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Abstract

This paper presents a proof of correctness for Egalitarian Paxos (EPaxos), a new distributed consensus algorithm based on Paxos.
EPaxos achieves three goals: (1) availability without interruption as long as a simple majority of replicas are reachable—its
availability is not interrupted when replicas crash or fail to respond; (2) uniform load balancing across all replicas—no replicas
experience higher load because they have special roles; and (3) optimal commit latency in the wide-area when tolerating one and
two failures, under realistic conditions. Egalitarian Paxos is to our knowledge the first distributed consensus protocol to achieve
all of these goals efficiently: requiring only a simple majority of replicas to be non-faulty, using a number of messages linear in the
number of replicas to choose a command, and committing commands after just one communication round (one round trip) in the
common case or after at most two rounds in any case.
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1 Introduction

Today’s clusters use fault-tolerant, highly available coordination engines like Chubby [1], Boxwood [5],
or ZooKeeper[4] for activities such as operation sequencing, coordination, leader election, and resource
discovery. An important limitation in these systems is that during efficient, normal operation, all the clients
communicate with a single master (or leader) server at all times. This optimization, sometimes termed
“Multi-Paxos,” is important to achieving high throughput in practical systems [2]. Changing the leader
requires invoking additional consensus mechanisms that substantially reduce throughput.

This algorithmic limitation has several important consequences. First, it can impair scalability by
placing a disproportionally high load on the master, which must process more messages than the other
replicas [6]. Second, it can harm availability: if the master fails, the system cannot service requests until
a new master is elected. Finally, as we show in this paper, traditional Paxos variants are sensitive to both
long-term and transient load spikes and network delays that increase latency at the master. Previously
proposed solutions such as partitioning or using proxy servers are undesirable because they restrict the type
of operations the cluster can perform. For example, a partitioned cluster cannot perform atomic operations
across partitions without using additional techniques.

Egalitarian Paxos (EPaxos) has no designated leader process. Instead, clients can choose, at every
step, which replica to submit a command to, and in most cases the command will be committed without
interfering with other concurrent commands. This allows the system to evenly distribute the load to all
replicas, eliminating the first bottleneck identified above (having one server that must be on the critical path
for all communication). The system can provide higher availability because there is no transient interruption
because of leader election: there is no leader, and hence, no need for leader election, as long as more
than half of the replicas are available. Finally, EPaxos’s flexible load distribution is better able to handle
permanently or transiently slow nodes, substantially reducing both the median and tail commit latency.

2 Preliminaries

We begin by stating assumptions, definitions, and introducing our notation.
Messages exchanged by processes (clients and replicas) are asynchronous. Failures are non-Byzantine

(a machine can fail by stopping to respond for an indefinite amount of time). The replicated state machine
comprises N replicas. For every replica R there is an unbounded sequence of numbered instances R.1, R.2,
R.3, ... that that replica is said to own. At most one command will be adopted in an instance. The ordering of
the instances is not pre-determined—it is determined dynamically by the protocol, as commands are chosen.

It is important to understand that committing and executing commands are different actions, and that
the commit and execution orders are not necessarily the same. A client of an EPaxos-based system will
interact with the system through an interface of the following form:

To modify the replicated state, a client sends Request(command) to a replica of its choice. A RequestReply
from that replica will notify the client that the command has been committed.

To read (a part of) the state, clients send Read(ob jectID) messages and wait for ReadReply. A Read
is itself a special no-op command that interferes with updates to the object it is reading.

A client that receives a RequestReply for a command knows only that the command has been com-
mitted, but has no information about whether the command has been executed or not. Only when the client
reads the replicated state updated by its previously committed commands is it necessary for those commands
to be executed.
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3 Interfering Commands

Before we can describe Egalitarian Paxos in detail, we must define command inter f erence.
Informally, two commands that interfere must be executed in the same order by all replicas.
For the sake of clarity, we give a formal definition by restricting the type of commands that clients can

propose. This, however, is not fundamental: the notion of interference can be applied similarly to many
more types of commands.

Let O be the finite set of all objects that comprise the replicated state of the replicated state machine,
and V the set of all possible values for the objects in O. At any given time, the replicated state is therefore
represented by a well defined function val : O→ V .

A command is a tuple (O ′,w,R ), where O ′ ⊆ O, R ⊆ O, and w : O ′→ V is a well-defined function.
Together, O ′ and w represent the write part of the command, while R represents the read part. Commands
are executed (or applied) atomically and sequentially.

Applying a command c = (Oc,wc,Rc) in a state val : O→ V has two effects:

1. It atomically modifies the current state to val′ : O→ V such that val′(o) = w(o) if o ∈ Oc, otherwise
val′(o) = val(o);

2. It returns the set {(o,v) | o ∈ Rc and val′(o) = v} to the client.

We are now ready to formally define the notion of interference:

Definition 1 (Interference). Two commands γ = (Oγ,wγ,Rγ) and δ = (Oδ,wδ,Rδ) are said to interfere (we
write γ∼ δ) if either Oγ∩Oδ 6=∅, or Oγ∩Rδ 6=∅, or Rγ∩Oδ 6=∅.

Note that the interference relation is symmetric and reflexive, but not necessarily transitive.

4 Protocol Guarantees

The formal guarantees that Egalitarian Paxos offers clients are similar to those provided by other Paxos
variants:

Nontriviality Any command committed by any replica must have been proposed by a client.
Stability For any replica, the set of committed commands at any time is a subset of the committed

commands at any later time. Furthermore, if at time t1 a replica R has command γ committed at some
instance Q.i, then R will have γ committed in Q.i at any later time t2 > t1.

Consistency Two replicas can never have different commands committed for the same instance.
Execution consistency For any two commands γ and δ that interfere, if both γ and δ have been com-

mitted by any replicas, then γ and δ will be executed in the same order by every replica.
Execution linearizability If two interfering commands γ and δ are serialized by clients (i.e., δ is

proposed only after γ is committed by any replica), then every replica will execute γ before δ.
Liveness A proposed command will eventually be committed by every non-faulty replica, as long as

fewer than half the replicas are faulty and messages eventually reach their destination before their recipient
times out1.

5 Simplified Egalitarian Paxos

In this section we describe the basic form of the Egalitarian Paxos protocol. In Section 6 we will show how
to modify this protocol to reduce the quorum size.

1These are the same liveness guarantees provided by Paxos. By FLP [3], it is impossible to provide stronger guarantees for
distributed consensus.
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5.1 The EPaxos Commit Protocol

As mentioned earlier, committing and executing commands are separate. Accordingly, EPaxos comprises
two components: (1) the protocol for choosing (committing) commands and determining their ordering
attributes in the process; and (2) the algorithm for executing commands based on these attributes.

We present a pseudocode description of the Egalitarian Paxos protocol for choosing commands below.
The state of each replica is represented in the pseudocode by each replica’s private commands array.

We split the description of the commit protocol into multiple phases. Not all phases are executed for
every command: a command committed after the execution of phases 1, 2 and Commit, is said to have been
executed on the fast path. The slow path involves the additional Multi-Paxos phase. The Explicit Prepare
phase is only executed on failure recovery.

Phase 1 starts when a replica L receives a request (for a command γ) and becomes a command leader.
L begins the process of choosing γ in the next available instance of its instance space. It also attaches what
it believes are the correct attributes for that command:

deps is the list of all instances that contain commands (not necessarily committed) that interfere with γ; we
say that γ depends on those instances (and their corresponding commands);

seq is a sequence number used to break dependency cycles during the execution algorithm; seq is updated
to be larger than the seq numbers of all commands in deps.

The command leader forwards the command and the initial attributes to at least a fast quorum of replicas
as a PreAccept message. For now, we assume that a fast quorum contains N − 1 replicas, including the
command leader. We will show in Section 5.3 that we can reduce the fast quorum size to d3N/4e when
N > 3.

Each replica, upon receiving the PreAccept, updates γ’s attributes according to the contents of its
commands log, records γ and the new attributes in commands, and replies to the command leader.

If the command leader receives replies from enough replicas to constitute a fast quorum, and all the
updated attributes are the same, it commits the command. If it doesn’t receive enough replies, or the at-
tributes in some replies have been updated differently than in others, then the command leader updates the
attributes based on bN/2c+ 1 replies (taking the union of all deps, and the highest seq), and tells at least
bN/2c+ 1 replicas to accept these attributes. This can be seen as running Multi-Paxos for choosing the
triplet (γ,depsγ,seqγ) in γ’s instance. At the end of this extra round, after replies from a majority (including
itself), the command leader will reply to the client, and will send Commit messages asynchronously to all
the other replicas.

Like classic Paxos, every message contains a ballot number (not presented explicitly in the pseudocode
for phases other than Explicit Prepare). As in classic Paxos, the ballot number ensures message freshness:
a replica will disregard any message with a smaller ballot than the largest it has seen for a certain instance.
The initial Prepare phase is implicit for all instances R.i, for an initial ballot number 0.R—a replica R will
use only ballot numbers i.R (where the number before the dot takes precedence when ordering ballots), and
each replica is the default (i.e., initial) leader of its own instances. Whenever a command leader receives
a NACK for one of its messages, indicating that some other replica has used a higher ballot in the same
instance, that command leader will fallback on executing Explicit Prepare.

Phase 1

Replica L designated as leader for command γ, on receiving Request(γ) from a client (steps 2, 3 and 4
executed atomically):

1: increment instance number L.i← L.i+1
2: seqγ← max ({0}∪{seq. attribute of every command recorded in commands that interferes w/ γ})+1
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3: depsγ←{(R, j) | commands[R][ j] interferes w/ γ}
4: commands[L][i]← (γ,seqγ,depsγ,PreAccepted)
5: send PreAccept(γ,seqγ,depsγ,L.i) to all other replicas

Replica R, on receiving PreAccept(γ,seqγ,depsγ,L.i) from replica L (steps 6 through 10 executed atom-
ically):

6: max seq← max({0}∪{seq. attribute of every command δ in commands, s.t. γ and δ interfere})
7: update seqγ← max({seqγ,max seq+1})
8: depslocal ←{(R, j) | commands[R][ j] interferes with γ}
9: update depsγ← depsγ∪depslocal

10: commands[L][i]← (γ,seqγ,depsγ,PreAccepted)
11: reply PreAcceptOK(γ,seqγ,depsγ,L.i) to L

Phase 2

Replica L (designated leader for command γ), on receiving at least bN/2c+1 PreAcceptOK responses:
12: if received at least N−2 PreAcceptOK’s with the same seqγ and depsγ attributes then
13: reply RequestReply(γ,L.i) to client
14: run Commit phase for (γ,seqγ,depsγ) at L.i
15: else
16: update depsγ← Union(depsγ from all replies)
17: update seqγ← max({seqγ of all replies})
18: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i

Multi-Paxos

Designated leader replica L, for (γ,seqγ,depsγ) at instance L.i
20: send Accept(γ,seqγ,depsγ,L.i) to all replicas
21: if received at least bN/2c+1 AcceptOK in response then
22: reply RequestReply(γ,L.i) to client
23: run Commit phase for (γ,seqγ,depsγ) at L.i
Replica R, on receiving Accept(γ,seqγ,depsγ,L.i):
25: commands[L][i]← (γ,seqγ,depsγ,Accepted)
26: reply AcceptOK(γ,L.i) to L

Commit

Designated leader replica L, for (γ,seqγ,depsγ) at instance L.i
27: commands[L][i]← (γ,seqγ,depsγ,Committed)
28: send Commit(γ,seqγ,depsγ,L.i) to all other replicas

Replica R, on receiving Commit(γ,seqγ,depsγ,L.i):
29: commands[L][i]← (γ,seqγ,depsγ,Committed)

Explicit Prepare Phase

Replica Q for instance L.i of a potentially failed replica L
30: increment ballot number (b+1).Q, (where b.L was the default ballot number for instance L.i)
31: send Prepare((b+1).Q,L.i) to all replicas (including self)
32: wait for at least bN/2c+1 responses
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33: let R be set of replies w/ the highest ballot number
34: if R contains a (γ,seqγ,depsγ,Committed) then
35: run Commit phase for (γ,seqγ,depsγ) at L.i
36: else if R contains a (γ,seqγ,depsγ,Accepted) then
37: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i
38: else if R contains at least bN/2c identical (γ,seqγ,depsγ,PreAccepted) replies, and none is from L

then
39: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i
40: else if R contains at least one (γ,seqγ,depsγ,PreAccepted) then
41: start Phase 1 for γ at instance L.i, avoiding the fast path
42: else
43: start Phase 1 for a no-op at instance L.i, avoiding fast path

Replica R, on receiving Prepare(b.Q,L.i) from Q
45: if b.Q is larger than the most recent ballot number x.Y for instance L.i then
46: reply PrepareOK(commands[L][i],x.Y,L.i)
47: else
48: reply NACK

5.2 The Execution Algorithm

To execute command γ committed in instance R.i, a replica will follow these steps:

1. Wait for R.i to be committed (or run an explicit prepare phase to force it);

2. Build γ’s dependency graph by adding γ and all the commands in instances from γ’s dependency list
as nodes, with directed edges from γ to these nodes, and then repeating this process recursively for all
of γ’s dependencies (starting with step 1);

3. Find the strongly connected components, sort them topologically;

4. In decreasing topological order, for each strongly connected component, do:

4.1 Sort all commands in the strongly connected component by their sequence number;

4.2 Execute every command in increasing sequence number order (if it hasn’t already been exe-
cuted), and mark it as executed.

5.3 Fast Egalitarian Paxos

We can use the Fast Paxos optimization in EPaxos to decrease the commit latency by one message delay by
letting clients broadcast commands to all replicas. We do not explore this because of two main drawbacks:
(1) the fast-path quorum size will be d3N/4e (as in Generalized Paxos), which is by at least one replica
larger than that in Optimized Egalitarian Paxos (which we describe in Section 6); and (2) when building
deps, we can no longer identify commands by their instance numbers—we must use unique identifiers set
by the clients instead.
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5.4 Recovering from Failures

A replica may need to find out the decision for an instance because it has commands to execute that depend
on it. If the replica times out waiting for the commit for that instance, it will try to take ownership of it
by running an Explicit Prepare phase, at the end of which it will either learn what command was being
proposed in the problem instance (in which case it will finalize committing that command), or it will not
learn any command (because no other replica has seen it), in which case it will commit a special no-op
command to finalize the instance

Another failure-related situation is that where a client timed out waiting for a replica to reply and re-
issues its command to a different replica. As a result, the same command can be proposed in two different
instances, so every replica must be able to recognize duplicates, and only execute the command once. This
situation is not specific to Egalitarian Paxos—it affects any replication protocol. An alternative solution is
to make the application tolerant of re-executed commands.

5.5 Joining/Rejoining the Replica Set

New replicas (or replicas that recover after losing the contents of their memory) must be associated pre-
viously unseen replica ids by a reliable configuration service (possibly Paxos-replicated itself). The first
action of a replica after joining is to send a Join message to at least bN/2c+ 1 old replicas (replicas that
are not themselves in the process of joining). Every reply to the Join contains the highest instance numbers
R.i (for all dead or alive replicas R) for which the old replica has received messages. The new replica will
only participate in the voting process after seeing commits for all the instances up to and including these
instances.

The new replica must receive Commit messages for all the commands already chosen before it became
live, before fewer than bN/2c+1 old replicas remain—if those commands had been chosen but not explicitly
committed, they must be committed.

5.6 Proof of Properties

We prove that together, the commit protocol and execution algorithm guarantee the properties stated in
Section 4.

Theorem 1 (Nontriviality). Any command committed by any EPaxos replica must have been proposed by a
client.

Proof. For any command that reaches the Commit phase, a replica must have executed Phase 1. Phase 1 is
only executed for commands proposed by clients.

For proving stability and consistency, we first prove a stronger property.

Definition 2. If γ is a command with attributes seqγ and depsγ, we say that the tuple (γ,seqγ,depsγ) is safe
at instance Q.i if (γ,seqγ,depsγ) is the only tuple that is or will be committed at Q.i by any replica.

Lemma 1. EPaxos replicas commit only safe tuples.

Proof.

1 The same ballot number cannot be used twice in the same instance.
PROOF:

1.1 No two different replicas can use the same ballot number.

PROOF: The ballot number chosen by a replica is based on its id, which is unique.
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1.2 A replica never uses the same ballot number twice for the same instance

PROOF:

1.2.1 Case: If replicas store the command log in persistent memory, then a replica will never reinitiate
the same instance twice with the same ballot number.

1.2.2 Case: If a crashed replica can forget the command log, it will be assigned a new id when it
recovers.

1.2.3 Q.E.D.
Cases 1.2.1 and 1.2.2 are exhaustive.

1.3 Q.E.D.

Immediately from 1.1 and 1.2.

2 For any instance Q.i there is at most one attempt (i.e., the default ballot 0.Q) to choose a tuple without
running Explicit Prepare first.
PROOF:

2.1 A replica Q starts an instance Q.i at most once.

PROOF: A replica starts an instance only in Phase 1 of the algorithm and it increments the instance
number atomically every time it executes Phase 1. The instance number never decreases. If a replica
loses the content of its memory (e.g., after a crash), it will be assigned a previously unused replica id
by a safe external configuration service—so the same instance can never be started twice.

2.2 No replica other than Q can start instance Q.i.

PROOF:

2.2.1 A replica with a different id R 6= Q starts only instances R.i 6= Q.i

2.2.2 A new replica is never assigned the id of a previously started replica

2.2.3 Q.E.D.
Immediately from 2.2.1 and 2.2.2.

2.3 Q.E.D

When not running Explicit Prepare, a replica tries to choose a command in an instance only if it starts
that instance, and only for the default ballot. By 2.1 and 2.2, this can happen at most once per instance
Q.i, in ballot 0.Q.

3 Let bsmallest be the smallest ballot number for which a tuple (γ,seqγ,depsγ) has been committed at instance
Q.i. Then any other commit at instance Q.i commits the same tuple.
PROOF:
By induction on the ballot number b of all ballots committed for Q.i:

3.1 Base case: if b = bsmallest , then the same tuple is committed in both b and bsmallest .

PROOF:

By 1, b and bsmallest must be the same ballots.
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3.2 Induction step: if tuple (γ,seqγ,depsγ) has been committed in ballot b1, then the next higher successful
ballot b > b1 will commit the same tuple.

PROOF:

Let b2 be the next highest ballot number of a ballot attempted at instance Q.i. By 2, and since b2
cannot be the default ballot for Q.i (because there is a ballot b1 smaller than it), b2 is attempted after
running Explicit Prepare. Furthermore, by the recovery procedure, any ballot attempted after Explicit
Prepare must run the Multi-Paxos Phase.

3.2.1 Case: Ballot b1 is committed directly after Phase 2.
Since b1 is successful after Phase 2, then a fast quorum (N−1 replicas) have recorded the same
tuple (γ,seqγ,depsγ) for instance Q.i. For b2 to start, its leader must receive replies to Prepare
messages from at least bN/2c+1 replicas. Therefore, at least bN/2c replicas will see a Prepare
for b2 after they have recorded (γ,seqγ,depsγ) for ballot b1 (if they had seen the larger ballot b2
first, they would not have acknowledged any message for ballot b1). b2’s leader will therefore
receive at least bN/2c PrepareReply’s with tuple (γ,seqγ,depsγ) marked as pre-accepted.
If the leader of b1 is among the replicas that reply to the Prepare of ballot b2, then it must have
replied after the end of Phase 2 (otherwise it couldn’t have completed the smaller ballot b1), so
it will have committed tuple (γ,seqγ,depsγ) by then. The leader of b2 will then know it is safe
to commit the same tuple.
Below, we assume that the leader of b1 is not among the replicas that reply to the Prepare of
ballot b2.

3.2.1.1 Subcase: N > 3
The bN/2c replies with tuple (γ,seqγ,depsγ) constitute a majority among the first bN/2c+1
PrepareReply’s. The leader of ballot b2, will therefore be able to identify tuple (γ,seqγ,depsγ)
as potentially committed, and use it in a Multi-Paxos Phase.

3.2.1.2 Subcase: N = 3
bN/2c = 1 is not a majority among the first bN/2c+1 = 2 PrepareReply’s. However, for
N = 3, a command leader commits a tuple after Phase 2 only if a PreAcceptReply matched
the attributes in the initial PreAccept. The acceptor that has sent such a PreAcceptReply in
ballot b1 will convey this information in a PrepareReply for ballot b2. The leader of ballot
b2 will therefore use the correct tuple (γ,seqγ,depsγ) in a Multi-Paxos Phase.

For ballots higher than b2 to start, their leaders will follow the recovery procedure, and will
receive either the same type of replies received by the leader of b2 (as above), or it will receive at
least one PrepareReply from a replica whose highest ballot is b2 and has marked (γ,seqγ,depsγ)
as accepted. In either case, by the recovery procedure, the replica trying to take over instance
Q.i will have to use tuple (γ,seqγ,depsγ) in a Multi-Paxos Phase. By simple induction, any
ballot higher than b1 will use tuple (γ,seqγ,depsγ) in a Multi-Paxos Phase, including successful
ballots.

3.2.2 Case: Ballot b1 is committed after the Multi-Paxos Phase.
The tuple (γ,seqγ,depsγ) is safe by the guarantees of classic Paxos.

3.2.3 Q.E.D.
Cases 2.2.1 and 2.2.2 are exhaustive.

3.3 Q.E.D.

The induction is complete.

8



4 Q.E.D.
Immediately from 3.

Theorem 2 (Consistency). Two replicas can never have different commands committed for the same in-
stance.

Proof. We have already proved a stronger property: by Lemma 1, two replicas can never have different
tuples (i.e., commands along with their commit attributes) committed for the same instance.

Theorem 3 (Stability). For any replica, the set of committed commands at any time is a subset of the
committed commands at any later time. Furthermore, if at time t1 a replica R has command γ committed at
some instance Q.i, then R will have γ committed in Q.i at any later time t2 > t1.

Proof. By Theorem 2 and the extra assumption that committed commands are recorded in persistent mem-
ory.

So far, we have shown that tuples are committed consistently across replicas. They are also stable, as
long as they are recorded in persistent memory. We now show that having consistent attributes committed
across all replicas is sufficient to guarantee that all interfering commands are executed in the same order on
every replica:

Theorem 4 (Execution consistency). If two interfering commands γ and δ are successfully committed (not
necessarily by the same replica), they will be executed in the same order by every replica.

Proof.

1 If γ and δ are successfully committed and γ∼ δ, then either γ has δ in its dependency list when γ is committed
(more precisely, γ has δ’s instance in its dependency list, but, for simplicity of notation, we use a command
name to denote the pair comprising the command and the specific instance in which it has been committed),
or δ has γ in its dependency list when δ is committed.
PROOF:

1.1 The attributes with which a command c is committed, are the union of at least bN/2c+ 1 sets of
attributes computed by as many replicas.

PROOF:

1.1.1 Case: c is committed immediately after Phase 2.
N−1 replicas have input their attributes for c.

1.1.2 Case: c is committed after the Multi-Paxos phase.

1.1.2.1 Subcase: The Multi-Paxos phase starts after the execution of Phase 2.
Phase 2 ends after bN/2c replicas have replied to a PreAccept with the command leader’s
updated attributes (so the attributes are the union of bN/2c+ 1 sets of attributes, from as
many replicas, including the command leader).

1.1.2.2 Subcase: The Multi-Paxos phase starts after bN/2c PrepareReply’s in the recovery phase,
none of which is from the initial command leader.
Then bN/2c replicas, plus the initial command leader (bN/2c+ 1 replicas in total), have
contributed to the set of attributes used for the subsequent Multi-Paxos phase.
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1.1.2.3 Subcase: The Multi-Paxos phase starts after a PrepareReply from a replica R that had
marked c as accepted.
Then some replica has to have previously initiated the Multi-Paxos phase that resulted in R
receiving an Accept, so this subcase is reducible to one of the previous subcases.

1.1.2.4 Q.E.D.
The subcases enumerated above describe all possible circumstances in which a command
is committed after the Multi-Paxos Phase.

1.1.3 Case: γ is committed after the current replica receives a Commit for γ from another replica.
The replica that initiates the Commit must be in one of the previous two cases.

1.1.4 Q.E.D.
The cases enumerated above are exhaustive.

1.2 Q.E.D.

By 1.1, at least one replica R contributes for both γ’s and δ’s final attributes. Because R records every
command that it sees in its command log, and because γ∼ δ, R will include the command it sees first
in the dependency list of the command is sees second.

2 Q.E.D.
By 1, the final dependency graphs of γ and δ are in one of three cases:

2.1 Case: γ and δ are both in each other’s dependency graph.

Then, by the execution algorithm, their dependency graphs are identical, and, moreover, they are in
the same strongly connected component. By the execution algorithm, whenever one command is
executed, the other is also executed. Since the execution algorithm is deterministic, and since, by
Lemma 1, every replica builds the same dependency graphs for γ and δ, every replica will execute the
commands in the same order.

2.2 Case: γ is in δ’s dependency graph, but δ is not in γ’s dependency graph.

The commands are in different strongly connected components in δ’s graph, and δ’s component is
ordered after γ’s component in reversed topological order.

We show that γ is executed before δ by every replica:

2.2.1 Subcase: A replica tries to execute γ first.
The replica will execute γ without having executed δ.

2.2.2 Subcase: A replica tries to execute δ first.
By the execution algorithm, the replica will build δ’s dependency graph, which also contains γ

in a strongly connected component that is ordered before δ’s component in reversed topological
order. Then γ is executed before δ is executed.

2.3 Case: δ is in γ’s dependency graph, but γ is not in δ’s dependency graph.

Just like the previous case, with γ and δ interchanged.

2.4 Q.E.D.

The above three cases are exhaustive. In all cases, the commands are executed in the same order by
every replica.
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Theorem 5 (Execution linearizability). If two interfering commands γ and δ are serialized by clients (i.e., δ

is proposed only after γ is committed by any replica), then every replica will execute γ before δ.

Proof.

1 γ will be in δ’s dependency graph.
PROOF:
By the time δ is proposed, γ will have been pre-accepted by at least bN/2c+ 1 replicas. For δ to be com-
mitted, it too has to be pre-accepted by at least bN/2c+1 replicas. Therefore, at least one replica R whose
pre-accept is taken into account when establishing δ’s dependency list pre-accepts δ after it has pre-accepted
γ. Since γ∼ δ, R will put γ in δ’s dependency list.

2 The sequence number with which δ is committed will be higher than that with which γ is committed.
PROOF:

2.1 By the time any replica receives a request for δ from a client, at least bN/2c+ 1 replicas will have
logged the final sequence number for γ.

PROOF:

2.1.1 Case: γ is committed directly after Phase 2.
Then N − 1 replicas have logged the same sequence number for γ, and this is the sequence
number with which γ is committed.

2.1.2 Case: γ is committed after the Multi-Paxos Phase.
Then at least bN/2c+1 replicas have logged γ as accepted with its final attributes, including its
sequence number.

2.1.3 Q.E.D.
Cases 2.1.1 and 2.1.2 are exhaustive.

2.2 Q.E.D.

By 2.1, at least one of the replicas that pre-accepts δ, whose PreAcceptReply is taken into account
when establishing δ’s final attributes, will update δ’s sequence number to be higher than γ’s final
sequence number.

3 Q.E.D.
At any replica R, there are two possible cases:

3.1 Case: R tries to execute γ before it tries to execute δ.

3.1.1 Subcase: δ is in γ’s dependency graph.
Then, by 1, δ and γ are in the same strongly connected component. By the execution algorithm
and by 2, γ will be executed before δ.

3.1.2 Subcase: δ is not in γ’s dependency graph.
Then, by the execution algorithm, γ will be executed (at a moment when δ won’t have been
executed).

3.2 Case: R tries to execute δ before it tries to execute γ.
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3.2.1 Subcase: δ is in γ’s dependency graph.
Then, by 1, δ and γ are in the same strongly connected component. By the execution algorithm
and by 2, γ will be executed before δ.

3.2.2 Subcase: δ is not in γ’s dependency graph.
Then, by 1, γ is in a different strongly connected component than δ, and γ’s component is first in
reversed topological order. By the execution algorithm, γ is executed before δ.

3.3 Q.E.D.

The above cases are exhaustive. In all cases γ is always executed before δ.

Finally, liveness is guaranteed with high probability as long as a majority of replicas are non-faulty:
clients and replicas use time-outs to resend messages, and a client keeps retrying a command until a replica
succeeds in committing that command.

6 Optimized Egalitarian Paxos

We now describe how Egalitarian Paxos can be enhanced by reducing the fast-path quorum size for increas-
ing its performance: higher throughput and lower latency—including optimal commit latency in the wide
area for setups with 3 and 5 replicas.

6.1 Preferred Fast-Path Quorums

We modify the way a command leader behaves in Phase 2 of the algorithm: instead of sending PreAccept
messages to every replica, it sends PreAccepts to only those replicas in a fast-path quorum that includes
itself. We call this mode of operation thrifty. The fast-path quorum can be static per command leader, or it
can change for every new command—depending on inter-replica communication latency and dynamic load
assessment.

Using this optimization has the immediate benefit of decreasing the overall number of messages pro-
cessed by the system for each command, thus increasing the system throughput.

Another, less obvious consequence is that we can decrease the fast-path quorum size from 2F to F +
bF+1

2 c, where F is the maximum number of failures the system can tolerate (the total number of replicas is
therefore N = 2F +1). To achieve this, we make two additional modifications to simplified EPaxos:

1. We modify the fast path condition in Phase 2: the command leader commits a command on the fast
path if both of the following conditions are fulfilled:

• The command leader receives F + bF+1
2 c− 1 PreAcceptReply’s with identical deps and seq

attributes, and

• For every command in deps, at least one of the replicas in the quorum (including the command
leader itself) has recorded that command as Committed—acceptors pass this information to the
command leader with at most one bit per each command included in deps.

The last condition is necessary for ensuring that the seq attribute for every command in deps is final
(it will not change), and will aid in recovering from failures, as explained in the next subsesction.
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2. We modify the recovery procedure (i.e., the Explicit Prepare Phase), which we describe in the next
subsection.

The rest of the algorithm remains the same as described in the previous section.
Note that for 3 and 5 replicas, the fast-path quorum sizes become 2 and 3, respectively, which is optimal

(just like for classic Paxos).
Another consequence is that for 3 replicas, there is no chance of conflicts, even when all commands

interfere. This is because the only reply that the command leader waits for the sole PreAccept it send does
not have another PreAcceptReply to conflict with. As long as there are no failures and replicas reply timely,
a 3-replica thrifty EPaxos state machine will commit every command after just one round of communication.

6.2 Failure Recovery in Optimized Egalitarian Paxos

We now describe the new recovery procedure (i.e., the new Explicit Prepare Phase) that allows us to use
smaller fast-path quorums.

The recovery procedure guarantees that a command committed on the fast path will be committed even
if its command leader and F−1 other replicas have since failed.

Let R be a replica trying to decide instance Q.i of a potentially failed replica Q:

1. R sends Prepare messages to all other replicas, with a higher ballot number than the initial ballot
number for Q.i.

Each replica replies with the information recorded for Q.i, if any. R waits for at least F + 1 replies
(including itself). If R does not receive F +1 ACKS (because some replicas have received messages
with higher ballots, and reply with NACKS), R increases the ballot number and retries.

2. If no replica has any information about Q.i, R exits recovery and starts the process of choosing a no-op
at Q.i by proposing it in the Multi-Paxos Phase.

3. If at least one replica has committed command γ in Q.i (there is at most one such command), with
attributes depsγ and seqγ, R commits γ locally, sends Commit(Q.i,γ,depsγ,seqγ) to every other replica,
and exits recovery.

4. If at least one replica has accepted command (γ,depsγ,seqγ) in Q.i, R exits recovery and starts a
Multi-Paxos Phase for this tuple at Q.i.

5. If at least bF+1
2 c replicas have pre-accepted γ with the same attributes (γ,depsγ,seqγ), in Q.i’s default

ballot then goto 6.

Else R exits recovery and starts the process of choosing γ at Q.i, on the slow path (i.e., Phase 1, Phase
2, Multi-Paxos, Commit).

6. R sends TentativePreAccept(Q.i,γ,depsγ,seqγ) to all the respondents that have not pre-accepted γ.

When receiving a TentativePreAccept(Q.i,γ,depsγ,seqγ) a replica pre-accepts (γ,depsγ,seqγ) at Q.i
if it has not already recorded an interfering command with conflicting attributes—i.e., any command
δ such that:

• γ∼ δ, and

• δ /∈ depsγ or δ ∈ depsγ but seqδ ≥ seqγ, and

• γ /∈ depsδ.
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Otherwise, if such a command δ exists, the receiver of the TentativePreAccept replies with NACK
and the identity of the command leader that has sent δ (just one of them, if there are multiple such
commands), and the status of δ (pre-accepted, accepted or committed).

7. If the total number of replicas that have pre-accepted or tentatively pre-accepted (γ,depsγ,seqγ) is
at least F + 1 (and we can count Q here too, even if it does not reply), R exits recovery and starts a
Multi-Paxos Phase for this tuple at Q.i.

Else if a TentativePreAccept NACK returns a status of committed, R exits recovery and starts the
process of choosing γ at Q.i, on the slow path.

Else if a TentativePreAccept NACK returns a command leader that must have been part of γ’s fast
quorum for γ to have been committed on the fast path, R exits recovery and starts the process of
choosing γ at Q.i, on the slow path.

Else R defers γ’s recovery, and tries to decide one of the uncommitted commands that conflicts with
γ.

This decision process is depicted in Figure 1.
We are now ready to explain why the fast-path quorum must be F+bF+1

2 c: so that the following lemma
holds:

Lemma 2. The recovery procedure for Thrifty Egalitarian Paxos cannot deadlock.

Proof.
For the recovery procedure to deadlock, there must be a command γ for which the recovery procedure

always defers.
Assume this is the case. Then there exists a command δ for which the recovery procedure defers the

recovery of γ, γ∼ δ, and γ has attributes incompatible with those of δ at at least one replica, and the recovery
of δ also defers to γ or some other command (otherwise δ would be decided, and so, eventually, would be
γ).

Let R be a replica trying to recover γ. Then R must believe that γ may have been committed on the fast
path. Eventually, R will defer γ and try to decide δ, and, by our assumption, it must believe that δ too may
have been committed on the fast path. Then R must be aware of the following sets and their properties:

1. RESPγ, the set of all the replicas in γ’s quorum (QUORγ) that have responded to R’s prepare messages;

2. RESPδ, the set of all the replicas in δ’s quorum (QUORδ) that have responded to R’s prepare messages;

3. |RESPγ| ≥ bF+1
2 c;

4. |RESPδ| ≥ bF+1
2 c;

5. RESPγ∩RESPδ =∅ (because a replica cannot pre-accept both commands with conflicting attributes);

6. R must know that the possibly failed command leader of δ, Lδ /∈ QUORγ—otherwise it would infer that γ

could not have been committed on the fast path, since Lδ would not have pre-accepted it.

7. Since there are at most F replicas that do not reply to R, and Lγ (the possibly failed command leader for
γ) must be one of them (otherwise R could decide γ), there are at most F − 1 replicas that may be part of
QUORδ (we denote this superset by QUORδ) and that R does not receive replies from. Then, for R to believe
δ may have been committed on the fast path, it must be the case that |RESPδ| ≥ bF+1

2 c+1

By 5 and 6, R must infer that the following sets are disjoint: QUORγ (i.e., the set of replicas that may
be part of QUORγ), RESPδ, and {Lδ}. By 7 and our fast-path quorum requirement, the cardinality of the
union of these sets must be at least F + bF+1

2 c+ b
F+1

2 c+ 1+ 1 > 2F + 1. But this is impossible, because
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Figure 1: Decision process for recovery in optimized EPaxos.
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this union must be a subset of the replica set, and its cardinality is 2F + 1. Therefore, some of these sets
overlap, so R cannot be simultaneously uncertain about γ and δ. Our assumption that the recovery procedure
could deadlock is false.

Finally, we show that the recovery procedure is correct.
We start by showing that it commits only safe tuples:

Theorem 6. The Optimized Egalitarian Paxos recovery procedure commits only safe tuples.

Proof.
Assume the recovery procedure is trying to recover instance Q.i. We show that the tuple that it commits

at Q.i is safe.

1 Case: No tuple is committed at instance Q.i before the recovery procedure commits a tuple at Q.i.
In all cases, the recovery procedure ends by choosing a tuple on the slow path, by running classic Paxos.
The tuple is thus safe by the classic Paxos guarantees.

2 Case: A tuple (γ,depsγ,seqγ) is committed at Q.i before the recovery procedure terminates.

2.1 Subcase: (γ,depsγ,seqγ) has previously been committed on the slow path.

Then there must be at least F + 1 replicas that have accepted (γ,depsγ,seqγ). Since the recovery
procedure terminates by running classic Paxos in all cases, it will use the same tuple in a Multi-Paxos
Phase. By the guarantees of the classic Paxos algorithm, only this tuple can ever be committed at Q.i.

2.2 Subcase: (γ,depsγ,seqγ) has previously been committed on the fast path.

Then there must be F + bF+1
2 c replicas that have pre-accepted this tuple at Q.i before processing

the Prepares of the recovery procedure (otherwise the initial command leader would have received
NACKs for the initial PreAccepts and not taken the fast path). Since at most F replicas can be faulty,
the recovery procedure will take into account the PrepareReply’s of at least bF+1

2 c of them, and by
step 5 of the recovery procedure, it will try to obtain a quorum for this tuple. We show that it will
succeed:

2.2.1 No interfering command δ∼ γ, can be committed such that δ /∈ depsγ and γ /∈ depsδ.
PROOF: δ must be pre-accepted by a majority of replicas, and that majority will intersect γ’s
quorum (itself a majority) in at least one replica, which will ensure that at least one command
will be in the other’s deps set.

2.2.2 No interfering command δ∼ γ, δ∈ depsγ, can be committed such that γ /∈ depsδ and seqδ≥ seqγ.
PROOF:
We prove this by generalized induction. The relation that we run the induction on is a ≺ b ≡
“command a has been committed (in a particular instance) by the recovery procedure for the first
time before command b has been committed (in a particular instance) by the recovery procedure
for the first time”.

2.2.2.1 Base case: Let γ0 be the first command initially committed on the fast path and then com-
mitted again as a result of the recovery procedure (or one of the first, if multiple such
commands are committed at the exact same time).
Assume there existed δ∼ γ0, δ ∈ depsγ0 , committed such that γ0 /∈ depsδ and seqδ ≥ seqγ0

at the time of γ0’s recovery. Since γ0 had been committed on the fast path, then by the
additional condition for the fast-path in optimized EPaxos, all its dependencies, including
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δ must have been committed before seqγ0 had been computed. Then, δ must have been
committed again in the meantime with different attributes (thus breaking safety). But by
Lemma 1, 1, 2.1, 2.2.1, and the recovery procedure, this could only have occurred if δ

had been committed incorrectly by the recovery procedure (before γ0), after initially having
been committed on the fast-path—all other commit paths preserve safety. By our base case
assumption, this is impossible, since γ0 ≺ δ.

2.2.2.2 Induction step: The property holds for γ if it holds for every δ≺ γ.
Assume there exists δ∼ γ, δ∈ depsγ, committed such that γ /∈ depsδ and seqδ ≥ seqγ. Since
γ has been committed on the fast path, then, by the additional condition for the fast-path in
optimized EPaxos, all its dependencies, including δ must have been committed before seqγ

had been computed. Then, δ must have been committed again with different attributes (thus
breaking safety). But by Lemma 1, 1, 2.1, 2.2.1 and the recovery procedure, this could only
occur if δ has been committed incorrectly by the recovery procedure after initially having
been committed on the fast-path—we have shown that all other commit paths preserve
safety. Since γ has not been committed by the recovery procedure yet, δ ≺ γ. By the
induction hypothesis and by 2.2.1, the recovery procedure would have exited δ’s recovery
by correctly committing its initial fast-path attributes. Then seqδ cannot be larger or equal
to seqγ, since seqγ has been updated to be larger than seqδ at δ’s initial commit time.

2.2.2.3 Q.E.D
The induction is complete.

2.2.3 Q.E.D
By the recovery procedure, 2.2.1, 2.2.2 and Lemma 2 the recovery procedure will be successful
in getting F replicas to pre-accept tuple (γ,depsγ,seqγ) (not counting the implicit pre-accept of
the initial command leader), and it will start the Multi-Paxos Phase for this tuple.

2.3 Q.E.D

Subcases 2.1 and 2.2 are exhaustive and safety is preserved in both.

3 Q.E.D.
Cases 1 and 2 are exhaustive and safety is preserved in both.

Next, we show that the recovery procedure preserves execution consistency:

Theorem 7. The Optimized Egalitarian Paxos preserves execution consistency.

Proof.
Let γ and δ be two commands that interfere and have been committed. We show that all replicas execute

γ and δ in the same order.

1 Case: Both γ and δ have first been committed by their respective command leaders, without running the
recovery procedure.
This is no different from simplified EPaxos: the different fast-path condition influences only the recovery
path. By Theorem 6 and Theorem 4, γ and δ will be executed in the same order by every replica.

2 Case: γ is first committed as a result of the recovery procedure, while δ is first committed by its initial
command leader without running the recovery procedure.
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2.1 Subcase: γ is committed before step 7 of the recovery procedure, or after exiting one of the Else
branches in step 7.

Then γ must have been pre-accepted by a majority of replicas and then committed after running the
Multi-Paxos Phase. This too is reducible to the simple EPaxos case, so, by Theorem 4, γ and δ will
be executed in a consistent order across all non-faulty replicas.

2.2 Subcase: γ is committed after exiting the recovery procedure on the If branch in step 7.

We show that either γ has δ as a dependency or δ has γ as a dependency:

2.2.1 Sub-subcase: γ had been pre-accepted with δ ∈ depsγ.
γ’s pre-accepted attributes as received in the recovery procedure at step 7 do not change, so γ

will be committed with δ as a dependency.

2.2.2 Sub-subcase: γ had been pre-accepted with δ /∈ depsγ.
Since the recovery procedure exits on the If branch of step 7, at least F +1 replicas, including γ’s
original command leader have pre-accepted γ as a result of a PreAccept or a TentativePreAccept.
δ will also have been pre-accepted by a majority of replicas, so there is at least one replica that
has pre-accepted both δ and γ, and whose replies are taken into account both when establishing
δ’s commit attributes and in the recovery procedure for γ. Let this replica be R:

2.2.2.1 Sub-sub-subcase: R pre-accepts γ as a result of receiving a PreAccept from γ’s initial com-
mand leader.
Then R must have learned about γ before receiving a PreAccept for δ, so γ ∈ depsδ.

2.2.2.2 Sub-sub-subcase: R pre-accepts γ after receiving a TentativePreAccept during the recovery
procedure.
Then, according to the conditions in step 6 of the recovery procedure, either R had already
pre-accepted δ such that γ ∈ depsδ, or δ reaches R after the TentativePreAccept for γ. In
either case, γ ∈ depsδ when δ commits.

In conclusion γ ∈ depsδ

2.2.3 Q.E.D.
Sub-subcases 2.2.1 and 2.2.3 are exhaustive.

By step 2 of the proof for Theorem 4, since at least one command is committed with the other in its
dependency list, every replica will execute the commands in the same order.

3 Case: δ is first committed as a result of the recovery procedure, while γ is first committed by its initial
command leader without running the recovery procedure.
Just like case 2, with γ and δ interchanged.

4 Case: Both γ and δ are first committed after the recovery procedure.
If at least one of the commands is committed before step 7 in the recovery procedure, or afte exiting step 7
on one of the Else branches, the situation is reducible to one of the previous cases.
The only remaining subcase is that when both commands are committed after exiting step 7 on the If branch.
Assume no command has the other in its dependency list when exiting step 7 of the recovery procedure.
But each command has been pre-accepted by a majority or replicas (either as a result of PreAccepts or
TentativePreAccepts). Then there must be at least one replica R that pre-accepts both commands, and
whose replies are taken into account when establishing each command’s commit attributes. If R pre-accepts
γ before δ, then, by the conditions in step 6 of the recovery procedure, R will not acknowledge δ without a
dependency for γ (and vice-versa). This contradicts our assumption.
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Then at least one command is in the other’s dependency list, and by step 2 in the proof for Theorem 4, the
commands will be executed in the same order on every replica.

5 Q.E.D
Cases 1, 2, 3 and 4 are exhaustive.

Finally, we show that the recovery procedure preserves execution linearizability:

Theorem 8. The Optimized Egalitarian Paxos preserves execution linearizability.

Proof. Let γ and δ be two interfering commands serialized by clients: δ is proposed only after a replica has
committed γ. We show that γ will always be executed before δ

By the time δ is proposed, a majority of replicas have either pre-accepted or accepted γ with its final
(commit) attributes. At least one of these replicas will pre-accept δ as a result of receiving a PreAccept or a
TentativePreAccept, and its reply will be considered in deciding δ’s final attributes. Let this replica be R:

1 Case: R receives a PreAccept for δ.
Then R will put γ in depsδ and it will increment seqδ to be larger than seqγ. Since R’s reply is considered
when deciding δ’s final attributes, δ’s dependency list will include γ and its sequence number will be larger
than γ’s at commit time. By the execution algorithm, γ will always be executed before δ.

2 Case: R receives a TentaticePreAccept for δ.
Since R will ACK (otherwise δ would not be committed), and δ /∈ depsγ (since δ was proposed after γ

was committed), by the conditions in step 6 of the recovery procedure, it must hold that γ ∈ depsδ and
seqγ < seqδ. By the execution algorithm, γ will always be executed before δ.

3 Q.E.D
Cases 1 and 2 are exhaustive.

7 Conclusion

We have presented a proof of correctness for Egalitarian Paxos, a new state machine replication protocol
based on Paxos. EPaxos’s decentralized and uncoordinated design, as well as its small fast-path quorum
size, have important benefits for the availability, performance and performance stability of both local and
wide area replication.
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