
A Proof of Correctness for Egalitarian Paxos

Iulian Moraru1, David G. Andersen1, Michael Kaminsky2

1 Carnegie Mellon University, 2 Intel Labs

CMU-PDL-13-111
August 2013

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

This paper presents a proof of correctness for Egalitarian Paxos (EPaxos), a new distributed consensus algorithm based on Paxos.
EPaxos achieves three goals: (1) availability without interruption as long as a simple majority of replicas are reachable—its
availability is not interrupted when replicas crash or fail to respond; (2) uniform load balancing across all replicas—no replicas
experience higher load because they have special roles; and (3) optimal commit latency in the wide-area when tolerating one and
two failures, under realistic conditions. Egalitarian Paxos is to our knowledge the first distributed consensus protocol to achieve
all of these goals efficiently: requiring only a simple majority of replicas to be non-faulty, using a number of messages linear in the
number of replicas to choose a command, and committing commands after just one communication round (one round trip) in the
common case or after at most two rounds in any case.

Acknowledgements: This work was supported by Intel Science & Technology Center for Cloud Computing, Google, and the National
Science Foundation under award CCF-0964474. We would like to thank the members and companies of the PDL Consortium (including Actifio,
American Power Conversion, EMC Corporation, Emulex, Facebook, Fusion-io, Google, Hewlett-Packard Labs, Hitachi, Huawei Technologies Co.,
Intel Corporation, Microsoft Research, NEC Laboratories, NetApp, Inc., Oracle Corporation, Panasas, Riverbed, Samsung Information Systems
America, Seagate Technology, STEC, Inc., Symantec Corporation, VMware, Inc., and Western Digital) for their interest, insights, feedback, and
support.



Keywords: Distributed Consensus, Paxos



1 Introduction

Today’s clusters use fault-tolerant, highly available coordination engines like Chubby [1], Boxwood [7],
or ZooKeeper[5] for activities such as operation sequencing, coordination, leader election, and resource
discovery. An important limitation in these systems is that during efficient, normal operation, all the clients
communicate with a single master (or leader) server at all times. This optimization, sometimes termed
“Multi-Paxos,” is important to achieving high throughput in practical systems [2]. Changing the leader
requires invoking additional consensus mechanisms that substantially reduce throughput.

This algorithmic limitation has several important consequences. First, it can impair scalability by
placing a disproportionally high load on the master, which must process more messages than the other
replicas [8]. Second, it can harm availability: if the master fails, the system cannot service requests until
a new master is elected. Finally, as we show in this paper, traditional Paxos variants are sensitive to both
long-term and transient load spikes and network delays that increase latency at the master. Previously
proposed solutions such as partitioning or using proxy servers are undesirable because they restrict the type
of operations the cluster can perform. For example, a partitioned cluster cannot perform atomic operations
across partitions without using additional techniques.

Egalitarian Paxos (EPaxos) has no designated leader process. Instead, clients can choose, at every
step, which replica to submit a command to, and in most cases the command will be committed without
interfering with other concurrent commands. This allows the system to evenly distribute the load to all
replicas, eliminating the first bottleneck identified above (having one server that must be on the critical path
for all communication). The system can provide higher availability because there is no transient interruption
because of leader election: there is no leader, and hence, no need for leader election, as long as more
than half of the replicas are available. Finally, EPaxos’s flexible load distribution is better able to handle
permanently or transiently slow nodes, substantially reducing both the median and tail commit latency.

2 Preliminaries

We begin by stating assumptions, definitions, and introducing our notation.
Messages exchanged by processes (clients and replicas) are asynchronous. Failures are non-Byzantine

(a machine can fail by stopping to respond for an indefinite amount of time). The replicated state machine
comprises N replicas. For every replica R there is an unbounded sequence of numbered instances R.1,
R.2, R.3, ... that that replica is said to own. At most one command will be adopted in an instance. The
ordering of the instances is not pre-determined—it is determined dynamically by the protocol, as commands
are chosen.

It is important to understand that committing and executing commands are different actions, and that
the commit and execution orders are not necessarily the same. A client of an EPaxos-based system will
interact with the system through an interface of the following form:

To modify the replicated state, a client sends Request(command) to a replica of its choice. A
RequestReply from that replica will notify the client that the command has been committed.

To read (a part of) the state, clients send Read(objectID) messages and wait for ReadReply. A Read
is itself a special no-op command that interferes with updates to the object it is reading.

A client that receives a RequestReply for a command knows only that the command has been com-
mitted, but has no information about whether the command has been executed or not. Only when the client
reads the replicated state updated by its previously committed commands is it necessary for those commands
to be executed.

1



3 Interfering Commands

Before we can describe Egalitarian Paxos in detail, we must define command interference.
Informally, two commands that interfere must be executed in the same order by all replicas.

Definition 1 (Interference). Two commands � and � interfere if there exists a sequence of commands ⌃ such
that the serial execution ⌃, �, � is not compatible (i.e., it produces different results than) the serial execution
⌃, �, �.

As we explain in the following subsection, EPaxos guarantees that any two interfering commands will
be executed in the same order with respect to each other on every replica. This is enough to guarantee that
the executions on all replicas are compatible: the serial ordering of commands on a replica can be obtained
from that on any other replica by commuting commutative commands.

Note that the interference relation is symmetric, but not necessarily transitive.

4 Protocol Guarantees

The formal guarantees that Egalitarian Paxos offers clients are similar to those provided by other Paxos
variants:

Nontriviality Any command committed by any replica must have been proposed by a client.
Stability For any replica, the set of committed commands at any time is a subset of the committed

commands at any later time. Furthermore, if at time t1 a replica R has command � committed at some
instance Q.i, then R will have � committed in Q.i at any later time t2 > t1.

Consistency Two replicas can never have different commands committed for the same instance.
Execution consistency For any two commands � and � that interfere, if both � and � have been com-

mitted by any replicas, then � and � will be executed in the same order by every replica.
Execution linearizability If two interfering commands � and � are serialized by clients (i.e., � is

proposed only after � is committed by any replica), then every replica will execute � before �.
Liveness A proposed command will eventually be committed by every non-faulty replica, as long as

fewer than half the replicas are faulty and messages eventually reach their destination before their recipient
times out. These are the same liveness guarantees provided by Paxos. By FLP [3], it is impossible to provide
stronger guarantees for distributed consensus.

5 Simplified Egalitarian Paxos

In this section we describe the basic form of the Egalitarian Paxos protocol. In Section 6 we will show how
to modify this protocol to reduce the quorum size.

5.1 The EPaxos Commit Protocol

As mentioned earlier, committing and executing commands are separate. Accordingly, EPaxos comprises
two components: (1) the protocol for choosing (committing) commands and determining their ordering
attributes in the process; and (2) the algorithm for executing commands based on these attributes.

We present a pseudocode description of the Egalitarian Paxos protocol for choosing commands below.
The state of each replica is represented in the pseudocode by each replica’s private commands array.

We split the description of the commit protocol into multiple phases. Not all phases are executed for
every command: a command committed after the execution of Init, Phase 1, and Commit, is said to have

2



L, R, Q Replicas (the command leader is usually denoted by L)
�, � Commands

R.i, with i = 1, 2, ... Instances belonging to replica R
epoch.i.R, with epoch, i = 0, 1, 2, ... Ballot numbers generated by replica R

(epoch.0.R is the initial ballot for any instance R.i)
deps

�

The list of dependencies for command �

seq
�

Approximate sequence number for command �

Q::commands[R][i] The state of replica Q at instance R.i

Figure 1: Summary of notation.

been executed on the fast path. The slow path involves the additional Paxos-Accept phase. The Explicit
Prepare phase is only executed on failure recovery.

Phase 1 starts when a replica L receives a request (for a command �) and becomes a command leader.
L begins the process of choosing � in the next available instance of its instance space. It also attaches what
it believes are the correct attributes for that command:

deps is the list of all instances that contain commands (not necessarily committed) that interfere with �; we
say that � depends on those instances (and their corresponding commands);

seq is a sequence number used to break dependency cycles during the execution algorithm; seq is updated
to be larger than the seq numbers of all commands in deps.

The command leader forwards the command and the initial attributes to at least a fast quorum of replicas
as a PreAccept message. For now, we assume that a fast quorum contains N � 1 replicas, including the
command leader. We will show in Section 5.7 that we can reduce the fast quorum size to d3N/4e when
N > 3.

Each replica, upon receiving the PreAccept, updates �’s attributes according to the contents of its
commands log, records � and the new attributes in commands, and replies to the command leader.

If the command leader receives replies from enough replicas to constitute a fast quorum, and all the
updated attributes are the same, it commits the command. If it doesn’t receive enough replies, or the at-
tributes in some replies have been updated differently than in others, then the command leader updates the
attributes based on bN/2c + 1 replies (taking the union of all deps, and the highest seq), and tells at least
bN/2c + 1 replicas to accept these attributes. This can be seen as running Paxos-Accept for choosing the
triplet (�, deps

�

, seq
�

) in �’s instance. At the end of this extra round, after replies from a majority (includ-
ing itself), the command leader will reply to the client, and will send Commit messages asynchronously to
all the other replicas.

Like classic Paxos, every message contains a ballot number (not presented explicitly in the pseudocode
for phases other than Explicit Prepare). As in classic Paxos, the ballot number ensures message freshness:
a replica will disregard any message with a smaller ballot than the largest it has seen for a certain instance.
Ballot numbers used by a replica R have the form epoch.i.R, where epoch is the natural number id of the
current configuration and i is a natural number (epoch and i take precedence when ordering ballots, while the
replica id R ensures different replicas cannot generate the same ballot number). The initial Prepare phase
is implicit for all instances R.i, for an initial ballot number epoch.0.R and each replica is the default (i.e.,
initial) leader of its own instances. Whenever a command leader receives a NACK for one of its messages,
indicating that some other replica has used a higher ballot in the same instance, that command leader will
fallback on executing Explicit Prepare.

Init

Replica L on receiving Request(�) from a client:

3



1: start Phase 1 for � at previously unused instance L.i

Phase 1

Replica L designated as leader for command � (steps 2, 3 and 4 executed atomically):
2: seq

�

 max ({0} [ {seq. attribute of every command recorded in L :: commands that interferes w/
�}) + 1

3: deps
�

 {(Q, j) | L :: commands[Q][j] interferes w/ �}
4: L :: commands[L][i] (�, seq

�

, deps
�

, P reAccepted)
5: send PreAccept(�, seq

�

, deps
�

, L.i) to all other replicas in fast quorum that includes L

Replica R, on receiving PreAccept(�, seq
�

, deps
�

, L.i) from replica L (steps 6 through 10 executed
atomically):

6: max seq  max({0}[{seq. attribute of every command � in R :: commands, s.t. � and � interfere})

7: update seq
�

 max({seq
�

,max seq + 1})
8: deps

local

 {(Q, j) | R :: commands[Q][j] interferes with �}
9: update deps

�

 deps
�

[ deps
local

10: R :: commands[L][i] (�, seq
�

, deps
�

, P reAccepted)
11: reply PreAcceptOK(�, seq

�

, deps
�

, L.i) to L

Replica L (designated leader for command �), on receiving at least bN/2c + 1 PreAcceptOK re-
sponses:
12: if received at least N � 2 PreAcceptOK’s with the same seq

�

and deps
�

attributes then
13: reply RequestReply(�, L.i) to client
14: run Commit phase for (�, seq

�

, deps
�

) at L.i
15: else
16: update deps

�

 Union(deps
�

from all replies)
17: update seq

�

 max({seq
�

of all replies})
18: run Paxos-Accept phase for (�, seq

�

, deps
�

) at L.i
Paxos-Accept

Designated leader replica L, for (�, seq
�

, deps
�

) at instance L.i

19: L :: commands[L][i] (�, seq
�

, deps
�

, Accepted)
20: send Accept(�, seq

�

, deps
�

, L.i) to all other replicas in a slow quorum that includes L

Replica R, on receiving Accept(�, seq
�

, deps
�

, L.i):
21: R :: commands[L][i] (�, seq

�

, deps
�

, Accepted)
22: reply AcceptOK(�, L.i) to L

Designated leader replica L, on receiving at least bN/2cAcceptOK messages for instance L.i:
23: reply RequestReply(�, L.i) to client
24: run Commit phase for (�, seq

�

, deps
�

) at L.i

Commit

Designated leader replica L, for (�, seq
�

, deps
�

) at instance L.i

25: L :: commands[L][i] (�, seq
�

, deps
�

, Committed)
26: send Commit(�, seq

�

, deps
�

, L.i) to all other replicas

4



Replica R, on receiving Commit(�, seq
�

, deps
�

, L.i):
27: R :: commands[L][i] (�, seq

�

, deps
�

, Committed)

Explicit Prepare Phase

Replica Q for instance L.i of a potentially failed replica L

28: increment ballot number to epoch.(b + 1).Q, (where epoch.b.L was the default ballot number for in-
stance L.i)

29: send Prepare(epoch.(b+ 1).Q, L.i) to all replicas (including self)
30: wait for at least bN/2c+ 1 responses
31: let R be set of replies w/ the highest ballot number
32: if R contains a (�, seq

�

, deps
�

, Committed) then
33: run Commit phase for (�, seq

�

, deps
�

) at L.i
34: else if R contains a (�, seq

�

, deps
�

, Accepted) then
35: run Paxos-Accept phase for (�, seq

�

, deps
�

) at L.i
36: else if R contains at least bN/2c identical (�, seq

�

, deps
�

, P reAccepted) replies, and none is from L
then

37: run Paxos-Accept phase for (�, seq
�

, deps
�

) at L.i
38: else if R contains at least one (�, seq

�

, deps
�

, P reAccepted) then
39: start Phase 1 for � at instance L.i, avoiding the fast path
40: else
41: start Phase 1 for a no-op at instance L.i, avoiding fast path

Replica R, on receiving Prepare(epoch.b.Q, L.i) from Q

42: if epoch.b.Q is larger than the most recent ballot number epoch.x.Y for instance L.i then
43: reply PrepareOK(R :: commands[L][i], epoch.x.Y, L.i)
44: else
45: reply NACK

5.2 The Execution Algorithm

To execute command � committed in instance R.i, a replica will follow these steps:

1. Wait for R.i to be committed (or run an explicit prepare phase to force it);

2. Build �’s dependency graph by adding � and all the commands in instances from �’s dependency list
as nodes, with directed edges from � to these nodes, and then repeating this process recursively for
all of �’s dependencies (starting with step 1);

3. Find the strongly connected components, sort them topologically;

4. In decreasing topological order, for each strongly connected component, do:

4.1 Sort all commands in the strongly connected component by their sequence number;

4.2 Execute every command in increasing sequence number order (if it hasn’t already been exe-
cuted), and mark it as executed.

5



5.3 Keeping the Dependency List Small

Instead of including all interfering commands, we include only N dependencies in each list: the instance
number R.i with the highest i for which the current replica has seen an interfering command (not necessarily
committed). If the interference relation is transitive (usually the case in practice) the most recent interfering
command suffices, because its dependency graph will contain all commands committed in instances R.j,
with j < i. Otherwise, every replica must assume that any unexecuted commands in previous instances R.j
(j < i) are possible dependencies and check them locally—a fast operation when commands are executed
soon after being committed.

5.4 Recovering from Failures

A replica may need to find out the decision for an instance because it has commands to execute that depend
on it. If the replica times out waiting for the commit for that instance, it will try to take ownership of it
by running an Explicit Prepare phase, at the end of which it will either learn what command was being
proposed in the problem instance (in which case it will finalize committing that command), or it will not
learn any command (because no other replica has seen it), in which case it will commit a special no-op
command to finalize the instance

Another failure-related situation is that where a client timed out waiting for a replica to reply and re-
issues its command to a different replica. As a result, the same command can be proposed in two different
instances, so every replica must be able to recognize duplicates, and only execute the command once. This
situation is not specific to Egalitarian Paxos—it affects any replication protocol. An alternative solution is
to make the application tolerant of re-executed commands.

5.5 Joining/Rejoining the Replica Set

We take an approach similar to a Vertical Paxos [6] system with majority read quorums: A new replica, or
one that recovers without its memory, must receive a new ID and a new (higher) epoch number, e.g., from
a configuration service or a human. It then sends Join messages to at least F + 1 live replicas (that are
not themselves in the process of joining). Upon receiving a Join, a replica will first update its membership
information and then the epoch part of each ballot number it uses or expects to receive for new instances—it
will thus no longer acknowledge messages for instances initiated in older epochs, that it is not already aware
of. It will then send the joining replica the list of committed or ongoing instances that the live replica is
aware of. The joining replica becomes live only after receiving commits for all instances included in the
replies to at least F + 1 Join messages. This strategy ensures that a joining replica and a replica that has
been excluded from the new configuration cannot participate in voting commands at the same time—thus
preserving the property that any two quorums overlap.

Once F +1 live replicas have switched to the new configuration, a replica that has been excluded from
the new configuration will not be able to act as command leader (its messages will not be acknowledged by
a majority), nor can it participate in successful ballots. The excluded replica might still initiate instances,
but they can be finalized only by live replicas that have committed to the new configuration. This eventually
stops when all live replicas have committed to the new configuration, or when the excluded replica receives
a Join message that makes it aware of its exclusion.

The strategy described in this section preserves the protocol guarantees. An instance is either finalized
as if the joining replica has not joined yet (if the id of that instance was contained in one of the F +1 replies
to Join messages), or it is treated like a new command in the new configuration.

6



5.6 Proof of Properties

We prove that together, the commit protocol and execution algorithm guarantee the properties stated in
Section 4.

Theorem 1 (Nontriviality). Any command committed by any EPaxos replica must have been proposed by a
client.

Proof. For any command that reaches the Commit phase, a replica must have executed the Init phase. Init
is only executed for commands proposed by clients.

Definition 2. If � is a command with attributes seq
�

and deps
�

, we say that the tuple (�, seq
�

, deps
�

) is
safe at instance Q.i if (�, seq

�

, deps
�

) is the only tuple that is or will be committed at Q.i by any replica.

Lemma 1. EPaxos replicas commit only safe tuples.

Proof.

1 The same ballot number cannot be used twice in the same instance.
PROOF:

1.1 No two different replicas can use the same ballot number.

PROOF: The ballot number chosen by a replica is based on its id, which is unique.

1.2 A replica never uses the same ballot number twice for the same instance

PROOF:

1.2.1 Case: If replicas store the command log in persistent memory, then a replica will never reinitiate
the same instance twice with the same ballot number.

1.2.2 Case: If a crashed replica can forget the command log, it will be assigned a new id when it
recovers.

1.2.3 Q.E.D.
Cases 1.2.1 and 1.2.2 are exhaustive.

1.3 Q.E.D.

Immediately from 1.1 and 1.2.

2 For any instance Q.i there is at most one attempt (i.e., the default ballot 0.Q) to choose a tuple without
running Explicit Prepare first.
PROOF:

2.1 A replica Q starts an instance Q.i at most once.

PROOF: A replica starts an instance only in the Init phase of the algorithm and it increments the
instance number atomically every time it executes Init. The instance number never decreases. If a
replica loses the content of its memory (e.g., after a crash), it will be assigned a previously unused
replica id by a safe external configuration service—so the same instance can never be started twice.

2.2 No replica other than Q can start instance Q.i.

PROOF:

7



2.2.1 A replica with a different id R 6= Q starts only instances R.i 6= Q.i

2.2.2 A new replica is never assigned the id of a previously started replica

2.2.3 Q.E.D.
Immediately from 2.2.1 and 2.2.2.

2.3 Q.E.D

When not running Explicit Prepare, a replica tries to choose a command in an instance only if it starts
that instance, and only for the default ballot. By 2.1 and 2.2, this can happen at most once per instance
Q.i, in ballot 0.Q.

3 Let b
smallest

be the smallest ballot number for which a tuple (�, seq
�

, deps
�

) has been committed at instance
Q.i. Then any other commit at instance Q.i commits the same tuple.
PROOF:
By induction on the ballot number b of all ballots committed for Q.i:

3.1 Base case: if b = b
smallest

, then the same tuple is committed in both b and b
smallest

.

PROOF:

By 1, b and b
smallest

must be the same ballots.

3.2 Induction step: if tuple (�, seq
�

, deps
�

) has been committed in ballot b1, then the next higher suc-
cessful ballot b > b1 will commit the same tuple.

PROOF:

Let b2 be the next highest ballot number of a ballot attempted at instance Q.i. By 2, and since b2
cannot be the default ballot for Q.i (because there is a ballot b1 smaller than it), b2 is attempted after
running Explicit Prepare. Furthermore, by the recovery procedure, any ballot attempted after Explicit
Prepare must run the Paxos-Accept Phase.

3.2.1 Case: Ballot b1 is committed directly after Phase 1.
Since b1 is successful after Phase 1, then a fast quorum (N � 1 replicas) have recorded the
same tuple (�, seq

�

, deps
�

) for instance Q.i. For b2 to start, its leader must receive replies to
Prepare messages from at least bN/2c+1 replicas. Therefore, at least bN/2c replicas will see
a Prepare for b2 after they have recorded (�, seq

�

, deps
�

) for ballot b1 (if they had seen the
larger ballot b2 first, they would not have acknowledged any message for ballot b1). b2’s leader
will therefore receive at least bN/2c PrepareReply’s with tuple (�, seq

�

, deps
�

) marked as
pre-accepted.
If the leader of b1 is among the replicas that reply to the Prepare of ballot b2, then it must have
replied after the end of Phase 1 (otherwise it couldn’t have completed the smaller ballot b1), so
it will have committed tuple (�, seq

�

, deps
�

) by then. The leader of b2 will then know it is safe
to commit the same tuple.
Below, we assume that the leader of b1 is not among the replicas that reply to the Prepare of
ballot b2.

3.2.1.1 Subcase: N > 3
The bN/2c replies with tuple (�, seq

�

, deps
�

) constitute a majority among the first bN/2c+
1PrepareReply’s. The leader of ballot b2, will therefore be able to identify tuple (�, seq

�

, deps
�

)
as potentially committed, and use it in a Paxos-Accept Phase.

8



3.2.1.2 Subcase: N = 3
bN/2c = 1 is not a majority among the first bN/2c + 1 = 2 PrepareReply’s. However,
for N = 3, a command leader commits a tuple after Phase 1 only if a PreAcceptReply
matched the attributes in the initial PreAccept. The acceptor that has sent such a PreAcceptReply
in ballot b1 will convey this information in a PrepareReply for ballot b2. The leader of
ballot b2 will therefore use the correct tuple (�, seq

�

, deps
�

) in a Paxos-Accept Phase.

For ballots higher than b2 to start, their leaders will follow the recovery procedure, and will
receive either the same type of replies received by the leader of b2 (as above), or it will re-
ceive at least one PrepareReply from a replica whose highest ballot is b2 and has marked
(�, seq

�

, deps
�

) as accepted. In either case, by the recovery procedure, the replica trying to take
over instance Q.i will have to use tuple (�, seq

�

, deps
�

) in a Paxos-Accept Phase. By simple
induction, any ballot higher than b1 will use tuple (�, seq

�

, deps
�

) in a Paxos-Accept Phase,
including successful ballots.

3.2.2 Case: Ballot b1 is committed after the Paxos-Accept Phase.
The tuple (�, seq

�

, deps
�

) is safe by the guarantees of classic Paxos.

3.2.3 Q.E.D.
Cases 2.2.1 and 2.2.2 are exhaustive.

3.3 Q.E.D.

The induction is complete.

4 Q.E.D.
Immediately from 3.

Theorem 2 (Consistency). Two replicas can never have different commands committed for the same in-
stance.

Proof. We have already proved a stronger property: by Lemma 1, two replicas can never have different
tuples (i.e., commands along with their commit attributes) committed for the same instance.

Theorem 3 (Stability). For any replica, the set of committed commands at any time is a subset of the
committed commands at any later time. Furthermore, if at time t1 a replica R has command � committed at
some instance Q.i, then R will have � committed in Q.i at any later time t2 > t1.

Proof. By Theorem 2 and the extra assumption that committed commands are recorded in persistent mem-
ory.

So far, we have shown that tuples are committed consistently across replicas. They are also stable, as
long as they are recorded in persistent memory. We now show that having consistent attributes committed
across all replicas is sufficient to guarantee that all interfering commands are executed in the same order on
every replica:

Theorem 4 (Execution consistency). If two interfering commands � and � are successfully committed (not
necessarily by the same replica), they will be executed in the same order by every replica.

Proof.

9



1 If � and � are successfully committed and � ⇠ �, then either � has � in its dependency list when � is
committed (more precisely, � has �’s instance in its dependency list, but, for simplicity of notation, we use
a command name to denote the pair comprising the command and the specific instance in which it has been
committed), or � has � in its dependency list when � is committed.
PROOF:

1.1 The attributes with which a command c is committed are the union of at least bN/2c + 1 sets of
attributes computed by as many replicas.

PROOF:

1.1.1 Case: c is committed immediately after Phase 1.
N � 1 replicas have input their attributes for c.

1.1.2 Case: c is committed after the Paxos-Accept phase.
1.1.2.1 Subcase: The Paxos-Accept phase starts after the execution of Phase 1.

Phase 1 ends after bN/2c replicas have replied to a PreAccept with the command leader’s
updated attributes (so the attributes are the union of bN/2c + 1 sets of attributes, from as
many replicas, including the command leader).

1.1.2.2 Subcase: The Paxos-Accept phase starts after bN/2c PrepareReply’s in the recovery
phase, none of which is from the initial command leader.
Then bN/2c replicas, plus the initial command leader (bN/2c + 1 replicas in total), have
contributed to the set of attributes used for the subsequent Paxos-Accept phase.

1.1.2.3 Subcase: The Paxos-Accept phase starts after a PrepareReply from a replica R that had
marked c as accepted.
Then some replica has to have previously initiated the Paxos-Accept phase that resulted in
R receiving an Accept, so this subcase is reducible to one of the previous subcases.

1.1.2.4 Q.E.D.
The subcases enumerated above describe all possible circumstances in which a command
is committed after the Paxos-Accept Phase.

1.1.3 Case: � is committed after the current replica receives a Commit for � from another replica.
The replica that initiates the Commit must be in one of the previous two cases.

1.1.4 Q.E.D.
The cases enumerated above are exhaustive.

1.2 Q.E.D.

By 1.1, at least one replica R contributes for both �’s and �’s final attributes. Because R records every
command that it sees in its command log, and because � ⇠ �, R will include the command it sees first
in the dependency list of the command it sees second.

2 Q.E.D.
By 1, the final dependency graphs of � and � are in one of three cases:

2.1 Case: � and � are both in each other’s dependency graph.

Then, by the execution algorithm, � and � have each other in their dependency graphs, and moreover,
they are in the same strongly connected components of their respective graphs. By the execution algo-
rithm, whenever one command is executed, the other is also executed. Since the execution algorithm
is deterministic, and since, by Lemma 1, every replica builds the same dependency graphs for � and
�, every replica will execute the commands in the same order.

10



2.2 Case: � is in �’s dependency graph, but � is not in �’s dependency graph.

The commands are in different strongly connected components in �’s graph, and �’s component is
ordered after �’s component in reversed topological order.

We show that � is executed before � by every replica:

2.2.1 Subcase: A replica tries to execute � first.
The replica will execute � without having executed �.

2.2.2 Subcase: A replica tries to execute � first.
By the execution algorithm, the replica will build �’s dependency graph, which also contains �
in a strongly connected component that is ordered before �’s component in reversed topological
order. Then � is executed before � is executed.

2.3 Case: � is in �’s dependency graph, but � is not in �’s dependency graph.

Just like the previous case, with � and � interchanged.

2.4 Q.E.D.

The above three cases are exhaustive. In all cases, the commands are executed in the same order by
every replica.

Theorem 5 (Execution linearizability). If two interfering commands � and � are serialized by clients (i.e.,
� is proposed only after � is committed by any replica), then every replica will execute � before �.

Proof.

1 � will be in �’s dependency graph.
PROOF:
By the time � is proposed, � will have been pre-accepted by at least bN/2c + 1 replicas. For � to be
committed, it too has to be pre-accepted by at least bN/2c + 1 replicas. Therefore, at least one replica
R whose pre-accept is taken into account when establishing �’s dependency list pre-accepts � after it has
pre-accepted �. Since � ⇠ �, R will put � in �’s dependency list.

2 The sequence number with which � is committed will be higher than that with which � is committed.
PROOF:

2.1 By the time any replica receives a request for � from a client, at least bN/2c + 1 replicas will have
logged the final sequence number for �.

PROOF:

2.1.1 Case: � is committed directly after Phase 1.
Then N � 1 replicas have logged the same sequence number for �, and this is the sequence
number with which � is committed.

2.1.2 Case: � is committed after the Paxos-Accept Phase.
Then at least bN/2c+1 replicas have logged � as accepted with its final attributes, including its
sequence number.

2.1.3 Q.E.D.
Cases 2.1.1 and 2.1.2 are exhaustive.

11



2.2 Q.E.D.

By 2.1, at least one of the replicas that pre-accepts �, whose PreAcceptReply is taken into account
when establishing �’s final attributes, will update �’s sequence number to be higher than �’s final
sequence number.

3 Q.E.D.
At any replica R, there are two possible cases:

3.1 Case: R tries to execute � before it tries to execute �.

3.1.1 Subcase: � is in �’s dependency graph.
Then, by 1, � and � are in the same strongly connected component. By the execution algorithm
and by 2, � will be executed before �.

3.1.2 Subcase: � is not in �’s dependency graph.
Then, by the execution algorithm, � will be executed (at a moment when � won’t have been
executed).

3.2 Case: R tries to execute � before it tries to execute �.

3.2.1 Subcase: � is in �’s dependency graph.
Then, by 1, � and � are in the same strongly connected component. By the execution algorithm
and by 2, � will be executed before �.

3.2.2 Subcase: � is not in �’s dependency graph.
Then, by 1, � is in a different strongly connected component than �, and �’s component is first
in reversed topological order. By the execution algorithm, � is executed before �.

3.3 Q.E.D.

The above cases are exhaustive. In all cases � is always executed before �.

Finally, liveness is guaranteed with high probability as long as a majority of replicas are non-faulty:
clients and replicas use time-outs to resend messages, and a client keeps retrying a command until a replica
succeeds in committing that command.

5.7 Fast Egalitarian Paxos

We can use the Fast Paxos optimization in EPaxos to decrease the commit latency by one message delay by
letting clients broadcast commands to all replicas. We do not explore this because of two main drawbacks:
(1) the fast-path quorum size will be d3N/4e (as in Generalized Paxos), which is by at least one replica
larger than that in Optimized Egalitarian Paxos (which we describe in Section 6); and (2) when building
deps, we can no longer identify commands by their instance numbers—we must use unique identifiers set
by the clients instead.

6 Optimized Egalitarian Paxos

We now describe how Egalitarian Paxos can be enhanced by reducing the fast-path quorum size for increas-
ing its performance: higher throughput and lower latency—including optimal commit latency in the wide
area for setups with 3 and 5 replicas.

12



6.1 Preferred Fast-Path Quorums

Instead of sending PreAccept messages to every replica, a command leader sends PreAccepts to only
those replicas in a fast-path quorum that includes itself. We call this mode of operation thrifty. The fast-
path quorum can be static per command leader, or it can change for every new command—depending on
inter-replica communication latency and dynamic load assessment.

Using this optimization has the immediate benefit of decreasing the overall number of messages pro-
cessed by the system for each command, thus increasing the system throughput.

Another, less obvious consequence is that we can decrease the fast-path quorum size from 2F to F +
bF+1

2 c, where F is the maximum number of failures the system can tolerate (the total number of replicas is
therefore N = 2F + 1). To achieve this, we make two additional modifications to simplified EPaxos:

1. We modify the fast path condition in Phase 2: the command leader commits a command on the fast
path if both of the following conditions are fulfilled:

FP-quorum: The command leader receives F + bF+1
2 c � 1 PreAcceptReply’s with identical deps

and seq attributes, and

FP-deps-committed: For every command in deps, at least one of the replicas in the quorum (includ-
ing the command leader itself) has recorded that command as Committed—acceptors pass this
information to the command leader with at most one bit per each command included in deps.

The last condition is necessary for ensuring that the seq attribute for every command in deps is final
(it will not change), and will aid in recovering from failures, as explained in the next subsesction.

Alternatively, for up to seven total replicas, we can eliminate the second condition if we make the
following modification to the protocol:

Accept-Deps: Every sender of an Accept or AcceptReply message will attach a dependency list
updated right before the Accept / AcceptReply was sent; every receiver of an Accept or Accep-
tReply will store the message in its log permanently.

The updated dependency information in these recorded Accept and AcceptReply messages is only
used during the recovery procedure, and has no role in the execution algorithm. Using this alternative
protocol modification has the important benefit that it does not affect the chance of committing on the
fast-path.

When using the Accept-Deps variant of the protocol, it is important for replicas that have not received
a command to not set dependencies on its corresponding instance. This may happen in implementa-
tions that use the optimization described in Section 5.3 (which involves setting implicit dependencies
on all instances with IDs smaller than a given instance ID) and may result in the approximate se-
quence number not being updated correctly. There are two ways an implementation can avoid this
problem: (a) acceptors attach the ranges of instances that they have not seen to PreAcceptReplies or
(b) acceptors do not reply to PreAccepts before receiving messages for all instances that they would
set implicit dependencies on.

2. We modify the recovery procedure (i.e., the Explicit Prepare Phase), which we describe in the next
subsection.

13



The rest of the algorithm remains the same as described in the previous section.
Note that for 3 and 5 replicas, the fast-path quorum sizes become 2 and 3, respectively, which is optimal

(just like for classic Paxos).
Another consequence is that for 3 replicas, there is no chance of conflicts, even when all commands

interfere. This is because the only reply that the command leader waits for the sole PreAccept it send
does not have another PreAcceptReply to conflict with. As long as there are no failures and replicas
reply timely, a 3-replica thrifty EPaxos state machine will commit every command after just one round of
communication.

6.2 Failure Recovery in Optimized Egalitarian Paxos

We now describe the new recovery procedure (i.e., the new Explicit Prepare Phase) that allows us to use
smaller fast-path quorums.

The recovery procedure guarantees that a command committed on the fast path will be committed even
if its command leader and F � 1 other replicas have since failed.

Let R be a replica trying to decide instance Q.i of a potentially failed replica Q:

1. R sends Prepare messages to all other replicas, with a higher ballot number than the initial ballot
number for Q.i.

Each replica replies with the information recorded for Q.i, if any. R waits for at least F + 1 replies
(including itself). If R does not receive F + 1 ACKS (because some replicas have received messages
with higher ballots, and reply with NACKS), R increases the ballot number and retries.

2. If no replica has any information about Q.i, R exits recovery and starts the process of choosing a
no-op at Q.i by proposing it in the Paxos-Accept Phase.

3. If at least one replica has committed command � in Q.i (there is at most one such command), with
attributes deps

�

and seq
�

, R commits � locally, sends Commit(Q.i, �, deps
�

, seq
�

) to every other
replica, and exits recovery.

4. If at least one replica has accepted command (�, deps
�

, seq
�

) in Q.i, R exits recovery and starts
a Paxos-Accept Phase for this tuple at Q.i (it will choose the one accepted with the highest ballot
number, if there are multiple different accepted tuples at Q.i).

5. If at least bF+1
2 c replicas have pre-accepted � with the same attributes (�, deps

�

, seq
�

), in Q.i’s
default ballot then goto 6.

Else R exits recovery and starts the process of choosing � at Q.i, on the slow path (i.e., Phase 1, Phase
2, Paxos-Accept, Commit).

6. R sends TentativePreAccept(Q.i, �, deps
�

, seq
�

) to all the respondents that have not pre-accepted
�.

When receiving a TentativePreAccept(Q.i, �, deps
�

, seq
�

) a replica pre-accepts (�, deps
�

, seq
�

)
at Q.i if it has not already recorded an interfering command with conflicting attributes—i.e., any
command � such that:

i. � ⇠ �, and

ii. � /2 deps
�

, and

iii. (a) � /2 deps
�

, or

14



(b) � 2 deps
�

, but seq
�

� seq
�

(this subcase has one exception that does not constitute a
conflict: � and � have the same initial command leader, and � is recorded as pre-accepted).

Otherwise, if such a command � with conflicting attributes exists, the receiver of the TentativePreAccept
replies with NACK, �’s instance, the identity of the command leader that has sent �, and the status of
� (pre-accepted, accepted or committed).

7. (a) If the total number of replicas that have pre-accepted or tentatively pre-accepted (�, deps
�

, seq
�

)
is at least F + 1 (and we can count Q here too, even if it does not reply), R exits recovery and
starts a Paxos-Accept Phase for this tuple at Q.i.

(b) Else if a TentativePreAccept NACK returns a status of committed, R exits recovery and
starts the process of choosing � at Q.i, on the slow path.

(c) Else if a TentativePreAccept NACK returns an instance not in �’s dependency list, with a
command leader that must have been part of �’s fast quorum for � to have been committed on
the fast path, then R exits recovery and starts the process of choosing � at Q.i, on the slow path.

(d) Else if There exists command �0 such that R has deferred the recovery of �0 because of a
conflict with �, and �0’s initial command leader must have been part of �’s fast quorum for �
to have been committed on the fast path, then R exits the recovery of � and starts the process
of choosing � at Q.i, on the slow path.

(e) Else R defers �’s recovery, and tries to decide one of the uncommitted commands that conflicts
with �.

If F  3 and we implement the Accept-Deps protocol modification, then step 7 becomes:

7’. (a) If the total number of replicas that have pre-accepted or tentatively pre-accepted (�, deps
�

, seq
�

)
is at least F + 1 (and we can count Q here too, even if it does not reply), R exits recovery and
starts a Paxos-Accept Phase for this tuple at Q.i.

(b) Else if a TentativePreAccept NACK returns a status of committed for a command � such that
� 2 deps

�

and seq
�

� seq
�

, R checks the additional Accept and AcceptReply dependencies
recorded at F other replicas. If there exists an Accept or AcceptReply for the tuple with which �
has been committed, such that � is not part of its additional dependencies, and the sender of that
message is part of �’s fast quorum (i.e., must be part of the quorum for the fast-path hypothesis
to hold), then R exits the recovery procedure and starts the process of choosing � at Q.i on
the slow path. If, on the other hand, none of the F replicas has recorded such an Accept or
AcceptReply message, then R resends the TentativePreAccept specifying that � is no longer
a conflict for (�, deps

�

, seq
�

).

(c) Else if a TentativePreAccept NACK returns a status of committed, R exits recovery and
starts the process of choosing � at Q.i, on the slow path.

(d) Else if a TentativePreAccept NACK returns an instance not in �’s dependency list, with a
command leader that must have been part of �’s fast quorum for � to have been committed on
the fast path, then R exits recovery and starts the process of choosing � at Q.i, on the slow path.

(e) Else if There exists command �0 such that R has deferred the recovery of �0 because of a
conflict with �, and �0’s initial command leader must have been part of �’s fast quorum for �
to have been committed on the fast path, then R exits the recovery of � and starts the process
of choosing � at Q.i, on the slow path.

15



(f) Else R defers �’s recovery, and tries to decide one of the uncommitted commands that conflicts
with �.

This decision process is depicted in Figure 2.
We are now ready to explain why the fast-path quorum must be F + bF+1

2 c: so that the following
lemma holds:

Lemma 2. The recovery procedure for Thrifty Egalitarian Paxos can always make progress (as long as the
system is live).

Proof.
The recovery procedure blocks only if there exist commands c1, c2, ..., cn such that the recovery for c

i

defers to c
i+1 for any i = 1..n � 1, and c

n

defers to c1. The recovery procedure must assume about every
one of these commands that it might have been committed on the fast path.

I Case 1: The chain contains two consecutive commands � and � such that � /2 deps
�

and � /2 deps
�

.
Let R be a replica trying to recover �. R must believe that � may have been committed on the fast path.
Eventually, R will defer � and try to decide �, and, by our initial assumption, it must believe that � too may
have been committed on the fast path.
R must be aware of the following sets and their properties:

1. RESP
�

, the set of all the replicas in �’s fast quorum (QUOR
�

) that have responded to R’s prepare
messages, does not include L

�

, the initial command leader for � (otherwise � could be decided);

2. RESP
�

, the set of all the replicas in �’s quorum (QUOR
�

) that have responded to R’s prepare mes-
sages, does not include L

�

, the initial command leader for �;

3. |RESP
�

| � bF+1
2 c;

4. |RESP
�

| � bF+1
2 c;

5. RESP
�

\ RESP
�

= ? (because a replica cannot pre-accept both commands with conflicting at-
tributes);

6. R infers that L
�

/2 QUOR
�

—otherwise � could not have been committed on the fast path, since L
�

has set conflicting attributes for �.

7. R infers that L
�

/2 QUOR
�

—otherwise � could not have been committed on the fast path, since L
�

has set conflicting attributes for �.

8. Since there are at most F replicas that do not reply to R, and L
�

(the possibly failed command leader
for �) must be one of them (otherwise R could decide �), by 6, there are at most F � 1 replicas that
may be part of QUOR

�

(we denote this superset by QUOR
�

) and that R does not receive replies
from. Then, for R to believe � may have been committed on the fast path, it must be the case that
|RESP

�

| � bF+1
2 c+ 1

By 2, 5 and 7, R must infer that the following sets are disjoint: QUOR
�

(i.e., the set of replicas that may
be part of QUOR

�

), RESP
�

, and {L
�

}. By 8 and our fast-path quorum requirement, the cardinality of
the union of these sets must be at least F + bF+1

2 c + b
F+1
2 c + 1 + 1 > 2F + 1. But this is impossible,

because this union must be a subset of the replica set, and its cardinality is 2F +1. Therefore, some of these
sets overlap, so R cannot be simultaneously uncertain about � and �. Our assumption that the recovery
procedure could deadlock is false.

16



7

6

5

4

3

2

1

Send Prepare's;
Wait for F+1 replies

F+1 PrepareOK's Increase ballot numberNo

At least one 
replica knows 

about Q.i

Yes

Choose no-op 
at Q.i by 

running Paxos-
Accept Phase

No

A replica has 
committed tuple t 

at Q.i

Commit t and 
send Commit 
messages to 
other replicas

Yes

Yes

A replica has 
accepted tuple t 

at Q.i

Choose t at Q.i 
by running 

Paxos-Accept 
Phase

Yes

No

At least  
⎣(F + 1)/2⎦replicas 
have pre-accepted 

tuple t at Q.i

Choose 
t.command at 

Q.i on the slow 
path

No

No

Send 
TentativePreAccept's 

to all replicas that have 
not pre-accepted t

Yes

At least  F + 1 
replicas have pre-

accepted or tentative-
pre-accepted tuple t 

at Q.i

Choose t at Q.i 
by running 

Paxos-Accept 
Phase

Yes

A replica answers 
NACK to a 

TentativePreAccept 
with status "committed"

No

Choose 
t.command at 

Q.i on the slow 
path

Yes

∃ command C 
whose recovery has been deferred 

because of a conflict with t, and 
C's command leader must have 

been part of the fast-path quorum 
for t

No

Yes

Defer recovery for Q.i 
and try to decide an 

instance that conflicts 
with Q.i

No

Figure 2: Decision process for recovery in optimized EPaxos.
17



II Case 2: c
i+1 2 deps

ci , for all i = 1..n (with c
n+1 ⌘ c1).

For recovery to defer, it must be the case that c
i

⇠ c
i+1, c

i

/2 deps
ci+1 , c

i+1 2 deps
ci , and seq

ci � seq
ci+1

for any i (and c
n+1 ⌘ c1). Then seq

c1 = seq
c2 = ... = seq

cn . Note also that this is only possible for n � 3.

1. Subcase: There exist c
i

and c
i+1 that have the same initial command leader.

Since c
i+1 has not been decided, it must be the case that all the information available about c

i+1 is
that it has been pre-accepted by various replicas. By our definition of conflicts (step 6 of the recov-
ery procedure, point iii.(b)), c

i+1 will not conflict with c
i

, which contradicts our assumption for this
subcase.

2. Subcase: No two consecutive commands in the chain have the same command leader.

As noted earlier, it must be the case that n � 3, otherwise there is no conflict. Consider commands
c1, c2 and c3. It is impossible that any replica that replies to Prepare messages has pre-accepted two
consecutive commands in the chain (because then they would not have been pre-accepted with the same
sequence numbers). Furthermore, at least

⌅
F+1
2

⇧
responding replicas have pre-accepted each command

in the chain (for c
i

we denote this set of replicas as RESP
ci). We show that the recovery procedure

concludes that either c1’s leader must have been part of c2’s fast quorum or that c2’s leader must have
been part of c3’s fast quorum:

2.1 Sub-subcase: F is odd.
Then 2F +1�

⌅
F+1
2

⇧
= F +

⌅
F+1
2

⇧
, and since c2 has not been pre-accepted by the

⌅
F+1
2

⇧
replicas

in RESP
c1 , all the other replicas, including c1’s leader, must have been part of c2’s fast quorum.

2.2 Sub-subcase: F is even.
Let LIV E be a set of F + 1 replicas that respond to Prepare messages (more replica may reply,
we only consider F + 1 of them). No more than

⌅
F+1
2

⇧
+ 1 of the replicas in LIV E can be part

of any one command’s fast quorum, because at least
⌅
F+1
2

⇧
will be part of the fast quorum for the

subsequent command in the chain.
If |LIV E \ RESP

c2 | =
⌅
F+1
2

⇧
, then all replicas outside LIV E must have been part of c2’s fast

quorum, including c1’s leader.
If |LIV E \ RESP

c2 | = 1 +
⌅
F+1
2

⇧
, then |LIV E \ RESP

c3 | =
⌅
F+1
2

⇧
, so all replicas outside

LIV E must have been part of c3’s fast quorum, including c2’s leader.

The sub-subcases enumerated above are exhaustive. In all situations, the leader of a command c
i

must
have been part of the fast quorum for c

i+1. It is therefore impossible for c
i+1 to have been committed

on the fast-path, since c
i

’s leader couldn’t have pre-accepted c
i+1 with the same sequence number as

c
i

without adding c
i

to c
i+1’s dependency list. As per 7 (or 7’) in the recovery procedure, the recovery

procedure will eventually abandon the fast-path recovery for c
i+1.

The subcases enumerated above are exhaustive.

Finally, we show that the recovery procedure is correct. We start by showing that it commits only safe
tuples:

Theorem 6. The Optimized Egalitarian Paxos recovery procedure commits only safe tuples.

Proof.
Assume the recovery procedure is trying to recover instance Q.i. We show that the tuple that it commits

at Q.i is safe.

18



1 Case: No tuple is committed at instance Q.i before the recovery procedure commits a tuple at Q.i.
In all cases, the recovery procedure ends by choosing a tuple on the slow path, by running classic Paxos.
The tuple is thus safe by the classic Paxos guarantees.

2 Case: A tuple (�, deps
�

, seq
�

) has been committed at Q.i before the recovery procedure terminates.

2.1 Subcase: (�, deps
�

, seq
�

) has previously been committed on the slow path.

Then there must be at least F + 1 replicas that have accepted (�, deps
�

, seq
�

). Since the recovery
procedure terminates by running classic Paxos in all cases, it will use the same tuple in a Paxos-Accept
Phase. By the guarantees of the classic Paxos algorithm, only this tuple can ever be committed at Q.i.

2.2 Subcase: (�, deps
�

, seq
�

) has previously been committed on the fast path.

Then there must be F + bF+1
2 c replicas that have pre-accepted this tuple at Q.i before processing

the Prepares of the recovery procedure (otherwise the initial command leader would have received
NACKs for the initial PreAccepts and not taken the fast path). Since at most F replicas can be faulty,
the recovery procedure will take into account the PrepareReply’s of at least bF+1

2 c of them, and by
step 5 of the recovery procedure, it will try to obtain a quorum for this tuple. We show that it will
succeed:

2.2.1 No interfering command � ⇠ �, can be committed such that � /2 deps
�

and � /2 deps
�

.
PROOF: � must be pre-accepted by a majority of replicas, and that majority will intersect �’s
quorum (itself a majority) in at least one replica, which will ensure that at least one command
will be in the other’s deps set.

2.2.2 If the protocol does not implement Accept-Deps, but does implement FP-deps-committed,
then no interfering command � ⇠ �, � 2 deps

�

, can be committed such that � /2 deps
�

and
seq

�

� seq
�

.
PROOF:
We prove this by generalized induction. The relation that we run the induction on is a � b ⌘
“command a has been committed (in a particular instance) by the recovery procedure for the first
time before command b has been committed (in a particular instance) by the recovery procedure
for the first time”.

2.2.2.1 Base case: Let �0 be the first command initially committed on the fast path and then com-
mitted again as a result of the recovery procedure (or one of the first, if multiple such
commands are committed at the exact same time).
Assume there existed � ⇠ �0, � 2 deps

�0 , committed such that �0 /2 deps
�

and seq
�

�
seq

�0 at the time of �0’s recovery. Since �0 had been committed on the fast path, then by
the additional condition for the fast-path in optimized EPaxos (FP-deps-committed), all
its dependencies, including � must have been committed before seq

�0 had been computed.
Then, � must have been committed again in the meantime with different attributes (thus
breaking safety). But by Lemma 1, 1, 2.1, 2.2.1, and the recovery procedure, this could
only have occurred if � had been committed incorrectly by the recovery procedure (before
�0), after initially having been committed on the fast-path—all other commit paths preserve
safety. By our base case assumption, this is impossible, since �0 � �.

2.2.2.2 Induction step: The property holds for � if it holds for every � � �.
Assume there exists � ⇠ �, � 2 deps

�

, committed such that � /2 deps
�

and seq
�

� seq
�

.
Since � has been committed on the fast path, then, by the additional condition for the
fast-path in optimized EPaxos, all its dependencies, including � must have been committed

19



before seq
�

had been computed. Then, � must have been committed again with different
attributes (thus breaking safety). But by Lemma 1, 1, 2.1, 2.2.1 and the recovery procedure,
this could only occur if � has been committed incorrectly by the recovery procedure after
initially having been committed on the fast-path—we have shown that all other commit
paths preserve safety. Since � has not been committed by the recovery procedure yet,
� � �. By the induction hypothesis and by 2.2.1, the recovery procedure would have exited
�’s recovery by correctly committing its initial fast-path attributes. Then seq

�

cannot be
larger or equal to seq

�

, since seq
�

has been updated to be larger than seq
�

at �’s initial
commit time.

2.2.2.3 Q.E.D
The induction is complete.

2.2.3 If the protocol does not implement FP-deps-committed, but does implement Accept-Deps, the
recovery procedure will not exit on the first Else case of step 7’.
PROOF: For the recovery procedure to exit on the first Else case of step 7’, there must exist a
committed tuple (�, deps

�

, seq
�

), with � ⇠ �, � 2 deps
�

, � /2 deps
�

and seq
�

� seq
�

, and there
must exist an Accept or AcceptReply message for this tuple sent by a replica R0 in �0s fast-path
quorum such that the additional dependencies for this message do not include �. Then R0 must
have accepted (�, deps

�

, seq
�

) before pre-accepting �. This is impossible, since then R0 would
not have pre-accepted � with seq

�

 seq
�

, as we know it must have for � to be committed on
the fast-path.

2.2.4 The recovery procedure will not exit on branches 7.c or 7d (7’.d or 7’.e, respectively): No replica
in �’s fast quorum can start instances for commands that interfere with � and set conflicting
attributes (as per the definition of conflicting attributes in step 6 of the recovery procedure),
because all these replicas have pre-accepted � with its attributes.

2.2.5 Q.E.D
By the recovery procedure, 2.2.1, 2.2.2, 2.2.3, 2.2.4 and Lemma 2 the recovery procedure will
be successful in getting F replicas to pre-accept tuple (�, deps

�

, seq
�

) (not counting the implicit
pre-accept of the initial command leader), and it will start the Paxos-Accept Phase for this tuple.

2.3 Q.E.D

Subcases 2.1 and 2.2 are exhaustive and safety is preserved in both.

3 Q.E.D.
Cases 1 and 2 are exhaustive and safety is preserved in both.

Next, we show that the recovery procedure preserves execution consistency:

Theorem 7. The Optimized Egalitarian Paxos preserves execution consistency.

Proof.
Let � and � be two commands that interfere and have been committed. We show that all replicas execute

� and � in the same order.

1 Case: Both � and � have first been committed by their respective command leaders, without running the
recovery procedure.
This is no different from simplified EPaxos: the different fast-path condition influences only the recovery
path. By Theorem 6 and Theorem 4, � and � will be executed in the same order by every replica.

20



2 Case: � is first committed as a result of the recovery procedure, while � is first committed by its initial
command leader without running the recovery procedure.

2.1 Subcase: � is committed before step 7 of the recovery procedure, or after exiting one of the Else
branches in step 7.

Then � must have been pre-accepted by a majority of replicas and then committed after running the
Paxos-Accept Phase. This too is reducible to the simple EPaxos case, so, by Theorem 4, � and � will
be executed in a consistent order across all non-faulty replicas.

2.2 Subcase: � is committed after exiting the recovery procedure on the If branch in step 7.

We show that either � has � as a dependency or � has � as a dependency:

2.2.1 Sub-subcase: � had been pre-accepted with � 2 deps
�

.
�’s pre-accepted attributes as received in the recovery procedure at step 7 do not change, so �
will be committed with � as a dependency.

2.2.2 Sub-subcase: � had been pre-accepted with � /2 deps
�

.
Since the recovery procedure exits on the If branch of step 7, at least F + 1 replicas, in-
cluding �’s original command leader have pre-accepted � as a result of a PreAccept or a
TentativePreAccept. � will also have been pre-accepted by a majority of replicas, so there
is at least one replica that has pre-accepted both � and �, and whose replies are taken into ac-
count both when establishing �’s commit attributes and in the recovery procedure for �. Let this
replica be R:

2.2.2.1 Sub-sub-subcase: R pre-accepts � as a result of receiving a PreAccept from �’s initial
command leader.
Then R must have learned about � before receiving a PreAccept for �, so � 2 deps

�

.
2.2.2.2 Sub-sub-subcase: R pre-accepts � after receiving a TentativePreAccept during the re-

covery procedure.
Then, according to the conditions in step 6 of the recovery procedure, either R had already
pre-accepted � such that � 2 deps

�

, or � reaches R after the TentativePreAccept for �.
In either case, � 2 deps

�

when � commits.

In conclusion � 2 deps
�

2.2.3 Q.E.D.
Sub-subcases 2.2.1 and 2.2.3 are exhaustive.

By step 2 of the proof for Theorem 4, since at least one command is committed with the other in its
dependency list, every replica will execute the commands in the same order.

3 Case: � is first committed as a result of the recovery procedure, while � is first committed by its initial
command leader without running the recovery procedure.
Just like case 2, with � and � interchanged.

4 Case: Both � and � are first committed after the recovery procedure.
If at least one of the commands is committed before step 7 in the recovery procedure, or after exiting step 7
on one of the Else branches, the situation is reducible to one of the previous cases.
The only remaining subcase is that when both commands are committed after exiting step 7 on the If branch.
Assume no command has the other in its dependency list when exiting step 7 of the recovery procedure.
But each command has been pre-accepted by a majority or replicas (either as a result of PreAccepts or

21



TentativePreAccepts). Then there must be at least one replica R that pre-accepts both commands, and
whose replies are taken into account when establishing each command’s commit attributes. If R pre-accepts
� before �, then, by the conditions in step 6 of the recovery procedure, R will not acknowledge � without a
dependency for � (and vice-versa). This contradicts our assumption.
Then at least one command is in the other’s dependency list, and by step 2 in the proof for Theorem 4, the
commands will be executed in the same order on every replica.

5 Q.E.D
Cases 1, 2, 3 and 4 are exhaustive.

Finally, we show that the recovery procedure preserves execution linearizability:

Theorem 8. The Optimized Egalitarian Paxos preserves execution linearizability.

Proof. Let � and � be two interfering commands serialized by clients: � is proposed only after a replica has
committed �. We show that � will always be executed before �

By the time � is proposed, a majority of replicas have either pre-accepted or accepted � with its final
(commit) attributes. At least one of these replicas will pre-accept � as a result of receiving a PreAccept or
a TentativePreAccept, and its reply will be considered in deciding �’s final attributes. Let this replica be
R:

1 Case: R receives a PreAccept for �.
Then R will put � in deps

�

and it will increment seq
�

to be larger than seq
�

. Since R’s reply is considered
when deciding �’s final attributes, �’s dependency list will include � and its sequence number will be larger
than �’s at commit time. By the execution algorithm, � will always be executed before �.

2 Case: R receives a TentativePreAccept for � at some point other than step 7’ in the recovery procedure.
Since R will ACK (otherwise � would not be committed), and � /2 deps

�

(because � was proposed after
� was committed), by the conditions in step 6 of the recovery procedure, it must hold that � 2 deps

�

and
seq

�

< seq
�

. By the execution algorithm, � will always be executed before �.

3 Case: R receives a TentativePreAccept for � at step 7’ in the recovery procedure.
In this case, there must exist a command �0 such that �0 ⇠ �, �0 2 deps

�

, � /2 deps
�

0 and seq
�

 seq
�

0 , and
R is instructed to ignore the conflict between the attributes of � and those of �0. We show that � 6= �0.
Assume �0 = �. Then � must have first been committed on the slow-path, because otherwise � couldn’t
have acquired a stale dependency on � (i.e., a dependency where seq

�

hasn’t been updated to be larger
than the committed seq

�

)—this remains true for implicit dependencies, as per the discussion in Section 6.1.
Then there must exist a replica R0 that has participated in the Paxos-Accept phase for �, and that was also
supposed to be part of �’s fast-path quorum. We first note that L

�

6= R0, where L
�

is the initial command
leader for �, because it wouldn’t have set the conflicting sequence number for � after having accepted the
commit-time attributes for �.

3.1 Subcase F = 2.

The recovery procedure for � must not have received a response from L
�

(otherwise it would have
exited before step 7’). Then there is at most one more replica that fails to respond during the recovery
procedure, and this replica must be R0 (otherwise R0 would have replied with non-conflicting attributes
for �, and the recovery procedure would have ended).

22



3.1.1 Sub-subcase R0 was the leader of the Paxos-Accept phase that first committed �. Then it would
have sent AcceptReply messages to two other replicas, and these messages would have included
additional dependencies (as per Accept-deps) that would not have included � (because � had not
been proposed at this point). Since at most F = 2 replica are faulty, these acceptors must be
part of the replicas that reply during the recovery for �, so the recovery procedure will discover
the recorded AcceptReplies and will not send the TentativePreAccept in step 7’.

3.1.2 Sub-subcase R0 was an acceptor in the Paxos-Accept phase that first committed �. Then the
leader for this Paxos-Accept phase must have responded during the recovery for � with the
Accept message from R0. The additional dependencies for this message would not contain �, so
the recovery procedure will not send the TentativePreAccept in step 7’.

3.2 Subcase F = 3.

In this case, the recovery procedure for � reaches the Else branches of step 7’ only if exactly two
replicas part of �’s fast-path quorum reply to Prepare messages (otherwise the recovery procedure
either exits before step 7’, or on the If branch of step 7’). Then of the three un-responsive replicas, one
is L

�

, and the other two must be part of both �’s fast-path quorum and the Paxos-Accept quorum that
has first committed �. Then at least one of the two other replicas part of �’s Paxos-Accept quorum
must have received and recorded an Accept or AcceptReply message with additional dependencies
that did not include �. Since these replicas are both responsive during the recovery for �, the recovery
procedure could not have sent the TentativePreAccept in step 7’.

3.3 Q.E.D. Step 7’ can be executed only if F = 2 or F = 3. Both subcases have ended in contradiction,
so our assumption that � = �0 is false. Then R cannot receive a TentativePreAccept that forces
it to pre-accept � such that seq

�

 seq
�

. By 3.1, 3.2 and the execution algorithm, � will always be
executed before �.

3 Q.E.D
Cases 1 and 2 and 3 are exhaustive.

7 Linearizability and Serializability in Egalitarian Paxos

Egalitarian Paxos guarantees that interfering commands are executed in a linearizable order. We now show
what the overall consistency properties of a system using Egalitarian Paxos are.

If the interference relation is transitive (which is equivalent with a setting where each command refers
to the state of a single object) then execution linearizability implies the whole system is linearizable, as
defined by Herlihy and Wing: linearizability is a local property, meaning that “a system is linearizable if
each individual object is linearizable” [4].

The corresponding consistency property in a system where each command can update and read multiple
objects is strict serializability. This is a setting where the interference relation is not necessarily transitive.
EPaxos does not guarantee strict serializability without a simple modification, described later in this section.

For example, imagine a system with two distinct objects A and B, and two concurrent clients client1
and client2. If each client issues the following commands sequentially (i.e., they wait for the a command to
be committed before issuing the next)

client 1: update A; update B
client 2: read B; read A

23



it is impossible for client2 to see an updated B and an unmodified A. In this case, all operations are
linearizable, because they each refer to a single object. However, if client2 were to issue the composite
command read A and B instead, it is possible that it will see an updated B and an unmodified A:

client 1: update A; update B
client 2: read A and B

This is because the read may be concurrent with both updates, and since the updates do not interfere,
the system can choose the following ordering: update B; read A and B; update A.

We can modify EPaxos to guarantee strict serializability: clients are sent the commit notification for a
command only after all instances in the dependencies graph of the current command have been committed.
We call this version EPaxos-strict. We show that it guarantees strict serializability.

Theorem 9 (Strict serializability). Every execution in EPaxos-strict is equivalent to a serial execution where
non-concurrent commands are executed in their temporal order.

Proof.

1 We define a <
i

b to be true if commands a and b interfere, and a has been executed by a replica before b
(by execution consistency, if a <

i

b then every replica will execute a before b). It is easy to see that <
i

is a
partial order relation.

2 Because commands are executed serially, every execution in EPaxos-strict (as well as in EPaxos) defines a
total order that is an extension of <

i

(by execution consistency).

3 We define a <
time

b to be true if any client has been notified that a has been committed (along with its
entire dependency graph) before b is proposed.

4 We show that <
i

[ <
time

is a partial order relation. We define < to be (<
i

[ <
time

). Assume < is not a
partial order relation. Then there exists a sequence of commands c1, ..., cn such that c1 < c2 < ... < c

n

<
c1. Consider the shortest such cycle.

4.1 Because <
i

is a partial order relation, there must be at least one pair of consecutive commands c
j�1

and c
j

such that c
j�1 <

i

c
j

is not true. Then it must be true that c
j�1 <

time

c
j

. By re-indexing, let
these two commands be c1 and c2.

4.2 The cycle must have more than two commands: it is impossible for c2 <
time

c1 since c1 <
time

c2;
c2 <

i

c1 implies that c2 is in c1’s dependency graph which also contradicts c1 <
time

c2, since c1
could not have ended before its entire dependency graph was committed (by EPaxos-strict).

4.3 There is no j > 2 such that c
j�1 <

i

c
j

does not hold: Assume there is such a j. Then c
j�1 <

time

c
j

.
If c1 ends (i.e., its corresponding client is notified) before c

j

starts, then c1 <time

c
j

, and we have the
shorter cycle c1, cj , ..., cn. If c1 ends after c

j

starts, then c2 must start after c
j�1 ends, so c

j�1 <
time

c2, and we have the shorter cycle c2, ..., cj�1.

4.4 By 4.3 c2 <
i

... <
i

c
n

<
i

c1. But c
j�1 <

i

c
j

implies that c
j�1 is in c

j

’s dependency graph. Since
this relation is transitive, it must hold that c2 is in c1’s dependency graph. But, by EPaxos-strict, this
implies that c2 was committed before the commit notification for c1 was sent to its corresponding
client. This contradicts c1 <time

c2.

5 By the definition of interference, all serial executions that extend <
i

are compatible—i.e., they produce
the same state and read results. In particular, any execution that extends the partial order <

i

[ <
time

will
be compatible with any serial execution that extends <

i

. Then by 2, all executions in Epaxos-strict are
compatible with a serial execution that extends <

i

[ <
time

. Q.E.D

24



Client notification Interference must be transitive Consistency guarantee
After commit Yes Linearizability
After commit No Per-object linearizability
After command and No Strict serializability
entire dependency graph have been committed

Table 1: Consistency guarantees in EPaxos.

Table 1 summarizes the consistency guarantees of EPaxos.
Because the dependency graph of a command is complete (all the dependencies are committed) by the

time the client receives a notification for it, EPaxos-strict does not require approximate sequence numbers to
guarantee linearizability, and this simplifies the recovery procedure. The drawback of EPaxos-strict is that
clients may experience higher latency for conflicting commands.

8 Conclusion

We have presented a proof of correctness for Egalitarian Paxos, a new state machine replication protocol
based on Paxos. EPaxos’s decentralized and uncoordinated design, as well as its small fast-path quorum
size, have important benefits for the availability, performance and performance stability of both local and
wide area replication.

References

[1] Michael Burrows. The Chubby lock service for loosely-coupled distributed systems. In Proc. 7th
USENIX OSDI, Seattle, WA, November 2006.

[2] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engineering perspec-
tive. In Proc. 26th ACM SOSP, PODC ’07, pages 398–407, New York, NY, USA, 2007. ACM.

[3] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, April 1985.

[4] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3), July 1990.

[5] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: wait-free coordi-
nation for internet-scale systems. In Proc. USENIX ATC, USENIXATC’10, Berkeley, CA, USA, 2010.
USENIX Association.

[6] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical Paxos and primary-backup replication.
Technical report, Microsoft Research, 2009.

[7] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong Zhou. Box-
wood: abstractions as the foundation for storage infrastructure. In Proc. 6th USENIX OSDI, San Fran-
cisco, CA, December 2004.

[8] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building efficient replicated state
machines for WANs. In Proc. 8th USENIX OSDI, pages 369–384, San Diego, CA, December 2008.

25



APPENDIX

TLA+ specification for the Egalitarian Paxos commit protocol:

module EgalitarianPaxos

extends Naturals , FiniteSets

Max (S )
�
= if S = {} then 0 else choose i 2 S : 8 j 2 S : j  i

Constant parameters:

Commands: the set of all possible commands

Replicas: the set of all EPaxos replicas

FastQuorums(r): the set of all fast quorums where r is a command leader

SlowQuorums(r): the set of all slow quorums where r is a command leader

constants Commands , Replicas, FastQuorums( ), SlowQuorums( ), MaxBallot

assume IsFiniteSet(Replicas)

Quorum conditions: (simplified)

assume 8 r 2 Replicas :

^ SlowQuorums(r) ✓ subset Replicas
^ 8SQ 2 SlowQuorums(r) :
^ r 2 SQ
^ Cardinality(SQ) = (Cardinality(Replicas)÷ 2) + 1

assume 8 r 2 Replicas :

^ FastQuorums(r) ✓ subset Replicas
^ 8FQ 2 FastQuorums(r) :
^ r 2 FQ
^ Cardinality(FQ) = (Cardinality(Replicas)÷ 2) +

((Cardinality(Replicas)÷ 2) + 1)÷ 2

Special none command

none
�
= choose c : c /2 Commands

The instance space

Instances
�
= Replicas ⇥ (1 . . Cardinality(Commands))

The possible status of a command in the log of a replica.

26



Status
�
= {“not-seen”, “pre-accepted”, “accepted”, “committed”}

All possible protocol messages:

Message
�
=

[type : {“pre-accept”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas,
cmd : Commands [ {none}, deps : subset Instances, seq : Nat ]

[ [type : {“accept”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas,
cmd : Commands [ {none}, deps : subset Instances, seq : Nat ]

[ [type : {“commit”},
inst : Instances, ballot : Nat ⇥ Replicas,
cmd : Commands [ {none}, deps : subset Instances, seq : Nat ]

[ [type : {“prepare”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas]

[ [type : {“pre-accept-reply”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas,
deps : subset Instances, seq : Nat , committed : subset Instances]

[ [type : {“accept-reply”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas]

[ [type : {“prepare-reply”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas, prev ballot : Nat ⇥ Replicas,
status : Status ,
cmd : Commands [ {none}, deps : subset Instances, seq : Nat ]

[ [type : {“try-pre-accept”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas,
cmd : Commands [ {none}, deps : subset Instances, seq : Nat ]

[ [type : {“try-pre-accept-reply”}, src : Replicas, dst : Replicas,
inst : Instances, ballot : Nat ⇥ Replicas, status : Status [ {“OK”}]

Variables:

comdLog = the commands log at each replica

proposed = command that have been proposed

executed = the log of executed commands at each replica

sentMsg = sent (but not yet received) messages

crtInst = the next instance available for a command leader

leaderOfInst = the set of instances each replica has started but not yet finalized

committed = maps commands to set of commit attributs tuples

ballots = largest ballot number used by any replica

preparing = set of instances that each replica is currently preparing (i .e. recovering)

variables cmdLog , proposed , executed , sentMsg , crtInst , leaderOfInst ,

27



committed , ballots, preparing

TypeOK
�
=

^ cmdLog 2 [Replicas ! subset [inst : Instances,
status : Status ,
ballot : Nat ⇥ Replicas,
cmd : Commands [ {none},
deps : subset Instances,
seq : Nat ]]

^ proposed 2 subset Commands
^ executed 2 [Replicas ! subset (Nat ⇥ Commands)]
^ sentMsg 2 subset Message
^ crtInst 2 [Replicas ! Nat ]
^ leaderOfInst 2 [Replicas ! subset Instances]
^ committed 2 [Instances ! subset ((Commands [ {none})⇥

(subset Instances)⇥
Nat)]

^ ballots 2 Nat
^ preparing 2 [Replicas ! subset Instances]

vars
�
= hcmdLog , proposed , executed , sentMsg , crtInst , leaderOfInst ,

committed , ballots, preparingi

Initial state predicate

Init
�
=

^ sentMsg = {}
^ cmdLog = [r 2 Replicas 7! {}]
^ proposed = {}
^ executed = [r 2 Replicas 7! {}]
^ crtInst = [r 2 Replicas 7! 1]

^ leaderOfInst = [r 2 Replicas 7! {}]
^ committed = [i 2 Instances 7! {}]
^ ballots = 1

^ preparing = [r 2 Replicas 7! {}]

Actions

StartPhase1(C , cleader , Q , inst , ballot , oldMsg)
�
=

let newDeps
�
= {rec.inst : rec 2 cmdLog [cleader ]}

newSeq
�
= 1 +Max ({t .seq : t 2 cmdLog [cleader ]})

oldRecs
�
= {rec 2 cmdLog [cleader ] : rec.inst = inst}in

^ cmdLog 0 = [cmdLog except ! [cleader ] = (@ \ oldRecs) [
{[inst 7! inst ,
status 7! “pre-accepted”,

28



ballot 7! ballot ,
cmd 7! C ,
deps 7! newDeps ,
seq 7! newSeq ]}]

^ leaderOfInst 0 = [leaderOfInst except ! [cleader ] = @ [ {inst}]
^ sentMsg 0 = (sentMsg \ oldMsg) [

[type : {“pre-accept”},
src : {cleader},
dst : Q \ {cleader},
inst : {inst},
ballot : {ballot},
cmd : {C},
deps : {newDeps},
seq : {newSeq}]

Propose(C , cleader)
�
=

let newInst
�
= hcleader , crtInst [cleader ]i

newBallot
�
= h0, cleaderi

in ^ proposed 0
= proposed [ {C}

^ (9Q 2 FastQuorums(cleader) :
StartPhase1(C , cleader , Q , newInst , newBallot , {}))

^ crtInst 0 = [crtInst except ! [cleader ] = @ + 1]

^ unchanged hexecuted , committed , ballots, preparingi

Phase1Reply(replica)
�
=

9msg 2 sentMsg :

^ msg .type = “pre-accept”
^ msg .dst = replica
^ let oldRec

�
= {rec 2 cmdLog [replica] : rec.inst = msg .inst}in

^ (8 rec 2 oldRec :

(rec.ballot = msg .ballot _ rec.ballot [1] < msg .ballot [1]))
^ let newDeps

�
= msg .deps [
({t .inst : t 2 cmdLog [replica]} \ {msg .inst})

newSeq
�
= Max ({msg .seq ,

1 +Max ({t .seq : t 2 cmdLog [replica]})})
instCom

�
= {t .inst : t 2 {tt 2 cmdLog [replica] :

tt .status 2 {“committed”, “executed”}}}in
^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ oldRec) [

{[inst 7! msg .inst ,
status 7! “pre-accepted”,
ballot 7! msg .ballot ,
cmd 7! msg .cmd ,
deps 7! newDeps ,
seq 7! newSeq ]}]

^ sentMsg 0 = (sentMsg \ {msg}) [

29



{[type 7! “pre-accept-reply”,
src 7! replica,
dst 7! msg .src,
inst 7! msg .inst ,
ballot 7! msg .ballot ,
deps 7! newDeps,
seq 7! newSeq ,
committed 7! instCom]}

^ unchanged hproposed , crtInst , executed , leaderOfInst ,
committed , ballots, preparingi

Phase1Fast(cleader , i , Q)

�
=

^ i 2 leaderOfInst [cleader ]
^Q 2 FastQuorums(cleader)
^ 9 record 2 cmdLog [cleader ] :

^ record .inst = i
^ record .status = “pre-accepted”
^ record .ballot [1] = 0

^ let replies
�
= {msg 2 sentMsg :

^msg .inst = i
^msg .type = “pre-accept-reply”
^msg .dst = cleader
^msg .src 2 Q
^msg .ballot = record .ballot}in

^ (8 replica 2 (Q \ {cleader}) :
9msg 2 replies : msg .src = replica)

^ (8 r1, r2 2 replies :

^ r1.deps = r2.deps
^ r1.seq = r2.seq)

^ let r
�
= choose r 2 replies : truein

^ let localCom
�
= {t .inst :

t 2 {tt 2 cmdLog [cleader ] :
tt .status 2 {“committed”, “executed”}}}

extCom
�
= union {msg .committed : msg 2 replies}in

(r .deps ✓ (localCom [ extCom))

^ cmdLog 0 = [cmdLog except ! [cleader ] = (@ \ {record}) [
{[inst 7! i ,
status 7! “committed”,
ballot 7! record .ballot ,
cmd 7! record .cmd ,
deps 7! r .deps,
seq 7! r .seq ]}]

^ sentMsg 0 = (sentMsg \ replies) [
{[type 7! “commit”,
inst 7! i ,

30



ballot 7! record .ballot ,
cmd 7! record .cmd ,
deps 7! r .deps,
seq 7! r .seq ]}

^ leaderOfInst 0 = [leaderOfInst except ! [cleader ] = @ \ {i}]
^ committed 0

= [committed except ! [i ] =
@ [ {hrecord .cmd , r .deps, r .seqi}]

^ unchanged hproposed , executed , crtInst , ballots, preparingi

Phase1Slow(cleader , i , Q)

�
=

^ i 2 leaderOfInst [cleader ]
^Q 2 SlowQuorums(cleader)
^ 9 record 2 cmdLog [cleader ] :

^ record .inst = i
^ record .status = “pre-accepted”
^ let replies

�
= {msg 2 sentMsg :

^msg .inst = i
^msg .type = “pre-accept-reply”
^msg .dst = cleader
^msg .src 2 Q
^msg .ballot = record .ballot}in

^ (8 replica 2 (Q \ {cleader}) : 9msg 2 replies : msg .src = replica)
^ let finalDeps

�
= union {msg .deps : msg 2 replies}

finalSeq
�
= Max ({msg .seq : msg 2 replies})in

^ cmdLog 0 = [cmdLog except ! [cleader ] = (@ \ {record}) [
{[inst 7! i ,
status 7! “accepted”,
ballot 7! record .ballot ,
cmd 7! record .cmd ,
deps 7! finalDeps,
seq 7! finalSeq ]}]

^ 9SQ 2 SlowQuorums(cleader) :
(sentMsg 0 = (sentMsg \ replies) [

[type : {“accept”},
src : {cleader},
dst : SQ \ {cleader},
inst : {i},
ballot : {record .ballot},
cmd : {record .cmd},
deps : {finalDeps},
seq : {finalSeq}])

^ unchanged hproposed , executed , crtInst , leaderOfInst ,
committed , ballots, preparingi

Phase2Reply(replica)
�
=

31



9msg 2 sentMsg :

^ msg .type = “accept”
^ msg .dst = replica
^ let oldRec

�
= {rec 2 cmdLog [replica] : rec.inst = msg .inst}in

^ (8 rec 2 oldRec : (rec.ballot = msg .ballot _
rec.ballot [1] < msg .ballot [1]))

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ oldRec) [
{[inst 7! msg .inst ,
status 7! “accepted”,
ballot 7! msg .ballot ,
cmd 7! msg .cmd ,
deps 7! msg .deps,
seq 7! msg .seq ]}]

^ sentMsg 0 = (sentMsg \ {msg}) [
{[type 7! “accept-reply”,
src 7! replica,
dst 7! msg .src,
inst 7! msg .inst ,
ballot 7! msg .ballot ]}

^ unchanged hproposed , crtInst , executed , leaderOfInst ,
committed , ballots, preparingi

Phase2Finalize(cleader , i , Q)

�
=

^ i 2 leaderOfInst [cleader ]
^Q 2 SlowQuorums(cleader)
^ 9 record 2 cmdLog [cleader ] :

^ record .inst = i
^ record .status = “accepted”
^ let replies

�
= {msg 2 sentMsg :

^msg .inst = i
^msg .type = “accept-reply”
^msg .dst = cleader
^msg .src 2 Q
^msg .ballot = record .ballot}in

^ (8 replica 2 (Q \ {cleader}) : 9msg 2 replies :

msg .src = replica)
^ cmdLog 0 = [cmdLog except ! [cleader ] = (@ \ {record}) [

{[inst 7! i ,
status 7! “committed”,
ballot 7! record .ballot ,
cmd 7! record .cmd ,
deps 7! record .deps,
seq 7! record .seq ]}]

^ sentMsg 0 = (sentMsg \ replies) [

32



{[type 7! “commit”,
inst 7! i ,
ballot 7! record .ballot ,
cmd 7! record .cmd ,
deps 7! record .deps,
seq 7! record .seq ]}

^ committed 0
= [committed except ! [i ] = @ [

{hrecord .cmd , record .deps, record .seqi}]
^ leaderOfInst 0 = [leaderOfInst except ! [cleader ] = @ \ {i}]
^ unchanged hproposed , executed , crtInst , ballots, preparingi

Commit(replica, cmsg)
�
=

let oldRec
�
= {rec 2 cmdLog [replica] : rec.inst = cmsg .inst}in

^ 8 rec 2 oldRec : (rec.status /2 {“committed”, “executed”} ^
rec.ballot [1]  cmsg .ballot [1])

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ oldRec) [
{[inst 7! cmsg .inst ,
status 7! “committed”,
ballot 7! cmsg .ballot ,
cmd 7! cmsg .cmd ,
deps 7! cmsg .deps,
seq 7! cmsg .seq ]}]

^ committed 0
= [committed except ! [cmsg .inst ] = @ [

{hcmsg .cmd , cmsg .deps, cmsg .seqi}]
^ unchanged hproposed , executed , crtInst , leaderOfInst ,

sentMsg , ballots, preparingi

Recovery actions

SendPrepare(replica, i , Q)

�
=

^ i /2 leaderOfInst [replica]
^ i /2 preparing[replica]

^ ballots  MaxBallot
^ ¬(9 rec 2 cmdLog [replica] :

^ rec.inst = i
^ rec.status 2 {“committed”, “executed”})

^ sentMsg 0 = sentMsg [
[type : {“prepare”},
src : {replica},
dst : Q ,
inst : {i},
ballot : {hballots, replicai}]

^ ballots 0 = ballots + 1

^ preparing 0 = [preparing except ! [replica] = @ [ {i}]
^ unchanged hcmdLog , proposed , executed , crtInst ,

33



leaderOfInst , committedi

ReplyPrepare(replica)
�
=

9msg 2 sentMsg :

^ msg .type = “prepare”
^ msg .dst = replica
^ _ 9 rec 2 cmdLog [replica] :

^ rec.inst = msg .inst
^msg .ballot [1] > rec.ballot [1]
^ sentMsg 0 = (sentMsg \ {msg}) [

{[type 7! “prepare-reply”,
src 7! replica,
dst 7! msg .src,
inst 7! rec.inst ,
ballot 7! msg .ballot ,
prev ballot 7! rec.ballot ,
status 7! rec.status ,
cmd 7! rec.cmd ,
deps 7! rec.deps,
seq 7! rec.seq ]}

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ {rec}) [
{[inst 7! rec.inst ,
status 7! rec.status ,
ballot 7! msg .ballot ,
cmd 7! rec.cmd ,
deps 7! rec.deps,
seq 7! rec.seq ]}]

^ if rec.inst 2 leaderOfInst [replica] then
^ leaderOfInst 0 = [leaderOfInst except ! [replica] =

@ \ {rec.inst}]
^ unchanged hproposed , executed , committed ,

crtInst , ballots, preparingi
else unchanged hproposed , executed , committed , crtInst ,

ballots, preparing , leaderOfInsti

_ ^ ¬(9 rec 2 cmdLog [replica] : rec.inst = msg .inst)
^ sentMsg 0 = (sentMsg \ {msg}) [

{[type 7! “prepare-reply”,
src 7! replica,
dst 7! msg .src,
inst 7! msg .inst ,
ballot 7! msg .ballot ,
prev ballot 7! h0, replicai,
status 7! “not-seen”,
cmd 7! none,

34



deps 7! {},
seq 7! 0]}

^ cmdLog 0 = [cmdLog except ! [replica] = @ [
{[inst 7! msg .inst ,
status 7! “not-seen”,
ballot 7! msg .ballot ,
cmd 7! none,
deps 7! {},
seq 7! 0]}]

^ unchanged hproposed , executed , committed , crtInst , ballots,
leaderOfInst , preparingi

PrepareFinalize(replica, i , Q)

�
=

^ i 2 preparing [replica]
^ 9 rec 2 cmdLog [replica] :

^ rec.inst = i
^ rec.status /2 {“committed”, “executed”}
^ let replies

�
= {msg 2 sentMsg :

^msg .inst = i
^msg .type = “prepare-reply”
^msg .dst = replica
^msg .ballot = rec.ballot}in

^ (8 rep 2 Q : 9msg 2 replies : msg .src = rep)
^ _ 9 com 2 replies :

^ (com.status 2 {“committed”, “executed”})
^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ sentMsg 0 = sentMsg \ replies
^ unchanged hcmdLog , proposed , executed , crtInst , leaderOfInst ,

committed , ballotsi
_ ^ ¬(9msg 2 replies : msg .status 2 {“committed”, “executed”})

^ 9 acc 2 replies :

^ acc.status = “accepted”
^ (8msg 2 (replies \ {acc}) :

(msg .prev ballot [1]  acc.prev ballot [1] _
msg .status 6= “accepted”))

^ sentMsg 0 = (sentMsg \ replies) [
[type : {“accept”},
src : {replica},
dst : Q \ {replica},
inst : {i},
ballot : {rec.ballot},
cmd : {acc.cmd},
deps : {acc.deps},
seq : {acc.seq}]

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ {rec}) [

35



{[inst 7! i ,
status 7! “accepted”,
ballot 7! rec.ballot ,
cmd 7! acc.cmd ,
deps 7! acc.deps,
seq 7! acc.seq ]}]

^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ leaderOfInst 0 = [leaderOfInst except ! [replica] = @ [ {i}]
^ unchanged hproposed , executed , crtInst , committed , ballotsi

_ ^ ¬(9msg 2 replies :

msg .status 2 {“accepted”, “committed”, “executed”})
^ let preaccepts

�
= {msg 2 replies : msg .status = “pre-accepted”}in

( _ ^ 8 p1, p2 2 preaccepts :

p1.cmd = p2.cmd ^ p1.deps = p2.deps ^ p1.seq = p2.seq
^ ¬(9 pl 2 preaccepts : pl .src = i [1])
^ Cardinality(preaccepts) � Cardinality(Q)� 1

^ let pac
�
= choose pac 2 preaccepts : truein

^ sentMsg 0 = (sentMsg \ replies) [
[type : {“accept”},
src : {replica},
dst : Q \ {replica},
inst : {i},
ballot : {rec.ballot},
cmd : {pac.cmd},
deps : {pac.deps},
seq : {pac.seq}]

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ {rec}) [
{[inst 7! i ,
status 7! “accepted”,
ballot 7! rec.ballot ,
cmd 7! pac.cmd ,
deps 7! pac.deps,
seq 7! pac.seq ]}]

^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ leaderOfInst 0 = [leaderOfInst except ! [replica] = @ [ {i}]
^ unchanged hproposed , executed , crtInst , committed , ballotsi

_ ^ 8 p1, p2 2 preaccepts : p1.cmd = p2.cmd ^
p1.deps = p2.deps ^
p1.seq = p2.seq

^ ¬(9 pl 2 preaccepts : pl .src = i [1])
^ Cardinality(preaccepts) < Cardinality(Q)� 1

^ Cardinality(preaccepts) � Cardinality(Q)÷ 2

^ let pac
�
= choose pac 2 preaccepts : truein

^ sentMsg 0 = (sentMsg \ replies) [
[type : {“try-pre-accept”},

36



src : {replica},
dst : Q ,
inst : {i},
ballot : {rec.ballot},
cmd : {pac.cmd},
deps : {pac.deps},
seq : {pac.seq}]

^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ leaderOfInst 0 = [leaderOfInst except ! [replica] = @ [ {i}]
^ unchanged hcmdLog , proposed , executed ,

crtInst , committed , ballotsi
_ ^ _ 9 p1, p2 2 preaccepts : p1.cmd 6= p2.cmd _

p1.deps 6= p2.deps _
p1.seq 6= p2.seq

_ 9 pl 2 preaccepts : pl .src = i [1]
_ Cardinality(preaccepts) < Cardinality(Q)÷ 2

^ preaccepts 6= {}
^ let pac

�
= choose pac 2 preaccepts : pac.cmd 6= nonein

^ StartPhase1(pac.cmd , replica, Q , i , rec.ballot , replies)
^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ unchanged hproposed , executed , crtInst , committed , ballotsi)

_ ^ 8msg 2 replies : msg .status = “not-seen”
^ StartPhase1(none, replica, Q , i , rec.ballot , replies)
^ preparing 0 = [preparing except ! [replica] = @ \ {i}]
^ unchanged hproposed , executed , crtInst , committed , ballotsi

ReplyTryPreaccept(replica)
�
=

9 tpa 2 sentMsg :

^ tpa.type = “try-pre-accept”
^ tpa.dst = replica
^ let oldRec

�
= {rec 2 cmdLog [replica] : rec.inst = tpa.inst}in

^ 8 rec 2 oldRec : rec.ballot [1]  tpa.ballot [1] ^
rec.status /2 {“accepted”, “committed”, “executed”}

^ _ (9 rec 2 cmdLog [replica] \ oldRec :

^ tpa.inst /2 rec.deps
^ _ rec.inst /2 tpa.deps

_ rec.seq � tpa.seq
^ sentMsg 0 = (sentMsg \ {tpa}) [

{[type 7! “try-pre-accept-reply”,
src 7! replica,
dst 7! tpa.src,
inst 7! tpa.inst ,
ballot 7! tpa.ballot ,
status 7! rec.status ]})

^ unchanged hcmdLog , proposed , executed , committed , crtInst ,

37



ballots, leaderOfInst , preparingi
_ ^ (8 rec 2 cmdLog [replica] \ oldRec :

tpa.inst 2 rec.deps _ (rec.inst 2 tpa.deps ^
rec.seq < tpa.seq))

^ sentMsg 0 = (sentMsg \ {tpa}) [
{[type 7! “try-pre-accept-reply”,
src 7! replica,
dst 7! tpa.src,
inst 7! tpa.inst ,
ballot 7! tpa.ballot ,
status 7! “OK”]}

^ cmdLog 0 = [cmdLog except ! [replica] = (@ \ oldRec) [
{[inst 7! tpa.inst ,
status 7! “pre-accepted”,
ballot 7! tpa.ballot ,
cmd 7! tpa.cmd ,
deps 7! tpa.deps,
seq 7! tpa.seq ]}]

^ unchanged hproposed , executed , committed , crtInst , ballots,
leaderOfInst , preparingi

FinalizeTryPreAccept(cleader , i , Q)

�
=

9 rec 2 cmdLog [cleader ] :
^ rec.inst = i
^ let tprs

�
= {msg 2 sentMsg : msg .type = “try-pre-accept-reply” ^

msg .dst = cleader ^msg .inst = i ^
msg .ballot = rec.ballot}in

^ 8 r 2 Q : 9 tpr 2 tprs : tpr .src = r
^ _ ^ 8 tpr 2 tprs : tpr .status = “OK”

^ sentMsg 0 = (sentMsg \ tprs) [
[type : {“accept”},
src : {cleader},
dst : Q \ {cleader},
inst : {i},
ballot : {rec.ballot},
cmd : {rec.cmd},
deps : {rec.deps},
seq : {rec.seq}]

^ cmdLog 0 = [cmdLog except ! [cleader ] = (@ \ {rec}) [
{[inst 7! i ,
status 7! “accepted”,
ballot 7! rec.ballot ,
cmd 7! rec.cmd ,
deps 7! rec.deps,

38



seq 7! rec.seq ]}]
^ unchanged hproposed , executed , committed , crtInst , ballots,

leaderOfInst , preparingi
_ ^ 9 tpr 2 tprs : tpr .status 2 {“accepted”, “committed”, “executed”}

^ StartPhase1(rec.cmd , cleader , Q , i , rec.ballot , tprs)
^ unchanged hproposed , executed , committed , crtInst , ballots,

leaderOfInst , preparingi
_ ^ 9 tpr 2 tprs : tpr .status = “pre-accepted”

^ 8 tpr 2 tprs : tpr .status 2 {“OK”, “pre-accepted”}
^ sentMsg 0 = sentMsg \ tprs
^ leaderOfInst 0 = [leaderOfInst except ! [cleader ] = @ \ {i}]
^ unchanged hcmdLog , proposed , executed , committed , crtInst ,

ballots, preparingi

Action groups

CommandLeaderAction
�
=

_ (9C 2 (Commands \ proposed) :
9 cleader 2 Replicas : Propose(C , cleader))

_ (9 cleader 2 Replicas : 9 inst 2 leaderOfInst [cleader ] :
_ (9Q 2 FastQuorums(cleader) : Phase1Fast(cleader , inst , Q))

_ (9Q 2 SlowQuorums(cleader) : Phase1Slow(cleader , inst , Q))

_ (9Q 2 SlowQuorums(cleader) : Phase2Finalize(cleader , inst , Q))

_ (9Q 2 SlowQuorums(cleader) : FinalizeTryPreAccept(cleader , inst , Q)))

ReplicaAction
�
=

9 replica 2 Replicas :

( _ Phase1Reply(replica)
_ Phase2Reply(replica)
_ 9 cmsg 2 sentMsg : (cmsg .type = “commit” ^ Commit(replica, cmsg))
_ 9 i 2 Instances :

^ crtInst [i [1]] > i [2] This condition states that the instance has

been started by its original owner

^ 9Q 2 SlowQuorums(replica) : SendPrepare(replica, i , Q)

_ ReplyPrepare(replica)
_ 9 i 2 preparing [replica] :
9Q 2 SlowQuorums(replica) : PrepareFinalize(replica, i , Q)

_ ReplyTryPreaccept(replica))

Next action

Next
�
=

_ CommandLeaderAction
_ ReplicaAction

39



The complete definition of the algorithm

Spec
�
= Init ^2[Next ]vars

Theorems

Nontriviality
�
=

8 i 2 Instances :

2(8C 2 committed [i ] : C 2 proposed _ C = none)

Stability
�
=

8 replica 2 Replicas :

8 i 2 Instances :

8C 2 Commands :

2((9 rec1 2 cmdLog [replica] :
^ rec1.inst = i
^ rec1.cmd = C
^ rec1.status 2 {“committed”, “executed”}) )
2(9 rec2 2 cmdLog [replica] :

^ rec2.inst = i
^ rec2.cmd = C
^ rec2.status 2 {“committed”, “executed”}))

Consistency
�
=

8 i 2 Instances :

2(Cardinality(committed [i ])  1)

theorem Spec ) (2TypeOK ) ^ Nontriviality ^ Stability ^ Consistency

40


	Introduction
	Preliminaries
	Interfering Commands
	Protocol Guarantees
	Simplified Egalitarian Paxos
	The EPaxos Commit Protocol
	The Execution Algorithm
	Keeping the Dependency List Small
	Recovering from Failures
	Joining/Rejoining the Replica Set
	Proof of Properties
	Fast Egalitarian Paxos

	Optimized Egalitarian Paxos
	Preferred Fast-Path Quorums
	Failure Recovery in Optimized Egalitarian Paxos

	Linearizability and Serializability in Egalitarian Paxos
	Conclusion

