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Abstract

ABSTRACT
We analyze Hadoop workloads from three different research clusters from an application-level perspective, with two goals: (1)
explore new issues in application patterns and user behavior and (2) understand key performance challenges related to IO and
load balance. Our analysis suggests that Hadoop usage is still in its adolescence. We see underuse of Hadoop features, extensions,
and tools as well as significant opportunities for optimization. We see significant diversity in application styles, including some
“interactive” workloads, motivating new tools in the ecosystem. We find that some conventional approaches to improving perfor-
mance are not especially effective and suggest some alternatives. Overall, we find significant opportunity for simplifying the use
and optimization of Hadoop, and make recommendations for future research.
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1 Introduction

Hadoop [6], the open-source implementation of Google’s MapReduce [17], has become enormously popular
for big data analytics, especially among researchers. Due to Hadoop’s popularity, it is natural to ask the
question: How well is it working? To answer this question, we need to move beyond the conventional
“cluster-centric” analysis that models each job as an independent black box and focuses on coarse global
metrics such as resource utilization, usually in the context of a single cluster [5, 13, 24, 33]. Instead, we
need to recognize that not all clusters are used in the same way, and that there is a rich ecosystem of tools,
extensions, and libraries related to Hadoop that influence application characteristics, user behavior, and
workflow structure.

In this paper, we analyze Hadoop workloads from three different research clusters, where the main
users are from academic institutions. We have two goals with this work: To better understand application
patterns and user behavior in a Hadoop cluster and to assess key performance properties across a set of
research-oriented clusters. To analyze the higher-level, user-oriented issues, we make use of information
that is typically too sensitive for commercial Hadoop users to share, including job specifications (e.g., names
of Java classes, user identifier, input/output directories) and high-resolution application-level statistics (i.e.,
HDFS [10] and MapReduce counters). For the performance study, we compare and contrast our findings to
those reported in prior work [3, 5, 11, 24]. Our study is broken into four parts: application workload, user
behavior, IO performance, and load balance.

Overall, our analysis suggests that Hadoop usage is still in its adolescence. We see a significant number
of independent, single-step, small-scale jobs that may be amenable to simpler, non-Hadoop solutions. There
is evidence that users are working “interactively,” submitting jobs sequentially after a short delay to digest
the results. Relatively few are using higher-level declarative frameworks, though some are constructing
“manual” workflows. We see significant performance penalties arising from over-reliance on default con-
figuration parameters and default Hadoop customization options. Workloads are highly diverse, suggesting
that simple, “one-size-fits-all,” application-oblivious optimizations will not be broadly effective. Indeed,
speculative execution does not seem to provide much benefit, and conventional scheduling that only tries
to improve locality ignores huge opportunities for caching “hot” files. We find that the trend toward cen-
tralization of resources is effective: smaller, local clusters are underutilized. Overall, we find that there is
enormous room for improvement in raising the level of abstraction for interacting with the cluster: improving
interactivity, automatically optimizing complex tasks, and automatically applying application-aware tuning.

More precisely, our study makes the following contributions.
1) First, we comparatively analyze three Hadoop cluster workloads. All three correspond to clusters

used for academic research. Because big-data analytics is an important facet of academic research, studying
the use of big-data clusters in this setting is a critical component of understanding the requirements and
performance of these systems.

2) Second, we study characteristics of applications that users execute in the three clusters at a greater
level of detail than previous Hadoop-cluster [5, 13, 11, 12, 24] (Section 3). Some of the key questions
that our study asks is whether applications take the form of complex workflows or one-off jobs. How much
data is being moved around by these applications — are they looking for needles in haystacks or searching
for high-level trends? Are these applications expressed in higher-level interfaces such as Pig Latin [30] or
HiveQL [9], or are they written directly in Java? Surprisingly, we find that many, but not all, applications
are small, single step operations implemented directly in Java, but that their data processing characteristics
are highly varied.

3) Third, to the best of our knowledge, we are the first to study the user behavior in big-data clusters
(Section 4). We study how users interact with the cluster: Are the applications submitted automatically
or manually? Do users submit jobs sequentially and “interactively,” waiting for the results of one before
submitting another? Or do they submit batches of jobs all at once, (e.g., parameter sweeps or monte carlo
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simulations)? What is the distribution of resource utilization across users? How much of the work is
attributable to “heavy hitters” that could benefit from dedicated resources or other specialized solutions? We
find that approximately 10% of all jobs are submitted as part of a batch together with other jobs. Another
30% of jobs are submitted automatically in sequence. This leaves, however, 60% of the jobs where a user
waits for one job to complete before firing the next one manually, most often within 2 minutes — users are
working interactively. We also find that, when given the option, a visible fraction of users configure their
jobs by changing important parameters such as enabling the use of a combiner or changing the HDFS [10]
block size. The vast majority of users, however, simply execute their jobs on the out-of-the-box settings of
the underlying Hadoop engine.

4) Fourth, we study the three cluster workloads from the perspective of their IO requirements and
compare our findings to prior studies (Section 5). IO is known to be a bottleneck in high-performance data
processing [18, 38]. We focus both on the overhead of reading data from disk, writing it to disk and also
shuffling data over the network. We ask what IO workload users impose on the cluster and what can be done
to reduce that load. We find that, as reported in prior studies [11], reading the input data to all analytics
tasks dominates the IO workload. Surprisingly, we also see that Hadoop fails at scheduling map tasks in
a way that ensures the input data is read locally. The vast majority of map tasks read their data over the
network. Even more interesting, while we find a huge variance in input data sizes for different jobs, we also
show that using modest-size per-node caches would enable a large fraction of the jobs to be served entirely
from memory. In terms of managing the result of various analytics tasks, we find that 50% of jobs have their
output data overwritten within 5 minutes, and 90% of jobs’ output data are overwritten within 1 hour. This
result calls for efficient methods to manage large numbers of ephemeral and diverse-in-size files in big-data
clusters.

5) Finally, we study load imbalance challenges in these clusters: their prevalence, their impact, their
causes, and the performance of the well-known speculative execution method in mitigating these imbalances.
(Section 6). Our analysis reveals skew to remain a significant issue. More than 40% of long running jobs in
the three clusters have outliers, defined as tasks running at least 50% longer than the median task runtime [5].
This result confirms that the magnitude of the outlier problem is the same as that seen in industrial clusters [5,
25]. Hash partitioning is a known methods to evenly partition load and is also the default approach used
in Hadoop. We find, however, that while hash-partitioning redistributes reduce keys among reduce tasks
evenly for more than 92% of jobs in all clusters, the resulting task runtimes are unbalanced for as many as
22% to 38% of jobs. We also find that speculative execution is not effective at addressing the problem and
that users take little action to manually balance the computation by changing how work is allocated to tasks.

In summary, our study reveals that the use of Hadoop clusters in academic research environments is
still in its adolescence: significant improvements in terms of performance and user support remain possible
and are critically needed.

2 Data Sets Overview

We analyze the execution logs from three Hadoop MapReduce clusters used for research: OPENCLOUD,
M45, and WEB MINING. The three clusters have different hardware and software configurations and range
in size from 9 nodes (WEB MINING), to 64 nodes (OPENCLOUD), and 400 nodes (M45).

OPENCLOUD. OPENCLOUD is a research cluster at CMU managed by the CMU Parallel Data Lab.
It is open to researchers (including faculty, post-docs, and graduate students) from all departments on cam-
pus. In the trace that we collected, the cluster was used by groups in areas that include computational
astrophysics, computational biology, computational neurolinguistics, information retrieval and information
classification, machine learning from the contents of the web, natural language processing, image and video
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Cluster Duration Start Date End Date Successful/Failed/Killed Jobs Users

OPENCLOUD 20 months 2010 May 2011 Dec 51975/4614/1762 78
M45 9 months 2009 Jan 2009 Oct 42825/462/138 30

WEB MINING 5 months 2011 Nov 2012 Apr 822/196/211 5

Table 1: Summary of Analyzed Workloads

analysis, security malware analysis, social networking analysis, cloud computing systems development,
cluster failure diagnosis, and several class projects related to information retrieval, data mining and dis-
tributed systems.

The 64 nodes in this cluster each have a 2.8 GHz dual quad core CPU, 16GB RAM, 10 Gbps Ether-
net NIC, and four Seagate 7200 RPM SATA disk drives. The cluster ran Hadoop 0.20.1 during the data
collection.

M45. M45 is a production cluster made available by Yahoo! to support scientific research [1]. The
research groups that used this cluster during the collection of the trace covered areas that include large-scale
graph mining, text and web mining, large-scale computer graphics, natural language processing, machine
translation problems, and data-intensive file system applications [24]. The 400 nodes in this cluster each
contain two quad-core 1.86GHz Xeon processors, 6GB of memory, and four 7200 rpm SATA 750 GB disk.
The cluster ran Hadoop 0.18 with Pig during the data collection. The first four months of the trace overlap
with the end of the trace previously analyzed by Kavulya et al. [24].

WEB MINING. WEB MINING is a small cluster owned and administered by an anonymized research
group. The group comprises faculty, post-docs, and students. Most users run web text mining jobs. The 9
nodes in the cluster each have four quad-core CPU Xeon E5630, 32GB RAM, four 1.8TB HDD. The cluster
runs Hadoop 0.20.203 with Pig.

Log. Table 1 summarizes the duration of each collected log and the number of Hadoop jobs that it
covers. For each cluster, our log comprises three types of information for each executed job. All the data
was collected automatically by standard Hadoop tools requiring no additional tracing tools.

• Job configuration files: Hadoop archives a job configuration file for each submitted job, which is an
XML file that carries the specification of the MapReduce job (e.g., the class names of the mapper and
reducer, the types of the keys and values, the number of mappers, the number of reducers, etc.).
• Job history files: Hadoop also archives a job history file for each submitted job, which includes for

each task the initialization time, start time, completion time, and the time of each phase transition. In
addition, this file includes a variety of counters, including the number of bytes/records read/written
for each task.
• HDFS Operations: In version 0.20.x, the Hadoop file system (HDFS) records traces of all file system

operations, which include the accessed path names, the client ID, and the operation type (e.g., open,
rename, etc.). This information is only available in OPENCLOUD.

3 Application Workload

To understand application workloads, we first study the structure of MapReduce job workflows (Sec. 3.1).
We then investigate how users create them (Sec. 3.2). We finally study the type of data transformation that
these jobs perform (Sec. 3.3). The analysis presented in this section provides insights into how users utilize
the Hadoop MapReduce framework to perform parallel data processing and the type of processing they need
to perform.
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Figure 1: Distribution of job structures in three workloads.

3.1 Application Structures

We start by studying the structure of the data processing pipelines that users execute. A pipeline is a set of
related MapReduce jobs that take one or more datasets as input and produces one or more datasets as output.

We estimate the data dependency between jobs by looking at their input and output data paths1. We
assume that input and output data paths are not renamed nor manually modified by users. If a job A uses
another job B’s output as its input, then we say that job A depends on B. The dependency relation forms a
directed acyclic graph of jobs. We group each job by the connected component it belongs to, and Figure 1
shows the grouping results.

Surprisingly, about 68% to 78% of jobs are single stage jobs whose output data are not utilized by
other jobs. This fraction is highest in the smallest WEB MINING cluster. We further break down single jobs
into map-only jobs and non map-only jobs. About 8% to 11% of all jobs are single jobs with only a map
phase. Another large group of jobs are chain-like jobs, which correspond to 12% of jobs in OPENCLOUD

and as much as 30% of jobs in the other two clusters. “Chain2 or Chain3” is a chain consisting of two or
three jobs. “Long Chain” consists of more than three jobs and includes iterative applications. Finally, some
jobs are part of more complicated directed acyclic graphs (DAGs) of jobs. By examining some examples,
those DAGs include applications that perform join operations between multiple datasets or run multi-stage
machine learning algorithms.

These results thus show a consistent pattern across the three clusters: data transformations that require
a single MapReduce job, and sometimes even just a map phase, dominate the workload. Hence, any op-
timizations that focus on such jobs (e.g., MapReduce Online [15]) will have a great impact on the overall
workload. On the other hand, a significant fraction (up to 30%) of data transformations require a combina-
tion of jobs, most often a sequence. Users could thus also leverage tools and optimizations for these more
complex scenarios.

3.2 Application Types

In a MapReduce system, users can run arbitrary map and reduce functions as long as the functions have
compatible signatures. We analyze how users prepare their MapReduce jobs. We categorize the jobs as
follows:

1This can not capture map-side join, for example, which may read another input passed through the job configuration. Thus, we
may have missing dependencies.
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Figure 2: Fraction of jobs per application type.
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Figure 3: Fraction of users per application type.

• Low-level API: The simplest way to write a MapReduce application is to provide map and reduce
functions through the native MapReduce Java API. Streaming allows users to specify map and reduce
functions in any programming language. Pipes allows users to specify the functions in C/C++.
• High-level API: There are a few high-level API frameworks that help users write more complex

MapReduce applications by providing APIs with richer semantics than map and reduce. Cascad-
ing and Scoobi provide high-level APIs for users to easily construct workflows of map and reduce
functions [14, 32]. Pegasus provides higher-level APIs for large scale graph analysis [23].
• High-level Language: Pig and Hive fall into this category [30, 9]. A user writes a script in a high-

level language then the runtime system compiles the script into a DAG of MapReduce jobs. Users can
include user-defined functions if necessary.
• Canned MapReduce Jobs: There are a few pre-packaged sets of MapReduce applications. In this

category, the user only changes parameters and/or input datasets. All map and reduce functions are
provided by the package. Mahout is a package that implements various data-mining algorithms in
Hadoop MapReduce. Examples are examples such as wordcount and terasort that are part of the
Hadoop software distribution. LoadGen is also a part of the Hadoop software distribution that gener-
ates workloads for testing and benchmarking purposes.
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Figure 4: The number of distinct applications per application type.

Figure 2 shows the fraction of jobs per application type in the three clusters. In both the OPENCLOUD

and M45 clusters, the native MapReduce interface is the most popular way to program a MapReduce job
while Streaming and Pig are popular in the WEB MINING cluster. From an informal conversation with
authors of Pegasus, we confirmed that the Pegasus jobs in the OPENCLOUD cluster are mainly due to a class
project.

Figure 3 shows how many users have used each application type. In all three clusters, most users tried
the low level MapReduce API as well as Streaming. In the WEB MINING cluster, one user tried different
high-level APIs (i.e., Cascading, Scoobi) and one user uses Pig.

These results have several important implications: First, even though more powerful tools already exist
today, users still prefer to write their MapReduce jobs in plain Java (or other language through the streaming
interface). This is the case even as users need to transform their data through a sequence or even a DAG of
MapReduce jobs (as shown earlier in Figure 1). More complex tools thus do not have the expected uptake in
these academic clusters. Part of the reason could simply be user education since the WEB MINING cluster
shows a high utilization of one specific higher-level system, Pig, which is popular among the users of that
cluster. Second, legacy code (e.g., unix commands and machine learning package such as libsvm) and
language familiarity (e.g., python, perl, and ruby) also plays an important role as shown by the prevalence
of the use of Streaming.

We further analyze the workload by extracting application signatures. Our goal is to determine the
frequency of different applications: Are most applications one-off ad-hoc analytics or rather repetitive tasks?

The application signature consists of the pair of names of map and reduce functions. We extract the
names from the job configuration files and use different extraction mechanisms for each application type.
For example, for a native MapReduce application, the java class name is sufficient for a name. For a
streaming application, we parse the command line and extract the binary code or the name of the script. By
only focusing on the function names, we can detect a MapReduce application that runs multiple times and
processes different datasets in the same way. We do not know whether the functions have changed or not
given our limited information (configuration and execution history). So we assume that the same application
signature is meant to process an input dataset in a certain way.

Figure 4 shows the number of distinct applications submitted to the three clusters for each application
type. Comparing with Figure 2, the changes in relative heights are striking. In all three clusters, streaming
jobs form a large fraction of all distinct jobs while they result in a small fraction of actual job executions,
especially for M45 and OPENCLOUD. In contrast, Java Hadoop jobs also comprise many distinct jobs but
are comparatively more repetitive. The latter is an expected result but the former is surprising. It is not clear
why streaming jobs are less repetitive, since streaming is not an optimal programming interface for ad-hoc
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Figure 5: The number of distinct applications and the number of jobs per user. Each point corresponds to
one user. The reference lines represent y= x and y= 10x respectively. Users above y= 10x line run the same
job more than 10 times. All three clusters have a good mix between exploratory and repetitive applications.
Many users executed only a single application.

analytics. Interestingly, even Pig jobs are repetitive while one would expect Pig Latin to be the tool of choice
for exploratory analytics. These results suggest that users may not be applying optimal tools for their needs
or advanced tools are not optimal for these needs.

Finally, we look more generally at the relative frequency of repetitive and exploratory data transforma-
tions. Figure 5 shows the distribution of the number of distinct applications and the number of instances
of these applications executed by each user in each cluster. The reference lines correspond to y = x and
y = 10x respectively. Users above y = 10x line run the same application more than 10 times. For both the
number of distinct applications and the number of jobs submitted, there are orders of magnitude difference
among users. We also see a good mix between exploratory applications executed only once and repetitive
analytics executed hundreds or more times. Many users submit only a single application. The implications
of this result is that Hadoop schedulers must be ready to handle both types of workloads: a small number of
exploratory (ideally interactive) analytics and a bulk of repetitive, batch-oriented jobs.

3.3 Clustering by Running Behavior

We finally characterize the types of data transformations that users perform. For this, we use the K-
means [27] clustering algorithm to group jobs by their data transformation patterns and running times
following the approach by Chen et. al. [13]. Each job is represented as a vector of six features includ-
ing input size, shuffle size, output size, job duration, map task time and reduce task time. Each dimension is
normalized to the interval [0,1] by dividing all values by the maximum value across all jobs. The K-means
clustering algorithm then groups together the vectors that are close to each other in the six-dimensional
space.

Table 2 summarizes the clustering results. The table shows the centroid of each cluster, the size of
each group and also the number of distinct users and applications in each group. To draw out the data
transformation patterns in each cluster, we assign labels for the map phase and the reduce phase of each
group based on how it modifies its input data: For the map phase, by comparing the input data size and the
shuffle data size, we use three labels extract, expand and transform for three cases: input� shuffle , input
� shuffle , and input ≈ shuffle. For the reduce phase, we define four labels extract, expand, dump and none
for cases: shuffle � output, shuffle � output, shuffle ≈ output, and no reduce phase. We also add extra
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Cluster Input Shuffle Output Duration Map Reduce #Jobs #Apps #Users Map Reduce
Time Time Label Label

OpenCloud 8GB 1GB 764MB 3 min 4K 2K 50859 631 75 Small Small
195GB 168GB 145GB 58 min 138K 64K 398 76 24 Transform Dump
860GB 22GB 16GB 4.5 hrs 940K 228K 395 63 23 Extract Dump
599GB 836GB 53GB 1.9 hrs 659K 331K 109 19 15 Expand Aggregate
355GB 50GB 162GB 16 hrs 6M 93K 45 9 8 Extract Expand
662GB 2.1TB 289GB 6 hrs 1M 733K 34 7 3 Expand Aggregate
799GB 199GB 1.4TB 6.5 hrs 729K 81K 33 16 6 Extract Expand
1.3TB 1.2TB 183GB 15 hrs 6M 4M 15 7 4 Transform Aggregate

13.0TB 2GB 262GB 21 hrs 9M 115K 11 2 4 Extract Expand
54GB 1GB 96GB 3.2 day 14M 264K 11 4 5 Computation Expand

M45 3GB 2GB 1GB 2 min 3K 2K 40644 1095 29 Small Small
3GB 4GB 4GB 1 hrs 78K 6K 1350 98 18 Computation Small

104GB 120GB 166GB 55 min 105K 295K 270 34 14 Transform Transform
445GB 139GB 29GB 17 min 138K 71K 253 12 6 Extract Aggregate
4.9TB 4.9TB 433GB 2 hrs 1M 1M 111 5 2 Transform Aggregate

537GB 582GB 4.9TB 2 hrs 343K 2M 127 4 3 Transform Expand
402GB 1.8TB 399GB 4.3 hrs 1M 2M 30 7 5 Expand Aggregate
107GB 0B 107GB 2 day 7M 0 26 4 2 Transform None
121GB 170GB 8GB 20.5 hrs 2M 141K 14 7 6 Transform Extract

Web Mining 15GB 10GB 8GB 8 min 8K 1K 718 370 4 Small Small
93GB 122GB 60GB 2.8 hrs 613K 45K 38 17 4 Expand Aggregate
31GB 187GB 74GB 6.5 hrs 1M 111K 18 3 2 Expand Aggregate
1.0TB 212GB 69GB 4.8 hrs 1M 69K 9 8 4 Extract Aggregate
44GB 307GB 111GB 1.2 day 2M 300K 7 1 1 Expand Aggregate
2.1TB 1.1TB 420GB 6.8 hrs 797K 270K 5 3 2 Transform Aggregate
45GB 5GB 2.5TB 7.2 hrs 1M 103K 5 3 2 Extract Expand (Large)

543GB 11GB 62GB 20.9 hrs 6M 40K 4 3 2 Extr/Comp Expand
3.5TB 7.1TB 273GB 22 hrs 2M 878K 3 2 1 Transform Aggregate
36GB 7GB 62GB 2.5 day 14M 57K 2 2 2 Computation Expand

Table 2: Clustering jobs in each workload using k-means. Map and reduce times are the sum of running
times of all tasks, i.e., a job with 3 map tasks taking 15 seconds each has a map time of 45 task-seconds.

labels for small jobs and computation intensive jobs. Small jobs have very short duration, and computation
intensive jobs have significantly long duration compared to their small input data size.

Small jobs dominate all the workloads. More than 90% of jobs touch less than 20GB, and run for less
than 8 minutes. This result reflects what happens in production clusters [11] and points to a misuse of the
Hadoop cluster: such short jobs on small datasets do not need a big cluster.

Workloads are also very diverse: no other category clearly dominates in all clusters. Interestingly, in
each cluster, one type of data transformation is significantly more frequent than others with many users and
many applications falling in that same category. The common category, however, changes from cluster to
cluster.

The key implication of these results is that any good scheduler must be designed to handle a large
number of very small jobs combined with a mix of different types of jobs.

4 User Behavior Analysis

How do users interact with the cluster? To capture the influence of user behavior on effectiveness of Hadoop,
we consider the distribution of resource consumption among users (Sec. 4.1), how job submission patterns
can be used to infer interactivity requirements (Sec. 4.2), and the degree to which users customize their jobs
to obtain different performance characteristics (Sec. 4.3).
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Figure 6: Aggregated resource usage over users under three metrics. 20% of users consume about 90% of
the resources.

4.1 Distribution of Resource Consumption Among Users

As with many other human activities, the distribution of resource consumption follows a power law. We
measure the resource consumption of each user by three metrics: task time, data, and jobs. The task time
metric is the sum of all map and reduce task durations across all of a user’s jobs. The data metric is the sum
of the bytes processed across the input, shuffle, and output phases. The jobs metric is simply the number
of total jobs submitted. Figure 6 gives the distribution of these three metrics over all users in two clusters
OPENCLOUD and M45. We omit the WEB MINING cluster since it has only 5 users. All three metrics
indicate that about 80% to 90% of resources are consumed by 20% of the users in both clusters.

4.2 Job Submission

Figure 7 shows hourly job submissions averaged by day of week during the monitored period. The shaded
area represents the 8am to 6pm time window in each cluster local timezone. The WEB MINING cluster
shows the strongest diurnal pattern: no jobs are submitted late at night. In OPENCLOUD, the workload is
shifted diurnal toward evening and night. M45 does not particularly show any daily patterns partly because
users come from multiple timezones and jobs are submitted by scripts. In all three clusters, late Saturday
night to early Sunday morning see the fewest jobs on average. These results show that shared clouds with a
greater variety of users can make better use of the physical cluster resources.

To better understand the users’ submission behavior, we organize the jobs into “batches” and plot
the distribution of the submission interval between these batches and the runtime distribution for the jobs
within a batch. Jobs from each user are grouped by their dependency structure as defined in Section 3.1.
Interdependent jobs are considered to be in the same batch. For two successive job batches A and B from
the same user, we measure submission time of A− submission time of B. Within a batch, we measure the
running interval of a job Ai as submission time of Ai−finish time of Ai−1, where Ai−1 is the job immediately
preceding Ai.

As shown in Figure 8, the distribution of the log value of per-user submission interval is close to a
normal distribution. About 60% of the batches have a submission interval of less than 100 seconds, showing
that workflow submissions are very bursty. In OPENCLOUD and M45, about 10% and 30% of jobs within
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Figure 7: Hourly job submissions for all successful, failed, and killed jobs. Shaded area represents 8am
to 6pm time window in local cluster time zone. The smaller local cluster suffers poor utilization due to a
smaller user base, suggesting the trend toward centralization in public clouds is warranted.

a batch have a running interval of less than 1 second. Those jobs are likely being managed by scripts
that automatically execute the workflows. However, there are still more than 20% of jobs with running
intervals larger than 10 seconds in the three clusters, particularly in WEB MINING. Those jobs appear to be
submitted manually by users, suggesting that they are using the cluster interactively for, say, debugging or
result validation.

Batches of jobs are reasonably well supported by Hadoop, but interactive sessions are not. For each
job, Hadoop incurs significant launch overhead. Hadoop results must be fetched from HDFS and inspected.
Most importantly, the same data is accessed repeatedly. The ability to persist resource allocations across
operations and respond to user input between them would add value. A system with the scalability of
Hadoop but direct supports for interactive sessions appears to be a promising direction of research.

4.3 Hadoop Customization

A user can customize and optimize a Hadoop MapReduce job by supplying additional functions besides just
map and reduce. In this section, we consider whether users are exploiting this feature in practice.

4.3.1 Job Customization

Most job customizations are related to ways of partitioning data and aggregating data from earlier stages:
Combiner: The Combiner performs partial aggregation during the local sort phase in a map task

and a reduce task. In general, if the application semantics support it, a combiner is recommended. In
OPENCLOUD, 62% of users have used this optimization at least once. In M45 and WEB MINING clusters,
43% and 80% of users have used it respectively.
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Figure 8: Distribution of the submission interval between successive batches for the same user, and running
interval between jobs within a batch. Jobs that share a data dependency (as defined in Sec.3.1) are considered
to be in the same batch.

Secondary Sort: This function is applied during the reduce phase. By grouping different reduce keys
for a single reduce call, secondary sort allows users to implement an optimized join algorithm as well as
other complex operations. In the M45 cluster, no user applied a secondary sort. In the WEB MINING

cluster, only one user used secondary sort, and that was through the use of Pig, which implements certain
join algorithms using secondary sort. In OPENCLOUD, 14% of users have used secondary sort, perhaps
suggesting a higher level of sophistication or more stringent performance requirements.

Custom Partitioner: A user can also have full control over how to redistribute map output to the
reduce tasks using a custom partitioner. In the OPENCLOUD cluster, as many as 35% of users have used a
custom partitioner. However, only two users in the M45 cluster and one user in the WEB MINING cluster
applied a custom partitioner.

Custom Input and Output Format: Hadoop provides an InputFormat and OutputFormat framework
to simplify handling of custom data formats and non-native storage systems. In OPENCLOUD, 27% of users
applied a custom input format at least once and 10% of users applied a custom output format. In M45, only
4 users applied a custom input format and only 1 user applied a custom output format. In WEB MINING,
only one user applied a custom input format and none applied a custom output format.

In general, job customizations help with performance and thus a visible fraction of users leverage them,
especially the optional combiners. OPENCLOUD users tend to use more optimization techniques than users
of the other two clusters.

4.3.2 Configuration Tuning

Hadoop exposes a variety of configuration parameters for tuning performance and reliability. Here we
discuss a few configuration parameters that are typically considered important for performance and fault-
tolerance [17, 22].

Failure Parameters: Users can control how failures are handled as well as erroneous inputs. In
OPENCLOUD, 7 users explicitly specified a higher threshold to retry failed tasks, 6 users specified a higher
“skip” to ignore bad input records, and 1 user specified a higher threshold in the number of tolerable failed
tasks. In M45, 3 users set a higher threshold in the number of tolerable failed tasks. All WEB MINING users
stayed with cluster default values.

Java Virtual Machine (JVM) Option: The native Hadoop MapReduce interface is implemented in
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Java. If a map or reduce task requires a large memory footprint, the programmer must manually adjust the
heap and stack sizes: 29 OPENCLOUD users, 11 M45 users and 3 WEB MINING cluster users have changed
default JVM option for their jobs.

Speculative Execution: Speculative execution is the default mechanism to handle straggler tasks. Only
two users from OPENCLOUD and M45 have changed the cluster default value for their applications. We
discuss speculative execution in detail in Section 6.3.

Sort Parameters: Hadoop runs a merge sort at the end of the map phase and just before the reduce
phase. There are four parameters that directly related to those sorts. Two users of WEB MINING cluster
have adjusted io.sort.mb parameter to 200. Only one user of M45 cluster have adjusted io.sort.mb to
10. Other than that, all users used the cluster default values.

HDFS Parameters: The HDFS block size and replication factor affect the behavior of writing the final
output of a MapReduce job. In OPENCLOUD, 11 users have tried different values for replication factor. In
M45, two users have adjusted block size and only one user tried a different replication factor. Other than
these, all users kept the cluster default values.

In summary, users tend to tune parameters directly related to failures. JVM options are used to prevent
“Out of Memory” errors. By talking with administrators of OPENCLOUD, we learned that many of their
users explicitly tuned these options in response to poor failure behaviors. In contrast, users rarely tune
parameters related to performance, perhaps because their performance requirements were generally being
met, or perhaps because these parameters are more difficult to understand and manipulate.

5 Storage Workload Analysis

Hadoop clusters are designed to process large amounts of data, and therefore understanding workloads from
the perspective of the storage system is crucial to understanding and improving the performance of these
systems. In this section, we focus on analyzing storage workloads, including general data characteristics of
MapReduce jobs, (Sec. 5.1), data access patterns (Sec. 5.2), and file system namespace statistics (Sec. 5.3).

5.1 Data Characteristics

There are three main stages in Hadoop MapReduce that involve disk traffic [6, 17]: (1) Map tasks read input
data from HDFS; (2) Map tasks write intermediate results back to the local filesystem in preparation for
the shuffle phase; (3) Reduce tasks write the final result back to HDFS. Figure 9 shows the aggregate map
input, map output and reduce output bytes of all jobs in the three workloads. As found in many industry
workloads [11], map input dominates the I/O traffic in all three workloads. An important optimization in
MapReduce (and Hadoop) consists in scheduling map tasks on the physical machines that host a copy of
their input data in order to maximize local data reads. Figure 10 (a) shows the cumulative distribution
function (CDF) of jobs that read their input data locally. Interestingly, the Hadoop schedulers in the two
large clusters were unsuccessful in placing map tasks close to their input data. For OPENCLOUD and M45,
nearly 50% of jobs have less than 50% of data-local map tasks. This result confirms the potential importance
of recent optimization that seeks to address this problem [4, 36, 37].

Figure 10(b-d) shows the distribution of input, shuffle and output data sizes for different jobs. Most jobs
in all three workloads read, shuffle, and output less than 10GB. But the general distributions of data sizes
in these three workloads differ a lot. For example, the median input data sizes in M45,OPENCLOUD,WEB

MINING are 10MB, 100MB, 8GB respectively. Similar to the distribution of job durations, the data sizes
of these jobs are small compared to the entire capacity of the cluster. The prevalence of small files are
also found in various workloads such as big-data clusters in industry [11], scientific high performance clus-
ters [16], and modern desktop traces [28]. This suggests that big-data storage systems should also be opti-
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Figure 9: Fraction of data access that are aggregated by input, shuffle, and output of all jobs in each work-
load.

mized for small files. For example, 64MB default chunk size in original design [6, 17] may not be a good
fit for diverse parallel computing workloads.

5.2 Access Patterns

This section analyzes MapReduce jobs’ access pattern to input and output files. The analysis is based
on input and output paths recorded in the configuration file of each job. As in Section 3.1, this analysis
assumes that input and output paths are not renamed nor manually modified by users. Figure 11 (a) gives
the distribution of access frequency of all paths in the three workloads. The output paths with the same
path name are considered as different paths. For OPENCLOUD and M45, about 10 percent of paths are
responsible for 90% of all accessses. This observation indicates that caching may help reduce I/O overheads.
Further analysis in Figure 11 (b) indicates the 90% of data re-accesses happen within 1 hour. Therefore a
cache policy can possibly bring considerable benefit, which has also been observed in prior work on industry
workloads [11, 3].

To analyze the effect of a global cache, we run a simulation to calculate the cache hit ratio. The simula-
tion assumes that every node in the cluster uses a portion of its memory (with size α) to cache input and out-
put data of MapReduce jobs. Thus the total size of the global cache is α× the number of nodes in the cluster.
The simulation only considers the input and output data as a whole instead of caching data at the block level,
as suggested in previous work [3]. That means the global cache only keeps and evicts the entire input or
output data of a MapReduce job. The cache policy we use is Least Frequently Used (LFU) with a sliding
window. Items that are not re-accessed within a 1 hour window are evicted. Table 3 shows the global cache
hit ratio in the three workloads, when tuning the cache size α at each node. For OPENCLOUD and M45
workloads, since small files are prevalent, their cache hit ratios are higher than 69% even when using only
512MB memory at each node. Caching can thus effectively reduce disk I/O requests wasted by accesses to
small files.

We also analyze how quickly a job’s output data is overwritten by successive jobs. Figure 11 (c) shows
the distribution of time intervals between data overwrites. For OPENCLOUD and M45, 50% of jobs have
their output data overwritten within 5 minutes, and 90% of jobs’ output data are overwritten within 1 hour.
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Figure 10: (a) Distribution of jobs with different ratios of data local mappers; (b)-(d) Distribution of per-job
data size for the input, shuffle and output phase.

Figure 11 (d) shows the space used by overwritten data within various time intervals. For OPENCLOUD,
most overwritten output data are small files which only occupy small portion of storage space. For M45,
large output data are also overwritten within 1 hour. These results suggest that many reduce output files
(especially files with small sizes) have a life span of less than an hour. Additionally, shuffle data generated at
the map output stage are also short-lived objects in the local storage system, and they compose a considerable
portion of disk traffic as indicated in Section 5.1. These observations suggest that there is potential room
to improve defragmentation algorithms (cleaning algorithm in LFS [31]) of local file systems by explicitly
grouping short-lived files. So short-lived files can be cleaned together without causing fragmentations on
disks.

5.3 File System Namespace

Many distributed file systems that run on large clusters, including HDFS [10], GFS [21], PanFS [35] are
limited by the speed of the single metadata server that manages an entire file system namespace. Next
generation HDFS [7] and ColossusFS [20] will provide distributed metadata services. This motivates us
to understand the statistics and workloads of filesystem namespaces. Different from previous sections, the
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Figure 11: Distribution of various access patterns. (a) shows the distribution of access frequency of data
paths; (b) shows the distribution of re-access frequency of input and output data; (c) shows the distribution
of time intervals between output data with the same data paths; (d) shows the distribution of space used by
overwritten data within different time intervals.

logs we analyze here are from the Hadoop NameNode (metadata server of HDFS), and are only available in
OPENCLOUD.

First, we analyze the frequency of each file system operation. There are 4.1 billion operations in total
over the entire trace. The filesystem call open is the most frequent operation and is responsible for approx-
imately 97% of all HDFS operations in OPENCLOUD. Figure 12 (a) shows the distribution of operations
except “open”. “list” is frequently used to list files in a directory or get status about a particular file to gener-
ate InputSplit data structure on job submission. “rename” is more frequent than could be expected because
Hadoop tasks use “rename” to achieve a simple form of transactions called output commit. The final output
files are first written to temporary directories. Once the tasks finish successfully, temporary directories are
renamed to the final output file names.

The CDF in Figure 12 (b) shows the cumulative distribution of directories by the number of files they
contain, and their weighted distribution. While more than 80% of directories contain fewer than 10 files,
there are still 0.2% directories each of which contains more than 10,000 files. These 0.2% directories contain
about 60% files in the whole file system.
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CachePerNode (α) OPENCLOUD M45 WEB MINING

512MB 68% 78% 11%
1GB 69% 81% 18%
2GB 71% 84% 20%
4GB 72% 86% 25%
8GB 73% 88% 28%
16GB 74% 89% 39%

Table 3: Percentage of jobs whose entire inputs hit cache under different cache size α per node.

Cluster Total > 5 mins |map|> 1 |reduce|> 1

OPENCLOUD 51957 5144 (9.9%) 4953 (9.5%) 3077 (5.9%)
M45 42825 6621 (15.5%) 6538 (15.3%) 4130 (9.6%)

WEB MINING 822 369 (44.9%) 368 (44.8%) 255 (31.0%)

Table 4: Overall Statistics for Straggler Analysis: total number of jobs in the log, number of jobs longer
than 5 min, and number of jobs with more than one map or reduce task.

Figure 12 (c) shows the histogram and CDF of files by directory depth. A majority of files (about
80%) reside in directories with depth between 5 and 10. Figure 12 (d) further shows the depth of most
pathnames accessed by each namespace operation. The depth is between 4 and 11. This result indicates
that, in order to achieve high performance, it is necessary to reduce iterative lookups for each pathname
component, especially when file namespace is partitioned across multiple metadata servers.

6 Skew in the workload

In parallel computing, balancing workload is important not only for resource utilization but also individual
job completion times. In the ideal scenario, all tasks in a job are scheduled and complete at the same time.
In practice, however, some tasks often run significantly longer than other tasks in the same job. Such long
running tasks (i.e., straggler tasks) can significantly delay the job completion time.

We first analyze the frequency and distribution of straggler tasks (Section 6.1), then analyze the relation-
ship between skew and techniques to partition input data (Section 6.2). Finally, we evaluate the effectiveness
of speculative execution in Hadoop, which is the default mechanism to address straggler tasks (Section 6.3).

Scope of Analysis: In this section, we limit our study to successfully completed jobs only, because
counters and timing information are not captured in the job history for failed and killed jobs. Unless ex-
plicitly stated, we only consider jobs that run longer than 5 minutes because the impact of stragglers are
insignificant for short jobs (i.e., even jobs with straggler are fast). A task only straggles with respect to some
other task, so we only consider map and reduce phases that have at least two tasks. Table 4 summarizes the
number of jobs (and job phases) analyzed in this section. When calculating the task runtime, we only take
the “map” phase and “reduce” phase into account and ignore the shuffle and sort phases.2

2Unfortunately, we can not exclude the local sort phase of map tasks because the version of Hadoop running in all three clusters
does not separate the timing of the local sort phase from that of the map phase.
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Figure 12: Namespace statistics in OPENCLOUD: (a) Distribution of HDFS NameNode operations except
open in OPENCLOUD; (b) CDF and Weighted CDF of directories by count of files; (c) Distribution of files
by directory depth; (d) Distribution of HDFS NameNode operations by length of accessed pathname.

6.1 Straggler Tasks

Dean et al. identified the straggler problem [17] and Ananthanarayanan et al. analyzed the problem in a
production cluster [5]. In this subsection, we replicate the straggler analysis by Ananthanarayanan et al. [5]3.
Ananthanarayanan et al. categorizes a task as a straggler if the task is running at least 50% longer than the
median task in the same phase of the same job. Using this definition, the three research clusters are similar to
the enterprise clusters studied by Ananthanarayanan [5] and an earlier study of the M45 cluster [24]: there
are many stragglers, and some are orders of magnitude slower than the median runtime.

Table 5 summarizes the number of jobs that have stragglers in the map phase, the reduce phase, and
in both phases. Overall, more than 40% (and up to 75%) of jobs that run longer than 5 minutes have at
least one straggler. We also find that even the map phase, which is usually regularized by assigning a fixed
amount of bytes to each task, frequently experiences the straggler problem. This finding confirms that, in
these three clusters, the input data size alone is not a good indicator of task runtime. The same finding was

3We use the term straggler instead of outlier for consistency with the original MapReduce paper [17].
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Stragglers Map Reduce Map ∧ Reduce Map ∨ Reduce

OPENCLOUD 2967 (58%) 1940 (38%) 1109 (22%) 3798 (74%)
M45 3643 (55%) 2659 (40%) 1310 (20%) 4992 (75%)

WEB MINING 140 (38%) 35 (9%) 18 (5%) 157 (43%)

Table 5: Number and fraction of jobs that have stragglers in map, in reduce, and both phases. More than
40% of jobs running longer than 5 minutes have at least one straggler.
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Figure 13: Cumulative fraction of straggler tasks in Map and Reduce phases. N is the number of jobs that
run for longer than 5 minutes and have stragglers per cluster, per phase.

reported in the analysis of enterprise clusters [11].
Knowing that many jobs have stragglers, we can also ask how many tasks per job are stragglers. To

answer this question, we plot the cumulative distribution function of stragglers in each cluster, and for each
MapReduce phase. Figure 13 shows the results. In all three clusters, 25% of map and reduce phases that
include any stragglers have more than 15% of tasks as stragglers. The M45 reduce distribution closely
resembles the one reported in Ananthanarayanan et al. [5]. However, we can observe variations in the
distributions across phases and clusters.

In Figure 14, we show the distribution of relative runtimes of straggler tasks with respect to the median
task runtime of the same phase in the job. In all three clusters, 75% of reduce-side stragglers complete
within 2.5x of the median runtime. Map stragglers have larger variations across clusters: 55% and 65% of
map straggler tasks complete within 2.5x of median runtime in M45 and OPENCLOUD respectively. As
observed in Ananthanarayanan et al. [5], the distribution is heavy-tailed. We also showed the values at 99%,
99.9%, and 100% percentiles in the table. Some straggler tasks run orders of magnitudes longer than the
median runtime.

In summary, the straggler problem is prevalent in all clusters, and slow tasks frequently run more than
2.5x to orders of magnitude slower than the median.
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Percentile 99 99.9 100

OPENCLOUD
Map 70.0 1106.0 23068.5

Reduce 15.3 64.9 54692.5

M45
Map 15.3 153.0 1537.5

Reduce 11.4 143.8 1267.4

WEB MINING
Map 11.2 66.9 170.7

Reduce 46.4 404.3 409.3

Figure 14: Cumulative fraction of ratio of straggler runtime to median task runtime. N is the number of
straggler tasks per cluster, per phase. The table shows straggler runtime at specific percentiles.

6.2 Input Data Size and Task Runtime

There are many causes of stragglers but one of the causes is data skew: some tasks take longer simply
because they have been allocated more data. Ideally, if we assign the same amount of input data to tasks,
then all tasks should take the same time to execute. We evaluate how close the workloads are to this ideal
case by analyzing the relationship between input data size and task runtime.

Method: For each phase of each job, we compute the ratio of the maximum task runtime in the phase
to the average task runtime in that phase. We classify phases where this ratio is greater than 0.5 (meaning
that at least one straggler took twice as long to process its data as the average) as Unbalanced in Time (UT).
Otherwise, the phase is said to be Balanced in Time (BT). We compute the same ratio for the input data and
classify phases as either balanced or unbalanced in their data (BD or UD).

Map Input Record: Figure 15 shows the result for the map phases. We break the results into four
different types of applications based on whether the input data and/or the runtime are balanced or not (i.e.,
(U)BD(U)BT as defined in previous paragraph).

As expected for the map phase, most jobs are balanced with respect to data allocated to tasks. However,
a significant fraction of jobs (e.g., more than 20% for all but Mahout in the OPENCLOUD cluster) remain un-
balanced in runtime and are categorized as BDUT. These results agree with the result of the previous study
in enterprise clusters [11]. Mahout is a machine learning algorithm package built on top of Hadoop [8].
Mahout is effective at reducing skew in the map phase, clearly demonstrating the advantage of specialized
implementations. Interestingly, Pig produces unbalanced map phases similar to users’ custom implementa-
tions. Overall, allocating data to compute nodes simply based on data size alone is insufficient to eliminate
skew.
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Figure 15: Distribution of map runtime with respect to # of input records per application. N is the number
of successful jobs that run map functions in each category. The labels indicate the category: (U)BD(U)BT
stands for (un)balanced input data, (un)balanced runtime.
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Figure 16: Distribution of reduce runtime with respect to # of reduce keys per partition function. The labels
indicate the category: (U)BD(U)BT stands for (un)balanced input data, (un)balanced runtime.

In Hadoop, the InputFormat mechanism is responsible for generating InputSplits which describe the
input data processed by a map task. In our traces, less than 1% of jobs attempt to optimize the partitioning
of the map input by using a custom input format. In addition, the user can manually specify the number of
bytes per split if the input is stored in HDFS. In our traces, 12% of total jobs from 10 users in OPENCLOUD

used this optimization. In M45 and WEB MINING, less than 1% of total jobs from 1 and 3 users used the
optimization, respectively. It is clear that users only rarely exploit these opportunities for optimizing the
data allocation.

Reduce Key: We perform a similar analysis for the reduce phase using the number of reduce keys as
the input measure. Instead of application types, we group the jobs by the partition function employed. The
partition function is responsible for redistributing the reduce keys among the reduce tasks. Again, we found
that users rely primarily on the default hash-partition function (Figure 17) rather than manually trying to
optimize the data allocation to reducers.

Figure 16 shows the analysis per partition function4. Overall, Hash partitioning effectively redistributes
reduce keys among reduce tasks for more than 92% of jobs in all clusters (i.e., BDBT+BDUT). Interestingly,
we observed that as many as 5% of all jobs in all three clusters experienced the empty reduce problem, where
a job has reduce tasks that processed no data at all due to either a suboptimal partition function or because
there were more reduce tasks than reduce keys (We observed the latter condition in 1% to 3% of all jobs).

4In the M45 workload, the number of reduce keys was not recorded for the jobs that use the new MapReduce API due to a bug
in the Hadoop API. The affected jobs are not included in the figure.
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Figure 17: Fraction of jobs per partition function. Hash partitioning is dominant in all three clusters. The
fraction of jobs using customized partition function is relatively small, less than 10% in all clusters.

For the jobs with a balanced data distribution, the runtime was still unbalanced (i.e., BDUT jobs) for
22% and 38% of jobs in the OPENCLOUD and M45 clusters, respectively. In both the OPENCLOUD and
M45 clusters, custom data partitioning is more effective than the default scheme in terms of balancing both
the keys and the computation. Other partitioning schemes come with Hadoop distribution do not outperform
hash partitioning in terms of balancing data and runtime. A noticeable portion of UDBT jobs (i.e., data is
not balanced but runtime is balanced) use the Total Order Partitioner, which tries to balance the keys in terms
of the number of values. Pig, which uses multiple partitioners, consistently performs well in both M45 and
WEB MINING clusters.

In summary, given a) the prevalence of load imbalance problems, b) the evidence that achieving load
balance requires more than uniform data distribution, and c) users’ reluctance to use the manual tuning
features provided by Hadoop, we recommend pursuing techniques that automatically reduce skew to achieve
better overall performance [26, 34].

6.3 Speculative Execution

Finally, we analyze the effectiveness of speculative execution. Speculative execution is the default mecha-
nism implemented in Hadoop to handle straggler tasks. The intuition is that the task scheduler will eagerly
schedule a redundant copy of a task whenever there exists an idle slot in an attempt to improve job comple-
tion time. The detailed implementation varies from version to version in Hadoop; explaining this mechanism
is beyond the scope of this paper.

Method: For all successful jobs, we extract tasks that involve multiple attempts and categorize the
tasks according to the characteristics of the attempts. The Recompute label indicates that the attempts were
necessary to recover from the failure of the original attempt. Successful label is that the attempts were part
of a successful speculative execution (i.e., the speculative task was initiated after the original, but completed
first). The Unsuccessful label represents an unsuccessful speculation (i.e., the original attempt completes
faster than speculative attempts). Since the Hadoop does not keep track of precise timings for failed and
killed attempts, we inferred the missing data using other information. In particular, the failure of an original
task attempt may leave the start time of the failed attempt unrecorded in the attempt log. In this case, we
recover the start time from the task log.

Overall Statistics: In Table 6, we showed the default values of speculative execution of the clusters
and the number of jobs and speculated tasks. The OPENCLOUD and WEB MINING clusters enable the
speculative execution by default while M45 does not. Thus, all speculative executions observed in M45
cluster were initiated by users who explicitly overrode the default value. The fraction of jobs and tasks that
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Table 6: Total number of jobs and speculated tasks with default speculative execution value

Jobs Tasks Default

OPENCLOUD
Map 16857 (32%) 548993 (3%) OnReduce 6751 (13%) 124931 (5%)

M45 Map 1195 (3%) 6025 (0.1%) OffReduce 2165 (5%) 38835 (2%)

WEB MINING
Map 467 (57%) 6966 (1%) OnReduce 278 (34%) 630 (5%)
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Figure 18: Fraction of Speculation Result per Phase per Cluster. In all clusters, a speculative execution
completed faster than the original attempt (successful) at most 21%. In all clusters, map speculations did
not run significantly faster than the original attempt (no improvement). In OPENCLOUD and M45, many
reduce speculations were scheduled late (speculative attempts ran only less than 10% of original attempt
time before killed).

have at least one task that was attempted multiple times varies from cluster to cluster and between map and
reduce. The fraction of jobs in M45 is significantly less than those of OPENCLOUD and WEB MINING due
to the default value.

In Figure 18, we summarized the result of speculations in all clusters. Speculative execution was not
very successful in all three clusters: only 3 to 21% of speculations were successful. We further analyzed
those unsuccessful speculations by classifying each unsuccessful attempt as scheduled late, no improvement,
and uncertain. A speculation is scheduled late if all speculation attempts for a task ran less than 10% of the
original attempt runtime before killed. Those killed attempts ran too briefly thus do not have enough time
to run till the end. Also, a speculation may not improve runtime at all. We label such speculations as no
improvement when the oldest speculation attempt ran more than 90% of the original attempt runtime. The
tasks fall into this category are likely to be genuinely long running tasks thus re-executing the same tasks in
different node does not improve runtime significantly. We label the remaining unsuccessful speculations as
uncertain.

In all three clusters, most of map speculations do not run significantly faster than the original attempts.
For reduce, many speculation attempts in both OPENCLOUD and M45 were scheduled too late.

By analyzing recomputed tasks, we found only one instance of lost map output (i.e., re-execute pre-
viously completed map task of which output is lost due to a node failure) in OPENCLOUD. Anantha-
narayanan et al. also reported that such recomputation due to loss of map output is rare [5].
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Figure 19: Successful Speculative Execution. Cumulative distribution of runtime ratio between the original
attempt and successful speculation attempt. Median speedup of successful speculative execution varies from
1.05x to 5.4x and maximum speed up varies from 1.5x to 7000x.

Successful Speculative Execution: In Figure 19, we analyzed the speedup of successful speculative
executions. For the runtime of the original reduce attempt, we adjust the start time of the attempt to the time
when the last map attempt completes if the reduce attempt started before completion of all map tasks. Thus,
ratio of some reduce attempts may be underestimated. Median speedup of speculative execution varies from
1.05x to 5.4x and 90% of the speculative execution runs up to 10 times faster than the initial attempt. A
few speculations run orders of magnitude faster than their initial attempts and most of them completes under
a minute. After closely investigating speculative executions that run orders of magnitude faster than their
initial attempts, we suspect that those tasks are typically experiencing I/O problems and the speedup was
more pronounced especially when there are large number of tasks, thus speculation was delayed at the end
of each phase.

To sum up, speculative execution is very effective to handle I/O related problem, especially when
there exists a large number of tasks. However, a large fraction of speculations suffers from errors by either
speculating too early or too late. To improve accuracy of speculation, making more informed decision as
well as stealing work rather than starting from the scratch are important [5, 29, 34, 26].

7 Related Work

Since the first time MapReduce was proposed and its open source implementation Hadoop was made avail-
able to the world, they are increasingly gaining popularity from both academic research and industry. Lots
of works have been done to understand MapReduce workloads, and improve the performance of MapRe-
duce framework. But to our knowledge, this paper presents the most complete study of academic clusters
which incorporate rich information about application level statistics and user-related information. Perhaps
the closest related works are studies of Facebook and Cloudera cluster traces [11, 13]. Their studies fo-
cus on cluster-level and job-level metrics such as overall resource utilization and data access patterns, as
well as the usage of SQL-like programatic frameworks. They also found a wide range of diversity existing
in their workloads, with exceptions that small jobs and temporal locality in data accessing are common.
In contrast to our workloads, SQL-like programming frameworks are very popular. [24] also studies logs
from M45 cluster, (overlapping datasets used in this paper), but its main focuses are cluster-level workload
characterization, failure characterization and performance prediction.
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There are also previous works on improving performance of one or more aspects of MapReduce and
Hadoop systems that are related to our analysis. Quincy [36] and Delay scheduler [37] proposes scheduling
algorithms that make trade-off between fairness and data-locality. PACMan [3] studies the effect of different
global cache policy for HDFS, and found that in some production cluster traces, the vast majority (96%) of
active jobs can fit into a fraction of the cluster’s total memory. DiskReduce [19] studies erasure coding
for distributed file systems under data insensitive workloads, and analyze file systems workloads of several
Hadoop production and high-performance computing clusters. They found small files are prevalent even in
large clusters. For data and computation imbalance problems, [25] also found these problems are prevalent
in a variety of industrial applications. Mantri [5] studies the causes to outlier tasks and ways of mitigating
outlier tasks caused by data imbalance or resource contensions. SkewTune [26] proposes run-time repartition
to mitigate skew problems. RoPE [2] dynamically optimzes the execution plan of recurring jobs based on
run-time statistics and historical information. Starfish [22] investigates the method of automatic tunning
configurations for Hadoop MapReduce programs. Our analysis shows automatic tunning will benefit a lot
since many users merely tune configurations for correctness instead of performance.

8 Conclusion

We studied job performance profiles, configurations and user history files from three different Hadoop clus-
ters for academic research. These new Hadoop cluster traces contain richer information than previous studies
by recording application specification and user behaviors, which are critical for understanding the require-
ments and performance of big-data systems.

We find that in the three workloads, a majority of users submitted many small single stage applications
implemented in Java, although the rest of workloads are highly diverse in application styles and data pro-
cessing characteristics. We see underuse of Hadoop features, extensions and optimization tools. We also
find conventional techniques do not effectively increase data locality and mitigate load imbalance, and other
alternatives such as caching may help with IO performance.

Our conclusion is that the use of Hadoop for academic research is still in its adolescence. Easing the
use of Hadoop, and improving system designs subject to changing use cases are crucial research directions
for future.
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