
TABLEFS: Enhancing Metadata Efficiency in the Local
File System

Kai Ren, Garth Gibson

CMU-PDL-12-110

September 2012

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: This research is supported in part by The Gordon and Betty Moore Foundation, NSF under award, SCI-0430781 and
CCF-1019104, Qatar National Research Foundation 09-1116-1-172, DOE/Los Alamos National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of the Intel Science and Technology Center for Cloud Computing (ISTC-CC), by gifts from Yahoo!, APC,
EMC, Facebook, Fusion-IO, Google, Hewlett-Packard, Hitachi, Huawei, IBM, Intel, Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Sam-
sung, Seagate, STEC, Symantec, and VMware. We thank the member companies of the PDL Consortium for their interest, insights, feedback, and
support.

Keywords: TableFS, File System, File System Metadata, NoSQL Database, LSM Tree

Abstract

Abstract
File systems that manage magnetic disks have long recognized the importance of sequential allocation and large transfer sizes for
file data. Fast random access has dominated metadata lookup data structures with increasingly use of B-trees on-disk. For updates,
on-disk data structures are increasingly non-overwrite, copy-on-write, log-like and deferred. Yet our experiments with workloads
dominated by metadata and small file access indicate that even sophisticated local disk file systems like Ext4, XFS and BTRFS
leaves a lot of opportunity for performance improvement in workloads dominated by metadata and small files.
In this paper we present a simple stacked file system, TableFS, which uses another local file system as an object store and organizes
all metadata into a single sparse table backed on-disk using a Log-Structured Merge (LSM) tree, LevelDB in our experiments. By
stacking, TableFS asks only for efficient large file allocation and access from the local file system. By using an LSM tree, TableFS
ensures metadata is written to disk in large, non-overwrite, sorted and indexed logs, and inherits a compaction algorithm. Even an
inefficient FUSE based user level implementation of TableFS can perform comparably to Ext4, XFS and BTRFS on simple data-
intensive benchmarks, and can outperform them by 50% to as much as 1000% for a metadata-intensive query/update workload on
data-free files. Such promising performance results from TableFS suggest that local disk file systems can be significantly improved
by much more aggressive aggregation and batching of metadata updates.

1 Introduction

In the last decade parallel and internet service file systems have demonstrated effective scaling for high
bandwidth, large file transfers [12, 16, 25, 38, 39, 49]. The same, however, is not true of workloads that are
dominated by metadata and tiny file access [34, 50]. Instead there has emerged a class of scalable small-data
storage systems, commonly called key-value stores, that emphasize simple (NoSQL) interfaces and large
in-memory caches [2, 23, 32].

Some of these key-value stores feature high rates of change and efficient out-of-memory log-structured
merge (LSM) tree structures [7, 33, 45]. We assert that file systems should adopt techniques from modern
key-value stores for metadata and tiny files, because these systems aggressively aggregate metadata and are
“thin” enough to provide the performance levels required by file systems. We are not attempting to improve
semantics (e.g. provide applications with transactions [40, 51]).

To motivate our assertion, in this paper we present experiments in the most mature and restrictive of
environments: a local file system managing one magnetic hard disk. Our results show that for workloads
dominated by metadata and tiny files, it is possible to improve the performance of the most modern local file
systems in Linux by as much as an order of magnitude. Our demonstration is more compelling because it
begins disadvantaged: we use an interposed file system layer [1, 52] that represents metadata and tiny files
in a LevelDB key-value store [22] that stores its LSM tree and write-ahead log segments in these same local
file systems.

Perhaps it is finally time to accept the old refrain that file systems should at their core use more database
management representations and techniques [46], now that database management techniques have been
sufficiently decoupled from monolithic database management system (DBMS) bundles [47].

2 Background

Even in the era of big data, most things in a file system are small [9, 28]. Inevitably, scalable systems
should expect the numbers of small files to soon achieve and exceed billions, a known challenge for both the
largest [34] and most local file systems [50]. In this section we review implementation details of the systems
employed in our experiments: Ext4, XFS, BTRFS and LevelDB.

2.1 Local File System Structures

Ext4[26] is the fourth generation of Linux ext file systems, and, of the three we study, the most like tradi-
tional UNIX file systems. Ext4 divides the disk into block groups, similar to traditional UNIX’s cylinder
groups, and stores in each block group a copy of the superblock, a block group descriptor, a bitmap de-
scribing free data blocks, a table of inodes and bitmap describing free inodes, in addition to the actual data
blocks. Inodes contain a file’s attributes (such as the file’s inode number, ownership, access mode, file size,
timestamps) and four extent pointers for data extents or a tree of data extents. The inode of a directory
contains links to a HTree hash tree that can be one or two levels deep, based on a 32 bit hash of the directory
entry’s name. By default only changes to metadata are journaled for durability, and Ext4 asynchronously
commits its journal to disk every five seconds. When committing pending data and metadata, data blocks
are written to disk before the associated metadata is written to disk.

XFS[48], originally developed by SGI, aggressively and pervasively uses B+ trees to manage all on
disk file structures: free space maps, file extent maps, directory entry indices and dynamically allocated
inodes. Because all file sizes, disk addresses and inode numbers are 64 bits in XFS, index structures can be
large. To reduce the size of these structures XFS partitions the disk into allocation groups, clusters allocation
in an allocation group and uses allocation group relative pointers. Free extents are represented in two B+
trees: one indexed by the starting address of the extent and the other indexed by the length of the extent,

1

to enable efficient search for an appropriately sized extent. Inodes contain either a direct extent map, or a
B+ tree of extent maps. Each allocation group has B+ tree indexed by inode number. Inodes for directories
have a B+ tree for its directory entries, indexed by a 32 bit hash of the entry’s file name. XFS also journals
metadata for durability, committing the journal asynchronously when a log buffer (256 KB by default) fills
or on synchronous request.

BTRFS[21, 36] is the newest and most sophisticated local file system in our comparison set. Inspired
by Rodeh’s copy-on-write B-tree[35], as well as features of XFS, NetApp’s WAFL and Sun’s ZFS[3, 17],
BTRFS copies any B-tree node to an unallocated location when it is modified. Provided the modified nodes
can be allocated contiguously, B-tree update writing can be highly sequential; although perhaps more data
must be written than is minimally needed (write amplification). The other significant feature of BTRFS
is its collocation of different metadata components in the same B-tree, called the FS tree. The FS tree
is indexed by (inode number, type, offset) and it contains inodes, directory entries and file extent maps,
according to the type field: INODE ITEM for inodes, DIR ITEM and DIR INDEX for directory entries,
and EXTENT DATA REF for file extent maps. Directory entries are stored twice so that they can be ordered
differently: in one the offset field of the FS tree index (for the directory’s inode) is the hash of the entry’s
name, for fast single entry lookup, and in the other the offset field is the child file’s inode number, allow
a range scan of the FS tree to list the inodes of child files and accelerate user operations such as ls+ stat.
BTRFS, by default, delays writes for 30 seconds to increase disk efficiency, and metadata and data is in the
same delay queue.

2.2 LevelDB and its Log-Structured Merge Tree

Inspired by a simpler structure in BigTable[7], LevelDB [22] is an open-source key-value storage library
that features an Log-Structured Merge (LSM) Tree [33] for on-disk storage. It provides simple APIs such
as GET, PUT, DELETE and SCAN. Unlike BigTable, not even single row transactions are supported in
LevelDB. Because TABLEFS uses LevelDB, we will review its design in greater detail in this section.

Buffer

L0

L1

L3

Disk:

RAM:

…..

002,..,123

[001..100]

[001..110] [550..800]

[001..080] [900..910]

….

[120..530
]

[115..300] [310..400]

Compaction

Figure 1: LevelDB represents data on disk in multiple SSTables that store sorted key-value pairs. SSTables
are grouped into different levels with lower levels generally containing more recently inserted key-value
pairs. Finding a specific pair on disk may search up to all SSTables in level 0 and at most one in each higher
level. Compaction is the process of combining SSTables by merge sort into higher levels.

In a simple understanding of an LSM tree, an in memory buffer cache delays writing new and changed
entries until it has a significant amount of changes to record on disk. Delaying writes is made more durable
by redundantly recording new and changed entries in a write-ahead log, which is pushed to disk periodically
and asynchronously by default.

In LevelDB, by default, a set of changes are spilled to disk when the total size of modified entries
exceeds 4 MB. When a spill is triggered, called a minor compaction, the changed entries are sorted, indexed
and written to disk in a format called an SSTable[7]. These entries may then be discarded by the in memory
buffer and can be reloaded by searching each SSTable on disk, possibly stopping when the first match occurs
if the SSTables are searched from most recent to oldest. The number of SSTables that need to be searched

2

can be reduced by maintaining a Bloom filter[6] on each, but with increasing numbers of records the cost
of finding a record not in memory increases. Major compaction, or simply “compaction”, is the process of
combining multiple SSTables into a smaller number of SSTables by merge sort. Compaction is similar to
online defragmentation in traditional file systems and cleaning in log-structured file systems [37].

As illustrated in Figure 1, LevelDB extends this simple approach to further reduce read costs by divid-
ing SSTables into sets, or levels. The 0th level of SSTables follows the simple formulation; each SSTable in
this level may contain entries with any key/value, based on what was in memory at the time of its spill. The
higher levels of LevelDB’s SSTables are the results of compacting SSTables from their own or lower levels.
In these higher levels, LevelDB maintains the following invariant: the key range spanning each SSTable is
disjoint from the key range of all other SSTables at that level. So querying for an entry in the higher levels
only need read at most one SSTable in each level. LevelDB also sizes each of the higher levels differentially:
all SSTables have the same maximum size and the sum of the sizes of all SSTables at level L will not exceed
10L MB. This ensures that the number of level, that is, the maximum number of SSTables that need to be
searched in the higher levels, grows logarithmically with increasing numbers of entries.

When LevelDB decides to compact an SSTable at level i, it picks one, finds all other SSTables at the
same level and the next higher level that have an overlapping key range, and then sort merges all of these
SSTables, producing a set of SSTables with disjoint ranges at the next higher level. If an SSTable at level 0
is selected, it is not unlikely that all other SSTables at level 0 will also be compacted, and many SSTables at
level 1 may be included. But at higher levels most compactions will involve a smaller number of SSTables.
To select when and what to compact there is a weight associated with compacting each SSTable, and the
number of SSTables at level 0 is held in check (by default compaction will be triggered if there are more than
four SSTables at level 0). There are also counts associated with SSTables that are searched when looking
for an entry, and hotter SSTables will be compacted sooner.

3 TABLEFS

As shown in Figure 2(a), TABLEFS exploits the FUSE user level file system infrastructure to interpose on
top of the local file system. TABLEFS represents directories, inodes and small files in one all encompassing
table, and only writes to the local disk large objects such as write-ahead logs, SSTables, and files whose size
is large.

FUSE lib

Large File Store

Metadata Store

VFS

Local Filesystem FUSE Kernel Module

Benchmark
Process

TableFS

Kernel

User Space

User Space

Kernel

Benchmark
Process

VFS

Local Filesystem

(a)

(b)

LevelDB

Figure 2: (a) The architecture of TABLEFS. A FUSE kernel module redirects file system calls from a
benchmark process to TABLEFS, and TABLEFS stores objects into either LevelDB or a large file store. (b)
When we benchmark a local file system, there is no FUSE overhead to be paid.

3

3.1 Local File System as Object Store

There is no explicit space management in TABLEFS, instead it uses the local file system for allocation and
storage of objects. Because TABLEFS packs directories, inodes and small files into a LevelDB table, and
LevelDB stores sorted logs (SSTables) of about 2MB each, the local file system sees many fewer, larger
objects. We use Ext4 as the object store for TABLEFS in all experiments.

Files larger than T bytes are stored directly in the object store according to their inode number. The
object store uses a two-level directory tree in the local file system, storing a file with inode number I as
“/LargeFileStore/J/I” where J = I ÷10000. This is to circumvent any scalability limits on directory entries
in the underlying local file systems. In TABLEFS today, T , the threshold for blobbing a file is 4KB, which
is the median size of files in desktop workloads [28], although others have suggested T be 256KB as large
as 1MB [41].

3.2 Table Schema

TABLEFS’s metadata store aggregates directory entries, inode attributes and small files into one LevelDB
table with a row for each file. To link together the hierarchical structure of the user’s namespace, the rows of
the table are ordered by a 128-bit key consisting of the 64-bit inode number of a file’s parent directory and
a 64-bit hash value of its filename string (final component of its pathname). The value of a row contains the
file’s full name and inode attributes, such as inode number, ownership, access mode, file size, timestamps
(struct stat in Linux). For small files, the file’s row also contains the file’s data.

Figure 3 shows an example of storing a sample file system’s metadata into one LevelDB table.

Key Value
<0,h1> 1, “home”, struct stat

<1,h2> 2, “foo”, struct stat

<1,h3> 3, “bar”, struct stat

<2,h4> 4, “apple”, hard link

<2,h5> 5, “book”, struct stat,
inline small file (<4KB)

<3,h6> 4, “pear”, hard link

<4,null> 4, struct stat,
large file pointer (> 4KB)

Le
xi

co
gr

ap
hi

c
or

de
r

book
hash(“book”)=h5

/
Home

hash(“home”)=h1

foo
hash(“foo”)=h2

bar
hash(“bar”)=h3

apple
hash(“apple”)=h4

pear
hash(“pear”)=h6

0

32

1

4
5

Figure 3: An example illustrates table schema used by TABLEFS’s metadata store. The file with inode
number 4 has two hard links, one called “apple” from directory foo and the other called “pear” from directory
bar.

All the entries in the same directory have rows that share the same first 64 bits in their the table’s key.
For readdir operations, once the inode number of the target directory has been retrieved, a scan sequentially
lists all entries having the directory’s inode number as the first 64 bits of their table’s key. To resolve a
single pathname, TABLEFS starts searching from the root inode, which has a well-known inode number (0).
Traversing the user’s directory tree involves constructing a search key by concatenating the inode number of
current directory with the hash of next component name in the pathname. Unlike BTRFS, TABLEFS does
not need the second version of each directory entry because the entire attributes are returned in the readdir
scan.

3.3 Hard Links

Hard links, as usual, are a special case because two or more rows must have the same inode attributes and
data. Whenever TABLEFS creates a second hard link to a file, it creates a separate row for the file itself, with

4

a null name, and its own inode number as its parent’s inode number in the row key. As illustrated in Figure
3, creating a hard link also modifies directory entry such that each row naming the file with an attribute
indicating the directory entry is a hard link to the file object’s inode row.

3.4 Inode Number Allocation

TABLEFS uses a global counter for allocating inode numbers. The counter increments when creating a new
file or a new directory. Since we use 64-bit inode numbers, it will not soon be necessary to recycle the
inode number of deleted entries. Coping with operating systems that with 32 bit inode numbers may require
frequent inode number recycling, a problem beyond the scope of this paper and shared by many file systems.

3.5 Locking and Consistency

LevelDB provides atomic batch insert but does not support atomic row read-modify-write operations. The
atomic batch write guarantees that a sequence of updates to the database are applied in order, and committed
to the write-ahead log atomically. Thus the rename operation can be implemented as a batch of two opera-
tions: insert the new directory entry and delete the stale entry. But for operations like chmod and utime, since
all inode attributes are stored in one key-value pair, TABLEFS must read-modify-write attributes atomically.
We implemented a light-weight locking mechanism in the TABLEFS core layer to ensure correctness under
concurrent accesses.

3.6 Journaling

TABLEFS relies on LevelDB and the local file system to achieve journaling. LevelDB has its own write-
ahead log that journals all updates to the table. LevelDB can be set to commit the log to disk synchronously
or asynchronously. To achieve a consistency guarantee similar to “ordered mode” in Ext4, TABLEFS forces
LevelDB to commit the write-ahead log to disk synchronously every 5 seconds.

3.7 TABLEFS in the Kernel

A kernel-native TABLEFS file system is a stacked file system, similar to eCryptfs [13, 52], treating a second
local file system as an object store, as shown in Figure 4(a). An implementation of a Log-Structured Merge
(LSM) tree [33] used for storing TABLEFS in the associated object store, such as LevelDB [22], is likely
to have an asynchronous compaction thread that is more conveniently executed at user level in a TABLEFS
daemon, as illustrated in Figure 4(b).

For the experiments in this paper, we bracket the performance of a kernel-native TABLEFS (Figure
4(a)), between a pure user-level TABLEFS (Figure 4(b)) with no TABLEFS function in the kernel and all
of TABLEFS in the user level FUSE daemon) and an application-embedded TABLEFS library, illustrated in
Figure 4(c).

TABLEFS entirely at user-level in a FUSE daemon is unrealistically slow because of the excess kernel
crossings and scheduling delays experienced by FUSE file systems [5]. TABLEFS embedded entirely in
the benchmark application as a library is not sharable, and unrealistically fast because of the infrequency
of system call. We approximate the performance of a kernel-native TABLEFS using the library version
and preceding each reference to the TABLEFS library with a write(“/dev/null”, N bytes) to account for the
system call and data transfer overhead. More details of these models will be discussed in Section 4.3.

5

VFS

User Space
(a)

Application

Kernel
TableFS

Disk

(b)

Application

kTableFS Object Store
(e.g. Ext4)

TableFSd

Disk

Object Store
(e.g. Ext4)

(c)

Application

TableFS

Disk

Object Store
(e.g. Ext4)

Figure 4: Three different implementations of TABLEFS: (a) the kernel-native TABLEFS. (b) the FUSE
verisoin of TABLEFS. and (c) the library version of TABLEFS. In the following evaluation section, (b) and
(c) are presented to bracket the performance of (a).

4 Evaluation

4.1 Evaluation System

We evaluate our TABLEFS prototype with Linux desktop computers equipped as follows:

Linux Ubuntu 11.04, Kernel 3.2.0 64-bit version
CPU AMD Opteron Processor 242 Dual Core
DRAM DDR SDRAM 16GB
Hard Disk Western Digital WD2001FASS-00U0B0

SATA, 7200rpm, 2TB
Random Seeks 100 seeks/sec peak
Sequential Reads 137.6 MB/sec peak
Sequential Writes 135.4 MB/sec peak

We compare TABLEFS with Linux’s most sophisticated local file systems: Ext4, XFS, and BTRFS.
Ext4 is mounted with “ordered” journaling to force all data to be flushed out to disk before its metadata is
committed to disk. By default, Ext4’s journal is asynchronously committed to disks every 5 seconds. XFS
and BTRFS uses similar policies asynchronously update journals. BTRFS, by default, duplicates metadata
and calculates checksums for data and metadata. We disable both features (unavailable in the other file
systems) when benchmarking BTRFS. Since the tested filesystems have different inode sizes (Ext4 and
XFS use 256 bytes and BTRFS uses 136 bytes), we pessimistically punish TABLEFS by padding its inode
attributes to 256 bytes. This slows down TABLEFS quite a bit, but it still performs quite well.

4.2 Data-Intensive Macro-benchmarks

We begin our evaluation with three coarse grain tests of the FUSE version of TableFS, the version which
provides full featured, transparent application service. Instead of using a metadata-intensive workload,
emphasized in the rest of this paper, we emphasize data-intensive work in this section. Our goals are to
demonstrate that TableFS is capable of reasonable performance for the traditional workloads that are often
used to test local file systems.

For the data in these data-intensive tests we use the Linux 3.0.1 source tree (whose compressed tar
archive is about 73 MB in size). Our three macro-benchmarks are 1) untar, 2) grep ”nonexistent pattern”,
and 3) gzip on the entire source tree. The testbed, described in Section 4.1, is allowed to use all 16 GB of
memory.

6

Figure 5 shows the average of three runs of these three macro-benchmarks using EXT4, XFS, BTRFS
and TABLEFS. TABLEFS using FUSE is 10-50% slower, but it is also paying significant overhead [5] caused
by moving all data through the user-level FUSE daemon and the kernel twice, instead of only through the
kernel once, as illustrated in Figure 4. Figure 4 also shows the much slower performance of Ext4 when it is
accessed through FUSE.

In the next section we present our model for estimating TableFS performance without FUSE overhead,
for metadata-intensive workloads.

45.8	

13.3	

40.5	
43.8	

13.7	

41.0	
45.0	

10.7	

41.2	

54.2	

16.2	

41.4	

49.0	

16.8	

53.4	

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

Untar	 Grep	 Gzip	
BTRFS	 Ext4	 XFS	 TableFS	 FUSE+Ext4	

Figure 5: The elapsed time in seconds for unpacking, searching and compressing the Linux kernel package
for four test systems.

4.3 TABLEFS-Predict Model

To understand the overhead of FUSE in TABLEFS-Predict, and estimate the performance of its in-kernel
version, we ran a micro-benchmark against TABLEFS-FUSE and TABLEFS-Library ((b) and (c) shown in
Figure 4). This micro-benchmark creates one million zero-length files in one directory starting with an
empty file system. The amount of memory available to the evaluation system is 700 MB.

Figure 6 shows the total runtime of two experiments. TABLEFS-FUSE is more than 3X slower than
TABLEFS-Libary. We also tracked disk traffic from Linux proc file system (/proc/diskstats). Figure 7
shows the total disk traffic during the test. TABLEFS-FUSE has a lot more bytes read from/written to the
disk. This additional disk traffic results from two sources: 1) FUSE framework maintains its own inode
cache, and its inode cache competes with the kernel’s page cache that stores recently accessed SSTables.
2) Under a slower insertion rate, LevelDB tends to compact more often. For each compaction in Level 0,
LevelDB will compact all SSTables with overlapping ranges. When the insertion rate is slow, compaction
in Level 0 has less SSTables to compact at each time. Therefore, it tirggers more compactions to achieve the
same level of balance.

To separate these two factors, we delibrately slow down TABLEFS-Library to run at the same speed
of TABLEFS-FUSE by adding sleep 150ms every 1000 operations. This model of TABLEFS is called
TABLEFS-Sleep and shown in Figure 6 and 7. Figure 8 shows the running behavior of three versions
of TABLEFS. TABLEFS-Sleep causes almost the same number of compactions as does TABLEFS-FUSE.
But unlike TABLEFS-FUSE, TABLEFS-Sleep can use more of kernel page cache to store SSTables than
TABLEFS-FUSE. Thus, as shown in Figure 7, TABLEFS-Sleep writes the same amount of data as TABLEFS-
FUSE does but with much less disk read traffic.

Clearly to estimate TableFS performance without FUSE overhead, we would like to reduce the double
caching and emulate the real overhead of context switching between kernel and user-space. Therefore,
we use TABLEFS-Sleep model with the following modification: Instead of sleeping, TABLEFS performs

7

180	 180	

50	

0	

50	

100	

150	

200	

Ti
m
e	
(s
ec
on

ds
)	

TableFS-‐FUSE	 TableFS-‐Sleep	 TableFS-‐Lib	

Figure 6: The elapsed time of 1M zero-length file being created on three versions of TABLEFS.

2157	 2138	
1178	 494	 1	 0.5	

6970	 6792	

3679	

14278	

11	 6	
0	

2000	
4000	
6000	
8000	
10000	
12000	
14000	
16000	

TableFS-‐FUSE	 TableFS-‐Sleep	 TableFS-‐Lib	

DiskWriteBytes(MB)	 DiskReadBytes(MB)	

DiskWriteRequests	 DiskReadRequests	

Figure 7: The total disk traffic in MB of zero-length files created.

a write(“/dev/null”, N bytes) on every invocation to account for system call and argument data transfer
overhead. This model is called TABLEFS-Predict which is used in the following sections to predict metadata
efficiency of TABLEFS.

4.4 Benchmark with Metadata Only

In this section, we micro-benchmark the efficiency of pure metadata operations. The micro-benchmark
consists of two phases. The first phase (“creation”) generates a file system of two million files, all zero
length and in one single directory. The second phase (“query”) issues one million random read or write
queries to random (uniform) files or directories. A read query calls stat on the file, and a write query
randomly does either a chmod or utime to update the mode or the timestamp fields. Between the two phases,
we umount and re-mount local filesystems to drop their caches, so that the second phases starts with a cold
cache. To better understand the cache effects, we varies the machine’s available memory from 350MB to
1500MB, by setting boot parameters of Linux. The former memory size will not fit the entire test in memory
and the later will.

Figure 9 shows the performance in operations per second, averaged over three runs of the creation
phase. TABLEFS-Predict and library version are almost 2X to 3X faster than the other tested file systems in
workloads with larger memory (700MB and 1500MB). They achieve comparable creation performance in
the smaller memory tests. The FUSE version is slower than other filesystems especially in the low memory
case.

In the creation phase, all file systems start with an empty disk. The workload is not a random insertion
workload for file systems such as XFS and Ext4 that have inodes and directory entries stored separately.
In these filesystems, newly generated inodes can be sequentially written into the disk, because inodes are
indexed by the monotonically increased inode number. And the total size of directory entires is small
compared to the size of all the inode attributes. This overcomes the disadvantage of traditional B-trees for

8

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0

50

100

150

200

250

300

350

400

C
a
ch

e
 S

iz
e
 (

M
B

)

FUSE Inode Cache
Page Cache

0

20

40

60

80

100

120

T
o
ta

l
N

u
m

b
e
r

o
f

C
o
m

p
a
ct

io
n
sTotal Compactions

(a) TABLEFS-FUSE

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0

50

100

150

200

250

300

350

400

C
a
ch

e
 S

iz
e
 (

M
B

)

FUSE Inode Cache
Page Cache

0

20

40

60

80

100

120

T
o
ta

l
N

u
m

b
e
r

o
f

C
o
m

p
a
ct

io
n
sTotal Compactions

(b) TABLEFS-Sleep

0 10 20 30 40 50
Time (seconds)

0

50

100

150

200

250

300

350

400
C

a
ch

e
 S

iz
e
 (

M
B

)
FUSE Inode Cache
Page Cache

0

20

40

60

80

100

120

T
o
ta

l
N

u
m

b
e
r

o
f

C
o
m

p
a
ct

io
n
sTotal Compactions

(c) TABLEFS-Library

Figure 8: Cache usage and total number of compactions during the creation of 1M zero-length files for threee
TABLEFS models. TABLEFS-Sleep causes almost the same number of compactions as does TABLEFS-
FUSE. But unlike TABLEFS-FUSE, TABLEFS-Sleep can use more of kernel page cache to store SSTables
than TABLEFS-FUSE.

4455	

4348	

2857	

5305	

5556	

713	

11765	

11765	

4444	

5865	

8000	

2410	

22222	

16667	

5882	

6042	

8299	

6061	

TableFS-‐Lib	

TableFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

Average	 Throughput	 (ops/sec)	

1500MB	 700MB	 350MB	

Figure 9: Performance of each file system in the creation phase of the metadata-only benchmark.

random insertion workloads. In such cases, TABLEFS does not win as much by sequentially logging every
change. Thus, as only in larger memory cases, can TABLEFS take full advantage of its cache to reduce its
random reading, and run faster than other file systems.

Figure 10 shows the total disk traffic (total size and requests) during the creation phase with memory
size of 350MB and 700MB. Figure 10 (a) and (b), show that with 350MB physical memory, although
TABLEFS reduces write disk traffic (the number of write requests) a lot, TABLEFS still causes 10X to 100X
more read requests than Ext4 and XFS. In larger memory cases shown in Figure 10 (c) and (d), with bloom
filtering and more caching, TABLEFS uses less read requests, and therefore its total number of disk requests
is fewer than other tested file systems.

9

7170	

8308	
13033	

2253	

6897	

11190	

5667	

6294	

10781	

2	

85	

1024	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(a) Total disk bytes for 350MB memory (in megabytes)

32	

37	

59	

54	

286	

1436	

79	

87	

118	

0.50	

22	

262	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadReq	 (K)	 DiskWriteReq	 (K)	

(b) Total disk requests for 350MB memory (in thousands).
Bars are shown in a log scale.

5083	

5053	

11007	

2233	

6176	

8304	

623	

536	

4344	

1	

8	

96	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(c) Total disk bytes for 700MB memory (in megabytes)

18	

19	

39	

54	

172	

960	

13	

15	

57	

0.38	

2	

25	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadReq(K)	 DiskWriteReq	 (K)	

(d) Total disk requests for 700MB memory (in thousands).
Bars are shown in a log scale.

Figure 10: Total disk traffic during the creation phase of metadata-only benchmark. The horizontal axes of
(b) and (d) are shown in log scale.

Figure 11 demonstrates the performance in operations per second, averaged over 3 runs of the query
phase with 50% random read and 50% random write. TABLEFS is 1.5X to 10X faster than the other tested
file systems even in its FUSE version under all memory sizes.

151	

151	

145	

103	

87	

44	

322	

312	

284	

213	

142	

114	

11111	

11111	

5556	

1279	

490	

518	

TableFS-‐Lib	

TableFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

Average	 Throughput	 (ops/sec)	

1500MB	 700MB	 350MB	

Figure 11: Performance of each file system in the query phase of the metadata-only benchmark.

Figure 12 shows the total disk traffic (total size and requests) during the query phase with memory
size 350MB and 1500MB. Compared to other file systems, TABLEFS reduces write disk traffic (the number
of write requests) a lot. This shows that using LevelDB effectively batches small random writes into large
sequential writes. Since this workload starts with a cold cache stat of a file randomly involves lots of random
seeks to the disk. For small memory size such as 350MB, since the datasets cannot fit into memory, each
stat operation causes a cache miss. According to Figure 12 (b), for each cache miss, TABLEFS requires

10

about two requests to read the data from disks, which is comparable to other tested file systems. Figure 12
(a) shows the total number of bytes read by TABLEFS is a lot more than other file systems. This is caused
by compactions and prefetching from large sequential SSTables. For larger memory cases shown in Figure
12 (c) and (d), TABLEFS utilizes its cache well and reduces the disk read traffic significantly.

3220	

19442	

20015	
3934	

5030	

3913	

102247	

102942	

105733	 10094	

6995	
27335	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(a) Total disk bytes for 350MB memory (in megabytes)

22	
92	
93	

485	
990	

484	

1779	
1261	
1258	

1710	
1790	

3532	

TableFS-‐Lib	
TFS-‐Predict	

TableFS	
XFS	

EXT4	
BTRFS	

DiskReadRequests	 (K)	 DiskWriteRequests	 (K)	

(b) Total disk requests for 350MB memory (in thousands)

1673	

2009	

4902	

2453	

2546	

3639	

563	

556	

584	

716	

1226	

917	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(c) Total disk bytes for 1.5GB memory (in megabytes)

7	

8	

18	

240	
302	

400	

7	
6	

9	
102	

314	

144	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

DiskReadRequests	 (K)	 DiskWriteRequests	 (K)	

(d) Total disk requests for 1.5GB memory (in thousands)

Figure 12: Total disk traffic during the query phase of metadata-only benchmark

4.5 Benchmark with Large Directories

To see TABLEFS’s scalability for supporting large directories, we repeat create phase of the metadata-only
benchmark, but increase the number of created zero-length files from 2 million to 100 million (a number of
files rarely seen in the local file system today). In this benchmark, the memory available to the evaluation
system is not limited, and all tested file systems can fully utilize all 16GB physical memory.

Figure 13 shows a throughput timeline for TABLEFS. In the beginning of this test, there is a throughput
spike that is caused by everything fitting in the cache. Later in the test, the creation throughput of all tested
file systems gradually slows down. BTRFS suffers serious throughput drop, slowing down to 100 operations
per second at some points. TABLEFS maintains a more steady performance with an average speed of 2,200
operations per second: TABLEFS is 10X faster than all other tested file systems.

All tested file systems have throughput fluctuations during the test and the behavior of TABLEFS’s
throughput is more smooth than others. This kind of fluctuation in other file systems might be caused by
load balancing or splitting in B-Tree. In TABLEFS, this behavior is caused by compactions in LevelDB, in
which SSTables are quickly merged and sequentially written back to disks. LevelDB limits the amount of
work to do in each compaction, and therefore its throughput is more steady than other file systems.

4.6 Benchmark with Small Files

The second micro-benchmark is similar to metadata-only benchmark except that we create one million small
files with size 512B. All small files have the same content (and there is no compression to exploit this). In
the query phase, read queries retrieve the content of a file and write queries overwrite the whole file. Files
in the query phase are still randomly picked, and distributed uniformly in the namespace.

11

0 5 10 15 20 25 30 35
Time (K Seconds)

102

103

104

105

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

BTRFS
Ext4
XFS
LevelDB Metadata Store

Figure 13: Throughput of creating 100 million zero-length files by four tested file systems during the test.
We only graph the time until TABLEFS finished inserting all 100 million zero-length files, because the other
file systems were much slower. TABLEFS is almost 10X faster than the other tested file systems in the later
stage of this experiment. The data is sampled in every 10 seconds and smoothed over 100 seconds. The
veritical axis is shown in a log scale.

7143	 6897	

3333	

10000	

6452	 6873	

Crea0on	

Th
ro
ug
pu

ht
	 (o

ps
/s
ec
)	

TableFS-‐Lib	 TFS-‐Predict	 TableFS	

XFS	 EXT4	 BTRFS	

Figure 14: Avarage throughput during the creation phase in the small file benchmark where the available
memory is 700MB.

Figure 14 shows the results of the creation phase. As in the metadata only benchmark, TABLEFS FUSE
and Library are all slower than XFS, the fastest local file system. The performance gap between TABLEFS
and XFS in small file creation workload is larger than in the metadata-only workload. That is because with
sufficient memory, TABLEFS do not gain much from reducing write seeks. Moreover, since data is inline
with metadata in one row in LevelDB, new file data will also be put into LevelDB’s write-ahead log, wasting
more disk bandwidth.

To understand TABLEFS’s performance gain from read and write requests, we also varies the ratio of
read and write queries in the query phase. Figure 15 shows the performance in operations per second, aver-
aged over the query phase, for three different ratios of read and write queries: (1) 10% read and 90% write
queries, (2) 50% read and 50% write queries, and (3) 90% read and 10% write queries. In the query phase,
TABLEFS outperforms all other file systems by 2X. The performance gap between TABLEFS and other file
systems are larger in the workload with 90% write queries. This shows TABLEFS is better optimized for
random update queries than other file systems.

12

227	

216	

211	

63	

140	

70	

195	

189	

175	

45	

102	

45	

188	

157	

159	

39	

87	

44	

0	 50	 100	 150	 200	 250	

TableFS-‐Lib	

TFS-‐Predict	

TableFS	

XFS	

EXT4	

BTRFS	

Throughput	 (ops/seconds)	

90%	 Write	 50%	 Write	 10%	 Write	

Figure 15: Performance during the query phase for all small file benchmarks under different write ratio, by
limiting available memory size of 700MB.

4.7 Benchmark with readdir

Besides point queries such as open, mknod and stat, range queries such as readdir are also an important
metadata operation. To test the performance of readdir, we run a benchmarks that performs multiple readdir
in a realistic desktop filesystem tree. This benchmark first generates a filesystem with 1 million files, all
with size 512B. This file system has the same namespace as one author’s personal Ubuntu desktop, there
are 172,252 directories, each with 11 files on average, and the average depth of the namespace is 8. The
benchmark creates this test namespace in depth first order. The query phase issues 10,000 readdir on
randomly chosen directories. Between the creation phase and query phase the file system is umounted
to clean the cache. This experiment runs with 700 MB available memory.

140	
180	

340	

160	

50	 60	

Time	 (seconds)	

TableFS-‐Lib	 TableFS-‐Predict	 TableFS	

EXT4	 XFS	 BTRFS	

Figure 16: The elapsed time for the entire run of readdir benchmark.

Figure 16 shows the results of the readdir query phase. TABLEFS is slower than XFS and BTRFS
because of read amplification, that is, for each readdir operation, TABLEFS fetches directory entries along
with inode attributes and file data.

Figure 17 shows the disk traffic during the test. TABLEFS reads a lot more than the other file systems.
Figure 17 also shows that TABLEFS incurs write-disk traffic during a read-only workload. This is due to the
compaction in the underlying LevelDB. LevelDB maintains an individual counter of false-positive lookups
for each SSTable. If one SSTable receives too many false-positive lookups, a compaction will be triggered
to merge this SSTable with other SSTables within the same key range.

13

186	

213	

750	

13	

0	

0	

11462	

11810	

26736	

101	

50	

87	

TableFS-‐Lib	

TableFS-‐Predict	

TableFS	

EXT4	

XFS	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(a) Total disk bytes for readdir benchmark

186	

213	

750	

13	

0	

0	

11462	

11810	

26736	

101	

50	

87	

TableFS-‐Lib	

TableFS-‐Predict	

TableFS	

EXT4	

XFS	

BTRFS	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(b) Total disk requests for readdir benchmark

Figure 17: Total disk traffic during the query phase of readdir benchmark

Figure 18 shows the results of an “ls -l” workload when for each entry returned by readdir(), the
benchmark does a stat on this entry. Since stat causes an additional random lookup, the other file systems
slow down a lot. However, this does not incur additional overheads for TABLEFS.

140	
180	

341	

170	
110	 120	

Time	 (seconds)	

TableFS-‐Lib	 TableFS-‐Predict	 TableFS	

EXT4	 XFS	 BTRFS	

Figure 18: The elapsed time for the entire run of readdir+stat benchmark.

4.8 Postmark Benchmark

Postmark was designed to measure the performance of a file system used for e-mails, and web based
services [19]. It creates a large number of small randomly-sized files between 512B and 4KB, performs a
specified number of transactions on them, and then deletes all of them. Each transaction consists of two sub-
transactions, with one being a create or delete and the other being a read or append. The configuration used
for these experiments consists of two million transactions on one million files, and the biases for transaction
types are equal. The experiments were run against TABLEFS FUSE version with the available memory set
to be 1500 MB.

Figure 19 shows the Postmark results for the four tested file systems. Again, TABLEFS outperforms
other tested file systems by at least 23% less time. Figure 20 gives the average throughput of each type of
operations individually. Similar to previous experiments, TABLEFS runs faster than other tested filesystems
for transaction operations, and is slower in creation. In LevelDB, deletion is implemented as inserting
entries with deletion marks. The actual deletion is delayed until compaction procedure reclaims the deleted
entries. Such implementation is not as efficient as XFS and Ext4, possibly because XFS and Ext4 can
quickly reclaim deleted inodes whose inode numbers are continuous in a range.

14

78315	
72702	

45206	 43093	 41252	 40391	 35835	 31038	

0	

20000	

40000	

60000	

80000	

100000	

Total	 Trasac4on	 Time	

Ti
m
e	
(s
ec
on

ds
)	

Btrfs	 Ext4	 XFS	 TableFS	

Figure 19: The elapsed time for both the entire run of postmark and the transactions phase of postmark for
the four test systems.

27	

3831	

13	 13	

186	

46	

10416	

23	 23	

496	

49	

5405	

24	 24	

1480	

64	

1278	

32	 32	

249	

1	

10	

100	

1000	

10000	

100000	

Transac2on	 Crea2on	 Read	 Append	 Dele2on	

Th
ro
ug
hp

ut
	 (o

ps
/s
ec
)	

Btrfs	 Ext4	 XFS	 TableFS	

Figure 20: Average throughput of each type of operation in postmark benchmark.

5 Related Work

File system metadata is structured data, a natural fit for relational database techniques. However, because
of large size, complexity and slow speed, file system developers have long been reluctant to incorporate
traditional databases into the lower levels of file systems [46, 31]. Modern stacked file systems often expand
on the limited structure in file systems, hiding structures inside directories meant to represent files [5, 13,
14, 20, 52], although this may increase the number of small files in the file system. In this paper, we return
to the basic premise: file system metadata is natural for table-based representation, and show that today’s
lightweight data stores may be up to the task. We are concerned with an efficient representation of huge
numbers of small files, not strengthening transactional semantics [15, 18, 24, 40, 51].

Early file systems stored directory entries in a linear array in a file and inodes in simple on-disk tables,
separate from the data of each file. Clustering within a file was pursued aggressively, but for different files
clustering was at the granularity of the same cylinder group. It has long been recognized that small files can
be packed into the block pointer space in inodes [29]. C-FFS [11], takes packing further and clusters small
files, inodes and their parent directory’s entries in the same disk readahead unit, the track. A variation on
clustering for efficient prefetching is replication of inode fields in directory entries, as is done in NTFS[8].
TABLEFS pursues an aggressive clustering strategy; each row of a table is ordered in the table with its
parent directory, embedding directory entries, inode attributes and the data of small files. This clustering
is manifest as adjacency in objects in the lower level object store if these entries were create/updated close
together in time, or after compaction has put them back together.

Beginning with the Log-Structured File System (LFS)[37], file systems have exploited write alloca-
tion methods that are non-overwrite, log-based and deferred. Variations of log structuring have been imple-
mented in NetApp’s WAFL, Sun’s ZFS and BSD UNIX [3, 17, 43]. In this paper we are primarily concerned
with the performance implications of non-overwrite and log-based writing, although the potential of strictly

15

ordered logging to simplify failure recovery has been compared to various write ordering schemes such as
Soft Updates and Xsyncfs [27, 44, 30]. LevelDB’s recovery provisions are consistent with delayed periodic
journalling, but could be made consistent with stronger ordering schemes. It is worth noting that the design
goals of BTRFS call for non-overwrite (copy-on-write) updates to be clustered and written sequentially[36],
largely the same goals of LevelDB in TABLEFS. Our measurements indicate, however, that the BTRFS
implementation ends up doing far more small disk accesses in metadata dominant workloads.

Partitioning the contents of a file system into two groups, a set of large file objects and all of the
metadata and small files, has been explored in hFS[53]. In their design large file objects do not float as they
are modified, and the metadata and small files are log structured. TABLEFS has this split as well, with large
file objects handled directly by the backing object store, and metadata updates approximately log structured
in LevelDB’s partitioned LSM tree in the same backing object store. However, TABLEFS does not handle
disk allocation, relying entirely on the backing object store to handle large objects well.

Log-Structured Merge trees [33] were inspired in part by LFS, but focus on representing a large B-tree
of small entries in a set of on-disk B-trees constructed of recent changes and merging these on-disk B-trees
as needed for lookup reads or in order to merge on-disk trees to reduce the number of future lookup reads.
LevelDB [22] and TokuFS [10] are LSM trees. Both are partitioned in that the on-disk B-trees produced
by compaction cover small fractions of the key space, to reduce unnecessary lockup reads. TokuFS names
its implementation a Fractal Tree, also called streaming B-trees[4], and its compaction may lead to more
efficient range queries than LevelDB’s LSM tree because LevelDB uses Bloom filters[6] to limits lookup
reads, a technique appropriate for point lookups only. When bounding the variance on insert response time is
critical, compaction algorithms can be made more carefully scheduled, as is done in bLSM[42]. TABLEFS
may benefit from all of these improvements to LevelDB’s compaction algorithms, which we observe to
sometimes consume disk bandwidth injudiciously.

6 Conclusion

File systems have long suffered low performance when accessing huge collections of small files because
caches cannot hide all disk seeks. TABLEFS uses modern key-value store techniques to pack small things
(directory entries, inode attributes, small file data) into large on-disk files with the goal of suffering fewer
seeks when seeks are unavoidable. Our implementation, even hampered by FUSE overhead, LevelDB code
overhead, LevelDB compaction overhead, and pessimistically padded inode attributes, performs 10X better
than state-of-the-art local file systems in extensive metadata update workloads.

References

[1] FUSE. http://fuse.sourceforge.net/.

[2] Memcached. http://memcached.org/.

[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] Michael A. Bender and et al. Cache-oblivious streaming B-trees. In SPAA, 2007.

[5] John Bent and et al. PLFS: a checkpoint filesystem for parallel applications. In SC, 2009.

[6] B.H. BLOOM. Space/time trade-offs in hash coding with allowable errors. Communication of ACM
13, 7, 1970.

[7] Fay Chang and et al. Bigtable: a distributed storage system for structured data. In OSDI, 2006.

16

http://fuse.sourceforge.net/
http://memcached.org/
http://www.opensolaris.org/os/community/zfs

[8] H. Custer. Inside the windows NT file system. Microsoft Press, 1994.

[9] Shobhit Dayal. Characterizing HEC storage systems at rest. Technical report, Carnegie Mellon Uni-
versity, 2008.

[10] John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. The TokuFS
streaming file system. Proceedings of the 4th USENIX conference on Hot Topics in Storage and File
Systems (HotStorage12), 2012.

[11] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Exploiting disk
bandwidth for small files. In USENIX ATC, 1997.

[12] Sanjay Ghemawat and et al. The Google file system. In SOSP, 2003.

[13] Michael Austin Halcrow. eCryptfs: An Enterprise-class Encrypted Filesystem for Linux. Proc. of the
Linux Symposium, Ottawa, Canada, 2005.

[14] Tyler Harter and et al. A file is not a file: understanding the I/O behavior of Apple desktop applications.
In SOSP, 2011.

[15] R. Haskin, Y. Malachi, W. Sawdon, and G. Chan. Recovery management in quicksilver. In Proceedings
of the Eleventh ACM Symposium on Operating System Principles, 1987.

[16] HDFS. Hadoop file system. http://hadoop.apache.org/.

[17] Dave Hitz and et al. File system design for an NFS file server appliance. In USENIX Winter, 1994.

[18] Aditya Kashyap and et al. File system extensibility and reliability using an in-kernel database. Master
Thesis, Computer Science Department, Stony Brook University, 2004.

[19] Jeffrey Katcher. Postmark: A new file system benchmark. Technical report, NetApp, 1997.

[20] Hyojun Kim and et al. Revisiting storage for smartphones. In FAST, 2012.

[21] Jan Kra. Ext4, BTRFS, and the others. In Proceeding of Linux-Kongress and OpenSolaris Developer
Conference, 2009.

[22] LevelDB. A fast and lightweight key/value database library. http://code.google.com/p/

leveldb/.

[23] Hyeontaek Lim and et al. SILT: a memory-efficient, high-performance key-value store. In SOSP,
2011.

[24] Barbara Liskov and Rodrigo Rodrigues. Transactional file systems can be fast. Proceedings of the
11th ACM SIGOPS European Workshop, 2004.

[25] Lustre. Lustre file system. http://www.lustre.org/.

[26] Avantika Mathur and et al. The new Ext4 lesystem: current status and future plans. In Ottawa Linux
Symposium, 2007.

[27] Marshall Kirk McKusick and Gregory R. Ganger. Soft updates: A technique for eliminating most
synchronous writes in the fast filesystem. USENIX Annual Technical Conference, FREENIX Track,
1999.

17

http://hadoop.apache.org/
http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
http://www.lustre.org/

[28] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In FAST, 2011.

[29] Sape J. Mullender and Andrew S. Tanenbaum. Immediate files. SoftwarePractice and Experience,
1984.

[30] EDMUND B. NIGHTINGALE, KAUSHIK VEERARAGHAVAN, PETER M. CHEN, and JASON
FLINN. Rethink the sync. ACM Transactions on Computer Systems, Vol.26, No.3 Article 6, 2008.

[31] Michael A. Olson. The design and implementation of the Inversion file system. In USENIX Winter,
1993.

[32] Diego Ongaro and et al. Fast crash recovery in RAMCloud. In SOSP, 2011.

[33] Patrick ONeil and et al. The log-structured merge-tree (LSM-tree). Acta Informatica, 1996.

[34] Swapnil Patil and Garth A. Gibson. Scale and concurrency of GIGA+: File system directories with
millions of files. In FAST, 2011.

[35] Ohad Rodeh. B-trees, shadowing, and clones. TOS, 2008.

[36] Ohad Rodeh, Josef Bacik, and Chris Mason. BRTFS: The Linux B-tree Filesystem. IBM Research
Report RJ10501 (ALM1207-004), 2012.

[37] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. In SOSP, 1991.

[38] Robert B. Ross and et al. PVFS: a parallel file system. In SC, 2006.

[39] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file system for large computing clusters.
In FAST, 2002.

[40] Russell Sears and Eric A. Brewer. Stasis: Flexible transactional storage. In OSDI, 2006.

[41] Russell Sears and et al. To BLOB or Not To BLOB: Large Object Storage in a Database or a Filesys-
tem? Microsoft Technique Report, 2007.

[42] Russell Sears and Raghu Ramakrishnan. bLSM: a general purpose log structured merge tree. Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD12),
2012.

[43] Margo I. Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An implementation of a
log-structured file system for UNIX. USENIX Winter Technical Conference, 1993.

[44] Margo I. Seltzer and et al. Journaling versus soft updates: Asynchronous meta-data protection in file
systems. USENIX Annual Technical Conference, 2000.

[45] Jan Stender and et al. BabuDB: Fast and efficient file system metadata storage. In SNAPI ’10, 2010.

[46] Michael Stonebraker. Operating System Support for Database Management. Commun. ACM, 1981.

[47] Michael Stonebraker and Ugur Çetintemel. “One Size Fits All”: An Idea Whose Time Has Come and
Gone. In ICDE, 2005.

[48] Adam Sweeney. Scalability in the XFS file system. In USENIX ATC, 1996.

18

[49] Brent Welch and et al. Scalable performance of the panasas parallel file system. In FAST, 2008.

[50] Ric Wheeler. One billions files: pushing scalability limits of linux filesystem. In Linux Foudation
Events, 2010.

[51] CHARLES P. WRIGHT, RICHARD SPILLANE, GOPALAN SIVATHANU, and EREZ ZADOK. Ex-
tending ACID Semantics to the File System. ACM Transactions on Storage, Vol.3, No.2, 2007.

[52] Erez Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. USENIX Anual Technical
Conference, 2000.

[53] Zhihui Zhang and et al. hFS: A hybrid file system prototype for improving small file and metadata
performance. In EuroSys, 2007.

19

	Introduction
	Background
	Local File System Structures
	LevelDB and its Log-Structured Merge Tree

	TableFS
	Local File System as Object Store
	Table Schema
	Hard Links
	Inode Number Allocation
	Locking and Consistency
	Journaling
	TableFS in the Kernel

	Evaluation
	Evaluation System
	Data-Intensive Macro-benchmarks
	TableFS-Predict Model
	Benchmark with Metadata Only
	Benchmark with Large Directories
	Benchmark with Small Files
	Benchmark with readdir
	Postmark Benchmark

	Related Work
	Conclusion

