
Soundness Proofs for Iterative Deepening

Ben Blum

CMU-PDL-16-103
September 6, 2016

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

The Iterative Deepening algorithm allows stateless model checkers to adjust preemption points on-the-fly. It uses dynamic data-race detection
to avoid necessarily preempting on every shared memory access, and ignores false-positive data race candidates arising from certain heap
allocation patterns. An Iterative Deepening test that reaches completion soundly verifies all possible thread interleavings of that test.

Acknowledgements: Michael J. “Sully” Sullivan, Carlo Angiuli, and Nathaniel Filardo double-checked the proof and provided valuable
feedback on notation style and the flow of explanation. Thanks as well to the anonymous OOPSLA reviewer #4, whose suggestions helped
improve the formality of our definitions. We thank the member companies of the PDL Consortium (Broadcom, Citadel, EMC, Facebook,
Google, Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB, NetApp, Oracle, Samsung America, Seagate, Tintri, Two
Sigma, Uber, Veritas and Western Digital) and by the U.S. Army Research Office under grant number W911NF0910273.

Keywords: concurrency, stateless model checking, data race
analysis, verification

1. Introduction
In our OOPSLA paper [1] we introduced Iterative Deepen-
ing, an algorithm which combines stateless model checking
[5, 6] and data-race analysis [11, 13]. It dynamically adds
new state spaces to test each time a data-race candidate is
found. We present here two proofs concerning the technique.

First, we prove that given enough time, Iterative Deepen-
ing will converge to the same degree of schedule coverage
that would be provided by a naı̈ve model checker (MC) pre-
empting on every single instruction. In other words, when
Iterative Deepening finishes generating new data-race PPs,
and completes all associated state spaces, it serves as a full
verification of all possible schedules of the given test case.

Second, we prove the soundness of the malloc-recycle
false-positive-elimination tactic discussed in the paper. De-
spite powerful reduction techniques, each state space is still
exponentially sized, so we wish to avoid exploring any we
could prove to be redundant. We prove that it is safe to elim-
inate malloc-recycle data race candidates immediately, with-
out bothering to explore their associated state spaces.

This tech report is supplemental material to our main
paper; we assume the reader is already familiar with our
motivation and terminology.

2. Definitions
2.1 System Model
To avoid relying on any particular programming language
features, we leave the program syntax and execution seman-
tics opaque, reasoning instead about execution traces. We
require that a program’s evaluation produce a trace of in-
structions of the following form:

A ::= v ← read(a) | write(a, v) | xchg(a, v)

| a← malloc(n) | free(a)

| Alocal | Async

The execution steps take the following forms:
Memory. read, write, and xchg access global or heap

memory shared by all threads, indicated by some address
a. (Other atomic swap operations are omitted for brevity.)
malloc and free provide access to fresh memory accessible
by all threads.

Local state. Alocal represents any thread-local instruc-
tion, such as modifying local variables, flow control, func-
tion calls, and assertions. We omit a detailed list for brevity,
as we do not need to reason about them in these proofs.

Threads. Async denotes the subclass of evaluation steps
which implement inter-thread synchronization; i.e., the syn-
chronization API:

Async ::= mutex lock(m) | mutex unlock(m)

| deschedule | make runnable(t)

| t← thread fork | thread exit | yield

mutex lock and mutex unlock provide mutual exclusion: a
thread which evaluates mutex lock on some lockm becomes
blocked until no other thread holds m. deschedule alows
a thread to block itself until another thread wakes it with
make runnable, and thread fork and thread exit allow cre-
ation and destruction of new threads. thread fork is defined
in the Pebbles manner [3]; we omit higher-level abstrac-
tions such as cond wait, create, or join, which can be imple-
mented using these primitives [4]. yield allows the execution
semantics to switch threads while respecting the preemption-
point-switching invariant discussed below.

Definition 1 (Interleaving). An interleaving (or execution
trace) is a list of these instructions, annotated to indicate
the currently-running thread as well as the runnability of all
existing threads:

I ::= [A, t, (t→ bool)]

We say a thread switch occurs when adjacent elements
in I have different thread IDs t. We say a thread is blocked
when its value in the runnability map is false.

Interleaving invariants. We require the evaluation se-
mantics to produce interleavings which fulfil several invari-
ants, apart from the obvious ones ensuring correct synchro-
nization and malloc discipline.

Model checkers often include heuristics to identify block-
ing via open-coded yield loops, but we assume here that such
patterns are implemented more tastefully with a condition-
variable-like primitive built upon deschedule.

Most importantly, we assume that threads switch only at
instructions identified by the set of preemption-point predi-
cates, defined below.

2.2 Stateless model checking terms
Definition 2 (Preemption point (PP) predicate). A predicate
on the execution state which identifies a class of instruction
pairs between which we may force threads to switch.

We use synchronization API PPs to denote the set of pred-
icates which occur immediately before or after any ofAsync.
Because no other instruction affects a thread’s runnability, it
is always possible to execute a program by switching the
currently-executing thread only at synchronization API PPs.

All data-race PP predicates will occur immediately before
a read, write, or atomic swap. Other predicates are possible,
though we will show they are irrelevant.

When generating execution traces, the evaluation seman-
tics is parameterized by a set of active PP predicates. As long
as the set contains the synchronization API PPs, the thread-
switch invariant discussed above will hold.

Definition 3 (Preemption point (PP)). A PP is any site in an
interleaving at which a PP predicate evaluated to true.

As discussed above, all thread switches occur at PPs.
However, an interleaving may also contain PPs at which the
same thread continued running.

In the main paper, “PP” referred to what we now call
“PP predicates”. Hence, the “same” PP could occur multiple
times during an execution. In these proofs, we separate such
cases into multiple unique PPs: each PP is simply a label
denoting the boundary between two transitions.

Definition 4 (Transition). A sequence of execution steps
from a program’s evaluation between two PPs.

The thread-switch invariant guarantees that each transi-
tion’s instructions are associated with exactly one thread.

Definition 5 (State space). A state space S is a set of inter-
leavings representing all execution sequences legal under a
given set of PP predicates.

Definition 6 (Must-happen-before (MHB)). Let t1 and t2
be two transitions of an interleaving, and T1 and T2 be the
corresponding thread IDs, and let t1 occur before t2. Then
t1 MHB t2 if

1. T2 is blocked immediately preceding t1 and not blocked
immediately afterward, and there does not occur another
t′2 by T2 between t1 and t2; or

2. there occurs some t3 by thread T3 such that t1 MHB t3,
t3 MHB t2, and T3 6= T2; or

3. T1 = T2.

Intuitively, MHB expresses when two transitions cannot
be reordered (the “enables” relation in DPOR terminology
[5]). Two transitions A and B of different threads MHB
if some synchronization event in A causes B to become
runnable while it was previously blocked. Such synchroniza-
tion events include thread fork, make runnable, and some-
times but not always mutex unlock.

Note how our must-happen-before relation differs from
the conventional definition of happens-before (“observed to
happen before”) [8]. Our use of MHB matches the “limited
happens-before” used in [11] and [14]; the advantage of this
over pure-happens-before detectors in producing fewer false
negatives is well-argued in those prior works1. We illustrate
the difference in Figure 1.

Note also that although transitions of the same thread are
related by MHB, MHB is transitive only when the latter two
transitions are not by the same thread (condition 2). While
lock-protected critical sections can be reordered around each
other (i.e., line 1 not MHB lines 8-9), one cannot be re-
ordered to be in the middle of the other (i.e, lines 3-4 MHB
line 6). In the latter case, the MHB relation is established by
the mutex’s blocking mechanism used during contention.

Our main paper refers to this relation (in conjunction with
a lock-set analysis) as Limited HB.

1 Because pure-HB data race detectors avoid false positives altogether,
they would have no trouble avoiding our malloc-recycle false positives.
However, as prior work has shown, they miss many other bugs involving
unprotected variables accessed alternately before and after mutex-protected
critical sections.

Thread 1 Thread 2
1 my x->foo = ...;
2 mutex lock(...);
3 global x = my x;
4 mutex unlock(...);
5 mutex lock(...);
6 my x = global x;
7 mutex unlock(...);
8 if (my x != NULL)
9 my x->foo = ...;

Figure 1. Example program to illustrate the difference be-
tween pure happens-before and must-happen-before. Under
pure happens-before (which does not identify false posi-
tives), lines 1 and 9 are not a data race candidate. Under
MHB, they are; although after trying to reorder them, it will
be classified as a false positive.

Definition 7 (Shared memory conflict). A pair of memory
accesses between two threads to the same address where at
least one of them is a write.

Definition 8 (Independent transitions). Two transitions be-
tween different threads are independent if the intersection of
their shared memory accesses contains no conflicts.

Definition 9 (Equivalent interleaving). Two interleavings
are equivalent if one can be transformed into the other by
permuting only independent transitions.

Intuitively, the behaviour of a program could change by
reordering two transitions only if they contain a memory
conflict. All possible interleavings of a program can be par-
titioned into equivalence classes, so only one interleaving
from each equivalence class need be tested to ensure total
schedule coverage [9]. Equivalence is, of course, transitive.

Definition 10 (Dynamic Partial Order Reduction (DPOR)).
A state-space search algorithm for stateless model checkers;
given a state space S, it will test at least one interleaving
from each equivalence class in S.

Considering an interleaving I in S, if two transitions
t1 and t2 by different threads are not independent and not
related by MHB, let J be the interleaving which reorders t1
with t2. DPOR is then guaranteed to test some interleaving
in S equivalent to J [5].

Because equivalent interleavings produce identical exe-
cution states, DPOR guarantees to expose all reachable exe-
cution states by testing its subset of interleavings. We refer
to this property as the soundness of DPOR.

2.3 Data race and other memory terms
Definition 11 (Data race). A shared memory conflict where
furthermore:

• The intersection of both threads’ locksets is empty (i.e.,
the same lock does not protect both accesses), and
• The containing transitions are not related by MHB.

The same as in the paper, we distinguish between data-
race candidates (or potential data races) and data-race bugs.
For brevity, we now use “data race” to refer both to true races
and to potential data-race candidates identified by MHB.

Definition 12 (False positive data race). An apparent data
race that cannot be executed in the opposite order from what
was observed.

False positives are caused when some data dependency
based on some other shared state changes some variable
values when the threads are reordered, such that the memory
addresses no longer collide.

Definition 13 (Malloc-recycle data race). A data race where
the address is contained in some heap-allocated memory,
and between the two accesses, that memory was passed to
free() and returned again by a subsequent malloc().

Figures 2 and 3 show an example. In the case of malloc-
recycle false positives, the allocation heap is the “other
shared state” mentioned in the previous definition, and mal-
loc’s return value is the variable value that changed.

Recent work [12] proposed hardware techniques for de-
tecting many classes of stale heap pointer accesses, includ-
ing the one shown in Figure 3. Future work could combine
this approach with MC to identify such bugs immediately,
rather than requiring Iterative Deepening to explore new
state spaces corresponding to the data race. However, if the
malloc call were in thread 1 instead of thread 2, the bug
would still be nondeterministic, requiring MC to expose.

Definition 14 (Use after free). Any read or write to heap
memory which was once allocated, but no longer is.

These can immediately be identified as failures by a MC
which tracks allocation state.

3. Intuition
This section provides (hopefully) intuitive summaries of our
proof goals.

Intuition for Iterative Deepening convergence. We will
prove that when Iterative Deepening saturates the set of
data-race PPs, that set represents every instruction where a
preemption could possibly affect the program’s behaviour
Hence, completing the associated state spaces is as strong
a verification as testing all possible thread interleavings by
preempting anywhere. A data-race may be hidden in control-
flow paths reachable only after preempting on a different
data-race, but the technique’s iterative nature will eventu-
ally find it. On the other hand, relying on the soundness of
DPOR, preempting on an instruction which is neither a data-
race or sync API boundary cannot affect the program’s be-
haviour, so any such PPs are irrelevant.

Note that while we defined synchronization API PPs to
occur both before and after any Async instruction, we will
only add data-race PPs before their associated read or write.
Our proof requires preempting only before each racing in-

struct x { int foo; int baz; } *x;
struct y { int bar; } *y;

Thread 1 Thread 2
1 x1->foo = ...;
2 free(x1);
3 // x’s memory recycled
4 y = malloc(sizeof *y);
5 // ...initialize...
6 publish(y);
7 y->bar = ...;

Figure 2. False-positive malloc-recycle pattern. This is the
common case for which we avoid creating new state spaces.

Thread 1 Thread 2
1 publish(x1);
2 x2 = get published x();
3 x1->foo = ...;
4 free(x1);
5 // x’s memory recycled
6 y = malloc(sizeof *y);
7 x2->foo = ...;

Figure 3. Adversarial program which fits the malloc-
recycle pattern, but nevertheless contains a true race.

Thread 1 Thread 2
1 publish(x1);
2 x2 = get published x();
3 // x not free, so malloc’s
4 // return value changes!
5 y = malloc(sizeof *y);
6 x2->foo = ...;
7 x1->foo = ...;
8 free(x1);

Figure 4. Goal interleaving, reordering the adversarial
threads away from the pattern, while the data race remains.

struction, not after, in order to fully saturate the PP set with
all possible data races. Then, once saturated, preempting af-
ter each racing instruction would be extraneous, because all
subsequent instructions before the next PP must be local op-
erations or non-communicating reads/writes2.

Intuition for malloc-recycle soundness. We prove that if
a malloc-recycle-pattern data race is not a false positive, then
DPOR will eventually interleave threads in such a way that
the malloc-recycle pattern will disappear, while the access
pair remains for the data-race detector to find, as shown in
Figure 4. Hence, in the same state space where the malloc-

2 Our implementation also optimizes the synchronization API PPs, gener-
ally preempting only after each synchronization instruction. mutex lock is
the exception, as it can cause other threads to become blocked. All the oth-
ers can only make blocked threads runnable, establishing MHB, which also
provides MHB for the preceding transition of the invoking thread. Hence,
coalescing those transitions does not exclude any possible interleavings.

recycle data race was found, if it’s a true race, the same race
will also appear without the recycle pattern. So if that race
can lead to a failure, Iterative Deepening will still be led to
the necessary preemption point to find it.

4. Assumptions
This section documents our assumptions about the concur-
rency model, language model, and test environment, and dis-
cusses some limitations that may arise therefrom.

4.1 Assumptions for both proofs
Maximal state space. We assume the model checker has
all synchronization API PPs enabled during this state space
exploration, and that we are not limited by a pressing CPU
budget. We assume that all synchronization primitives not
listed in our system model are built upon them, or otherwise
annotated for the MC to add additional PPs for them.

Using only a subset of PPs or aborting early due to time-
out could each ruin our ability to reach the goal interleaving
or goal state space. However, Iterative Deepening aims to
test the most important interleavings with the time available,
so in the case of not enough time, continuing the current state
space fits that goal best.

Shared memory thread communication. We assume
that the only way for two threads’ transitions to affect each
other’s behaviour, should they be reordered, is through ei-
ther shared memory or a correctly-instrumented sync API.
Both DPOR and data-race detection rely on this assumption,
as any other way for threads to affect each other’s behaviour
could invisibly reduce independence and break soundness.
For brevity in these proofs, we refer to all thread commu-
nication as shared memory, and assume that other mecha-
nisms, such as system calls that access the filesystem, could
be instrumented to fit the same model.

Schedule nondeterminism only. We discount the pos-
sibility of other types of nondeterminism, such as program
input nondeterminism (including randomness/timestamps)
or store-buffer nondeterminism on weak-memory architec-
tures. We refer the reader to [2, 7] for related work on the
former, and to [18] for the latter.

4.2 Assumptions for Iterative Deepening convergence
Locks are correct. Because hybrid data-race detection uses
lockset analysis to exclude many candidate access pairs, we
assume that no preemption during a lock-protected critical
section could cause a contending thread to make progress.
This extends to use of disabling/enabling interrupts in kernel
code, which we model as a single global lock, although we
do not model RCU [10].

Should the user wish to verify these properties of locks,
they could either run a locking test separately (as we suggest
in our paper), which would cheaply test the locks to an ex-
tent limited by the separate test case; or they could remove
the data-race analysis’s lockset tracking, which would ex-

pensively test all the main program’s required locking prop-
erties in tandem with the program itself.

We also assume that any unusual locking discipline, such
as recursive mutexes or lock hand-off, is correctly annotated
to the data-race analysis. Our implementation also models
the behaviour of r/w locks and 1-initialized semaphores (the
latter heuristically), although this is tangential to the proof.

Halting. From a certain perspective, convergence is the
same as completeness, which should be impossible for any
runtime analysis of a Turing-complete language [16]. How-
ever, being already limited by practical real-world CPU bud-
gets, we are already accepting that many tests will time out.
We are concerned with the limited case of when QUICK-
SAND does terminate with all state spaces completed.

Inversely, when we prove that Iterative Deepening will
eventually find an arbitrary buggy interleaving, we assume
that no intermediate state spaces contain nontermination
bugs. If they do, we are satisfied with finding that bug in-
stead. In this proof, we assume that the MC’s heuristic infi-
nite loop checker has no false negatives; i.e., it will never get
stuck forever in an infinite loop without identifying a bug
(necessarily accepting some false positives).

4.3 Assumptions for malloc-recycle soundness
Malloc is a magic black box. We assume the malloc imple-
mentation is correct (e.g., it won’t double-allocate), although
we don’t assume any implementation details such as a ten-
dency to reuse blocks or allocate adjacent ones. In fact, our
implementation ignores all potential PPs arising from mal-
loc’s internal mutex; in essence treating it as a “magic prim-
itive”, because we are not interested in verifying its imple-
mentation. Furthermore, we configured DPOR to ignore any
shared memory conflicts arising from internal heap metadata
to achieve greater state space reduction. (If the only conse-
quence of reordering two transitions is malloc returning dif-
ferent addresses, we consider them independent). This is not
without consequences; see section 6.4.

Sharing heap addresses. Finally, we assume that the
only way the program can obtain heap addresses is through
the return value of malloc. Because we are testing C pro-
grams, any bizarre violations of this assumption are techni-
cally possible, but should you wish to check for bugs like
this, symbolic execution [2] would be more appropriate.

In Section 6, we further assume a malloced block’s ad-
dress cannot be obtained through arithmetic on the address
of a different block; in Section 6.4 we account for this case
by relaxing the previous “black box” assumption.

5. Proof of Iterative Deepening convergence
We seek to prove that, given enough time, Iterative Deep-
ening offers the same coverage of thread interleavings that
could be achieved by preempting at every single instruction.
We’ll call the latter the naı̈ve state space, and call the condi-

tion of testing all its interleavings convergence3. Hence, our
convergence statement is as follows:

Theorem 1 (Total verification). If Iterative Deepening fully
saturates its data-race PP predicates and completes all as-
sociated state spaces, it serves as a verification of all possi-
ble thread schedules of the given test program.

The contrapositive statement offers more structure for an
easier proof4:

Theorem 2 (Convergence of Iterative Deepening). If a bug
is exposed by an interleaving in the naı̈ve state space, Iter-
ative Deepening will eventually test an equivalent interleav-
ing which exposes the same bug.

Let

I = [(tα1, pα1), (tβ1, pβ1), ...(tαn, pαn), ...]

be an interleaving, where the element (tαi, pαi) represents
the ith transition t of thread α, and the associated preemption
point p at its end. We will use the following notation:

• nextinstrI(α, i) indicates the first instruction executed
during tα(i+1) (the next transition), i.e., the instruction
of α that pαi preempted just before.
• othersI(α, i) indicates the set of all transitions by other

threads between tαi and tα(i+1).
• conflicts(tα, tβ) indicates the set of shared memory con-

flict pairs between tα and tβ .

5.1 Equivalence of irrelevant PPs
Iterative Deepening will not, of course, preempt on exactly
the same instructions that an arbitrary naı̈ve interleaving
would, as it is only capable of preempting on data races
and sync API boundaries. Thus, our first task is to show that
all naı̈ve interleavings have an equivalent interleaving which
includes only data-race and sync API PPs.

Definition 15 (Relevant preemption point). We say a PP pαi
is relevant if either pαi is a synchronization API PP, or if

conflicts(othersI(α, i), nextinstrI(α, i)) 6= ∅

i.e., the instruction by thread α immediately after pαi has a
memory conflict with some other thread interleaved between
tαi and that instruction.

Definition 16 (Fully-relevant interleaving). An interleaving
comprised only of relevant PPs.

Lemma 1. For any interleaving in the naı̈ve state space,
there exists an equivalent interleaving which uses only rele-
vant PPs.
3 It could also be called soundness, taking the perspective that Iterative
Deepening is a search ordering heuristic that doesn’t miss any interleavings.
4 For the reader who likes to avoid non-constructive proofs [17], note that
we use the constructive contrapositive direction: Theorem 2 is A→ B and
Theorem 1 is ¬B → ¬A.

Proof. Let pαi be the first irrelevant PP of a naı̈ve interleav-
ing I. We ask, did some thread among othersI(α, i) conflict
with any instruction from tα(i+1), even though there was no
conflict with nextinstrI(α, i)?

• If conflicts(othersI(α, i), tα(i+1)) 6= ∅, or if tαi contains
a sync API instruction that’s not already a PP, then let χ
be either the first instruction by tα(i+1) among the con-
flicts or the first sync API instruction, whichever comes
first. Let pfx(tα(i+1), χ) denote the instruction sequence
between nextinstrI(α, i) and χ, including the former but
not the latter. Now, we output the new interleaving:

I ′ = [..., (tαi ∪ pfx(tα(i+1), χ), p
′
αi),

othersI(α, i),
(tα(i+1) \ pfx(tα(i+1), χ), pα(i+1)), ...]

In other words, we reorder othersI(α, i) to between
pfx(tα(i+1), χ) and χ, removing the irrelevant pαi and
adding a new PP p′αi, which is relevant by the construc-
tion of χ. It must be possible to reorder othersI(α, i) to
after α’s execution because no synchronization occurs
during pfx(tα(i+1), χ), hence the other threads’ runnabil-
ity cannot be affected. Likewise pfx(tα(i+1), χ) is in-
dependent with othersI(α, i), so by the soundness of
DPOR, I ′ ≡ I.
• Otherwise, conflicts(othersI(α, i), tα(i+1)) = ∅, and no

instructions among tα(i+1) are synchronization. Then we
output the new interleaving:

I ′ = [..., (tαi ∪ tα(i+1), pα(i+1)), othersI(α, i), ...]

In other words, we reorder othersI(α, i) with the entire
next transition by thread α. This must be possible for
the same reasons as above, and again, the transitions are
independent, so I ′ ≡ I.

This constitutes an algorithm for inductively converting (or
removing) all irrelevant PPs to relevant ones.

5.2 Saturation of data-race PPs
Now we must show that, starting from a sync-PP-only state
space, Iterative Deepening will eventually encounter all data
races which are used as PPs in any buggy fully-relevant in-
terleaving. The challenge is that some data-race candidates
are nondeterministic to find; i.e., they may be hidden in con-
trol flow which requires a prior preemption on a different
data race to expose, as shown in Figure 5. Hence, the maxi-
mal state space of statically-available sync API PPs will not
necessarily uncover all possible data-race PPs; we may need
to iterate through some data-race state spaces before finding
certain nondeterministic races.

Definition 17 (Reachable data race). A data race candidate
which will be identified by a MC configured to preempt only
on locking API boundaries, or transitively also configured to
use data-race PPs of other reachable data races.

int x = 0, y = 0;
bool t1 x = false, t1 y = false;
bool t2 x = false, t2 y = false;

Thread 1 (Thread 2 similar, with t1 and t2 vars swapped)
1 x = x + 1;
2 t1 x = true;
3 // "if x raced"
4 if (x == 1 && t2 x) {
5 y = y + 1;
6 t1 y = true;
7 // "if y raced"
8 if (y == 1 && t2 y) {
9 panic();

10 }
11 }

Figure 5. Not all data races will immediately be uncovered
by sync API PPs alone. Here, preempting during line 1’s race
is necessary to force the program to execute the racy line 5.

Definition 18 (Reachable preemption point). A PP pαi such
that either nextinstrI(α, i) is part of a reachable data race,
or a synchronization instruction.

Lemma 2. All PPs of any fully-relevant interleaving are
reachable.

Proof. Let I = [(tα1, pα1), ...] be the fully-relevant inter-
leaving and PP sequence in the premise which exposed a
bug. We proceed by induction on the PPs according to their
order in I5. For both the base case and inductive step, we
know (vacuously, for the former) that for each other PP pβh
with tβh ≺ tαi ∈ I, pβh is reachable. We must show that a
data race involving nextinstrI(α, i) is reachable, and we are
not allowed to use pαi until we find the data race between
nextinstrI(α, i) and othersI(α, i).

Coalescing not-yet-reachable data race PPs. Consider
the alternate interleaving prefix:

J = [..., (tαi ∪ t′α(i+1), pαj), othersI(α, i)
′]

where we have reordered tα(i+1) to before the execution of
othersI(α, i). Here, pαj is the first sync API PP in α after
pαi (as pα(i+1) may be a not-yet-reachable data race PP), and
t′α(i+1) may include transitions of α beyond tα(i+1) itself.
Then, othersI(α, i)

′ are the other threads’ transitions from
our target interleaving. except they may be altered by the
presence of some other data race in t′α(i+1) occurring after
nextinstrI(α, i). Likewise, t′α(i+1) may be altered by some
other data race in othersI(α, i)

′. The only certainty so far is
that t′α(i+1) begins with nextinstrI(α, i).

It would be straightforward to show that any other data
races in t′α(i+1), which would be discovered in this inter-
leaving, could be reordered to after othersI(α, i)

′, eventu-

5 Note that this is not necessarily the same as the order of the racing
instructions nextinstrI(α, i), which occur in tα(i+1), not in tαi.

ally transforming t′α(i+1) to contain no conflicting mem-
ory accesses but nextinstrI(α, i) itself. Unfortunately, J is
not necessarily reachable, as othersI(α, i)

′ still includes any
data-race PPs from othersI(α, i), which were ordered after
pαi in I and hence not covered by the inductive assump-
tion. Hence, we must perform the same “coalescing” for
each thread in othersI(α, i)

′ that we did for α, which we
will abbreviate:

K = [..., (tαi ∪ t′α(i+1), pαj), coalesce(othersI(α, i)
′)]

For each other thread β, coalesce(othersI(α, i)
′) will con-

tain a single transition, starting with the first instruction
of β’s corresponding transition in othersI(α, i), and end-
ing with the next sync API PP in β, which we’ll call pβk.
Again, the only certainly-executed instruction by α af-
ter tαi is nextinstrI(α, i). It is even possible that neither
nextinstrI(α, i) nor any other instruction by thread α will
conflict with any other thread, until a different data race PP
between two other threads is discovered.

It follows from the inductive hypothesis (which covers
the prefix indicated by “...”), and from sync API PPs being
reachable by definition, that K is reachable.

Finding the next reachable data-race PP. Now, we
show by induction that a data race on nextinstrI(α, i) is
reachable. We assume that a state space S containingK, plus
n unique data race PPs among t′α(i+1) and othersI(α, i), will
be reachable. (In the base case, n = 0, and K’s reachability
is justified above.) We must show that in this state space, if
the nextinstrI(α, i) data race is not reachable, a new unique
data-race PP will be reachable instead.

By the definition of relevance, I guarantees that some
other thread ω can execute a data-racing instruction with
nextinstrI(α, i). By the soundness of DPOR, if a program
behaviour is possible by interleaving at the boundaries of the
given transitions, that interleaving will be tested. By contra-
positive, because ω’s data-racing instruction was not tested
in S, one or more necessary interleaving sites must be in the
middle of some transition, rather than all at boundaries.

However, we do not get a single such transition for free.
We have arrived at the crux of the proof: to show that there
cannot be multiple data-race PPs which must both be en-
abled before either data race can be identified. Such a circu-
lar dependency seems intuitively impossible, but to actually
find the “first reachable” PP is not straightforward. We re-
quire that in S, there exists a single transition tβk that can
alone be split into [tβk1, tβk2], and some other communicat-
ing transition tγl which conflicts with tβk2.

We show this by contradiction. Assume that for all
tβk ∈ S, and all possible points p′βk at which to split it
into [tβk1, tβk2], and all other non-MHB transitions tγl, tγl
has no shared memory conflicts with tβk2. Let S ′ = S∪p′βk,
i.e., the state space obtained by adding any such p′βk to S’s
PP-set. By the soundness of DPOR, because any such tγl is

independent with tβk2,

[..., tβk1, tβk2, tγl] ≡ [..., tβk1, t
′
γl, t
′
βk2]

Hence, S ≡ S ′. Then, the above assumption also applies
to S ′, showing that for any pair of transitions such as tβk,
adding two new PPs cannot expose new program behaviour.
Inductively, no set of new PPs of any size would expose new
behaviour not already exposed in S. However, the instruc-
tion by ω which conflicts with nextinstrI(α, i) was not ob-
served in S, so we have our contradiction.

Hence, if S does not expose the nextinstrI(α, i) data race
directly, there must exist some transitions tβk = [tβk1, tβk2]
and tγl such that tγl shared-memory-conflicts with tβk2 and
could be interleaved immediately before it. By the maximal
state space assumption, all sync API PPs are already en-
abled, so the locksets of β and γ cannot overlap and there
is no MHB relation. Hence the memory conflict between tγl
and tβk2 will be identified as a data-race. Finally, because
tβk was not previously split by a PP, the data-race was not
already discovered.

Reaching pαi. Hence either a data-race will be identified
including nextinstrI(α, i), or an infinite/nonterminating se-
quence of other unique data-race PPs will be identified, but
by the halting assumption, this would constitute an infinite
loop bug, which is sufficient. (Alternatively, for any program
with a finitely-sized instruction listing, the number of unique
instruction pairs is finite.) Hence by the “next reachable data-
race” induction, pαi is reachable. Hence by the “pαi is reach-
able” induction, all PPs in I are reachable.

5.3 Conclusion
Theorem 2 (Convergence of Iterative Deepening). If a bug
is exposed by an interleaving in the naı̈ve state space, Iter-
ative Deepening will eventually test an equivalent interleav-
ing which exposes the same bug.

Proof. By Lemma 1, there must be some equivalent fully-
relevant interleaving. By Lemma 2, Iterative Deepening will
eventually discover and enable all necessary data-race PPs,
with sync API PPs being enabled by the maximal state space
assumption. Then DPOR will find the buggy interleaving
within this state space.

6. Proof of malloc-recycle soundness
We seek to prove that ignoring malloc-recycle data race
candidates cannot cause DPOR + Iterative Deepening to
miss a bug that could be found by using the race as a PP
predicate. Our soundness statement is as follows:

Theorem 3 (Soundness of eliminating malloc-recycle races).
If a malloc-recycle data race is not a false positive, DPOR
will reorder threads such that either the same accesses will
still race without fitting the malloc-recycle pattern, or a use-
after-free bug will be reported immediately.

Though Figures 3 and 4 show example programs, they do
not capture all possible cases of how a true data race can
fit the malloc-recycle pattern. We proceed by establishing
what must be true of any such program, then casing on
the ambiguous possibilities, and showing that PPs will exist
where we need them to reorder the threads.

For certain, there must be an access in one thread, fol-
lowed by a free and malloc (we’ll call them “middle free”
and “middle malloc”), each possibly from either thread, fol-
lowed by an access from the other. If the data race is not a
false positive, then the second access must not change loca-
tions based on the middle malloc’s return value. WLOG, we
say that thread 1 (T1) does the first access, called a1, and
thread 2 (T2) does the second, a2.

Lemma 3. If DPOR will reorder a2 to before a1, and the
location of access a2 doesn’t change, then a non-malloc-
recycle data race or a use-after-free bug will be identified.

Proof. By case on which threads the middle free and middle
malloc came from.

• T1 free, T2 malloc (as shown in Figure 3). The malloc
will go with a2 to before the free, and because the al-
location of concern has not been freed yet, will return a
different value. Hence a1 and a2 will be in the same allo-
cation; hence the race is not malloc-recycle anymore.
• T1 free, T1 malloc. Same as above, but the malloc does

not move. The middle malloc will still recycle the mem-
ory, but a2 now occurs before then, being in the same,
older, allocation.
• T2 free, T2 malloc. Both the free and re-malloc will occur

before either a1 or a2. The memory will be recycled and
both accesses will appear to be in the later allocation.
• T2 free, T1 malloc. The free gets reordered earlier, the

malloc stays put, and the accesses go in between. This
will be a use-after-free bug.

If either the middle free or middle malloc came from a third
thread, the case is the same as if it belonged to T1.

The keen reader might ask here, what if T1 contains some
extra spurious malloc calls (not related to a1) that affect what
T2’s malloc returns after being reordered? These could at
best either cause x’s memory to be recycled differently (not
affecting the proof), or not at all (which simply causes imme-
diate use-after-free). In general, extra spurious mallocs that
could affect a1 or a2 could only convert the program back
into a false-positive scenario; and extra spurious synchro-
nization events could only make it more easy to find PPs we
need to trigger the reordering. So we can safely assume the
only relevant events are the ones we mention explicitly.

By our last assumption, there must also be an “original
malloc” which allocated the block to begin with. We must
ask, which thread did the malloc which returned a1’s ad-
dress in the first place? Our last assumption provides that

the other thread must obtain that address through some com-
munication mechanism (which we’ll reason about later).

6.1 T2 originally malloced x
Lemma 4 (Greedo). If T2 originally malloced the block
containing x, DPOR will reorder the threads to uncover a
non-malloc-recycle race or a use-after-free bug.

Proof. Because T1 had the first access, there was a thread
switch between the original malloc and a1, as well as be-
tween a1 and a2. By Definition 4, each switch will be a PP.
By Definition 10, DPOR will reorder a2 to before a1, and
because T1 is not involved in the logic determining a2, the
access’s location stays the same. Lemma 3 finishes.

This lemma also applies if a third thread was responsible
for this malloc, as there would still be a thread switch in the
same spot.

6.2 T1 originally malloced x
Lemma 5 (Han). If T1 originally malloced the block con-
taining x, DPOR will reorder the threads to uncover a non-
malloc-recycle race or a use-after-free bug.

Proof. We must guarantee there will be a PP during T1
before its a1 access, but after whatever action it took to
communicate the heap address to T26.

If there was a synchronization event between the publish
action and a1, then the maximal state space assumption
provides the necessary PP, and we are done. Otherwise, T1’s
lockset will be the same during publish and during a1 (and
the MHB-ness cannot change). For T1’s publish to reach T2,
they must access the same memory (outside of the block
containing a1; T2 doesn’t have that yet), which we’ll call
p. Hence, p must be a data race of its own.

Because p may also be a malloc-recycle data race, as
shown in Figure 6, we do not necessarily get the PP for
free. In this case we need to prove that DPOR will likewise
reorder any intermediate malloc-recycle pattern to generate
the PP we need7. We handle this with induction on T2’s
pointer chain leading to x.

• For the base case, the publish location p0 is either in
global memory, or shared directly using synchroniza-
tion. Non-heap memory data races are not subject to the
malloc-recycle pattern, so will always get a data-race PP,
and use of synchronization always gets a PP in the maxi-
mal state space.
• For the inductive step, a pointer pn is published in some

heap memory pn−1->ptr, and we assume that however

6 Note why we assert the publish action must come before a1: otherwise,
T2 couldn’t be reordered to race a2 with a1 before T1 communicated the
address, and it would be a false positive after all.
7 In QUICKSAND, data race PPs are not used immediately, but rather
generate new state spaces to explore in the future. Anyway, under the
maximal state space assumption, we will get to it eventually.

Thread 1 Thread 2
1 p1->ptr = x1;
2 publish(p1);
3 free(p1);
4 x1->foo = ...;
5 free(x1);
6 p2 = get published p();
7 // p’s memory recycled
8 q = malloc(sizeof *q);
9 x2 = p2->ptr;

10 // x’s memory recycled
11 y = malloc(sizeof *y);
12 x2->foo = ...;

Figure 6. If the accesses used to publish x’s address are a
data race, their PPs may also be eliminated under the malloc-
recycle pattern. Induction on the pointer structure leading to
x handles this case.

pn−1 is shared to T2, there will be a PP there sufficient
to make the pn−1->ptr access not malloc-recycle after
DPOR. Hence a data race PP will be generated on the
pn−1->ptr access, and by Definition 10 and Lemma 3,
DPOR will reorder T1’s and T2’s subsequent accesses to
pn sufficiently to place a PP on them.

Hence, even if the accesses by which T1 shares x with
T2 appear in a different malloc-recycle pattern, a PP will be
identified on the publish location p, and DPOR will reorder
T2’s execution to just after the publish action. As long as
T2’s execution occurs after the publish, it will receive the
same value for its a2, so the location of the data race does
not change. Lemma 3 concludes.

6.3 Conclusion
Theorem 3 (Soundness of eliminating malloc-recycle races).
If a malloc-recycle data race is not a false positive, DPOR
will reorder threads such that either the same accesses will
still race without fitting the malloc-recycle pattern, or a use-
after-free bug will be reported immediately.

Proof. Between Lemmas 4 and 5, all cases of possible pro-
gram structure are covered.

6.4 Heap overruns
If we relax the “sharing heap addresses” assumption, there
is another way to share the allocation’s address without T1
and T2 communicating outside of a1/a2. One thread can
overrun a different heap block adjacent to the one containing
a1/a2 (call them the “neighbour block” and “real block”
respectively). Figure 7 shows an example. Heap overrun
bugs are quite serious [15], so we do not wish to exclude
them from our proof.

In our evaluation, we used the full “sharing heap ad-
dresses” assumption to heuristically reduce state space size,
skipping reorderings which could only change the addresses

Thread 1 Thread 2
1 z = malloc(42);
2 // TODO bounds check??
3 x2 = &z[50];
4 x1 = malloc(...);
5 x1->foo = ...;
6 free(x1);
7 // x’s memory recycled
8 y = malloc(sizeof *y);
9 x2->foo = ...;

Figure 7. Final possibility for how T2 can share T1’s allo-
cation address, and probably a security vulnerability to boot!

allocated by malloc. This restricted our tests’ scope to ex-
clude such heap-overflow bugs. We consider this justified
because recent techniques [12] can find such bugs quickly
without the need for data-race PPs. However, for users wish-
ing to test for this class of bug and concurrency bugs simul-
taneously, we show now how to strengthen the configuration
of DPOR to cover the weakened assumption.

Note also that even if malloc-recycle candidates are not
suppressed, a DPOR which ignores malloc’s internal meta-
data accesses would still be unsound with respect to these
bugs. We illustrate this in Figure 8: even with PPs in ar-
bitrary places, the two threads’ transitions conflict only on
malloc’s internal metadata, and hence DPOR would not at-
tempt to reorder them. Hence, our proofs so far show that
suppressing malloc-recycle candidates is sound with respect
to the classes of bugs which DPOR is already sound to.

To soundly suppress heap-overrun malloc-recycle candi-
dates, we must strengthen our configuration of DPOR as
follows: accesses from malloc’s internal implementation are
not ignored when computing shared memory conflicts, and
the synchronization API PP predicates are extended to in-
clude the start and end of each malloc and free call.

Lemma 6. If T1 and T2 each malloced neighbouring blocks,
and collided based on pointer arithmetic involving no shared
memory accesses, DPOR will reorder the threads to uncover
a non-malloc-recycle data race.

Proof. WLOG, let T1’s access in the original malloc-recycle
race occur first. We require that our strengthened DPOR will
reorder T2’s racing access to before T1’s, such that both
still occur on the same address. There will be a PP in T1’s
execution between its malloc call and the subsequent racing
access. If there are no other memory conflicts between T1
and T2, then by the soundness of DPOR, this PP suffices
to reorder without changing the address. Otherwise, let p
be the latest conflicting access by T1 before its access a1.
By the same inductive reasoning as we used in Lemma 5,
Iterative Deepening will add a data-race PP on p. As T1
has no further conflicts between p and a1, T2’s a2 will
be reordered between them without changing the address.
Lemma 3 finishes.

Thread 1 Thread 2
1 z = malloc(42);
2 // TODO bounds check??
3 x2 = &z[50];
4 y = malloc(sizeof *y);
5 x2->foo = ...;
6 x1 = malloc(...);
7 x1->foo = ...;
8 free(x1);

Figure 8. Without a PP between lines 4 and 5 of Figure 7,
this is the only alternate interleaving DPOR would explore.
The mallocs have been reordered and may no longer collide,
which wrongly appears to be a false positive.

Thread 1 Thread 2
1 z = malloc(42);
2 // TODO bounds check??
3 x2 = &z[50];
4 x1 = malloc(...);
5 y = malloc(sizeof *y);
6 x2->foo = ...;
7 x1->foo = ...;
8 free(x1);

Figure 9. Goal interleaving of Figure 7. To ensure collision,
the sequence of malloc calls producing a1 and a2 must not
be disrupted compared to the original interleaving.

Theorem 3 is modified to simply include this lemma in
addition to Lemmas 4 and 5.

References
[1] B. Blum and G. Gibson. Stateless model checking with

data-race preemption points. In Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA,
2016. URL http://www.pdl.cmu.edu/PDL-FTP/
associated/oopsla.pdf.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex sys-
tems programs. In Operating Systems Design and Implemen-
tation, OSDI’08, pages 209–224. USENIX Association, 2008.

[3] D. Eckhardt. Pebbles kernel specification. http://www.
cs.cmu.edu/˜410-s16/p2/kspec.pdf, 2016.

[4] D. Eckhardt. Project 2: User level thread library. http:
//www.cs.cmu.edu/˜410-s16/p2/thr_lib.pdf,
2016.

[5] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-
tion for model checking software. In Principles of Program-
ming Languages, POPL ’05, pages 110–121. ACM, 2005.

[6] P. Godefroid. VeriSoft: A tool for the automatic analysis of
concurrent reactive software. In Computer Aided Verification,
CAV ’97, pages 476–479. Springer-Verlag, 1997.

[7] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race
bugs: Telling the difference with Portend. In Architectural

http://www.pdl.cmu.edu/PDL-FTP/associated/oopsla.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/oopsla.pdf
http://www.cs.cmu.edu/~410-s16/p2/kspec.pdf
http://www.cs.cmu.edu/~410-s16/p2/kspec.pdf
http://www.cs.cmu.edu/~410-s16/p2/thr_lib.pdf
http://www.cs.cmu.edu/~410-s16/p2/thr_lib.pdf

Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 185–198. ACM, 2012.

[8] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565, July
1978.

[9] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets
1986, Part II on Petri Nets: Applications and Relationships
to Other Models of Concurrency, pages 279–324. Springer-
Verlag New York, Inc., 1987.

[10] P. McKenney and J. Walpole. What is RCU, fundamentally?
https://lwn.net/Articles/262464/, 2007.

[11] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race de-
tection. In Principles and Practice of Parallel Programming,
PPoPP ’03, pages 167–178. ACM, 2003.

[12] R. Prakash. The holy grail - real time memory ac-
cess checking. https://blogs.oracle.com/raj/
entry/the_holy_grail_real_time, 2015.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst., 15(4):391–
411, Nov. 1997.

[14] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data
race detection in practice. In Workshop on Binary Instru-
mentation and Applications, WBIA ’09, pages 62–71. ACM,
2009.

[15] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war
in memory. In Security and Privacy, SP ’13, pages 48–62.
IEEE Computer Society, 2013.

[16] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. Proceedings
of the London Mathematical Society, s2-42(1):230–265,
1937. URL http://plms.oxfordjournals.org/
content/s2-42/1/230.short.

[17] V. V. Vargomax. Generalized Super Mario Bros. is NP-
complete. In Proceedings of the 1st ACH SIGBOVIK Confer-
ence in Celebration of Harry Q. Bovik’s 26th Birthday, SIG-
BOVIK ’07, pages 87–88, Pittsburgh, PA, USA, 2007. ACH.

[18] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order
reduction for relaxed memory models. In Programming Lan-
guage Design and Implementation, PLDI 2015, pages 250–
259. ACM, 2015.

https://lwn.net/Articles/262464/
https://blogs.oracle.com/raj/entry/the_holy_grail_real_time
https://blogs.oracle.com/raj/entry/the_holy_grail_real_time
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://plms.oxfordjournals.org/content/s2-42/1/230.short

	Introduction
	Definitions
	System Model
	Stateless model checking terms
	Data race and other memory terms

	Intuition
	Assumptions
	Assumptions for both proofs
	Assumptions for Iterative Deepening convergence
	Assumptions for malloc-recycle soundness

	Proof of Iterative Deepening convergence
	Equivalence of irrelevant PPs
	Saturation of data-race PPs
	Conclusion

	Proof of malloc-recycle soundness
	T2 originally malloced x
	T1 originally malloced x
	Conclusion
	Heap overruns

