
Egalitarian Paxos

Iulian Moraru1, David G. Andersen1, Michael Kaminsky2

1 Carnegie Mellon University, 2 Intel Labs

CMU-PDL-12-108

July 2012

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

This paper describes the design and implementation of Egalitarian Paxos (EPaxos), a new distributed consensus algorithm based on
Paxos. EPaxos achieves two goals: (1) availability without interruption as long as a simple majority of replicas are reachable—its
availability is not interrupted when replicas crash or fail to respond; and (2) uniform load balancing across all replicas—no replicas
experience higher load because they have special roles. Egalitarian Paxos is to our knowledge the first distributed consensus
protocol to achieve both of these goals efficiently: requiring only a simple majority of replicas to be non-faulty, using a number of
messages linear in the number of replicas to choose a command, and committing commands after just one communication round
(one round trip) in the common case or after at most two rounds in any case. We prove Egalitarian Paxos’s properties theoretically
and demonstrate its advantages empirically.

Acknowledgements: This work was supported by Intel Science & Technology Center for Cloud Computing, Google, and the National
Science Foundation under award CCF-0964474. We would like to thank the members and companies of the PDL Consortium (including Actifio,
American Power Conversion, EMC Corporation, Emulex, Facebook, Fusion-io, Google, Hewlett-Packard Labs, Hitachi, Huawei Technologies Co.,
Intel Corporation, Microsoft Research, NEC Laboratories, NetApp, Inc., Oracle Corporation, Panasas, Riverbed, Samsung Information Systems
America, Seagate Technology, STEC, Inc., Symantec Corporation, VMware, Inc., and Western Digital) for their interest, insights, feedback, and
support.

Keywords: Distributed Consensus, Paxos

1 Introduction

Today’s clusters use fault-tolerant, highly available coordination engines like Chubby [2], Boxwood [13],
or ZooKeeper[7] for activities such as operation sequencing, coordination, leader election, and resource
discovery. An important limitation in these systems is that during efficient, normal operation, all the clients
communicate with a single master (or leader) server at all times. This optimization, sometimes termed
“Multi-Paxos,” is important to achieving high throughput in practical systems [4]. Changing the leader
requires invoking additional consensus mechanisms that substantially reduce throughput.

This algorithmic limitation has several important consequences. First, it can impair scalability by
placing a disproportionally high load on the master, which must process more messages than the other
replicas [14]. Second, it can harm availability: if the master fails, the system cannot service requests until
a new master is elected. Finally, as we show in this paper, traditional Paxos variants are sensitive to both
long-term and transient load spikes and network delays that increase latency at the master. Previously
proposed solutions such as partitioning or using proxy servers are undesirable because they restrict the type
of operations the cluster can perform. For example, a partitioned cluster cannot perform atomic operations
across partitions without using additional techniques.

Egalitarian Paxos (EPaxos) has no designated leader process. Instead, clients can choose, at every
step, which replica to submit a command to, and in most cases the command will be committed without
interfering with other concurrent commands. This allows the system to evenly distribute the load to all
replicas, eliminating the first bottleneck identified above (having one server that must be on the critical path
for all communication). The system can provide higher availability because there is no transient interruption
because of leader election: there is no leader, and hence, no need for leader election, as long as more
than half of the replicas are available. Finally, EPaxos’s flexible load distribution is better able to handle
permanently or transiently slow nodes, substantially reducing both the median and tail commit latency.

To explain Egalitarian Paxos, we begin by reviewing briefly the core Paxos algorithm in Section 3,
and several common variants that are designed to provide lower overhead or lower commit latency. In this
description, we focus particularly on two relevant derivatives: Mencius [14] and Generalized Paxos [11].
Mencius successfully shares the master load by distributing the master responsibilities round-robin among
the replicas. Generalized Paxos introduces the idea that non-conflicting writes can be committed indepen-
dently in state machine replication to improve commit latency. Our results in Section 6 confirm that Mencius
is effective, but only when the nodes are homogenous. EPaxos achieves higher throughput and better per-
formance stability under a variety of realistic conditions such as wide-area replication, failures, and nodes
that experience performance variability.

2 Related Work

The Paxos algorithm for replicated state machines [9, 10] makes efficient forward progress by relying on
a stable leader replica who brokers communication with the clients and other replicas. With N replicas,
for each command, the leader handles Θ(N) messages, and non-leader replicas handle only O(1). Thus,
the leader can become a bottleneck, and practical implementations of Paxos observe this problem [2]. Fur-
thermore, when the leader fails, the state machine becomes temporarily unavailable until a new leader is
elected. This problem does not have a simple solution because aggressive leader re-election can lead to false
suspicions and stalls if multiple replicas believe they are the new leader. Chubby [2] and Boxwood [13] use
Paxos at their core, while ZooKeeper [7] relies on a stable leader protocol similar to Paxos.

Fast Paxos [12] reduces the number of message delays until commands are committed by having clients
send commands directly to all replicas. It does not, however, balance load: Some replicas must still act as
coordinator and learner nodes, and handle Θ(N) messages for every command. Like Paxos, Fast Paxos also

1

relies on a stable leader to initiate rounds and arbitrate conflicts (i.e., situations when acceptors order client
commands differently, as a consequence of receiving those commands in different orders).

Mencius [14] shares one of our goals: distributing the load evenly across all replicas. It does so by
rotating the Paxos leader for every command. The instance space is pre-partitioned among all replicas:
replica with id Rid is in charge of every instance i where (i mod N) = Rid . The drawback of this approach
is that every replica must hear from all other replicas before committing a command A, because otherwise
another command B that depends on A may be committed in an instance ordered before the current instance
(the other replicas either reply that they are also committing commands for their instances, or that they are
skipping their turn). This has two consequences: (1) the replicated state machine runs at the speed of the
slowest replica, and (2) Mencius can become even less available than classic Paxos, because if any replica
fails to respond, no other replica can make progress until a failure is suspected and another replica commits
no-ops on behalf of the possibly failed replica. In contrast, EPaxos can run uninterrupted as long as more
than half the replicas are still alive, and even on the fast commit path, a replica does not need to hear back
from all other replicas to commit a command. Finally, Mencius requires FIFO communication channels
between replicas, while our algorithm works even when messages can be reordered.

Generalized Paxos [11] previously observed that one can commit commands faster by committing them
out of order when they do not interfere. Replicas learn commands after just two message delays—which
is optimal—as long as they do not interfere.1 Generalized Paxos, however, still relies on a stable leader to
order commands that interfere, and learners handle Θ(N) messages for every command2. Multicoordinated
Paxos [3] extends Generalized Paxos by using multiple coordinators to increase availability when commands
do not conflict, at the expense of using more messages for each command: each client sends its commands
to a quorum of coordinators instead of just one. Multicoordinated Paxos still relies on a stable leader to
ensure consistent ordering if interfering client commands arrive at coordinators in different orders.

MDCC [8] uses Generalized Paxos to improve commit latency in the wide area. Here too, EPaxos has
three advantages over Generalized Paxos: (1) Resolving a conflict (two interfering commands arriving at
different acceptors in different orders) requires only one additional round trip in EPaxos, but will take up to
two additional round trips in MDCC if the proposal did not originate at the leader’s site. (2) For three-site
replication the fast path quorum size required to commit commands after only one round trip is 2 vs. 3
for Generalized Paxos. The fast path latency will therefore correspond to a round trip to the site closest to
the proposer’s site, instead of a round trip to the site farthest away. With more than three replicas, the fast
path quorum sizes are the same (Section 4.8). (3) Finally, as we explain in Section 4.7, EPaxos can always
commit commands after one round trip to the replica closest to the proposer’s site for three-site replication,
even if all commands conflict. We present the empirical results of this comparison in Section 6.5.

The problem of consistent ordering of broadcast messages is equivalent to state machine replication.
In particular, our algorithm has similarities to generic broadcast algorithms [1, 15, 17], where a consistent
message delivery order is required only for messages that conflict. Thrifty generic broadcast [1] has the
same liveness condition as classic Paxos and EPaxos, but requires Θ(N2) messages for every broadcast
message, and relies on atomic broadcast [16] to deliver conflicting messages. Other generic broadcast
algorithms make stronger assumptions about machine failures: GB , GB+ [15], and optimistic generic
broadcast [17] require that more than two thirds of the nodes remain alive. They are also less efficient
when handling conflicting commands: GB and GB+ use sequential instances of Consensus [5] (as many
as there are conflicts), while optimistic generic broadcast uses both atomic broadcast (which has a latency
of four message delays) and one Consensus instance for every pair of conflicting messages. In contrast,
EPaxos requires only two additional message delays (one round trip) to commit commands that interfere,

1Egalitarian Paxos can be extended to do the same—see Section 4.8.
2Based on our experience with EPaxos, we believe it may be possible to modify Generalized Paxos to rotate learners between

commands, in the same round, to balance load if there are no conflicts. Even so, Generalized Paxos would still depend on the leader
for availability.

2

the communication is performed in parallel for all interfering commands, and EPaxos does not rely on
a stable leader for deciding the ordering. Moreover, thrifty generic broadcast, GB , and GB+ may see
conflicts even if the conflicting messages arrive in the same order at each node.

3 Overview

We begin by briefly describing the classic Paxos algorithm, followed by an overview of Egalitarian Paxos.

3.1 Paxos Background

State machine replication aims to make a set of possibly faulty distributed processors (the replicas) execute
the same commands in the same order. Since each processor is a state machine with no other inputs, all
non-faulty processors will transition through the same sequence of states. Given a particular position in
the command sequence, running the Paxos algorithm guarantees that the non-faulty replicas will eventually
agree3 on a single command to be assigned that position. To be able to make progress, at most a minority
of the replicas can be faulty—if N is the total number of replicas, at least bN/2c+ 1 must be non-faulty
for Paxos to make progress. Paxos, EPaxos, and other common Paxos variants handle only non-Byzantine
failures: a replica may crash, or it may fail to respond to messages from other replicas indefinitely; it cannot,
however, respond in a way that does not conform to the protocol.

The execution of a replicated state machine that uses Paxos proceeds as a series of pre-ordered in-
stances, where the outcome of each instance is the agreement on a single command. The voting process for
one instance may happen concurrently with voting processes for other instances, but does not interfere with
them.

In steady state, clients direct commands to the one replica that has the special leader role. For each
command, the leader chooses the next available instance, and sends Accept messages to at least a simple
majority of replicas specifying the instance number and the command; if the Accepts are acknowledged by
a majority, the leader considers the command committed, notifies the client, and notifies the other replicas
asynchronously.

When a non-leader replica suspects the leader has failed, it tries to become the new leader by taking
ownership of the instances for which it believes commands have not yet been committed. To do so, it sends
Prepare messages to at least a simple majority of replicas. A reply to a Prepare contains the command
that the replying replica believes may have been chosen in the corresponding instance, and also constitutes a
promise not to acknowledge older messages from previous leaders. The Multi-Paxos optimization consists
in performing the prepare phase for multiple (possibly infinitely many) instances at the same time. Not
doing a separate prepare phase for every instance saves messages and time, reduces the incidence of stalls
caused by competing replicas trying to take ownership of the same instances, and results in the same replica
being the stable leader over many instances.

We discuss several Paxos variants in Section 2 that improve upon several aspects of this basic protocol.

3.2 Egalitarian Paxos: Intuition

EPaxos is based on two ideas. The first, which has been proposed by generic broadcast algorithms and
Generalized Paxos, is that most commands do not interfere with each other, so it is not necessary to enforce
a consistent ordering for their execution. The second idea is what distinguishes EPaxos from other state

3In fact, termination cannot be strictly guaranteed, given the asynchronous nature of real communication networks and the
FLP [6] impossibility result. However, termination can be guaranteed with high probability under realistic assumptions by using
timeouts and randomization.

3

C1: update obj_A

C2: update obj_B

C3: update obj_BACK C1

OK C1
PreAccept C1

Replica 3

Replica 1

Replica 2

 C3→C2
Accept C3(→C2)PreAccept C3

ACK C2

OK C2

Commit C1

Commit C2

 OK C3

ACK C3

Commit C3

PreAccept C2

Figure 1: Message flow in Egalitarian Paxos. Commands C2 and C3 interfere (they update the same
object) so C3 requires an additional round of communication. C3→ C2 signifies that C3 has acquired
a dependency on C2. For clarity, we did not illustrate the asynchronous commit messages.

machine replication algorithms: instead of deciding which commands are chosen in which instance of a pre-
ordered instance space (as is the case in Multi-Paxos and Mencius), EPaxos determines the ordering of the
instances in the process of choosing commands. EPaxos does so by attaching attributes to each command.
After a command is committed, all non-faulty replicas will have a consistent view of the attributes for that
command, and, based on them, it will execute the command in the same order relative to other interfering
commands.

Figure 1 represents a simplified example of how Egalitarian Paxos works. Commands can be proposed
by clients at any replica—we call this replica the command leader for that command (not to be confused
with the stable leader used by Paxos). As long as concurrent proposals do not interfere (the common case for
practical workloads), they will be committed after only one round of communication between the command
leader and a fast-path quorum of peers. For three total replicas, a fast-path quorum is any two replicas—
we explain the concept in detail in Section 4. When commands interfere, they acquire dependencies on
each other—attributes that commands are committed with, used by replicas to determine the correct order in
which to execute the commands (the commit and the execution orders are not necessarily the same). To make
sure every replica commits the same attributes even if there are failures, a second round of communication
between the command leader and a classic quorum of peers may be required (as in Figure 1 for command
C2).

Using command attributes has two important benefits: (1) all replicas can act as command leaders
simultaneously without stalling each other, and (2) replicas that fail to respond do not prevent other replicas
from committing commands, as long as a simple majority of replicas are still responsive.

4 Design

In this section we describe Egalitarian Paxos in detail, state its properties and prove them. We begin by
stating assumptions, definitions, and introducing our notation.

4.1 Preliminaries

Messages exchanged by processes (clients and replicas) are asynchronous. Failures are non-Byzantine (a
machine can fail by stopping to respond for an indefinite amount of time). The replicated state machine
comprises N replicas. For every replica R there is an unbounded sequence of numbered instances R.1, R.2,
R.3, ... that that replica is said to own. At most one command will be adopted in an instance. The ordering of
the instances is not pre-determined—it is determined dynamically by the protocol, as commands are chosen.

It is important to understand that committing and executing commands are different actions, and that
the commit and execution orders are not necessarily the same. A client of an EPaxos-based system will
interact with the system through an interface of the following form:

4

To modify the replicated state, a client sends Request(command) to a replica of its choice. A RequestReply
from that replica will notify the client that the command has been committed.

To read (a part of) the state, clients send Read(ob jectID) messages and wait for ReadReply. A Read
is itself a special no-op command that interferes with updates to the object it is reading—see Section 4.11.

A client that receives a RequestReply for a command knows only that the command has been com-
mitted, but has no information about whether the command has been executed or not. Only when the client
reads the replicated state updated by its previously committed commands is it necessary for those commands
to be executed.

Before we can describe Egalitarian Paxos in detail, we must define command inter f erence.

Definition 1. Two commands γ and δ interfere if, starting from the same state, executing γ before δ produces
different results than executing δ before γ: the resulting states differ and/or the results returned to the clients
(if either command is a read) are different.

4.2 Protocol Guarantees

The formal guarantees that Egalitarian Paxos offers clients are similar to those provided by other Paxos
variants:

Nontriviality Any command committed by any replica must have been proposed by a client.
Stability For any replica, the set of committed commands at any time is a subset of the committed

commands at any later time. Furthermore, if at time t1 a replica R has command γ committed at some
instance Q.i, then R will have γ committed in Q.i at any later time t2 > t1.

Consistency Two replicas can never have different commands committed for the same instance.
Execution consistency For any two commands γ and δ that interfere, if both γ and δ have been com-

mitted by any replicas, then γ and δ will be executed in the same order by every replica.
Execution linearizability If two interfering commands γ and δ are serialized by clients (i.e., δ is

proposed only after γ is committed by any replica), then every replica will execute γ before δ.
Liveness A proposed command will eventually be committed by every non-faulty replica, as long as

fewer than half the replicas are faulty and messages eventually reach their destination before the recipient
times out4.

4.3 The EPaxos Commit Protocol

As mentioned earlier, committing and executing commands are separate. Accordingly, EPaxos comprises
two components: (1) the protocol for choosing (committing) commands and determining their ordering
attributes in the process; and (2) the algorithm for executing commands based on these attributes.

Figure 2 contains a pseudocode description of the Egalitarian Paxos protocol for choosing commands.
The state of each replica is represented in the pseudocode by each replica’s private commands array.

We split the description of the commit protocol into multiple phases. Not all phases are executed for
every command: a command committed after the execution of phases 1, 2 and Commit, is said to have been
executed on the fast path. The slow path involves the additional Multi-Paxos phase. The Explicit Prepare
phase is only executed on failure recovery.

Phase 1 starts when a replica L receives a request (for a command γ) and becomes a command leader.
L begins the process of choosing γ in the next available instance of its instance space. It also attaches what
it believes are the correct attributes for that command:

4These are the same liveness guarantees provided by Paxos. By FLP [6], it is impossible to provide stronger guarantees for
distributed consensus.

5

deps is the list of all instances that contain commands (not necessarily committed) that interfere with γ; we
say that γ depends on those instances (and their corresponding commands);

seq is a sequence number used to break dependency cycles during the execution algorithm; seq is updated
to be larger than the seq attributes of all commands in deps.

The command leader forwards the command and the initial attributes to at least a fast quorum of replicas
as a PreAccept message. For now, we assume that a fast quorum contains N − 1 replicas, including the
command leader. We will show in Section 4.8 that we can reduce the fast quorum size to d3N/4e when
N > 3.

Each replica, upon receiving the PreAccept, updates γ’s attributes according to the contents of its
commands log, records γ and the new attributes in commands, and replies to the command leader.

If the command leader receives replies from enough replicas to constitute a fast quorum, and all the
updated attributes are the same, it commits the command. If it doesn’t receive enough replies, or the at-
tributes in some replies have been updated differently than in others, then the command leader updates the
attributes based on bN/2c+ 1 replies (taking the union of all deps, and the highest seq), and dictates to at
least bN/2c+1 replicas to accept these attributes. This can be seen as running Multi-Paxos for choosing the
triplet (γ,depsγ,seqγ) in γ’s instance. At the end of this extra round, after replies from a majority (including
itself), the command leader will reply to the client, and will send Commit messages asynchronously to all
the other replicas.

Like classic Paxos, every message contains a ballot number (not presented explicitly in the pseudocode
for phases other than Explicit Prepare). As in classic Paxos, the ballot number ensures message freshness:
a replica will disregard any message with a smaller ballot than the largest it has seen for a certain instance.
The initial Prepare phase is implicit for all instances R.i, for an initial ballot number 0.R—each replica is
the default leader of its own instances.

4.4 The Execution Algorithm

To execute command γ committed in instance R.i, a replica will follow these steps:

1. Wait for R.i to be committed (or run an explicit prepare phase to force it);

2. Build γ’s dependency graph by adding γ and all the commands in instances from γ’s dependency list
as nodes, with directed edges from γ to these nodes, and then repeating this process recursively for all
of γ’s dependencies (starting with step 1);

3. Find the strongly connected components, sort them topologically;

4. In decreasing topological order, for each strongly connected component, do:

4.1 Sort all commands in the strongly connected component by their sequence number;

4.2 Execute every command in increasing sequence number order (if it hasn’t already been exe-
cuted), and mark it as executed.

4.5 Proof of Properties

We prove that together, the commit protocol and execution algorithm guarantee the properties stated in
Section 4.2.

Egalitarian Paxos straightforwardly ensures nontriviality: Phase 1 is only executed for commands
proposed by clients.

For proving stability and consistency, we first prove the following proposition:

6

Phase 1

Replica L designated as leader for command γ,
on receiving Request(γ) from a client (steps 2, 3
and 4 executed atomically):

1: increment instance number L.i← L.i+1
2: seqγ← max ({0}∪{seq. attribute of every

command recorded in commands})+1
3: depsγ←{(R, j) | commands[R][j] interferes w/ γ}
4: commands[L][i]← (γ,seqγ,depsγ,PreAccepted)
5: send PreAccept(γ,seqγ,depsγ,L.i) to all other

replicas

Replica R, on receiving
PreAccept(γ,seqγ,depsγ,L.i) from replica L
(steps 6 through 10 executed atomically):

6: max seq← max({0}∪{seq. attribute of every
command δ in commands, s.t. γ and δ interfere})

7: update seqγ← max({seqγ,max seq+1})
8: depslocal ←{(R, j) | commands[R][j] interferes

with γ}
9: update depsγ← depsγ∪depslocal

10: commands[L][i]← (γ,seqγ,depsγ,PreAccepted)
11: reply PreAcceptOK(γ,seqγ,depsγ,L.i) to L

Phase 2

Replica L (designated leader for command γ),
on receiving at least bN/2c+1 PreAcceptOK
responses:
12: if received at least N−2 PreAcceptOK’s with the

same seqγ and depsγ attributes then
13: reply RequestReply(γ,L.i) to client
14: run Commit phase for (γ,seqγ,depsγ) at L.i
15: else
16: update depsγ← Union(depsγ from all replies)
17: update seqγ← max({seqγ of all replies})
18: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i

Multi-Paxos

Designated leader replica L, for (γ,seqγ,depsγ)
at instance L.i
20: send Accept(γ,seqγ,depsγ,L.i) to all replicas
21: if received at least bN/2c+1 AcceptOK in

response then
22: reply RequestReply(γ,L.i) to client
23: run Commit phase for (γ,seqγ,depsγ) at L.i

Replica R, on receiving
Accept(γ,seqγ,depsγ,L.i):
25: commands[L][i]← (γ,seqγ,depsγ,Accepted)
26: reply AcceptOK(γ,L.i) to L

Commit

Designated leader replica L, for (γ,seqγ,depsγ)
at instance L.i
27: commands[L][i]← (γ,seqγ,depsγ,Committed)
28: send Commit(γ,seqγ,depsγ,L.i) to all other replicas

Replica R, on receiving
Commit(γ,seqγ,depsγ,L.i):
29: commands[L][i]← (γ,seqγ,depsγ,Committed)

Explicit Prepare Phase

New designated replica Q for command γ, for
instance L.i of a potentially failed replica L
30: increment ballot number (b+1).Q, (where b.L was

the old ballot number for instance L.i)
31: send Prepare((b+1).Q,L.i) to all replicas

(including self)
32: wait for at least bN/2c+1 responses
33: let R be set of replies w/ the highest ballot number
34: if R contains a (γ,seqγ,depsγ,Committed) then
35: run Commit phase for (γ,seqγ,depsγ) at L.i
36: else if R contains an (γ,seqγ,depsγ,Accepted)

then
37: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i
38: else if R contains at least bN/2c identical

(γ,seqγ,depsγ,PreAccepted) replies, and none is
from L then

39: run Multi-Paxos phase for (γ,seqγ,depsγ) at L.i
40: else if R contains at least one

(γ,seqγ,depsγ,PreAccepted) then
41: start Phase 1 for γ at instance L.i
42: else
43: start Phase 1 for γ at a new instance Q. j

Replica R, on receiving Prepare(b.Q,L.i) from Q
45: if b.Q is larger than the most recent ballot number

x.Y for instance L.i then
46: reply PrepareOK(commands[L][i],x.Y,L.i)
47: else
48: reply NACK

Figure 2: The Egalitarian Paxos Protocol for Choosing Commands

7

Proposition 1. If replica R commits command γ at instance Q.i (with R and Q not necessarily distinct), then
for any replica R′ that commits command γ′ at Q.i it must hold that γ and γ′ are the same command.

Proof sketch. Command γ is committed at instance Q.i only if replica Q has started Phase 1 for γ

at instance Q.i. Q cannot start Phase 1 for two different commands at the same instance Q.i, because (1)
Q increments its instance number for every new command, and (2) if Q fails and comes back, it will be
assigned a new, previously unseen identifier (Section 4.10).

Proposition 1 implies consistency. Since commands can only be forgotten if a replica crashes, this
also implies stability if commands is maintained in persistent memory. Execution consistency also requires
stability and consistency for the command attributes.

Definition 2. If γ is a command with attributes seqγ and depsγ, we say that the tuple (γ,seqγ,depsγ) is safe
at instance Q.i if (γ,seqγ,depsγ) is the only tuple that is or will be committed at Q.i by any replica.

Proposition 2. Replicas commit only safe tuples.

Proof sketch. A tuple (γ,seqγ,depsγ) can only be committed at a certain instance Q.i: (1) after the
Multi-Paxos phase, or (2) directly after Phase 2.

Case 1: A tuple is committed after executing the Multi-Paxos phase if more than half of the replicas
have logged the tuple as Accepted (line 21 in the pseudocode). The tuple is safe via the classic Paxos
algorithm guarantees.

Case 2a (N > 3): A tuple is committed directly after Phase 2 only if its command leader receives
identical responses from at least N−2 other replicas (line 12). The tuple is now safe: If another replica tries
to take over the instance (because it suspects the initial leader has failed), it must execute the Prepare phase
and it will see at least bN/2c identical replies containing (γ,seqγ,depsγ) which will constitute a majority
among the replies, so the new leader will identify this tuple as potentially committed and will use it in the
Multi-Paxos phase.

Case 2b (N = 3): Compared to the previous case, bN/2c = 1 is no longer a majority among the
minimum number of replying replicas when a new leader takes over from a potentially failed leader, so,
the new leader may not recognize which tuple was committed by the old leader at the end of Phase 2. To
solve this problem, we add the constraint that, if N = 3, a command is committed on the fast-path only if a
replica replies to a PreAccept with an unmodified set of attributes. That replica also records that its reply
matched the attributes proposed by the leader. Therefore, the new leader will learn that the old leader and
another replica have agreed on (γ,seqγ,depsγ).

So far, we have shown that tuples are committed consistently across replicas. They are also stable, as
long as they are recorded in persistent memory.

We have shown that the attributes of a committed command are stable and consistent across all replicas.
We now show that they are sufficient to guarantee that all interfering commands are executed in the same
order on every replica:

Lemma 1 (Execution consistency). If two interfering commands γ and δ are successfully committed (not
necessarily by the same replica), they will be executed in the same order by every replica.

Proof sketch. If two commands interfere, at least one of them will have the other in its dependency set
by the time they are committed: Phase 1 ends after the command has been PreAccepted by at least a simple
majority of the replicas, and its final set of dependencies is the union of at least the set of dependencies
updated at a majority of replicas (this also holds for recovery—line 38 in the pseudocode, since all depen-
dencies are based on those set initially by the possibly failed leader). Thus, at least one replica R pre-accepts
both γ and δ, and its replies to PreAccepts are taken into account when establishing the final dependencies
sets for both commands.

8

By the execution algorithm, a command is executed only after all the commands in its dependency
graph have been committed. There are three possible scenarios:

Case 1: Both commands are in each other’s dependency graph. By the way the graphs are constructed,
this implies: (1) the dependency graphs are identical; and (2) γ and δ are in the same strongly connected
component. Therefore, when executing one command, the other is also executed, and they are executed in
order of their sequence numbers (with an arbitrary criterion to break ties). By Proposition 2 the attributes
of all committed commands are stable and consistent across replicas, so all replicas will build the same
dependency graph and execute γ and δ in the same order.

Case 2: γ is in δ’s dependency graph but δ is not in γ’s. There is a path from δ to γ in δ’s dependency
graph, but there is no path from γ to δ. Therefore, γ and δ are in different strongly connected components,
and γ’s component will come before δ’s in reversed topological order. By the execution algorithm, γ will
always be executed before δ. This is consistent with the situation when γ had been executed on some replicas
before δ was committed (which is possible, since γ doesn’t depend on δ).

Case 3: Just like case 2, with γ and δ reversed.

Lemma 2 (Execution linearizability). If two interfering commands γ and δ are serialized by clients (i.e., δ

is proposed only after γ is committed by any replica), then every replica will execute γ before δ.

Proof sketch. Since δ is proposed after γ was committed, γ’s sequence number is stable and consistent by
the time any replica receives PreAccept messages for δ. Because a tuple containing γ and its final sequence
number is logged by at least a majority of replicas, δ’s sequence number will be updated to be larger than
γ’s, and δ will contain γ in its set of dependencies. Therefore, when executing δ, δ’s graph will contain
γ either in the same strongly connected component as δ (but δ’s sequence number will be higher), or in a
component ordered before that of δ in reversed topological order. Regardless, by the execution algorithm, γ

will be executed before δ.
Finally, liveness is ensured as long as a majority of replicas are non-faulty: a client keeps retrying a

command until a replica gets at least a simple majority to accept it.

4.6 Keeping the Dependency List Small

It is infeasible to include all interfering commands in dependency lists. Instead we include only N depen-
dencies in each list: the instance number R.i with the highest i seen by the current replica. This can be
interpreted in two ways: If the communication protocol does not allow messages to be reordered, and the
interfering relations are transitive (which is usually the case in practice) the most recent interfering com-
mand is sufficient, because its dependency graph will contain all the commands committed in R. j instances,
with j < i. If these conditions do not hold, every replica will have to assume that any commands in previ-
ous R. j (j < i) instances are possible dependencies and will have to check all of those that have not been
executed—this will not be a long search when commands are executed soon after being committed.

4.7 The Middle Path

As described thus far, Egalitarian Paxos has two main drawbacks: (1) when many commands interfere, the
protocol will often fall back to the slow path, which requires one additional round trip time to commit, and
increases the total numer of messages processed per command, reducing throughput; and (2) the fast path
quorum for N > 3 is larger than the classic quorum, so the commit latency may increase—particularly in
wide-area deployments where replicas are far apart from each other—because the command leader will have
to wait for more replicas to reply.

We can enhance Egalitarian Paxos with an additional mode of operation suitable for situations where
these drawbacks manifest. We call this the middle path:

9

R1

R2

R3
R4
R5

PreAccept

ForwardAccept

PreAcceptOK

Request
Commit

ACK

Figure 3: Messages exchanged on the middle path in a five-replica setup. The asynchronous Commit
messages are not depicted.

1. After receiving a client request, the command leader sends PreAccept messages to only the replicas
in a classic quorum (itself plus bN/2c other replicas);

2. Instead of replying immediately to the PreAccept, each non-leader replica in the quorum forwards the
PreAccept with updated attributes (we will write ForwardAccept to denote this message), to every
other replica in the quorum except for the command leader;

3. After receiving bN/2c−1 ForwardAccepts, each replica will update the current command attributes
based on the attributes in these messages and reply to the command leader.

Figure 3 illustrates the messages exchanged on the middle path by a five-replica state machine.
If the replicas in the chosen quorum are responsive and no message is lost, at the end of the three

message delays incurred by the middle path every replica in this quorum, including the command leader,
will have the same correct attributes for the current command, and the command leader can therefore safely
commit—even if all concurrent commands interfere there will be no conflicts, so no need for additional
rounds of communication.

If some replicas fail to respond, the command leader will increment the ballot number and revert to the
conservative path—i.e., re-send the initial PreAccept to everyone, then commit on the fast path if there are
no conflicts, or the slow path if there are conflicts.

The middle path has a latency of three message delays for N > 3—one more than the fast path, but one
less than the slow path—and only two message delays for N = 3 (just like the fast path). In the absence
of failures, it requires the command leader to contact only the closest replicas in a classic quorum. The
middle path uses bN/2c× (bN/2c+1) total messages to commit a command, whereas the fast path requires
2(d3N/4e−1) messages, and the slow path 2bN/2c in addition. The middle path will therefore use just as
many messages per command as the fast path for N ≤ 5, and fewer messages than the slow path for N ≤ 9.

4.8 Extending Egalitarian Paxos

There are two ways to extend EPaxos, that we do not explore in detail, as they are less practical:
First, we can reduce the fast-path quorum size for N > 3 from N− 1 to d3N/4e5: the necessary and

sufficient condition for a fast-path quorum is that the intersection of a fast-path quorum with a classic quorum
represents a majority in the classic quorum. This is so that in case of failures, the recovery process will be
able to identify the possible surviving replicas of a fast-path quorum, no matter which classic quorum of
replicas reply first. The drawback to implementing this optimization is that recovery becomes more involved:
we have to prevent interfering commands from being committed before we commit what we believe may be

5Unsurprisingly, this coincides with the fast quorum condition in Generalized Paxos.

10

a command committed on the fast-path. This optimization only makes a difference for N > 7, which is less
practical.

Second, we can make EPaxos more like Fast and Generalized Paxos (to decrease the commit latency
by one message delay) by letting clients broadcast commands to all replicas. There are two drawbacks: (1)
the fast-path quorum sizes for N = 3 increases from 2 to 3 (as in Generalized Paxos); and (2) when building
deps, we can no longer identify commands by their instance numbers—we must use unique identifiers set
by the clients instead.

4.9 Recovering from Failures

A replica may need to find out the decision for an instance because it has to execute commands that depend
on it. If the replica times out waiting for the commit for that instance, it will try to take ownership of it
by running an Explicit Prepare phase, at the end of which it will either learn what command was being
proposed in the problem instance (in which case it will finalize committing that command), or it will not
learn any command (because no other replica has seen it), in which case it will commit a special no-op
command to finalize the instance

Another failure-related situation is that where a client timed out waiting for a replica to reply and re-
issues its command to a different replica. As a result, the same command can be proposed in two different
instances, so every replica must be able to recognize duplicates, and only execute the command once. This
situation is not specific to Egalitarian Paxos—it affects any replication protocol. An alternative solution is
to make the application tolerant of re-executed commands.

4.10 Joining/Rejoining the Replica Set

New replicas (or replicas that recover after losing the contents of their memory) must be associated a previ-
ously unseen replica id. The first action after joining is to send a special Join message to at least bN/2c+1
old replicas (replicas that are not themselves in the process of joining). Every reply to the Join contains the
highest instance numbers R.i (for all replicas R) for which the old replica has received messages. The new
replica will only be able to participate in the voting process after seeing commits for all the instances up to
and including these instances.

The new replica must receive Commit messages for all the commands already chosen before it became
live, before fewer than bN/2c+1 old replicas remain—if those commands had been chosen but not explicitly
committed, they must be committed.

4.11 Read Leases

To avoid reading stale data, a Read must be committed as a command that interferes with all updates to
the objects it is reading. However, Paxos-based systems are often optimized for frequent read scenarios, in
one of two ways: assume the clients can handle stale data, and perform reads locally at any replica, as in
ZooKeeper [7]; or use read leases [4]. Read leases work well for classic Paxos, because the leader is already
the only replica through which updates are committed (unless the leader fails). In EPaxos, however, read
leases may reduce the load-balancing benefits.

4.12 Avoiding Execution Livelock

With a fast stream of conflicting conflicts, EPaxos could experience execution livelock: any command γ

will acquire dependencies on newer commands proposed between sending and receiving the PreAccept(γ)
message. These new commands in turn gain dependencies on even newer commands. To prevent this, we pri-
oritize completing old commands over proposing new commands. Even without this optimization, however,

11

long dependency chains increase only execution latency, not commit latency. They also negligibly affect
commit and execution throughputs: the difference between executing n independent commands and execut-
ing a batch of n interdependent commands is only an O(logn) factor: finding the strongly connected compo-
nents has linear time complexity (the number of dependencies for each command is constant—Section 4.6),
and sorting the commands by their sequence attribute will only add an O(logn) factor.

5 Implementation

We have implemented EPaxos and three other Paxos variants (classic Paxos, Mencius, and Generalized
Paxos) in the Go programming language, version go1. We chose Go because it allows for fast prototyping
and provides primitives suitable for event-based programming.

Go presented two challenges: its garbage collector affects performance, and, more importantly, its RPC
system is slow. We solved the second problem by implementing our own RPC stub generator. We have not
yet mitigated the GC penalty, but, because EPaxos uses larger messages (to include the attributes), it is more
affected than the other protocols, so our results are fair to the other variants.

The Thrifty Optimization In implementing EPaxos and classic Paxos, we used an optimization that we
call thrifty. In thrifty, a replica in charge of a command (the command leader in EPaxos, or the stable leader
in classic Paxos) sends Accept and PreAccept messages to only a quorum of replicas, including itself, not
the full set. This reduces the message traffic for each command, and improves throughput. The downside
of this optimization is that if an acceptor fails to reply quickly, there is no quick fallback on another reply.
To mitigate this, thrifty can aggressively send messages to additional acceptors when a reply is not received
after a short wait time; doing so does not affect safety and only slightly reduces throughput. Mencius cannot
use the thrifty optimization because the replies to Accept messages contain information about the status of
previous instances (whether they were skipped or not) necessary to commit the current instance6.

6 Evaluation

We evaluate Egalitarian Paxos on Amazon EC2, using large instances7 for both state machine replicas and
clients, running Ubuntu Linux 11.10.

We implemented EPaxos, classic Paxos, Mencius, and Generalized Paxos. Because Generalized Paxos
was not designed for high throughput (learners handle Θ(N) messages for each command) and its availability
is tied to that of the leader, as for classic Paxos, we only evaluate Generalized Paxos in the wide area, for
which its design is well suited, as observed by MDCC [8].

We evaluate these protocols using a replicated key-value store where client requests are updates (puts).
This is sufficient to capture a wide range of practical workloads: From the point of view of replication
protocols, reads and writes are generally treated the same way (though reads can be serviced locally in
certain situations, as discussed in Section 4.11). Other message semantics do not influence the behavior
of the protocols, with one important exception, which applies to EPaxos, Generalized Paxos, and Mencius,
and that our testing workload does capture: conflicts (a proposed-but-not-executed command interferes
with the current command). One example of such conflicts are those experienced by a locking service,

6More precisely, a Mencius replica must receive Accept replies from all the owners of instances it has not received messages
for. We implemented Mencius-thrifty, in which Accepts are sent first to the replicas the current leader has to hear from, and to other
replicas only if a quorum has not yet been reached. It did not improve throughput, however, because under medium and high load,
only rarely are all previous instances “filled” at the time a command is proposed.

7A large EC2 instance comprises 2 64-bit virtual cores with 2 EC2 Compute Units each and 7.5 GB of memory. The typical
RTT in an Amazon EC2 cluster is 0.4 ms

12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t
[r

e
q
s
 /
 s

e
c
]

Time [sec]

replica failure

delayed commits

no-ops exhausted

EPaxos
Mencius

Paxos

Figure 4: Commit throughput over time for EPaxos, Mencius and classic Paxos when one replica (out
of three) fails. For Paxos, the failed replica is the leader.

where conflicts are equivalent to the write-write conflicts triggered by multiple clients updating the same
key. A read-heavy workload will be equivalent to updates that rarely target the same key, because reads do
not conflict with other reads. Lease renewal traffic, however—which constitutes over 90% of the requests
handled by Google’s Chubby [2]—generates no conflicts, since only one client can renew a particular lease.
For these reasons, although for completeness we present results for 0%, 25% and 100% conflicts (e.g.,
for the 25% case, 1

4 of commands target the same key and 3
4 target different keys), we believe the results

corresponding to 0% conflicts to be the most relevant for practical workloads.

6.1 Service Availability under Failures

Figure 4 shows the evolution of the commit throughput in a three-replica setup that experiences the failure
of one replica. The client sent requests in an open loop8 and measured the rate at which it received replies.
The throughput variation in all protocols in steady state is caused by garbage collection.

With Multi-Paxos or variant that relies on a stable leader, a leader failure prevents the system from
processing client requests until a new leader is elected. While clients could direct their requests to another
replica (after they time out), a replica will usually not try to become the new leader immediately, because
false suspicions can degrade performance by causing stalls.

The failure of a non-leader replica (a situation not depicted in Figure 4) does not affect the throughput
of the system—in fact, it increases slightly, since the leader need no longer send messages to that replica.

In contrast, any replica failure disrupts Mencius: a replica cannot finalize an instance before knowing
the outcome of (or at least which commands are being proposed in) all instances that precede it, and instances
are pre-assigned to replicas round-robin. Unlike in classic Paxos, clients can continue to send requests
to the remaining replicas; they will be processed up to the point where they are ready to be committed.
Eventually, a live replica will time out and commit no-ops on behalf of the failed replica (for 100,000
instances owned by the failed replica, in our experiment, in accordance to the parameters suggested by the
authors of Mencius [14]), thus freeing the instances waiting on them. At this point, the delayed commands
are committed and acknowledged, which causes the throughput spike depicted in Figure 4. Soon after, the
live replicas will reach instances ordered after the last instance for which a no-op has been committed, and
will have to repeat the failure recovery process (until the failed replica recovers, or until a reconfiguration).

EPaxos operates uninterrupted by the crash of a minority of replicas. Clients with commands outstand-
ing at the failed replica will time out and retry those requests at another replica. While live replicas will
commit commands unhindered, some of these commands may have acquired dependencies on interfering
commands the failed replica was processing before failing. Executing them (as opposed to committing them)
will therefore be delayed until another replica finalizes committing those commands. Unlike in Mencius,
this occurs only once: an inactive replica cannot continue to generate dependencies. Moreover, it occurs
rarely for workloads with low conflict rates.

8In practice, a client needing linearizability must wait for acknowledgements before issuing more commands; the open loop
mimics an unbounded number of different clients to measure maximum throughput.

13

3 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000 30000 35000 40000

EPaxos−thrifty,0%
EPaxos−thrifty,25%

EPaxos−thrifty,100%
EPaxos,0%

EPaxos,100%
Mencius,0%

Paxos
Paxos−thrifty

�
EPaxos,slow−acc,0%
Mencius,slow−acc,0%

EPaxos−thrifty,slow−acc,0%
EPaxos−thrifty,slow−acc,100%

Paxos,slow−leader
Paxos−thrifty,slow−leader

5 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000

Figure 5: Throughput for small (16 B) commands (the error bars represent 95% confidence intervals).
The percentages next to the protocol name represent the percentage of conflicting commands.

3 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000

EPaxos−thrifty,0%
EPaxos−thrifty,25%

EPaxos−thrifty,100%
EPaxos,0%

EPaxos,100%
Mencius,0%

Paxos
Paxos−thrifty

�
Mencius,slow−acc,0%
EPaxos,slow−acc,0%

5 Replicas

Throughput [reqs / sec]

0 5000 10000 15000

Figure 6: Throughput for large (1 KB) commands (with 95%
confidence intervals).

 0

 100

 200

 300

 400

 500

 600

 700

 800

EPaxos
-thrifty,
100%

Mencius EPaxos,
0%

EPaxos,
25%

Paxos Paxos-
thrifty

T
h

ro
u

g
h

p
u

t
[r

e
q

s
 /

 s
e

c
]

Figure 7: Tput for 3 replicas, 16 B
cmds, synch logging to disk (95%
c.i.)

6.2 Throughput

We compare the throughput achieved by Egalitarian Paxos, classic (multi) Paxos, and Mencius. A client
on a separate EC2 instance sends batched requests in an open loop (only the client requests are batched;
messages exchanged by replicas are not), and measures the rate at which it receives replies. For EPaxos
and Mencius, the client sends each request to a replica chosen uniformly at random. Replicas reply to the
client only after executing the request. In practice, it is often sufficient to acknowledge after the command
has been committed, but because EPaxos has a more complex execution component, we wanted to assess its
impact on performance.

Figure 5 shows the throughput achieved by 3 and 5 replicas when the commands are small (16 B).
Figure 6 shows the throughput achieved with 1 KB requests.

EPaxos achieves better throughput than Paxos because the Paxos leader becomes CPU-bottlenecked.
Thrifty EPaxos (Section 5) processes fewer messages than Mencius, so its throughput is generally higher—
with the exception of conflict situations for more than 3 replicas, when EPaxos executes an extra round
per command. Non-thrifty EPaxos processes slightly fewer messages per command than Mencius, be-
cause Mencius must sometimes send Skips that cannot be piggybacked on other messages. Because EPaxos
messages are slightly larger because of the attributes they carry, our implementation incurs more garbage
collection overhead. We plan to address this implementation artifact to mitigate this effect.

Five-replica clusters have lower throughput than three-replica clusters for all protocols: The instance
leader must send twice as many Accept (and/or PreAccept) messages in Mencius, Paxos and non-thrifty

14

EPaxos, and three times as many PreAccepts in thrifty EPaxos9.
Processing large commands narrows the performance gap between all protocols because all replicas

spend more time sending and receiving the command (either from the client or from the leader), but Mencius
and EPaxos retain their roughly 2x throughput advantage over Paxos.

Figures 5 and 6 also show the throughput achieved by each protocol when a node is slow (for Paxos
that node is the leader—otherwise its throughout does not degrade significantly). In these experiments we
created high contention for the CPU on one replica (by running four infinite loop programs). EPaxos is better
than both Mencius and Paxos at handling a slow replica because replicas commit commands independently,
and, even on the fast commit path, an EPaxos replica only needs to talk to N − 2 other replicas (where
N is the total number of replicas). Mencius, by contrast, runs at the speed of the slowest replica because
the instance space is pre-ordered and a replica cannot commit an instance before learning about instances
ordered before it—and 1/N of those instances belong to the slow replica.

6.3 Logging Messages to Disk

To immediately resume operation after a crash, a replica must preserve the contents of its memory intact,
otherwise it may break safety (for all of the protocols we evaluate). Preservation implies logging every state
change to persistent memory before acting upon or replying to any message. The preceeding experiments
did not include this overhead, because it is avoidable in some circumstances: if complete power failure of all
replicas is not a threat, replicas can recover from failures as presented in Section 4.10; in addition, persistent
memory technologies keep improving, and battery backed memory is sometimes feasible. We nevertheless
wanted to evaluate whether EPaxos is fundamentally more I/O intensive than Paxos or Mencius. Figure 7
accordingly presents the throughput achieved when every replica synchronously logs its state changes to
disk before replying to protocol messages10.

Here, all protocols are I/O bound. They perform similarly because all replicas, leaders or not, write
to disk at least once for every command to log Commit and Accept (or PreAccept) messages. EPaxos-
thrifty outperforms Mencius because it uses fewer messages per command. Since in the thrifty setup some
acceptors perform only one write to disk per command (when they receive the Commit for that command),
those acceptors have lower load than the leader. By sharing the leader role between all replicas, EPaxos-
thrifty runs faster than Paxos-thrifty.

6.4 Execution Algorithm Effect on Latency

In this section we evaluate the impact of interfering commands on execution latency. Figure 8 shows how
the median (bottom graph) and 99% latencies vary when increasing the throughput in EPaxos, Mencius
and Paxos. In this set of experiments we vary the throughput by varying the number of concurrent clients
sending commands in a closed loop (each client sends a command, and then waits for the confirmation that
the command has been executed before moving to the next) between 8 and 300. The maximum throughput
is lower than in the throughput experiments because replicas no longer handle batched requests on a single
TCP connection. Instead, each replica handles hundreds of TCP connections simultaneously, leaving less
CPU time for the protocol itself.

While interfering commands increase latency, the strategy that we adopt to avoid livelock in the execu-
tion algorithm (as explained in Section 4.12) is effective, as, with three replicas, EPaxos has lower latency
than Paxos and Mencius, regardless of the percentage of interfering commands.

For latency too, a slow replica has a higher impact on Mencius than on EPaxos, as evidenced in Figure 9.

9The difference is less steep when switching from 5 to 7 replicas—5 PreAccepts instead of 3—although 7 replicas is a less
practical setup.

10We ran these experiments on a private, local cluster because of poor EC2 I/O performance.

15

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2000 4000 6000 8000 10000 12000 14000 16000 18000

9
9

%
ile

 L
a

te
n

c
y
 [

m
s
]

Throughput [requests/second]

Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
e

d
ia

n
 L

a
te

n
c
y
 [

m
s
]

Throughput [requests/second]

Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

Figure 8: Latency vs. throughput for three replicas. Percentages in the legend refer to the percentage
of interfering commands.

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

9
9

%
 L

a
te

n
c
y
 [

m
s
]

Mencius
EPaxos

 0
 5

 10
 15
 20
 25
 30

 2000 3000 4000 5000 6000 7000 8000

M
e

d
.

L
a

te
n

c
y
 [

m
s
]

Throughput [requests/second]

Mencius
EPaxos

Figure 9: Latency vs. throughput when one replica out of three is slow (i.e., it experiences high CPU
contention).

16

 0

 50

 100

 150

 200

 250

US-West US-East Europe
L

a
te

n
c
y
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s
]

85ms 90ms

156ms

EPaxos
Paxos

Mencius balanced
Mencius imbalanced

Generalized Paxos

Figure 10: Median commit latency, with 99 percentile error bars, at each of the three wide-area replica
sites. For Paxos, the leader is located on the West coast. Mencius imbalanced shows the latency when
the Europe site generates commands at half the speed of the other sites (no other protocol is affected
by this imbalance). The bottom of the graph indicates the inter-site RTTs.

6.5 Latency In Wide Area Replication

To evaluate the benefits of Egalitarian Paxos for wide area replication, we run a three replica experiment
with each replica at a different Amazon EC2 datacenter: California, Virginia, and Ireland. At each location
there is a client sending requests to its local replica. The clients generate requests simultaneously, and we
report the median and 99% commit latencies experienced by each client when using EPaxos, clasic Paxos,
Mencius and Generalized Paxos. The results are shown in Figure 10.

In EPaxos, a replica will always be able to commit a command after a round trip to its nearest peer
(due to the optimization presented in Section 4.7), even if all commands interfere. With more than three
replicas, EPaxos will at least be able to avoid the replica farthest away. Unlike with only three replicas,
though, interfering commands will cause an extra round trip to the closest bN/2c replicas. In contrast, the
fast quorum size for Generalized Paxos when N = 3 is 3, which means that the latency for Generalized Paxos
is determined by a round-trip to the farthest replica. Furthermore, conflicts will cause up to two additional
round trips for any N, even for just three replicas (one to the leader, and one to the bN/2c closest replicas
to the leader). Thus, for the setup in our experiment, EPaxos is not affected by conflicts, but Generalized
Paxos experiences median latencies of between 173 ms and 251 ms with 100% conflicts, depending on the
location of the leader relative to that of the proposer.

Mencius performs well if the command streams at all locations are matched, because a replica learns
about the previous instances it does not own by the time it needs to commit one of its own instances.
Imbalances force Mencius to wait for more replies to Accept messages. In the worst case, with no proposers
at any of the other locations, Mencius will experience latency corresponding to the round trip time to the
replica that is farthest away from the proposer.

Classic Paxos has high latency because the local replica cannot initiate the process of choosing a com-
mand, having instead to forward it to the leader.

The results in this section refer to commit latency. When only replying to clients after executing
commands, EPaxos may be delayed by interering commands being proposed by remote clients: with 100%
conflicts EPaxos experiences a median latency of 139 ms at the Europe site, 125 ms at the US-East site, and
130 ms at the US-West site. This, however, is an unrealistically pessimistic scenario because (1) an update
(a write) does not have to be executed for the client that generated it to be able to safely move on to other
commands, and (2) while, in general, read commands have to be executed before replying to the client, reads
generate few conflicts because reads do not conflict with each other.

17

7 Conclusion

We have presented the design and implementation of Egalitarian Paxos, a new state machine replication
protocol based on Paxos. We have shown that its decentralized and uncoordinated design has important
benefits for the availability, performance and performance stability of both local and wide area replication.

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Thrifty
generic broadcast. In Proceedings of the 14th International Conference on Distributed Computing,
DISC ’00, pages 268–282, London, UK, UK, 2000. Springer-Verlag.

[2] Michael Burrows. The Chubby lock service for loosely-coupled distributed systems. In Proc. 7th
USENIX OSDI, Seattle, WA, November 2006.

[3] Lásaro Jonas Camargos, Rodrigo Malta Schmidt, and Fernando Pedone. Multicoordinated paxos.
In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing,
PODC ’07, pages 316–317, New York, NY, USA, 2007. ACM.

[4] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engineering per-
spective. In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, PODC ’07, pages 398–407, New York, NY, USA, 2007. ACM.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43:225–267, March 1996.

[6] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, April 1985.

[7] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: wait-free coordi-
nation for internet-scale systems. In Proceedings of the 2010 USENIX Annual Technical Conference,
USENIXATC’10, Berkeley, CA, USA, 2010. USENIX Association.

[8] Tim Kraska, Gene Pang, Michael J. Franklin, and Samuel Madden. MDCC: Multi-data center consis-
tency. http://arxiv.org/abs/1203.6049, 2012.

[9] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169,
1998.

[10] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4), December 2001.

[11] Leslie Lamport. Generalized consensus and Paxos. http://research.microsoft.com/apps/

pubs/default.aspx?id=64631, 2005.

[12] Leslie Lamport. Fast Paxos. http://research.microsoft.com/apps/pubs/default.aspx?id=
64624, 2006.

[13] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong Zhou. Box-
wood: abstractions as the foundation for storage infrastructure. In Proc. 6th USENIX OSDI, San
Francisco, CA, December 2004.

[14] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building efficient replicated state
machines for WANs. In Proc. 8th USENIX OSDI, pages 369–384, San Diego, CA, December 2008.

18

http://arxiv.org/abs/1203.6049
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64624

[15] Fernando Pedone and André Schiper. Handling message semantics with generic broadcast protocols.
Distributed Computing, 15:97–107, April 2002.

[16] Fernando Pedone and André Schiper. Optimistic atomic broadcast: a pragmatic viewpoint. Theoretical
Computer Science, 291:79–101, January 2003.

[17] Piotr Zieliński. Optimistic generic broadcast. In Proceedings of the 19th International Symposium on
Distributed Computing, pages 369–383, Kraków, Poland, September 2005.

19

	Introduction
	Related Work
	Overview
	Paxos Background
	Egalitarian Paxos: Intuition

	Design
	Preliminaries
	Protocol Guarantees
	The EPaxos Commit Protocol
	The Execution Algorithm
	Proof of Properties
	Keeping the Dependency List Small
	The Middle Path
	Extending Egalitarian Paxos
	Recovering from Failures
	Joining/Rejoining the Replica Set
	Read Leases
	Avoiding Execution Livelock

	Implementation
	Evaluation
	Service Availability under Failures
	Throughput
	Logging Messages to Disk
	Execution Algorithm Effect on Latency
	Latency In Wide Area Replication

	Conclusion

