactly the
time until its current buffer content depletes.

We describe EPDF scheduling first in the case of no loss
at time t, and then in the case of loss at time t. If no loss
is incurred at time t, then it must be the case that either
mini{Vi(t)} > 0, or mini{Vi(t)} = 0 and

∑
i: Vi(t)=0 di <

C, where only thoss i are considered that correspond to active-
incomplete flows at time t. In this case, all EPDF policies
behave in the same way (see Figure 4). C is shared among
the active-incomplete flows with smallest Vi(t) in proportion
to bitrate, ignoring weights. That is, if for flows i and j,
di = 2dj and Vi(t) = Vj(t), then under EPDF the server will
set ci(t) = 2cj(t). If one of these flows i has Vi(t) = V max

i (t),
and the nominal share of flow i is higher than di, then flow i
is only allocated di, and the excess is re-allocated to flows that

Fig. 4: In this example, all flows have content in their buffers,
so there is no loss. In this case, all EPDF policies divide
service capacity in proportion to bitrate among the flows with
the smallest buffer contents, provided that these flows are not
at their maximum buffer contents.

are not rate-limited, if any, starting with those with smallest
buffer contents. Thus in Figure 4, flow 2 is limited to a share
of 1, while flows 1 and 4 split the remaining capacity in
proportion to their bitrates.

In the case where there is insufficient capacity to meet all
progressive deadlines at t (this occurs if mini{Vi(t)} = 0 and∑
i: Vi(t)=0 di > C), the EPDF class is flexible in choosing

how to drop content (see Figure 5). Ideally, the weights should
indicate how we would like loss to be distributed among the
flows; however, the EPDF class also includes policies that
ignore weights. The only rules for distributing loss are that
only flows with empty buffers may receive service, and no
flow i may receive content at rate > di while another flow
is losing content. We now proceed to specify three policies in
the EPDF class; these differ in how they distribute loss among
flows with empty buffers.

A. Unweighted

Under the Unweighted policy, the server provides the same
instantaneous loss fraction to each flow with an empty buffer,
ignoring class weights. This is equivalent to allocating capacity
among flows with empty buffers in proportion to their bitrates.
That is, each flow i with Vi(t) = 0 receives service rate

di∑
i: Vi(t)=0 di

C.

This policy can be viewed as a fluid version of the traditional
Earliest Deadline First policy.



Fig. 5: The server has capacity C = 3, and must provide
content to three flows with total bitrate 5, hence loss must
occur. EPDF policies have many choices for how to distribute
this loss among the 3 flows with empty buffers.

In the example in Figure 5, flows 2 and 3 have twice the
bitrate of flow 1, and so they receive twice the service rate.
Hence flow 1 receives service rate 3

5 , and flows 2 and 3 receive
service rate 6

5 . The three flows’ weights are not considered,
and the instantaneous loss fraction for all three flows is 2

5 .

B. Weighted Fractional Loss

The Weighted Fractional Loss policy sets the instantaneous
per-class loss fractions in proportion to class weights whenever
loss is incurred. Let Lm denote the instantaneous loss rate for
class m. Lm is chosen so that for all classes m and n,

wmLm∑
i∈m di

=
wnLn∑
j∈n dj

,

and ∑
m

Lm =
∑

i: Vi(t)=0

di − C.

Each class m receives total service rate
∑
i∈m: Vi(t)=0 di −

Lm, and this rate is allocated among the flows in the class
in proportion to bitrate. Hence, all of the flows in the same
class receive the same instantaneous loss fraction, and the
instantaneous loss fraction incurred by flows in different
classes is in proportion to their class weights.

In the example in Figure 5, a total amount of 2 loss must
be incurred. The total bitrate of weight 1 flows is d2 = 2, and
the total bitrate of weight 2 flows is d1 +d3 = 3. Hence of the
2 loss, 8

7 goes to the weight 1 class, and 6
7 goes to the weight

2 class. This gives the weight 1 class an instantaneous loss
fraction of 8/7

2 = 4
7 , which is twice 6/7

3 = 2
7 , the instantaneous

loss fraction of the weight 2 class.

C. Historical Weighted Fractional Loss

The Weighted Fractional Loss policy above provides instan-
taneous loss fractions in proportion to class weights. However,
this is not the same as providing total loss fractions in
proportion to class weights. Recall that total loss fraction for
a class is calculated as the total amount lost, divided by the
total amount requested. Flows that incur no loss contribute to
the denominator, but not the numerator, and so balancing the
instantaneous loss fractions may be insufficient to balance the
total loss fractions.

The Historical Weighted Fractional Loss policy overcomes
this problem by keeping track of the total loss fraction that
each class has incurred so far. At any moment when loss
occurs, the server compares the total loss fractions incurred
so far by each class, and allocates service so as to bring these
total loss fractions towards the target ratio specified by the
class weights.

In the example in Figure 5, which flows receive service
depends on the total loss fraction each class has incurred thus
far. Suppose that up to time t, class 1 has a total loss fraction
of 1

5 , and class 2 has a total loss fraction of 1
8 . In order to

achieve the 2:1 ratio specified by the class weights, class 1
needs to incur more loss, and so the entire service rate will be
provided to the class 2 flows. Within the class, the service rate
is allocated in proportion to bitrate, so flow 1 receives rate 1,
flow 3 receives rate 2, and flow 2 receives rate 0.

V. PROOF OF OPTIMALITY OF EPDF

In this section we prove the optimality of the class of EPDF
policies with respect to the overall loss fraction, across all
sample paths.

Let Di(s, t) = di(t− s) represent the bitrate, di, integrated
over the time interval [s, t]. Let X(s, t) be the total amount of
content drained during [s, t], including content from any flows
that become either active or inactive during that time interval.
Let Wi(s, t) be the amount of content that is provided by the
server to flow i during [s, t]. Let Sact(t) be the set of active
flows at time t, and Semp(t) the set of flows with empty buffers
at time t, including any possible inactive flows. Let Semp&act(t)
be the set of active flows with empty buffers at time t, and
Snonemp(t) the set of flows with non-empty buffers at time t,
which must all be active (see Table II).

When referring to a policy-dependent variable, we will
indicate the policy with a superscript. When referring to a
subset of flows, we will indicate the subset with a subscript.

Theorem 1. For all policies π, including those that might be
able to anticipate future demands, and all policies ξ ∈ ΠEPDF

in the class of EPDF policies,

Xπ(0, t) ≤ Xξ(0, t) ∀ t ≥ 0. (2)

The remainder of this section is devoted to proving The-
orem 1, which is equivalent to proving that the overall loss
fraction is minimized under all policies in EPDF. The proof
is surprisingly non-trivial.

Consider a policy ξ ∈ ΠEPDF from the class of EPDF policies
and some arbitrary policy π. Suppose Xπ(0, t) ≤ Xξ(0, t)
for all t < t0, and Xπ(0, t0) = Xξ(0, t0). We will prove
that just after t0, we still have Xπ(0, t) ≤ Xξ(0, t); that is,
Xπ(t0, t) ≤ Xξ(t0, t) for all t ∈ [t0, t0 + ∆t] for some small
∆t > 0. We allow for the eventuality that a flow may just have
arrived or expired at time t0, but may exclude consideration
of any arrivals or departures during (t0, t0 + ∆t) by taking
∆t to be sufficiently small.

We start with two simple yet crucial observations.



Di(s, t) = di(t− s) Maximum amount of content flow i can drain during time interval [s, t]
Sact(t) Set of active flows at time t
Semp(t) Set of flows with empty buffers at time t
Semp&act(t) Set of active flows with empty buffers at time t
Snonemp(t) Set of flows with non-empty buffers at time t
Wi(s, t) Total amount of content provided to flow i during time interval [s, t]
X(s, t) Total amount of content drained from all flows’ buffers during time interval [s, t]

TABLE II: Notation used in the optimality proof

A. First, under any policy, Xi(t0, t), the amount of content
drained for flow i during [t0, t] is bounded from above by
Di(t0, t), with equality when flow i’s buffer is nonempty
throughout that interval. Equality is guaranteed for all t ∈
[t0, t0 + ∆t] when ∆t is sufficiently small and flow i’s buffer
is non-empty at time t0.

B. Second, under any policy π, XSπemp(t0)(t0, t) is bounded
above by C(t− t0) for all t ∈ [t0, t0 + ∆t]. Under policy ξ,
for sufficiently small ∆t, the bound is tight because the flows
with empty buffers receive the full capacity C and immediately
drain all content received. Note that the aggregate bitrate of
the flows with empty buffers must exceed C because otherwise
these buffers would immediately start to fill under policy ξ.

Observe that the set of active flows is policy-independent
and must remain the same for some length of time ∆t > 0
after t0. The above two observations then yield the following
two upper bounds for Xπ(t0, t) for all t ∈ [t0, t0 + ∆t]:

Xπ(t0, t) ≤
∑

i∈Sact(t0)

Di(t0, t), (3)

and

Xπ(t0, t) ≤ C(t− t0) +
∑

i∈Sπnonemp(t0)

Di(t0, t). (4)

We now proceed to compare Xξ(t0, t) with the upper
bounds from (3) and (4), depending on whether Sξemp&act(t0) =

∅ or not. We first consider the case Sξemp&act(t0) = ∅, which
means that the set Sξnonemp(t0) of flows with nonempty buffers
at time t0 consists of the entire set Sact(t0) of active flows at
time t0. It then follows from Observation A that

Xξ(t0, t) =
∑

i∈Sact(t0)

Di(t0, t), (5)

so that Xξ(t0, t) ≥ Xπ(t0, t) for all t ∈ [t0, t0 + ∆t] by (3).
We now turn to the case Sξemp&act(t0) 6= ∅. Observations A

and B then imply that, for all t ∈ [t0, t0 + ∆t],

Xξ(t0, t) = C(t− t0) +
∑

i∈Sξnonemp(t0)

Di(t0, t), (6)

It remains to be shown that (6) ≥ (4) for all t ∈ [t0, t0+∆t],
which is true provided Sπnonemp(t0) ⊆ Sξnonemp(t0), or equiv-
alently, Sπemp(t0) ⊇ Sξemp(t0). Hence it suffices to prove
Lemma 1, which completes the proof of Theorem 1.

Lemma 1. If for all t ≤ t0, Xξ(0, t) ≥ Xπ(0, t) and
Xξ(0, t0) = Xπ(0, t0), then Sπemp(t0) ⊇ Sξemp(t0).

Proof of Lemma 1
The proof focuses on the set of flows Sξemp(t0) with empty

buffers under policy ξ at time t0, and shows that all these
flows must have empty buffers under policy π as well, i.e.,
Sπemp(t0) ⊇ Sξemp(t0).

Let s0 ≤ t0 be the last time up to t0 at which any of the
flows in Sξnonemp(t0) received service under policy ξ, or if no
such flows exist, the last time at which policy ξ used less than
the full service capacity C.

In order to prove that all the flows in Sξemp(t0) must have
empty buffers at t0 under policy π, we consider the following
three quantities for this set of flows:

1)
∑
i∈Sξemp(t0) diV

π
i (s0), the total buffer contents (in bytes)

at s0 under policy π
2) Wπ

Sξemp(t0)
(s0, t0), the total amount of service provided

during [s0, t0] under policy π
3) Xπ

Sξemp(t0)
(s0, t0), the total amount of content drained

during [s0, t0] under policy π.
The total buffer contents at t0 under policy π of the flows in
Sξemp(t0) may then be expressed as∑

i∈Sξemp(t0)

diV
π
i (t0) =

∑
i∈Sξemp(t0)

diV
π
i (s0)

+ Wπ
Sξemp(t0)

(s0, t0)

− Xπ
Sξemp(t0)

(s0, t0).

(7)

A similar expression, with the superscript π replaced by ξ,
holds for the total buffer contents at t0 of the flows in Sξemp(t0)
under policy ξ.

We now proceed to compare each of the above three
quantities with the corresponding ones under policy ξ.

1) By definition of s0, some flow in Sξnonemp(t0), if any such
flow exists, must have received service at s0 under policy ξ, or
policy ξ must have used less than the full service capacity C
at s0. Furthermore, under policy ξ, all of the flows in Sξemp(t0)
that started before s0 must have smaller buffer contents at s0

than any of the flows in Sξnonemp(t0). Indeed, by definition
of s0, no flow in Sξnonemp(t0) received any service during
[s0, t0], so any content in those buffers at t0 must already
have been there at s0. If some flow in Sξemp(t0) that started
before s0 had a larger buffer content at s0, some of that content
should remain in its buffer at t0, which would contradict the
definition of Sξemp(t0).

We deduce that all the flows in Sξemp(t0) that started be-



fore s0 must have been at their maximum buffer content at s0

under policy ξ. Thus the total buffer contents of these flows
at s0 under policy ξ is

∑
i∈Sξemp(t0) diV

max
i (s0), which is an

upper bound for any policy. Hence,∑
i∈Sξemp(t0)

diV
ξ
i (s0) =

∑
i∈Sξemp(t0)

diV
max
i (s0)

≥
∑

i∈Sξemp(t0)

diV
π
i (s0).

(8)

2) By definition of s0, none of the flows in Sξnonemp(t0)
received any service in [s0, t0] under policy ξ, and the full
service capacity C was used throughout this entire interval.
Hence the total amount of service received by the flows in
Sξemp(t0) during this interval is W ξ

Sξemp
(s0, t0) = C(t0 − s0),

which is an upper bound for any policy. Hence,

W ξ

Sξemp(t0)
(s0, t0) = C(t0 − s0) ≥Wπ

Sξemp(t0)
(s0, t0). (9)

3) By definition of s0, none of the flows in Sξnonemp(t0) re-
ceived any service in [s0, t0] under policy ξ. Since these flows’
buffers are non-empty at t0 by definition, they must have
been non-empty throughout [s0, t0]. Thus the total amount of
content drained for these flows during [s0, t0] under policy ξ
must have been Xξ

Sξnonemp(t0)
(s0, t0) =

∑
i∈Sξnonemp(t0)Di(s0, t0),

which is an upper bound for any policy. Hence,

Xξ

Sξnonemp(t0)
(s0, t0) =

∑
i∈Sξnonemp(t0)

Di(s0, t0)

≥ Xπ
Sξnonemp(t0)

(s0, t0).

(10)

We further know that Xξ(0, s0) ≥ Xπ(0, s0) and Xξ(0, t0) =
Xπ(0, t0), which implies

Xξ(s0, t0) ≤ Xπ(s0, t0). (11)

Combining (11) and (10), we find

Xξ

Sξemp(t0)
(s0, t0) ≤ Xπ

Sξemp(t0)
(s0, t0). (12)

Substituting (8), (9), and (12) into (7) and the corresponding
expression for policy ξ, we obtain∑

i∈Sξemp(t0)

diV
π
i (t0) ≤

∑
i∈Sξemp(t0)

diV
ξ
i (t0).

By definition of Sξemp(t0), however, the latter term is zero,
which then implies that V πi (t0) = 0 for all flows i ∈ Sξemp(t0),
implying Sξemp(t0) ⊆ Sπemp(t0).

Remark The statement of Lemma 1 does not hold if the
condition Xξ(0, t0) = Xπ(0, t0) is omitted. That is, it is
not necessarily the case that Sπemp(t) ⊇ Sξemp(t) for all t.
It is possible that under policy ξ, all flows’ buffers become
empty, but that policy π chooses to fill one flow’s buffer
while leaving the others’ empty. This strategy may cause there
to be fewer empty buffers under policy π, but in order to

Fig. 6: If we do not have Xξ(0, t0) = Xπ(0, t0), then it is
possible that Sπemp(t0) ⊆ Sξemp(t0). In this example, ξ and π
have provided service in exactly the same way up to time
t0 − 1, so the buffer contents of all flows and the amount
drained so far are identical (all flows have the same bitrate,
d = 1). At t0 − 1, ξ continues to split the capacity C = 2
among the three flows with empty buffers, while π serves the
third flow at rate 3/2 and the fourth flow at rate 1/2. By time
t0, there are fewer empty buffers under π than under ξ.

reach this scenario, more content must have been lost under
policy π than under policy ξ. Figure 6 gives an example. Such
counterintuitive cases make Theorem 1 non-trivial.

VI. EVALUATION

In this section, we evaluate the performance of the
three EPDF policies introduced in Section IV (Unweighted,
Weighted Fractional Loss, and Historical Weighted Fractional
Loss), as well as three versions of Discriminatory Processor
Sharing (DPS). Under DPS, each flow i is associated with
a value φi, and at all times t, receives service rate φi∑

j φj
C,

where the sum is taken over all active-incomplete flows at
time t. We consider three versions of DPS that use different
values for φ. Under the DPS - bitrate policy, φi = di; under
DPS - weight, φi = wi; and under DPS - weight and bitrate,
φi = diwi. Note that DPS is aware of buffer capacity limits,
and if a flow i is at its buffer limit, DPS will not provide a
service rate that exceeds di.

In Section VI-A, we assess the ability of the policies to
achieve the goals of 1) minimizing the overall loss fraction,
and 2) distributing total per-class loss fraction in proportion
to class weights. In Section VI-B, we study the sensitivity of
the policies to various system parameters.

A. Performance

We conduct our simulations using both artificial workloads
and a trace collected from a video server.

For the artificial (toy) workload, we assume that flows arrive
according to a Poisson process with rate λ and that flow
durations are distributed Exponentially with mean 1

µ = 4. We
set the server capacity, C, to 6. We assume that clients drain
content either at bitrate di = 1 or di = 2, and that clients
choose each bitrate with probability 1/2. We use two weight
classes, with the high weight class having twice the weight
of the low weight class. This means that our goal is for low



weight clients to incur twice the loss fraction of high weight
clients. Clients belong to each class with probability 1/2, and
bitrate and weight are independent. We set the system load,
ρ = λd̄

Cµ , to 0.5, where d̄ is the average requested bitrate.
Finally, we vary the buffer capacity limit, using limits of 1, 2,
3, and 4, as well as infinite buffer capacities. We show only
the results for buffer limits of 2 (see Figure 7(a)).

We also conduct a trace-driven simulation. The trace con-
sists of all requests made to a Windows Media Server using
the Microsoft Media Server (MMS) protocol at our university
over the last year. The trace contains 14,550 distinct arrivals.
The arrival process is extremely bursty, with the average arrival
rate for a day ranging from 0 to 0.0025 arrivals/second, and a
squared coefficient of variation of the interarrival times of over
29. The mean video duration is 548 seconds, and the requested
bitrates span a factor of 5. In our trace-driven simulation, the
server capacity is C = 50 and the average system load is
ρ = 0.5. Results are shown in Figure 7(b).

As shown in Figures 7(a) and (b), all of the EPDF policies
minimize the total loss fraction, while the DPS policies do
not. The DPS - weight and DPS - weight and bitrate policies
result in different loss fractions for the low and high weight
classes, but the ratio is much higher than the target value of
2. Low weight jobs suffer disproportionately under DPS.

The Historical Weighted Fractional Loss EPDF policy ex-
actly achieves the target loss ratio. However, it may be im-
practical to implement due to the need to maintain a complete
history of the total loss fraction for each class. The Weighted
Fractional Loss policy approximates the performance of the
Historical Weighted Fractional Loss policy, while eliminating
the need for extensive state information. Our results demon-
strate that the Weighted Fractional Loss policy nearly achieves
the target loss ratio. It does not obtain the exact ratio because it
proportionally balances instantaneous loss fraction rather than
total loss fraction (see Section IV-C).

B. Sensitivity

We also conduct experiments to assess the sensitivity of
the EPDF and DPS policies to various system parameters,
including 1) the overall system load, ρ, 2) the relative load
of low weight jobs, ρlow wgt

ρ , and 3) the server capacity, C.
We fix the parameters for each experiment as described in
Section VI-A, varying only the parameter under investigation.

As expected, the overall loss fraction for all policies in-
creases as either load, ρ, increases, or capacity, C, decreases.
In the remainder of this section, we only consider the ability
of policies to meet the target ratio of per-class loss fraction.

Figure 8 shows the results of the three sensitivity experi-
ments under the artificial workload. The DPS - weight, and
DPS - weight and bitrate policies are highly sensitive to all
three parameters. This indicates that not only are the DPS
policies unable to achieve the target loss fraction ratio, but
the ratio that they do provide is impossible to predict. On the
other hand, the EPDF policies are highly insensitive to all the
system parameters with respect to meeting the target loss ratio.

(a) Artificial workload

(b) Trace

Fig. 7: Results from the (a) artificial workload, and (b) trace.
Overall loss fraction (blue striped), total loss fraction for low
weight jobs (red/dark), and total loss fraction for high weight
jobs (yellow/light) for each of the six policies. The EPDF
policies all minimize the overall loss fraction. The Historical
Weighted Fractional Loss policy and the Weighted Fractional
Loss policy both achieve exact or near-exact target ratios for
loss fractions. The DPS policies neither minimize the overall
loss fraction, nor achieve the target ratio between classes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study server-side scheduling policies in
which a single server must provide content to clients, subject
to a capacity limit at the server, where our server drops content
that cannot be delivered on time. Rather than “dropping”
content, one can equivalently view the server as providing
content at a reduced rate.

We consider two equally important objectives: 1) mini-
mizing the total fraction of content that is dropped, and
2) distributing loss fraction in proportion to class weights.
We introduce the EPDF class of policies, which we prove
is optimal with respect to the first objective. Furthermore,
we demonstrate that two EPDF policies, Historical Weighted
Fractional Loss and Weighted Fractional Loss, can achieve the
second objective. Our simulation results demonstrate that the
performance of EPDF policies with respect to the second ob-
jective is largely insensitive to system parameters. In contrast,
the commonly-used DPS does not minimize the total fraction



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

ρ

L
o
w

w
ei
g
h
t
lo
ss

H
ig
h
w
ei
g
h
t
lo
ss

 

 

Historical Weighted Fractional Loss

Weighted Fractional Loss

DPS − weight

DPS − weight and bitrate

Goal

(a) Sensitivity to system load, ρ
(C = 6, ρlow wgt = ρhigh wgt)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

ρlow wgt

ρ

L
o
w

w
ei
g
h
t
lo
ss

H
ig
h
w
ei
g
h
t
lo
ss

 

 

Historical Weighted Fractional Loss

Weighted Fractional Loss

DPS − weight

DPS − weight and bitrate

Goal

(b) Sensitivity to relative load of low weight jobs, ρlow wgt

ρ
(C = 6, ρ = 0.5)

2 4 6 8 10 12
0

5

10

15

20

25

30

C

L
o
w

w
ei
g
h
t
lo
ss

H
ig
h
w
ei
g
h
t
lo
ss

 

 

Historical Weighted Fractional Loss

Weighted Fractional Loss

DPS − weight

DPS − weight and bitrate

Goal

(c) Sensitivity to server capacity, C
(ρ = 0.5, ρlow wgt = ρhigh wgt)

Fig. 8: Ratio of loss fraction for low weight jobs to that for
high weight jobs as a function of increasing (a) system load,
ρ, (b) relative load of low weight jobs, ρlow wgt

ρ , and (c) server
capacity, C. The DPS policies are highly sensitive to all three
parameters, while the EPDF policies are insensitive to all three
parameters, and consistently meet the target ratio of 2.

of content lost, cannot achieve the target loss ratio between
weight classes, and is highly sensitive to system parameters.

While the policies that we consider in this paper are de-
scribed in a somewhat idealized fluid framework, the absolute
dominance of the EPDF class with respect to (i) overall loss
fraction, (ii) the ability to provide proportional loss fractions,
and (iii) insensitivity properties indicates that EPDF should

serve as a good heuristic in less idealized settings.
The specific EPDF policies that we discuss are designed

to achieve a particular objective: to balance the loss fraction
between different classes of users. However, EPDF is a very
broad class of policies, and EPDF policies can be specified
for a wide variety of second objectives, depending on the
particular goals of the system designer. For example, one
may wish to minimize the number of users affected by loss,
minimize the number of instances of loss per user, or any
number of other goals. The strength of the EPDF class is that
regardless of the second objective, it remains optimal with
respect to minimizing overall content lost.

One direction of future work is to define a hybrid goal which
combines our two goals into a single metric, e.g. the weighted
overall loss fraction (WOLF), defined as the total weighted
amount of content lost, divided by the total weighted amount
of content requested. It would be interesting to identify which
policies are optimal for the WOLF metric. Another future
direction is to extend the results to time-varying bitrates di(t).

REFERENCES

[1] V. Gamini Abhaya, Z. Tari, P. Zeephongsekul, and A. Zomaya. Perfor-
mance analysis of EDF scheduling in a multi-priority preemptive M/G/1
queue. IEEE Transactions on Parallel and Distributed Systems, July
2013.

[2] J.C.R. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair
queueing. In IEEE INFOCOM Proceedings, pages 120–128, 1996.

[3] An architecture for differentiated services. IETF RFC 2475, 1998.
[4] S. Bodamer. A new scheduling mechanism to provide relative differenti-

ation for real-time IP traffic. In Global Telecommunications Conference,
pages 646–650, 2000.

[5] Integrated services in the internet architecture: an overview. IETF RFC
1633, 1994.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. ACM SIGCOMM Computer Communications
Review, 19(4):1–12, September 1989.

[7] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica,
and H. Zhang. Understanding the impact of video quality on user
engagement. In SIGCOMM, pages 362–373, August 2011.

[8] G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a processor among
many job classes. Journal of the ACM, 27(3):519–532, July 1980.

[9] S.J. Golestani. A self-clocked fair queueing scheme for broadband
applications. In IEEE INFOCOM Proceedings, pages 636–646, 1994.

[10] M. Kargahi and A. Movaghar. A method for performance analysis
of earliest-deadline-first scheduling policy. Journal of Supercomputing,
37:197–222, 2006.

[11] L. Kruk, J. Lehoczky, K. Ramanan, and S. Shreve. Heavy traffic
analysis for EDF queues with reneging. Annals of Applied Probability,
21(2):484–545, 2011.

[12] J.P. Lehoczky. Real-time queueing theory. In 17th IEEE Real-Time
Systems Symposium, pages 186–195, March 1996.

[13] C.L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, January 1973.

[14] P. Moyal. On queues with impatience: stability, and the optimality of
earliest deadline first. Queueing Systems, 75:211–242, 2013.

[15] A.K. Parekh and R.G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: The multiple-
node case. IEEE/ACM Transactions on Networking, 2(2):137–150, 1994.

[16] T.Y. Tsai, Y.L. Chung, and Z. Tsai. Introduction to packet scheduling
algorithms for communication networks. In Jun Peng, editor, Commu-
nications and Networking. Sciyo, Rijeka, Croatia, 2010.

[17] Z. Yuhua and Z. Chaochen. A formal proof of the deadline driven
scheduler. Formal Techniques in Real-Time and Fault-Tolerant Systems,
863:756–775, 1994.

[18] H. Zhang. Service disciplines for guaranteed performance service in
packet-switching networks. In Proceedings of the IEEE, pages 1374–
1396, October 1995.


