RAMS and BlackSheep: Inferring white-box
application behavior using black-box techniques

Jiagi Tan, Priya Narasimhan

CMU-PDL-08-103
May 2008

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

A significant challenge in developing automated problem-diagnosis tooldistributed systems is the ability of these tools to
differentiate between changes in system behavior due to workload ch&ongethose due to faults. To address this challenge,
current, typically white-box, techniques extract semantically-rich kndg@eabout the target application through fairly invasive,
high-overhead instrumentation. We propose and explore two scalallepuerhead, non-invasive techniques to infer semantics
about target distributed systems, in a black-box manner, to facilitate prolliagnosis. RAMS applies statistical analysis on
hardware performance counters to predict whether a given node intaldited system is faulty, while BlackSheep corroborates
multiple system metrics with application-level logs to determine whether a goeie faulty. In addition, we have developed
and demonstrated a novel technique to extract, from existing applicatiehk®s, semantically-rich behavior that is immediately
amenable to analysis and synthesis with other numerical, black-box metvés have evaluated the efficacy of RAMS and
BlackSheep in diagnosing real-world problems in the Hadoop distributeallpbprogramming system.

Submitted in partial fulfillment of the requirements for the Senior Honorsighes
program in the School of Computer Science at Carnegie Mellon University

Acknowledgements:| would like to thank Priya Narasimhan for her advice, constartouragement and inspiring thoughts, and Xinghao
Pan for enduring many animated descriptions of this work, authwhich this project would not have been possible. Thisvi®also dedicated to
my parents and sister, for their unwavering, whole-heaniggart for me to pursue my dreams.

Keywords: problem diagnosis, log analysis, distributed systems

Contents

1 Introduction 4
2 Background 4
2.1 Scalable Problem Diagnosis 6
2.2 Problem Diagnosis using Multiple Data Sources. 6
2.3 Application Logs as a White-box DataSource 6
2.4 Problem Diagnosis for Hadoop. e 7
2.5 Hadoopfailurescenarios 7
3 Approach 7
3.1 TargetSystem e e e 7
3.2 Manifestation-centric Problem Diagnosis: Goals and Non-goals. 8
3.3 Available DataSources 8
3.3.1 Hardware Performance Counters. 8
3.3.2 Operating System-reported Resource Metrics. 9
3.3.3 Application Logs. e e e 9
3.4 Analytical Framework 10
3.4.1 RAMSana priori Model of System Activity 10
3.4.2 BlackSheepCorroborating Application Behavior with System Activity 10
4 Application Log Parsing Case Study: Hadoop activity logs 11
4.1 LogOVeIVIEW. o e e e e e 11
4.2 Application Views: Eventsand States. oo 11
421 EventsandStates. 11
4.2.2 Eventsand StatesinlLogsforHadoop 12
4.3 Parsing Algorithm 12
4.4 Parserarchitecture. e e e e e 13
45 Offline ParserQutput 13
5 RAMS Statistical Tests of ana priori Model of System Activity 13
5.1 Analytical Methodology e 13
5.1.1 Linear regression model of system activity. 13
5.1.2 Autocorrelationofresiduals o 14
5.1.3 Autocorrelation tests for identifying anomalousnodes 14
5.2 Experimental Setup and Methodology. 14
5.21 Setup. 15
5.2.2 Faultlnjection e 15
5.2.3 Instrumentation and Data Collection 15
524 Analysis e 15
5.3 EvaluationResults. 16
5.3.1 Statistical Characteristics of Metrics. 16
5.3.2 Efficacy of Problem Diagnosis. 16

BlackSheepApplication-System Corroboration through Change Point Analysis

6.1 Analytical Methodology 18
6.1.1 Changepointanalysis e 20
6.1.2 Change Point Detection Algorithm 20
6.1.3 Corroborating system activity change points with application log events 21
6.1.4 Building profiles of application behavior. 22

6.2 Experimental Setup and Methodology. 22
6.2.1 Setupanddatacollection. 22
6.2.2 Candidateworkloads. 23
6.2.3 Change points applied: Characterizing normal application behavior 23
6.2.4 Evaluation of corroboration between application state counts arufcesoetrics . 24

6.3 Resultsand Analysis e 25
6.3.1 Parametertuning 25
6.3.2 Distinguishingworkloads., 31
6.3.3 Change point corroboration with resource metrics. 31
6.3.4 Change point corroboration: Evaluation 33

Related Work 33

7.1 Problem-Diagnosis Techniques e 33

7.2 Vertical Profiling 34

Future Work 34

8.1 Slidingwindows foORAMS. e 34

8.2 Experimental Setup f@lackSheep L 34

8.3 Change Point Corroboration 34
8.3.1 Accounting for edge-effects in change point corroboration. 34
8.3.2 Dealing with magic numbers: Bayesian hyper-parameter learning 35
8.3.3 Learningworkload identities. o o 35

8.4 Applicationlogs 35

Conclusion 35

Hadoop Application States 38

A.1l TaskTracker Eventsand States. 38

A.2 DataNode Eventsand States. 38

List of Figures

1 Asnippetofa TaskTrackerlog e 11

2 Regression residuals as a function of application activity 16

3 Precision as a function of recall - high-intensity failures 17

4 Precision as a function of recall - low-intensity failures. 18

5 Balanced Accuracy for various high-intensity problems 19

6 Balanced Accuracy for various low-intensity problems. 19

7 Change points of resource metrics and application state count. 26

8 Change points of resource metrics and application state count. 26

9 Change points of resource metric and application statecount 28

10 Change points of resource metric and application statecount 28

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Change points of resource metric and application statecount 29

Change points of resource metric and application statecount 29
Change points of resource metric and application statecount 30
Change points of resource metric and application statecount 30
Change points of resource metric and application statecount 32
Change points of resource metric and application statecount 32
Change points of resource metric and application statecount 39
Change points of resource metric and application statecount 40
Change points of resource metric and application statecount 41
Change points of resource metric and application statecount 42
Change points of resource metric and application statecount 43
Time series of application events for DataNode 44
Time series of application states for DataNode. 45
Time series of application events for TaskTracker 46
Time series of application states for TaskTracker. 47

1 Introduction

Finding the location and root cause of a failure in a distributed system is aneimthy difficult problem.
Execution paths span multiple machines and can be arbitrarily complex. Aalg eefault may manifest
itself as an error many execution modules down the execution path, be®sgrdr manifests itself as a
failure, making the fault difficult to trace. Fault localization—tracing a systafare to the site of its initial
manifestation as an error—requires either a characterization of exteohakyvable correct system states,
so that system states outside of this set are marked as erroneous, extaliéracterization of erroneous
states. On the other hand, root-cause analysis—tracing a system dtsdatdt—requires detecting when
software behavior deviates from the programmers’ intentions. This esjkitowledge of the semantics of
the program, which is not present in the program.

We propose two new techniques for identifying the location and inferringdbecause of a failure
in a distributed system. These techniques attempt to infer semantically-rich axitseftware behavior
using black-box techniques. These techniques are designed to wankoinliae, scalable fashion that is
amenable to use on production systems. They aim to address problemsiagmdistributed systems with
long-lived jobs, few user-initiated requests, and complex execution .p&itiile we do not immediately
implement an online solution in this work, our approach has been carefuigris to ensure that the
algorithms used are amenable to being run online with reasonable computattonNé achieve this by
usinga priori knowledge of both distributed systems in general, and the deployed seftteaouild two
classes of inference models. These models allow for white-box informatigarging granularity about
the phase of execution of software to be inferred from black-box mmédion. In addition, our techniques
require only intra-node information within a given node, so that these igobs are immediately scalable
to distributed systems containing arbitrarily many nodes.

We designed and investigated the efficacy of two black-box technigR@8viS (Regression Auto-
correlation for detecting Malfunctioning nodeS) attempts to perform faudtliwation for Hadoop25] by
inferring coarse-grained white-box information about application bieh&ve. whether the target system is
malfunctioning) from black-box hardware performance countlackSheepises black-box techniques to
corroborate black-box operating system-reported metrics and whiteggication-level logs, for problem
diagnosis in a candidate distributed system, Hadoop, with fine-grained bditesot-cause analysis.

We demonstrate the efficacy of our root-cause diagnosis technique awoplathe open-source im-
plementation of the Map/Reduce distributed parallel programming runtime emamnand distributed
filesystem R5], and further demonstrate the applicability of our technique where dysreblem diagnosis
techniques are not immediately applicable, on Hadoop.

2 Background

There are two broad classes of techniques for analyzing systems famdrso Black-box techniques treat
the software system as an enclosed, unobservable entity that cammotifeed. We classify information
sources that do not reveal the execution path inside software contpasehlack-box, while we classify
techniques that neither require source code nor machine code modifigatidack-box techniques. White-
box information sources provide views into the internals and execution pakte coftware system. We
classify information sources that provide knowledge of the originalcoode or execution path structure
of the software, such as knowledge of the order of function calls, &sibx, while we classify techniques
that require any form of source code modification as white-box techgig#hile white-box information
is a much wealthier source of information than black-box sources, therpically an inherent trade-off
between the richness of information that can be extracted from soft@adethe cost of gathering that
information in terms of runtime overheads and ease of deployment. Blackebbriques are easy to use

at existing software installations and typically involve setting up external softwnonitors that record
general system state, but provide limited information. White-box techniqugsnwialve significant initial
programmer effort to insert source code such as assertions (wleidmras good as the correctness of the
assertions, creating a dual problem), and providing a fine granularitiyawmation about control flow may
have involve high overheads as large numbers of probe-and-resbndctions will be needed.

It would appear that white-box techniques are necessary to tracévaassferror to the fault that is
its root-cause. Faults occur when the software behavior deviates f@intémtions of its programmers,
and programmer intentions are reflected in the execution path at the gignafaczontrol flow through
functions. Current techniques have danced this tightrope of the inhergsion between instrumentation
overheads and the amount of information that can be extracted, to try @ diodd leverage on the smallest
possible information source from which they can extract maximum diagnastie v

Major black-box techniques have included Pinpoint, which instrumente@gte thiddleware platform
to trace message flows between software components, to associate pagticutzs of components with
erroneous transactions, and to find anomalous control flow p&thgCohen et. al.’s work has focused
on using clustering on black-box system metrics, and building informativergries of metrics to reduce
the amount of information that must be exchanged among the nodes of aulietrdystem to minimize
bandwidth usef], but can only detect the location but not the root-cause of anomaldevioe. Magpie
correlated resource usage information from operating system-proxédedrce accounting facilities with
output from application event logs to build causal paths of applicationssingée node using clustering
(that is extensible to multiple nodes, albeit at possibly high cost when traxgayton flows across large
distributed systemsp].

Major white-box techniques have included Pip, which relied on progranwrieien expectations of
correct behavior, and recorded alarms of anomalous behavior rfasadvithin the software itself16],
but Pip is only as good as the programmer-written expectations it usese iags on stand-alone (non-
distributed) software to uncover the faulty source code behavior terayanvironment feature which caused
a crash by using a re-execution framework combined with a trial-and-@stomation of the intuitive human
troubleshooting proces4 |, but this method is an after-the-fact technique that relies on the system be
down to allow such root-cause discovery (rather than online diagnosis).

Current techniques which allow for root-cause analysis, such as Blifi@age, require too much
programmer input, which precludes the discovery of bugs that prograsremerunaware of. Both Pip and
Triage do not allow for runtime prognostics to be made for detecting erefmdthey have resulted in
failures. Both Pip and Triage also require access to program souteewhich may not always be feasible,
especially at commercial production sites. Even black-box techniquésasuinpoint are not necessarily
suited to production sites, because Pinpoint requires a modified middlewach, production sites may not
allow due to various concerns such as security, while techniques su@bhas et al.’s work do not allow
for root-cause analysis although it is amenable to deployment at prodgdgsn

The goal of this work is to develop techniques for problem diagnosis dnldiged software systems
deployed in production environments. Production environments typicallipglepmmercial or otherwise
third-party software packages for which source code is often naahle Production environments also
typically have strict requirements on availability and quality of service—prtidn systems strive to achieve
maximum throughput and minimum latencies on servicing requests at a minimun® oadtiction environ-
ments will generally prohibit modifying even program binaries for security privacy concerns. Hence,
intrusive and high-overhead white-box techniques are not amenable goal. Instead, we infer and ex-
tract white-box information using black-box techniques, to perform caoise analysis in addition to fault
localization.

2.1 Scalable Problem Diagnosis

The difficulty of finding the location and root cause of failures in distribgstems is further complicated
by the fact that execution can take place on arbitrarily many systems, leadamgexplosion in the volume
of trace data gathered. Again, there is a trade-off between gleaningimfonemation by combining trace
data across systems to obtain a system-wide view, and incurring highewidéménd processing costs
of transmitting large amounts of data across a network and processing itwdtksstudies one extreme
of this trade-off, and uses only node-local information for problem mdags in a distributed system. We
restrict ourselves to using only information available on a single node fgndgs on the node, to push the
boundaries of the efficacy of using only local information.

2.2 Problem Diagnosis using Multiple Data Sources

Our key to pushing the boundaries of using only node-local informatiomprfoblem diagnosis is in the
synthesizing of multiple data sources on the same node in a meaningful margeen @dditional infor-
mation for problem diagnosis. To this end, we have examined various Idoaination sources available

at various levels of each node , such as hardware performancecguperating system-reported metrics
such as processor, memory, disk and network bandwidth utilization, gidatppn-reported information
such as logs. We make initial efforts at synthesizing this information fordumhalysis. This meaningful
use of many data sources (as opposed to mathematically collapsing all therdatalf/sis using machine
learning algorithms€]), distinguishes our approach from current work which mostly use(teve or two)
information sourceslfg] [5]. By preserving the meaning in the information sources, we are able ta assis
human operators by highlighting possible root-causes of the failure, iti@dtb localizing the fault.

2.3 Application Logs as a White-box Data Source

In addition, this work presents what is (to the best of the author’'s knaeled novel use of application
activity logs, using application activity logs from the Hadoop distributedlfgarogramming platform as
a case study. Since application-level log entries are programmer-rétatements of application behav-
ior, they can be seen as a source of white-box information that proedesrgically-rich details about the
activity of the application. Most current work on the use of application fogsises on text-mining web
access logs to analyze traffic patter24][and on text-mining error and access logs to discover pertinent
features 17] [12]. However, the data mined from these logs using text-mining techniques is Itypita
an unstructured, multinomial (but not ordinal) form that cannot be immediatetybined with operating
system-reported metrics and performance counters, which are typicaflgrival, ordinal values, for anal-
ysis. The closest relative to our approach of interpreting event logsiase-series of ordinal values i$(],
although the author examined error logs rather than activity logs, and exdioiys from a hardware source.
The distinguishing features of our approach to application-level logdeamnstrated through application
activity logs from Hadoop, are: (i) our use of simple parsing instead ¢fnteing, (i) inferring high-level
white-box states of application execution, and (iii) generating structuredwidéh a fixed number of de-
scriptive numerical variables, each with ordinal values (counts of 3tated that (iv) the structured, ordinal
data we generate is immediately amenable to a larger range of analysis andetteainimg algorithms.

We have built an online parser library for the application activity logs of #w@ous components of
the Hadoop platform that reports (i) significant white-box application esverthe lifecycle of Hadoop, and
(ii) the instantaneous workload/behavior state of Hadoop. The ability oparsing algorithm to extract
semantically-rich information about application behavior useful for probigagnosis can also provide
insight into how application logging can be designed to aid problem diagnfotsie epplication.

2.4 Problem Diagnosis for Hadoop

Distributed systems, such as Hadoop, and other Map/Reduce-type destrimrallel processing systems,
are designed for batch processing of large data28}$T], and are not amenable to problem diagnosis using
most existing techniques.

These distributed systems see much fewer user-initiated requests, scetkaardn much fewer runs
on which techniques such as Cohen’s work, Magpie, and Pinpointedorm clustering for learning the
correct behavior of the system. Cohen et al.'s work, Magpie, Pinpamak Pip all assume the availability of
large numbers of short-lived user-initiated requests, so that eachseftibguests can be used as a sample for
clustering to determine which requests are anomalous. This model is well-guttezlvast majority of tra-
ditional multi-tier web-based applications, with common tiers being a web-s&orgrend, an application
server tier, and a database back-end, but not to Hadoop.

Also, Hadoop has uninteresting execution paths through its componeitispplements a node-based
processing model in which every node performs the same computatior, ttethea path-based processing
model in which each node along the processing path performs speciatzessping. Thus, there is only
one type of execution component (the TaskTracker), such that pa@dhtechniques such as Pinpoint’s
Probabilistic Context-Free Grammars and Pip will have limited leverage frotyzing paths of execution
flows for problem diagnosis.

Hence another key objective of our work is to use node-local, patbstigrtechniques for problem
diagnosis on Map/Reduce-type distributed parallel processing systembitd current problem diagnosis
techniques are not effective.

2.5 Hadoop failure scenarios

We studied 9 months of data (October 2006 to July 2007) from the bug dat@shof Hadoop, an open-
source implementation of the MapReduce distributed parallel programming nvadielh motivated the
characteristics of our target system, to identify common failure manifestatidaslts. We found that the
majority of faults manifested as process hangs and resource exhausfiohsf 23 bugs surveyed from
the Hadoop bug database, 11 resulted in process hangs in which ravdgrmegress was made, 3 resulted
in excessive CPU usage that slowed nodes down, 2 resulted in out of nemors, while 7 resulted
in application-level Java exceptions being thrown. Hence, we focusedaalt-injection and problem-
diagnosis efforts on detecting process hangs and memory leaks (in wijedtsothat were allocated but
which the system failed to dereference failed to be garbage collectethdaadut of memory errors).

3 Approach

3.1 Target System

Hadoop, an open-source implementation of Google’s Map/Reduce inftagte, handles a workload of
long-running jobs that aim to process large datasets. Hadoop’s misteaschitecture has a fe@(1) in

the number of slave nodes) master nodes coordinating many slave nddesivhave the same functional-
ity. Master nodes provide two types of functionality in two separate daento@®lameNode serves as the
directory service for the Hadoop Distributed Filesystem (HDFS, a blepkeated filesystem that imple-
ments the Google Filesystem (GF8))[providing the mapping from named files to the slaves on which the
individual fixed-size blocks are stored, while the JobTracker sexyéise coordinator for Map/Reduce jobs.
Similarly, slave nodes provide two types of functionality in two separate dagntibe DataNode serves as
a chunk server in GFS terminology, providing actual storage of blocki#ewhe TaskTracker shepherds
execution of tasks on slave nodes by starting up new Java Virtual Mac@iu®ls) to execute tasks.

Long-running jobs are divided by the JobTracker on the master nodermddier, short-lived (relative
to jobs) subtasks that are processed by the TaskTrackers on skie® b job’s subtasks are likely to be
small relative to the job itself, in order to minimize the amount of re-computation ehesde fails. We
assume that the number of slave nodes can be large: any fault-tolerelngigjtees that warrant the remote
inspection of nodes (e.g., through heartbeats) from a central/master toaegilikely to be costly in network
bandwidth, thus the case for node-local diagnosis. We make no assusngliont the number of culprit
nodes in the system, and do not currently probe further to discern whitle dingerpointed culprit nodes
might be more to blame than the others. We focus our problem diagnositseffonode-local diagnosis
on slave nodes, since these can be arbitrarily many while there are few magdes; we first attempt to
localize the fault to a single node, and make further efforts at localizingathietb a phase of execution in
the TaskTracker or DataNode on the slave node.

3.2 Manifestation-centric Problem Diagnosis: Goals and Noigoals

The actual root causes of performance problems are often difficuilagmdse without detailed applica-
tion/domain knowledge. On the other hand, the manifestations of perfornpaobkems are observable
errors or anomalous system activity, ultimately leading to system unavailabilityresponsiveness. Thus,
our approach to problem diagnosis seeks to identify the culprit (nodepefformance problem by tracing
any observed problem manifestations back to their source node. Thiallass us to perform black-box

problem diagnosis in a production setting, with neither access to nor modifiaaftiapplication source-

code.

The goal of our work is to perform online problem determination: to locateing the execution of
the system, the node(s) on which a performance problem occurredo @ndvide suggestions as to what
the root-cause of the failure might be—these suggestions are in the faystein resource categories that
are possible sources of performance issues, such as processmgryneisk, and network resources. The
eventual aim of this work is to expedite system recovery from a failuregieliy aiding system administra-
tors and operators in isolating faults and identifying recovery actiong; prdviding diagnostic information
for automated tools to decide the best course of action for system rgcover

In the context of the candidate failures identified in SecAdithe goal of our work is to flag off nodes
exhibiting failure manifestations to isolate the failure, and to then provide intiveraetrics as suggestions
as to what the root-cause of the failure might be.

Program debugging is a non-goal of our work. Our techniques drentemded to aid programmers
in performing code-level analysis and extremely fine-grained localizafitautis. Instead, our techniques
bridge the gap between requiring access to and instrumentation of applicatiare £ode for extremely
fine-grained, code-level analysis, and using coarse-grainedmasive black-box information sources by
introducing (i) the use of statistical analysis to gain additional insights araesimderence about application
behavior, and (ii) white-box information sources that can be accessegl biack-box techniques.

3.3 Available Data Sources

The following main categories of sources of performance data abotgnsgghat can be accessed using
black-box techniques, requiring no access nor modification to applicatimees-code, have been utilized
in our approach. A brief description of the type of information, the mearmoléction, and the cost of
collecting each data source, in terms of overheads imposed, follows.

3.3.1 Hardware Performance Counters

Modern microprocessors implement performance counters to providésoofthardware events, such as the
number of unhalted cycles, or the number of cache hits and migg8esHardware performance counters

8

provide the lowest-level view of a system from the perspective of soétveand provide a most fundamental
(to the extent that collecting performance counter values causes mininalgagions) view of the system
closest to the ground truth of the bare metal of the system, free of artifacts@duced by operating system

or middleware-induced abstractions. TR&MStechnique of our approach examines hardware performance
counters to make inferences about the (correctness of the) beh&theraandidate application.

However, hardware performance counters can be potentially expeanstollect, as each data collec-
tion requires a context-switch into kernel mode to access the performano¢ec values. Nonetheless,
our work uses theprofile hardware performance counter monitoring package, which has a radasur
overhead of between 1-8929].

3.3.2 Operating System-reported Resource Metrics

The next higher level of abstraction from system hardware at whiclitororg can be performed is the oper-
ating system. Major operating systems report aggregate statistics abouswarstem resource categories—
namely processing, memory, disk, network, and the virtual memory subsy$teese statistics are typically
reported periodically as part of the service provided by the operatstgisy regardless of whether they are
collected. Hence, these metrics can typically be collected in a low-overashidh. Specifically, Linux and
many variants of Unix implement theroc filesystem, an interface through which a comprehensive array of
operating system-provided information about aggregate system stateraprbpess state can be accessed.

The BlackSheegechnique of our approach leverages on the low overheads of this aaizesand
focuses on synthesizing the wide array of information available througprite filesystem on Linux for
problem diagnosis.

3.3.3 Application Logs

Many software applications, especially Internet-deployed and distrilmatalare applications, have activ-
ity logs that describe the actions of the software application. Traditionalblicapion logs have provided
a trace of error messages for system administrators and users to ideokifgps and for programmers to
debug the application; application logs also sometimes provide a trace ofaesdesaudit trails to identify
security breaches. These software applications typically have caalfiguievels of logging detail, so that
they can be set to generate log messages about the software’s actionanyiitiy levels of verbosity. At
the minimum level of verbosity, log messages are usually generated only inghedd fatal errors which
caused the application to fail completely and crash, while at the maximum levettodsity, log messages
may be generated during the course of normal application execution asovefbort events.

Applications can be thought of as being in one of a finite number of high-&tates, with each state
corresponding to a particular mode in which a particular type of task is bewmcyeed, giving rise to a
signature of that state which characterizes it. A key insight is that the nappéitation events as reported
by detailed log messages will typically correspond to the entrance and etistract application states as
described above.

Hence, if an application has sufficiently few types of states, these statéiseaevents which demarcate
the entrance into/exit from abstract application states can be enumerdten, Well-structured logs from
the application can be parsed to process textual event reports to tgenenaerical counts of the states
which the application is in. These numerical reports are more amenable t@sgnilith other metrics, as
they are all numerical and hence can be synthesized and treated with silaissilysis and learning as with
typical numerical metrics.

3.4 Analytical Framework

Next, we provide an overview to the key ideas that the two techniques @&pupach use for identifying
deviant application behavior.

3.4.1 RAMS an a priori Model of System Activity

The RAMStechnique is based on the following hypothesized model of the local behalvitodes in a
distributed system.

The processing on slave nodes is always in one of two modes: (i) comrtianieath the other nodes
in the system, or (ii) actual data processing to compute a subtask. Thepaser-application (henceforth
the application) invokes system calls to perform its external communicatiachwsrecorded as operat-
ing system (OS), or kernel-space activity. Hence, under communicatiensive operations, a node’s OS
activity will dominate that node’s application activity; conversely, undenpote-intensive operations, the
node’s application activity will be higher.

The processing of a job’s subtasks will likely involve repeated communicagtween nodes in the
cluster—for subtasks to be dispatched to nodes, and for the resultbtakks to be returned to the dis-
patcher.

Consider a sufficiently long observation window on a node that encompassh the communication
phase of receiving and returning the results of the subtask as well asrtiutation phase to execute the
subtask locally. Our hypothesis is that when a node experiences arparice problem, its processing is
likely to be interrupted or to take significantly longer (possibly never retginiso that the node might
not be observed (albeit indirectly) to be communicating as much with the otkdesro the system within
the window of observation. Thus, we expect the system metrics thatctesghe characterize OS’ and
application’s activity to be correlated in the absence of performancéegunsb OS activity and application
activity will increase together in the same window, reflecting the external canwaion and the local
computation required to process a subtask. However, when the nodeegqes a performance problem,
we expect to see significantly less correlation between the node’s OSiptidation’s activity, as either
no computation nor communication are occurring, or the application is failingttmnre-in both cases,
application activity moves independently of OS activity. An obvious sidesfienf this hypothesis (if
indeed, it is borne out by experimental evidence) is that a node’sdisércal behavior alone ought to
suffice for deciding whether that node is a culprit of a performanckleno.

3.4.2 BlackSheepCorroborating Application Behavior with System Activity

The BlackSheepechnique is based on the key hypothesis that during normal, problerexieeation, the
abstract state or mode of execution of the application should be approxinralete with the observed
black-box metrics of the system.

We hypothesize that given normal execution, during a given mode augre of the application,
particular black-box metrics will exhibit stable patterns, such that changés mode of execution of the
application will be followed by, possibly with a time lag, changes in the aggrdugitavior of black-box
aggregate system metrics.

Conversely, when there is a problem in the application, two scenariosoasibfe. First, there can
be changes in the mode of execution of the application as reported by theatipp in its logs, but no
changes in the aggregate behavior of system metrics, due to a failureaggheation to transition to the
new execution mode. Second, there can be changes in the aggregatmbehsystem metrics although
there was no change in the mode of execution of the application, as theecimaggstem behavior was
brought about by the transitioning of the application from its normal exetutiode to a problematic one.
By detecting the phase of execution at which an anomaly occurred (eictexpchange in system activity,

10

or unexpected absence of change in system activity, relative to appliteti@vior), we can thus isolate the
fault to a phase of execution in a particular component (DataNode/Tackdn) of our target application.

Hence, the key idea behimlackSheejs in quantifying changes in both the mode of execution of the
application, and in black-box system metrics, and in identifying black-betesy metrics whose changes
co-occur with changes in the mode of execution of the application.

4 Application Log Parsing Case Study: Hadoop activity logs

There are four different types of activity logs provided by Hadoage for each of the four different types
of daemons (NameNode, JobTracker, DataNode, TaskTrackeprthatle services in Hadoop. Our initial
efforts focus on the activity logs from the DataNode and TaskTrackadoop uses the Apache Log4J
[24] logging framework, thus emitting logs that are standardized across maewy ayibn-source software
which also use this framework, suggesting that our approach is possitigbfe to other applications also
using Log4J (to the extent that the application developers of other apptisatsing Log4J also provide log
messages with similar semantic content as Hadoop does).

4.1 Log Overview

A snippet of log messages from the TaskTracker logs are shown ineFigliog entries are timestamped,
and the level of verbosity and the originating component of the log entrstared, followed by a descriptive
message. The Log4J framework used by Hadoop allows the destination wielesages to be configured;
we assume that the default configuration of Log4J in Hadoop is usedastmghmessages are written to
plain text files.
Our Hadoop log parser parses each log message into its timestamp, the legdiof verbosity,

the reporting component, and its message, and parses the log messagerateggpplication events, from
which application states are inferred, as described next.

2008-04-22 08:53:10,347 INFO org.apache.hadoop.mapred.TaskRunner:
task_0003_r_000000_0 Copying task_0003_.m_004566_0 output from pc69.emulab.net.
2008-04-22 08:53:10,349 INFO org.apache.hadoop.mapred.TaskRunner:
task_0003_r_000000_0 Copying task_0003.m_001577_0 output from pc73.emulab.net.
2008-04-22 08:53:10,358 INFO org.apache.hadoop.mapred.TaskRunner:
task_0003_r_000000_0 done copying task_0003_.m_004566_0 output from pc69.emulab.net.
2008-04-22 08:53:10,436 INFO org.apache.hadoop.mapred.TaskRunner:
task_0003_r_000000_0 done copying task_0003_.m_001577_0 output from pc73.emulab.net.

Figure 1: A snippet from a TaskTracker log showing log entries whiclgéndgtateStartEvest and
StateStopEvestfor theReduceCopyTagkical andReduceCopyTagkmotestates.

4.2 Application Views: Events and States
4.2.1 Events and States

In order to interpret the semantic meaning of application logs (in a mannerl iseproblem diagnosis),
we propose two orthogonal ways of viewing the high-level modes ofugiatof applications in general:
as eventsand states using Hadoop as a case-in-point: Consider each single thread aftiexea an

application as a deterministic finite automaton (a transition must be taken at gachrgtéhe machine can
be in at most one state) which is in exactly one DFA state at each time instant.tibenode of execution

11

of the application can be viewed atatesof the DFA, or asvents which are related to the transitions in
the DFA, as explained next.

We definestatesin the DFA to correspond to high-level tasks (e.g. serving a block regquest to
a remote client in a DataNode), asdentsto be the entering and exiting of states, from which we derive
transitions in the DFA to correspond to a composition of one state-entradcenanstate-exit event. We
define the two types of events as StateStartEvents and StateStopEvemtsmutiethreaded applications
would comprise multiple threads of execution, with one DFA representing teeuéggn mode of each
thread. The mode of execution of the application at each time instant canglepriesented by (i) a vector
of states in each of the DFAs, with one for each thread of execution,isfdhe instantaneous compaosite
workload of the application, or as (ii) a vector of events in each of the D§A@~ing the changes that have
taken place in the system at the time instance.

4.2.2 Events and States in Logs for Hadoop

A key observation about the log messages in Hadoop is that they cancespootifications about the events
as defined above. At the highest level of logging verbosity, they mlyoikenote the starting and stopping
of each high-level task (e.g. Maps, various Reduce phases, bladk/verites served) undertaken by the
DataNode and TaskTracker. Hence, our model of high-level applicagbavior can be directly parsed and
extracted from the activity logs of Hadoop.

There are, however, exceptions: only the occurrence, and nointhenee to and exit from certain
states in the DataNode and TaskTracker are reported, presumablyseeha tasks corresponding to these
states are short-lived; we define a third event type, an InstantStateveinansient states for these types
of states. Events of this type, when composed with an event before inamdeat after it, then corresponds
to a transition into the state, followed by an immediate transition out of the state, inrikextof a DFA.

A list of states for the DataNode and the TaskTracker are included inmgpé\, and each state
has two associated events: one for the entrance to the state, and one éxttirom the state, and an
InstantStateEvent is included for states whose execution is reported @ntyansient manner.

4.3 Parsing Algorithm

The log parser implements a discrete window over the activity log. The log engperted in each window
of time under consideration are processed to returrEtrentsoccurring in the window. In addition, the
Eventsoccurring in the window are processed to returndtageghat the application is in within the window
of consideration.

Log entries are read sequentially in strictly increasing chronologicalr,oetel parsed to assign an
Eventto each log entry. ArEventmay be one of StateStartEvent, StateStopEvent, InstantStateEvent,
NoOpEvent, ErrorEvent with the last two events added for log entries extraneous to our analysidotha
not describe any significant change in workload (such as idle heartlessages, or a message indicating
no useful work is being done), and for error messages, respigctiveus, a time series of events can be
immediately generated from the Hadoop activity logs (for DataNodes andeaskers presently) with a
single forward pass over the log entries.

In order to generate the vector sfatesthat the application is in for each window, the log parser
maintains internal state to remember the numb@&tafeStartEvestandStateStopEvesthat it has seen for
eachstateat each time instance. Then, the number of threads executingtsels simply the difference
between the number @tateStartEvestandStateStopEvest plus the number dhstantStateEveatseen
for eachstate within the given window.

A minor complication arises with thBtateStartEvestfor theReadBlockandWriteBlockstates in the
DataNode—StateStartEvestfor most states in the logs of DataNodes are denoted by a generic message

12

while state-specific information is available only $tateStopEvest Hence, we make the simplifying as-
sumption thatStateStartEvestandState StopEvestcorresponding to the sanséateoccurrence occur in
FIFO order to make processing possible. This also implies that for anp SitageStartEventhe state it
corresponds to cannot be identified before its (assumed) corréag@tdte StopEvers observedStateS-
tartEvens in the DataNode logs are given an additional designati@edfsrredStateStartEvento indicate
that the identity of the state corresponding to the event has not beetaasegr and the window is pre-
vented from sliding forward until the identity of th&tateStartEvenhas been resolved (by observing a
correspondingtateStopEvent

4.4 Parser architecture

The log parsing algorithm has been implemented as a library of C++ calls thdtecaasily reused in a
larger software framework.

All logs are represented by a generic base class, which defines fualitifaccommon to manipulating
each type of log, from which subclasses are derived and implementexgpdoific log types. Each log-
specific subclass (e.g. DataNode, or TaskTracker) then implements itmonwlithic parser to parse log
entries from that particular type of log. The log base class stores aalbgically ordered list oEvents
with the identity of theEventstored as an enumeration, and its associ8tatestored as a member vari-
able. States are defined by a generic base class, from which subclasses areddefi States specific to
each different logged component of Hadoop. The log-specific sstedathen implement functionality for
processing a given list of events associated with states specific to thalfzartype of logged component to
generate time series’ of observed events and application states.

The log parser has a modular architecture, which exposes a commondetienfaampling events and
states from the different types of logs produced by Hadoop. A quejgcbaccepts a log object and calls
on the log-specific event-processing method to generate samples ofingdwens or samples oStates
that the application is in. The query object manages the window over whinplisg is performed, and
manages the formating and presentation of reports of observations.

The log parser library supports on-demand, lazy parsing, and ontjsneeremember the latest log
entry to perform processing; all information from prior log entries is sunmadrand stored as internal
representations as lists &vens andStates, and users of the library can explicitly request the library to
clean up past reported events and states.

4.5 Offline Parser Output

In addition, the log parser provides an offline output mode, in which the &gep is provided with a
sampling interval, and the parser generates a comma-separated valugfl€ 9V a time series of the
counts of each of the states and events for the particular node type—titgenof each of the states and
events for the particular node type in each sampling time interval is listed as mrhe CSV file. A
visualization of these states is shown in Figu2gs23, 24, 25.

5 RAMS Statistical Tests of ana priori Model of System Activity

5.1 Analytical Methodology
5.1.1 Linear regression model of system activity

On each node in the system, we collect traces of the intra-node perfagroancter values for OS activity,
0s, and application activityapp (as discussed later). Consider a linear ordinary least-squaressiegre

13

fitted to the time-series of the node’s OS’ performance countex¥ &nd the application’s performance
countersépn), with Gaussian noise; allowed:

05 = Bapp@PR + U

Concretely, {) pairs of observed OS and application performance counter valuesafevindow, and
these are plotted as a function of each other, and a straight-line which minittnézesm of squared errors
between observeds and fittedog is plotted through these points. Thus, for each papp,o0s), fitted
valuesog and the noise, or regression residugk= 0§ — 05, are generated from the regression.

5.1.2 Autocorrelation of residuals

Next, consider first-order lagged residualg,;, (i.e. consider the residual from the preceding pair in the
time-series for each given time) and residug)$rom the linear regression. When a node is not experiencing
problems,u;_1 will be independent ofy, if the window over which regression is performed includes sam-
ples from both the communication-intensive and compute-intensive phates system. This is because
the strong correlation between OS and application performance couggeltsrin a strong relationship be-
tween the regressandg) and regressorapp), so that residuals; reflect purely Gaussian noise and are
uncorrelated.

When nodes are experiencing performance problems, there will belation betweeny andu;_1.
This is because application activity becomes increasingly uncorrelated withShactivity, so that; and
L1 become correlated. The regression residuals will reflect movements ippheagion activity counts
and hence are no longer random noise, but become correlated.

This statistical condition in which residuals; become correlated with their lags(; for i > 0) is
autocorrelation.

Hence, we hypothesize that autocorrelation between lagged residualslisarvation window exists
on a node if and only if the node experiences performance problems wvitiaaw.

5.1.3 Autocorrelation tests for identifying anomalous nodes

The Breusch-Godfrey and Durbin-Watsdr8] tests for autocorrelation were used to detect autocorrelation
in the linear regressions of OS with application performance counter vimupsoblem diagnosis. In each
of these tests, the ordinary least-squares linear regression is firstdittieel window of observed OS and
application performance counter values, from which secondaryssigres and test statistics are computed
based on the regression residuals. Each of these is a statistical test,tegieckhe null hypothesis that
there is no autocorrelation present against the alternate hypothesisetigasthutocorrelation present in the
regression residuals, and returng-galue—the probability of wrongly rejecting the null hypothesis.

Since our hypothesis is that autocorrelation is present in a regresseogiven window of performance
counter values if and only if the node is a problem node, the null hypotbé#igse two statistical tests is
exactly the (statistical) hypothesis that the node is problem-free. Thus,lesmaalue indicates greater
confidence that a problem is present in the node.

5.2 Experimental Setup and Methodology

We conducted a series of experiments to tesRA&IShypothesis. Our goal was to study the characteristics
of the time-series of metric traces of every node’s OS’ and the applicatiotiisty under normal execution
and under induced performance problems.

14

5.2.1 Setup

We deployed a 6-node (5 slave, 1 master) Hadoop 0.4.0 cluster on two 3 R&dth nodes, each running
the Xen 3.1.0 hypervisoi3] hosting three unprivileged Linux 2.6.18 guests, on the Emu2&h femote
testbed. The Nutch (version 0.8.1) web-crawl@8]] running on a Linux 2.6.18 guest hosted on a third
3.0GHz Xeon node over a Xen hypervisor, was used to generate \edekfor the Hadoop cluster. Each
iteration of the experiment involved rebooting all of the nodes in the Hadlispet, running a single Nutch
web-crawling request, and collecting performance-counter tracedlweluration of the execution. Each
iteration of the experiment lasted approximately as long as the execution ofitbk Web-crawling job of
40 minutes.

5.2.2 Fault Injection

As Hadoop is written in Java, we used a JVM Tool Interface (JVM TInage7] to perform load-time
class bytecode-rewriting to inter-position calls to methods in our problem-imjelztes before the actual
methods of interest. As our problem injection uses Java methods within the sdna¢ machine as the
target application, all problem-injection activity is encompassed in the actifityedarget application.

One of the two types of problem manifestations at one of two levels (high adldntensities was
injected into three of the five slave nodes in each of the problem-inducetiagteraf the experiment. 72
iterations of the experiment were run, of which 27 iterations had memory iegded (11 high-intensity,
16 low-intensity) and 45 had process delays injected (14 high-intensitgyBihtensity).

Process-delay injection involvedwile loop running for a preset duration—an infinite loop in the
high intensity case, and alternation between executing the loop for onedsand yielding control in the
low-intensity case. The memory-leak injection involved allocating Java objedtadding them to a persis-
tent vector, for a preset duration, in a similar manner to the process-dgation described above.

The injected problems are representative of the manifestations of rela-penformance problems
recorded in the Hadoop bug database, as described in S@dsioAs our problem diagnosis approach is a
manifestation-driven one, being able to detect the identical manifestatiold Wwewa sufficient benchmark
for our technique.

5.2.3 Instrumentation and Data Collection

The intra-node metrics that we gathered were Intel P4 performancgerocounts of instruction cycles
collected byoprofile [29] with the xenoprof [14] Xen driver. Samples of instruction-cycle counts were
taken at 10s intervals byprofile, and attributed to the Linux processes whose instructions accounted
for the cycle counts. In particular, we examined the counts for the Linuxek@rocess and the aggregate
activity counters for the Java Virtual Machine (JVM) processes of thiépleiHadoop components.

5.2.4 Analysis

We analyzed the collected metrics offline after completing the experimentsaélomede in each iteration
of the experiment, the time-series of instruction-cycle counts for the Lintnekéos) and the JVM &pnp)
were fitted to the linear regression:

0§ =app+u

Next, we ran the Breusch-Godfrey and Durbin-Watsb3j {ests for autocorrelation between the first-order
lags of residualsig, u;—1), generating th@-values for the probability that there is no serial correlation be-
tween the first-order lagged residuals for each node.pffeues are used as a measure of serial correlation
between the first-order lagged residuals. Then, spgei@ue thresholds were used to identify the culprit

15

node(s). Nodes witlp-values below the threshold value were classified as being the culpriteu¥yar
value thresholds were used to vary the recall of the algorithm, to study remisjpn varied with recall (see
Sectionb.3for definitions of precision and recall).

5.3 Evaluation Results

5.3.1 Statistical Characteristics of Metrics

Culprit node of performance problem Non-culprit node of performance problem
Regression residuals (= observed - fitted OS_fault) Regression residuals (= observed - fitted OS_faultfree)

80000 60000

40000 +
60000

20000
40000 |

o
g

20000 -
20000 -

B
(Y

-40000 [

2 L
20000 -60000

residual (instruction cycle counts)
residual (instruction cycle counts)

-40000 ‘
0 20000 40000 60000 80000 100000

L L 1 L L L -80000
100000 200000 300000 400000 500000 600000 0

Application (instruction cycle counts) Application (instruction cycle counts)

Figure 2: Regression residuals as a function of application activity fal@itnode with a low-intensity
process delay (left) and a non-culprit node (right)

In the case of process delays, in nodes with injected problems (the cubolés)) the residuals of
the linear regressions of OS activitgy) with application activity épp) were strongly correlated with
application activity, indicating strong autocorrelation in the (lagged) reldughis is seen in the clear
linear, non-zero relationship between the residuals and application aatvite left graph in Figure,
while in problem-free nodes, the residuals showed no clear relationshipapitiication activity, as seen
in the right graph in Figur@. This observation is consistent with our hypothesis. This observation was
also confirmed by the statistically significant evidence of autocorrelationdeetihe residuals in the culprit
nodes, in contrast with the lack of such autocorrelation in the problemmérdes.

However, in regressions for the experiments with injected memory leaks, dppeared to be no clear
difference in the correlation patterns between the regression residadtiseaapplication activity across the
culprit and problem-free nodes.

5.3.2 Efficacy of Problem Diagnosis

Next, we examine the effectiveness of our approach at classifyingitcatpl problem-free (non-culprit)
nodes.

Figures3, 4 shows the performance of our initial problem-diagnosis algorithm for gguehof failure,
broken down by failure intensity. We quantified the efficacy of our apgmousingprecisionandrecall,
measures of classification effectiveness from the data-mining literat@yeWhen our problem-diagnosis
algorithm indicts a node, that node becomes a suspect; this is differenthenode being truly guilty, i.e.,
aculprit. Precision measures the fraction of all suspects that are indeed cuigniiies recall measures the
fraction of culprits that our algorithm successfully indicted. We tuned tbellref our approach by varying
the p-value threshold (Sectiob.2.4, where ap-value threshold of 1.0 results in our algorithm indicting all

16

Plot of Recall vs Precision (in percentages)
for various statistical tests of autocorrelation
for high-intensity faults

Breusch-Godfrey ——— Breusch-Godfrey ———
(Memory Leak) (Process Delay)
1 T T T T T T T T T 1 »l\‘\ T T T
< 0.8 | /""'*\——777,7,,,,,,,,%\l\r\ B < 0.8 ""*\———\\\7 7—
@ 06 — 3§ o6¢f -
g o04f {1 8 oaf .
& o2} {1 % o2t .
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
0.50.550.60.650.70.750.80.850.90.95 1 075 08 085 09 0.95 1
Recall Recall
Durbin-Watson Durbin-Watson
(Memory Leak) (Process Delay)
1 T T T T T T T T T 1 —— T T T
\\“‘\\
< o8fF, . < 08 | —
% 06 B % 06 [T
e 04 1 @ o04¢p .
& o2} 1 % o2} .
O 1 1 1 1 1 1 1 1 1 O 1 1 1 1
0.50.550.60.650.70.750.80.850.90.95 1 075 08 08 09 0.9 1
Recall Recall

Figure 3: Overall precision as a function of recall for failure diagnakisrithm for high-intensity failures

of the nodes in the system. As the number of suspects increases with mogesaggyindictment (higher
p-value thresholds), recall increases, but precision suffers. fegteproblem-diagnosis algorithm would
have a precision/recall curve with a precision d for all values of recall11].

From Figure3, our algorithm has some success identifying nodes suffering high-itytgmsblems—
precision falls gradually and does not suffer a complete collapse dkiscicareased, while our algorithm
has some success with identifying nodes with low-intensity process-dedaleprs (Figuret), but is inef-
fective at identifying nodes with low-intensity memory leaks, as precisiongsdiawhen recall is increased.

Perhaps a more informative statistidBalanced Accurac{BA) [11], the average of the proportion of
problem-induced and problem-free nodes that were correctly classifiptbblems occurred randomly, a
random classifier would, in the limit, achieve a balanced accuracy5of Biguresb, 6 show the highest
BA achieved by our algorithm under high- and low-intensity problems for nmgiteaks and process delays
across alp-value thresholds used for each of the problem-intensity and problencéges shown (these are
upper bounds on the efficacy of the algorithm; further work is neededddliie best single threshold value
for all problem types and intensities). From Figl;eour approach is moderately effective at identifying
nodes with high-intensity problems and low-intensity process-delays,\iwia BA of greater than.@
using both (Breusch-Godfrey and Durbin-Watson tests) measuresaufaarelation. However, from Figure
6, our approach does only marginally better than a random classifier fl@snwith low-intensity memory
leaks.

In conclusion, we have shown tHRAMSis effective at detecting both types of injected high-intensity
faults, process hangs and memory leaks, and is somewhat effectteetinlg low-intensity process hangs,
but not much better than random at detecting low-intensity memory |da&k#1Sshows some promise at
being able to identify anomalous nodes exhibiting process slowdowns agd,hahich would be helpful
for detecting the large proportion of Hadoop bugs that manifest as ggd@ngs (as surveyed in Section

2.5.

17

1

Plot of Recall vs Precision (in percentages)
for various statistical tests of autocorrelation
for low-intensity faults

Breusch-Godfrey ———
(Memory Leak)

0
0.50.550.60.650.70.750.80.850.90.95 1

Recall

Breusch-Godfrey ———
(Process Delay)

“ T T T T T T T T T 1 I7 T T T T T T T T
< 0.8 —\\ R < 08 F o R
5 o06F 1 5 06 —
e 04f 1 @ o4 .
& o2t 4 % o2t .
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0.50.550.60.650.70.750.80.850.90.95 1 0.50.550.60.650.70.750.80.850.90.95 1
Recall Recall
Durbin-Watson Durbin-Watson
(Memory Leak) (Process Delay)
1 T T T T T T T T T 1 T T T T T T T T
< 0.8 B 1 < 0.8 Te— A
) 0.6 o —) 0.6 B
g 04— 1 2 o4t .
& o2t 4 % o2t .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
0.50.550.60.650.70.750.80.850.90.95 1

Recall

Figure 4: Overall precision as a function of recall for failure diagnakisrithm for low-intensity failures

6 BlackSheepApplication-System Corroboration through Change Point Anal-
ysis of System Activity

6.1 Analytical Methodology

The fundamental idea @lackSheefs that application logs and operating system-reported resource metrics
(which we will refer to as resource metrics) provide orthogonal vievessyfstem that should agree with each
other at a high level during problem-free operation. Application logsigeosemantically rich information
about the high-level modes of execution of the application, while operayistgrs metrics such as disk,
memory, processor, and network utilization provide evidence of the apélnvior of the application as
observed from its system-level actions. Thus, we would expect thelénghactivities that the application
reports itself as performing to correspond with its actual system-level aaiming problem-free execution.
An immediate consequence is that multiple views of the system disagreeing witbtbac is an indication
of a problem. Then, the system resources whose metrics disagree witemhgrovided by application logs
will provide suggestions as to which area of the application is not behasitigeanigh-level log information
suggests the application should be.

Application logs typically contain textual information, while operating systenoitepl resource met-
rics are typically sequences of observed counts, and are not immediatepacable to determine if they
agree with each other. However, this textual information in application log®egarsed to extract counts
of high-level states, each of which corresponds to a logical tasknpeefib by the application, and events,
which correspond to the beginning and ending of states, as we have steated for Hadoop in Sectigh
These counts of high-level states and events can then be compared evilirog system-reported metrics.

Change point analysis is applied to resource metrics and application state tmaompare them with
each other for determining if an anomaly is present in the system.

18

Balanced Accuracy for detection of various types of high-intensity faults
1.2

Balanced Accuracy
Fault Accuracy
1L Fault-free Accuracy

0.8

04 r

Balanced Accuracy

mem-hi mem-hi proc-hi proc-hi
BG DW BG DW

Figure 5: Balanced Accuracy (BA) of failure diagnosis algorithm fofedént failure types; BG indicates
the Breusch-Godfrey and DW indicates the Durbin-Watson tests foll seri@lation;hi indicates BA for
high-intensity variants of problems injected

Balanced Accuracy for detection of various types of high-intensity faults

1.2
Balanced Accuracy ‘
Fault Accuracy
1L Fault-free Accuracy |
>
g 08 i
5
(&)
<
- 06 F q
[}
Q
c
]
< 04+ 1
0
0.2 q
mem-lo mem-lo proc-lo proc-lo
BG DW BG DW

Figure 6: Balanced Accuracy (BA) of failure diagnosis algorithm fofedént failure types; BG indicates
the Breusch-Godfrey and DW indicates the Durbin-Watson tests foll seri@lation;lo indicates BA for
low-intensity variants of problems injected

19

6.1.1 Change point analysis

Operating system-reported resource metrics and counts of high-lep@tadpn states are compared by
computing the change points in resource metrics and application state cowhénsuring that they occur
together. We define the steady state of both the application and the systencessto be durations of
absences of change points. The intuition is that when the counts of the nofmbecurrences of each
state remain unchanged, the application is in a steady state, so that its systEbetevior as reflected by
resource metrics should be steady and unchanging as well. Hence, wehmalpriori assumption that a
change in resource metrics when the application is exhibiting a steady staterialans, and likewise, that
a change in application behavior when system resources are exhibitieady state is anomalous.

Change point detection is a classification problem over a time series of valilesobjective is to
separate the time series of values into contiguous segments, in which th&/imgdearameters describing
the distribution of values is the same within each segment. A challenge of usnuapa@hange point
detection algorithms such as Shewart control charts and CUSA)Islr¢ that they require at least one of
either of (i) the parameters governing the distribution of values beforehthiege, (ii) after the change, or
(i) the time of change—however, it is not clear what the correct paramefaihe process generating the
distribution of values of resource metrics are, and the objective is phetisgetermine the time of change,
so that popular change point algorithms are not amenable.

Instead, we use a difference of means algorithm that is a variant of ar ietige detection technique
[1]. This algorithm had been previously successfully applied to problemrdetation in enterprise mid-
dleware systems, but on individual resource metrics in a group of me@igsuse of change points analysis
differs from [1] in that we are continuously comparing change points across two complateygonal
measurements (application state counts and resource metrics) to coati@nage points.

6.1.2 Change Point Detection Algorithm

Our change point detection algorithm is described as follows:

Algorithm 1 Decision function for deciding if a given observation in a time series is agghpnint

1: procedure CHANGEPOINT(0bg],obsnumwindowthresh prevobg|, prevmay > prevmaxobss a
fixed-size persistent queue that stores thevéstiowdifferences of means
z b 1 ;
W — z?:gggm:mwindOWObS{']
window
3:
o SR 0bsi]
window
4 Mp=p— ()
5: prevobsqueugAp)
6: if (max prevobg == Ap) && (Ap > prevmay then
7 if ApL> threshxp, then
8: prevmax= Au
9 return true
10: end if
11: end if

12: return false
13: end procedure

20

Algorithm 1 takes as its input a time series of metric values (which can be resource meiaigglie
cation state counts), and an observation numbkesrfun) in the time series, and returtie if the given
observation number is a change point (i.e. statistical properties of theimghetime series changed at the
time of the given observation), arfalse otherwise. For a given window sizejindow the left and right
means |{i, Ir) respectively are computed oweimdowsamples before and after the given observation. The
criteria for determining when the time of the observation is a change point is thieedifference between
the left and right mean\(1) for the given observation is a local maximum, and exceeds the value of the
left mean,, by a given threshold factarhresh The first conditional in Liné ensures thaAp is indeed a
local maximum over the observation window. An additional heuristic is includéide second conditional
in Line 6 to ensure that the same local maxima is reported only once.

The size of the observation windowjndow, and threshold factdahresh are tunable parameters of the
detection algorithm, and adjust the sensitivity of change points being repadfte then apply the change
point detection algorithm to each time series for each resource metric anapplication state count of
interest, and compare the change points in the two, to determine if the exedutierapplication is free of
anomalies. This comparison is detailed next.

The change point detection algorithm can be implemented in a lazy, dynamiarféshonline use, by
keeping only state that has size that is const@(t)) in the order of the length of the time series examined,
so that the algorithm can be run indefinitely with a constant amount of memabmey.ofily persistent state
required by the algorithm isvindow number ofAu values, and the value of the previous reported local
maxima,prevmax

However, a disadvantage of a lazy, greedy implementation is that contlgu@isg metric values
will result in successive change points being reported, rather thamgie $ocal maxima—fortunately, our
analysis involves comparing change points across resource metricpgliwaion state counts, which are
hypothesized to behave in similar ways in the event of normal operations, Tauhe extent that our
hypothesis will be borne out, this artifact of lazy evaluation does not skavanalysis. Analytically, in
this case, a sequence of successive change points implies that theedbsgue of the metric of interest
is changing with a magnitude outside of the threshold of a change detectibthatrthe change is taking
place at an increasing rate; this can be interpreted as a continuougdhkimg place.

6.1.3 Corroborating system activity change points with application Ig events: Tests for anomalous
system behavior

The next stage of the approach is to corroborate change points inrcesmetrics with application log
events. The algorithm by which we corroborate the two orthogonal sygtws is as follows:

Algorithm 2 Decision function for deciding if two orthogonal views of the system agyritle each other;
changepoiris are boolean flags indicating if a change point occurred in the time sétigs @source metric
or application state count respectively.

1. procedure STATEMETRICNORMAL DECISION(change poinetric, Change poingate

2: if (changepointetric == true) && (changepoingaie== true) then
3 return true
4 else if(change pointetric == false) && (changepoingae== false) then
5 return true
6: else
7
8
9

return false
end if
. end procedure

21

Algorithm 2 is the (simple) decision function for determining whether the application is loedhav
a normal fashion. We declare the behavior of the application to be probleifriicabsence or presence
of a change point in the given system resource metric does not conesyth an absence or presence of
a change point in the given application state count respectively. It feltbat when the application is not
diagnosed as being problematic, then the application is exhibiting normal, prdéi@e operation.

More formally, our approach to characterizing normal application behavased on our hypothesis
of change points in application state counts and resource metrics agradingash other if and only if
the system is problem-free, is that of classifying a point in the time seriesplitation states as being or
not being a change point given knowledge of whether the corregpppdint in the time series of resource
metrics is a change point.

Then, Algorithm2 is applied to the change point pair for every metric of interest with everlicapion
state count of interest, for each time instance for which a diagnosis is dlesiitee requirement of the
computation of left- and right-means for each decision point implies that theithlgohas an intrinsic lag
equal to the duration required to collect sufficient samples for the windlmmetheless, the algorithm can
be run online, albeit with a lag, as the space requirements for its state isrddngtee order of the duration
of the diagnosis run.

6.1.4 Building profiles of application behavior

Finally, training is carried out to identify application state count change pwinitsh co-occur with resource
metric change points under normal, problem-free operation. Then, dilsgaaarried out using the change
point-corroboration framework as described above, on pairs of apiplicstate counts and resource metrics
that have been found to consistently exhibit change points together gudabtem-free behavior.

6.2 Experimental Setup and Methodology

We conducted a series of experiments to quantify the behavior of Haddepms of the change points of
various operating system-reported resource metrics and Hadoop éipplistate counts. The aim of these
experiments was to identify metrics and application states of interest and sigo#icso as to characetrize
the (problem-free) behavior of Hadoop under various workloadss WHl facilitate the devising of strate-
gies for maximizing the efficacy of thBlackSheeproblem-diagnosis approach as applied to Hadoop. A
total of approximately 30 to 40 problem-free experiment runs of eachloaxikype examined were run, and
all traces were carefully visually inspected to ensure that for eachleaatkonly traces that were similar
to other traces for the same workload were considered. Then, tracesdpresentative runs were used for
our analysis.

6.2.1 Setup and data collection

We deployed a 6-node (5 slave, 1 master) Hadoop 0.12.3 cluster on sMi83®entium Il nodes on the
Emulab remote testbe@()], each with 512 MB of main memory, and running Linux 2.6.20. A seventh 850
MHz Pentium Ill node was used to generate workloads for the Hadosgeclu

Operating system-reported resource metrics were collected frope shedilesystem using theysstat-8.0.4
system monitoring packag8@]. Metrics from the following categories were collected usingdhestat
package: aggregate CPU utilization and process activity, aggregaté/@isictivity, paging and virtual
memory subsystem activity, per-disk I/O activity, per-network deviceviggtiand per-process CPU and
memory utilization. These metrics were collected at one second intervals, @addhional overhead im-
posed on the system was not found to be significant. However, furtbes i required to quantify the
overheads of this instrumentation.

22

Hadoop application state counts were collected by parsing Hadoop actigigyflom the Hadoop
DataNodes and TaskTrackers using the Hadoop log parser as éésicriBectiord; this parsing was per-
formed using the offline mode of the log parser to generate time series tfeagslication event and state
counts. Parsing was generally not time-consuming, and parsing amevegdile from one node generated
from an active workload lasting one hour took less than 2 secondsitB#sp, further work is again needed
to quantify the time costs of using the log parser.

6.2.2 Candidate workloads

Candidate workloads for Hadoop were picked from the example Had@gp@Réduce applications as pro-
vided with the Hadoop distribution, as well as the Nutch distributed web cr§2Bg28]. Therandomwriter
and sort example applications were picked as candidate workloads as they are cbhnsuggested as
benchmarks for Hadoop cluste], while the Nutch web crawler was picked as it represents a significant
real-world application commonly used with Hadoop.

The objective of the choice of candidate workloads is to empirically obskeveehavioral characteris-
tics of a gamut of possible Hadoop behavioral profiles when runnirgustypes of application workloads,
so that the normal behavior of Hadoop as exhibited with these workloadgemiiralize to arbitrary Hadoop
workloads. Application workloads can be classified as being combinatfawmpute-intensive, disk-read
and disk-write intensive, and network-intensive, while real applicatiorklwads will generally be com-
posed of some combination of these characteristics.

The randomwriter example application writes a given configurable number of structuredd®co
comprised of random bytes to disk on each Hadoop node, and refwresdisk-write intensive workload
with minimal disk-reads and minimal computation. Tdwert example application sorts a given file of struc-
tured records by key, and represents a balanced mixed workload whthedids, disk-writes, and network
transactions to merge sorted records. The Nutch web crawler refwesesal-world workload, and also
represents a network-intensive workload (relative to disk and comtitétyy). In our experiments, the
randomwriter was typically configured to write 2 GB of data to each node sitwet was typically set up
to sort 2 GB of data per node (or a 10 GB dataset), and Nutch was usealtbaclocally mirrored static
website with approximately 2000 pages, served from an independeatlocal to the experiment cluster
but not running any Hadoop instance. Hence, we believe that oureclbiworkloads feasibly provides
adequate coverage of the possible Hadoop workloads.

6.2.3 Change points applied: Characterizing normal application behaor

Next, the time series’ of each of the resource metrics and application statts soerre assembled into a
single trace for each run of an experiment. Visualization tools were thdiedgp each trace to generate
plots of the time series’ for resource metrics and application state countgheuwtiange point algorithm
was applied to the time series’ for resource metrics and application state .cdtingdly, the behaviors
of pairs of the change points of resource metrics and application statésaas manually examined to
identify consistent patterns during normal application behavior that caisdx as behavioral indicators of
normal application behavior. These signatures of normal applicatiowioelecan then be applied to problem
diagnosis by identifying behaviors that deviate from this prior-knowlezfgeroblem-free behavior.

The generation of change points for application state counts and resoetdcs is as follows. First,
values for the tunable parameters of Algoritimvere chosen: these wewandow the size of the obser-
vation window measured in the number of samples to the left and right of theyuder consideration in
the time series, anthresh the proportion of left meap,, that the difference of mean&p, must exceed
for a change point to be flagged. The tuning parameters were chosertowoebjectives: (i) to generate
application state count change points that corresponded to high-I@estexions based on oarpriori un-

23

derstanding of the behavior of Hadoop (for instance, the number of relep thanging in the TaskTracker
should generate a change point in our algorithm), and (ii) to generat@ehmints in as many resource
metrics as possible that lined up with the application state change points. Thithasmplicit assumption

that the hypothesis of thBlackSheempproach, that resource metrics and application state counts should
behave similarly, is correct—doing so is theoretically sound from a machineihggpoint of view, as the
assumption is akin to a Bayesian assumption of priors, with the exception thpathmeters are being
tuned by hand for (at least this initial pass of) this work.

Next, change points were generated for each application state cousdemdesource metric, based on
tuning parameter values that were chosen separately for application@tats,cand for resource metrics.
The intermediate results and eventual chosen parameter values of thepttotuags are reported in Section
6.3.1

Finally, the corroboration between application state counts and resoutiesmes verified using the
algorithm presented next, with the addition that the logarithths {(og(x+ 1)) of all measured metrics was
used to perform analysis on the change points rather than the absolds ghhbserved values.

6.2.4 Evaluation of corroboration between application state countand resource metrics

Next, we describe the methodology and algorithm for evaluating the paitea/ioe of change points in
application state counts and resource metrics. Algor2hsthe (simple) decision function for determining
if the presence (or absence) of a change point in the resource metrgcttyp predicted a presence (or
absence) of a change pointin the application state, in which case a titiespmstrue negative was recorded
respectively. Evaluation scores of the accuracy of predictions vesigreed as follows: non-negative values
were assigned to points in time for which true positives or true negativggptitation state change points
were predicted by resource metric change points, and negative vatwiesassigned to points in time for
which false positives or negatives were observed. The rationalei$atthice of scores is that the evaluation
score is heavily biased against misdiagnoses, so that misdiagnosingye gloamt (false positives/negatives)
will impact the score negatively much more than correctly diagnosing a ehawigt will positively impact

it.

Algorithm 3 Decision function for deciding if two orthogonal views of the system agriée each other
1: procedure STATEMETRICCORROBORATEEVAL (change pointetric, change poingate) >
changepoiris are boolean flags indicating if a change point occurred in the time sdrike cesource
metric or application state count respectively
if (changepoinfetric == true) && (changepoingaie== true) then > True positive
return 1
else if (change pointetric == false) && (changepoingae== false) then > True negative
return O
else if(changepointetric == true) && (change poingaie== false) then > False positive
return —2
else if(changepointetic == false) && (changepoinkaie==true) then > False negative
return —1
10: end if
11: end procedure

The notion of true/false positives/negatives is defined relative to resouetric change points being
used to predict application state change points. Change points in the applgtat®are arbitrarily chosen,
without loss of generality, to be the unobserved ground truth of the afipli&abehavior, and the change
points in resource metrics are then used to classify or predict if there @gelpoint in the application state.

24

The observed application state change points are then used to test ifdieipnemade by the (absence or
presence of a) change point in the resource metric of the application statgecpoint is correct. It should
be noted that due to our definition of normal behavior as having both applicstate and resource metric
change points agree with each other, this choice of ground truth is withesiplogenerality and can be
reversed.

6.3 Results and Analysis

Our analysis provides initial evidence supporting our hypothesis thédicappn state counts and resource
metrics will agree with each other under problem-free, normal executionr&3ults suggest further direc-
tions for developing this hypothesis into a full-fledged approach forlpmlaiagnosis.

In general, some application state count-resource metric pairs have exhilsitelly corroborating
behavior, in which change points in the count of the particular applicatit& staurred only together with
change points in the particular resource metric, after allowing for minor effigets due to possible lags in
either of the variables of interest.

In addition, there is evidence that workload types, as defined in Se&202 can be identified using
change point corroboration. Particular application state count-resougtric pairs exhibited corroborating
behavior only under particular workloads, and not others, suggesitghe absence or presence of corrob-
oration between particular application state count-resource metric paisepanas identifying signatures
for workload types.

6.3.1 Parameter tuning

We review the effects of different values for the two tunable parameper&l§orithm 1, the window size
measured in number of samplegindow and the thresholthreshas a proportion of the left meap,,
on the change points generated for each of application state counts smufcee metrics. We consid-
ered the change points in the aggregate on state counts for each of tido@atand TaskTracker (i.e.
a change point is said to be observed in the DataNode (or TaskTraakemet if a change point is
observed in any of the application states for the DataNode (or Taskanaaktimet, or more formally,
VX e {State%atanodgétasktracker}aChangepOirHatanodg‘tasktracker: ma){X}) for tuning purposes. In order to
maximize the amenability of the change points generated for problem diagn@&siaimed to generate
change points such that the separation between groups of consatige points was maximized. This
was to maximize the degree to which we could visually identify corroboratinggghpoints between appli-
cation state counts and resource metrics.

First, we held the value dhreshconstant, athreshiate = 20.0 andthreshesource= 1.0, and varied
windowfor aggregate application state counts for both aggregated DataNodeaiate and TaskTracker
state counts.

We found that the optimal values @findowthat resulted in the greatest separation between groups
of change points differed for DataNode state counts and resource sne@ansider Figurg and Figure
8: the change points for the resource metric are relatively well-spaced imeRigwhere thevindow= 5,
while the change points for the DataNode state counts are relatively pgartyd and do not appear to
mark out distinguishable logical phases of execution; on the other haRijune8, with window= 45, the
change points for the resource metric are less well-spaced and lessrddhan in Figurd, but the change
points for the application state counts in Fig@®ave significantly greater separation between groups of
consecutive change points. Hence, we propose as a heuristic thatltieeofwindowfor change point
generation for resource metrics be approximately one order of magniti@éesthan that for DataNode
state counts, witlvind OWesourcemetric® 5, andwindoWsppiicationstatecounts® 45.

25

Tineie

Il

Figure 7: Plot of change points (binary indicators) of resource metftJGtilization, user%) in top panel,
and of change points of application state counts for DataNode in bottonh, pétie x-axis measured in
seconds for both plotsyindow= 5.

[

Figure 8: Plot of change points (binary indicators) of resource metft)Gtilization, user%) in top panel,
and of change points of application state counts for DataNode in bottonh, péttex-axis measured in
seconds for both plotsyindow= 45.

26

However, we found that the optimal valuewiihnd owfor TaskTracker state counts and resource metrics
that resulted in the greatest separation between groups of changevpasrggnilar—for both TaskTracker
state counts and resource metrics, smaller valuesrafowgave rise to greater separation between groups
of change points. We propose, as a heuristic, that a valwérafow= 5 be used for computing change
points in TaskTracker state counts (while the heuristic for resource métiospreviously holds). This is
as shown by Figure8 and10, where the change points faindow= 5 are markedly more separated than
for the change points faxindow= 45.

The intuition behind the difference in the optimal window sizes for DataNode staunts and for
TaskTracker state counts and resource metrics is that DataNode state amiexperiencing changes in a
different time-scale than TaskTracker state counts and resource métrite steady state during periods
of workload, the DataNode serviced many requests relative to the Takerras each map or reduce task
handled by the TaskTracker involved multiple data blocks. Thus, Datastatks tended to exhibit some in-
trinsic steady-state fluctuation that was normal and expected of its probéerbédhavior, while TaskTracker
states were relatively longer lived as compared to DataNode states,samulae metrics experienced less
fluctuation/fewer change points than DataNode state counts for the samg panameters. Thus, different
tuning parameters can be used for the DataNode state counts, as thescimating DataNode state counts
can be argued to be part of the steady state of its behavior.

Next, we studied the effect of varyirigresh holdingwind owaie = Wind 0Wesource= 20.0 constant.

We found that higher threshold values resulted in excessively mangehmoints being omitted from
the time series of resource metrics, resulting in a sparse series of chaimge generated that fails to
correspond with the series of change points generated from applicttterceunts. For a value tfiresh=
4.0, as shown in the top panel of Figuté, the series of change points generated from the time series of
the resource metric is sparse relative to the series of change points feaphcation state counts in the
bottom panel, while for a value ¢firesh= 1.0, as shown in the top panel of Figut2, the series of change
points is less sparse than in Figurg but the change points remain well-spaced with significant and clear
separation between groups of successive change points. We bebl¢vhedlvalue othreshfor resource
metrics can be further lowered, but we have nonetheless demonstrétemhiiavalues othreshare more
effective for use with generating change points for resource metrics.

In addition, we found that lower threshold values resulted in excessimalyy change points being
generated for DataNode state counts, reducing the number of cornsechainge points, resulting in less
smooth state count change point plots, while lower threshold values reguleetessively few change
points being generated for TaskTracker state counts, increasing fiienwf consecutive change points,
resulting in smoother state count change point plots. This is as demonst@tethe bottom panel plots
of Figuresll, 12, 13 and14 respectively. The change point plots are smoother and the succebaivge
points have greater inter-change point separation for DataNode staiesdn Figurel2, with the larger
threshyiae= 4.0 than in Figurel 1, with the smallethreshyae= 1.0, and so are more amenable to statistical
analysis in general. The change point plots for TaskTracker statés;amthe other hand, are smoother in
Figurel14, with threshae= 1.0, than in Figurel 3, with threshyae= 4.0.

The general intuition for the difference between the optimal valuehmdshin these cases is that
DataNode states, such as ReadBlock and WriteBlock, are short-livetthéf configured block sizes) relative
to TaskTracker states, such as Maps and Reduces. Hence, withrdiiedestates, the DataNode has
greater steady-state fluctuations than the TaskTracker, so that felelrigllhmeaning to be extracted from
the DataNode state counts, greater threshold values must be used to fiftactuations that are intrinsic
to its steady-state behavior to characterize bulk behavior, which is mohel éseproblem diagnosis in
general. Also, the intuition for the optim#hreshvalue for resource metrics is that the heuristic that is
guiding our choice in this case is our prior assumption of how change poinesauirce metrics should
corroborate with the change points in application state counts.

Thus, we have demonstrated a few optimal tuning parameter values foritAigdl, and have in

27

RS

Figure 9: Plot of change points (binary indicators) of resource metftJGtilization, user%) in top panel,
and of change points of application state counts for TaskTracker in baiowl, with x-axis measured in
seconds for both plotsyindow= 5.

Figure 10: Plot of change points (binary indicators) of resource m&R¢J utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bgidorl, with x-axis measured in
seconds for both plotsyindow= 45.

28

uuuuuuu

Figure 11: Plot of change points (binary indicators) of resource me@il) utilization, user%) in top
panel, and of change points of application state counts for DataNode imbp#ioel, with x-axis measured
in seconds for both plotshreshnetric = 4.0, threshyae= 4.0.

uuuuuuu

Figure 12: Plot of change points (binary indicators) of resource me®RIJ(utilization, user%) in top
panel, and of change points of application state counts for DataNode imbpé#ioel, with x-axis measured
in seconds for both plotshreshnetric = 1.0, threshiaie= 1.0.

29

Tiners

Figure 13: Plot of change points (binary indicators) of resource mé&tft) utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in batowel, with x-axis measured in
seconds for both plotshreshnetric = 4.0, threshyaie = 4.0.

Figure 14: Plot of change points (binary indicators) of resource mé&R¢J utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bgidorel, with x-axis measured in
seconds for both plotshreshnetric = 1.0, threshyae= 1.0.

30

so doing demonstrated that our hypothesis has thus far been suppprted successful tuning of the
parameters. The general intuition obtained from the tuning processstagbat the parameters used by
the algorithm are sensitive to the configuration of the application, and has ititedisome aspects of the
behavior of the application.

This is a double-edged sword, as it demonstrates that analyzing theeghaings of application states
and resource metrics together can aid in understanding the applicatiatsdthat tuning the algorithm can
be a challenge for users without significant prerequisite knowledget @he application to be profiled/to
have problem diagnosis carried out. However, this is also an opportasitgayesian hyper-parameter
learning can be applied to the problem of learning the optimal values of thegtpairameters, and the
learning process itself can provide positive feedback to the diagnostiegs, as will be described in Section
8.3.2

6.3.2 Distinguishing workloads

From the trace data collected, we found that particular pairs of the colypdstacular application states and
the metrics of particular resources displayed consistent behavior witbinvearkload, but varied across
workloads. One such case in point is the change point series of thésanfuthe ReduceTask state for the
TaskTracker, and the change point series of the user-spacenfzgreeCPU utilizationyser?) resource
metric.

From traces shown in Figurd$ and 16 for the randomwriter andsort workloads respectively, it
can be seen that there is a strong co-occurrence of the change gdlmscounts of the ReduceTask state
and the change points of theer’ metric, such that the presence (and absence) of a change point in the
state count or metric serves as a good predictor of the presence (@mtapof the metric or state count
respectively.

On the other hand, from the trace shown in Figlirefor the Nutch web crawler workload, it can be
seen that the co-occurrence of the change points of the counts ofdnedIask state and the change points
of the user? metric is much weaker than in the previous two workloads, although all threestraere
drawn from problem-free runs. This suggests that the patterns of #mg#trof co-occurrence of change
points in application state counts and metrics can be used as a sighatureklmads to infer the type of
workload being executed on a given node.

An explanation for the difference in change point behavior betweenrdhomwriter and sort
workloads and the Nutch web crawler workload is that the former two waddaontain periods of disk-
I/0-bound activity, when large amounts of blocks are being written to dibkewhe web crawler workload
does not have such a phase of execution. This suggests that a siroogurrence of change points for the
ReduceTask state and thger? metric can be an indicator for disk-1/0-bound activity.

Again, the higher level implication of this observation is that patterns canurelfim co-occurrences of
behaviors in application state counts and resource metrics to learn signaftwerkload types for anomaly
detection.

6.3.3 Change point corroboration with resource metrics

Next, we present, in Figurg8 a visualization of the operation of our change point corroboration algayith
Algorithm 3, using a single resource metric and a single application state count, wHesddpgevery point

in the time series of change points generated from a resource metric apglaraton state count. The
values of the evaluation score defined in Sec8dh4are plotted against time alongside the time series of
change points for the resource metric and counts of the chosen applisttten This illustrates how we
evaluate the efficacy of the corroboration of check points for a singlerexental run.

31

Figure 15: Plot of change points (binary indicators) of resource mé&tft) utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in batsowl, with x-axis measured in
seconds for both plots; Trace of a single run @kadomwriter workload.

Tineie

Tineis

Figure 16: Plot of change points (binary indicators) of resource mé&R¢J utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bgidorel, with x-axis measured in
seconds for both plots; Trace of a single run abat workload.

32

This example trace highlights one source of false positives and negatiescorroboration of change
points—edge effects, due to minor lags in the response of application statts ¢o resource metrics, or
vice versa. Even in the case that application state count change poimaradppvisually line up with
resource metric change points, false positives and negatives still octlie immediate vicinity of the
change points in the time series, resulting in false positives and negatitesdhspurious and not truly
indicative of prediction error. This issue is addressed, and a solutiamj®ged, in SectioB.3.1 Apart
from edge effects, it appears that false positives and negativeeealsio from tuning parameter values that
result in different high-level sensitivities of the change points produséth change points being generated
for changes that have different orders, that parameter tuning wilidgigyhcritical to any success of this
approach.

6.3.4 Change point corroboration: Evaluation

Finally, we present aggregate statistics of the evaluation scores for tteboration between the change
points of every pair of application state and resource metrics for a singtesentative node in a single
representative experimental run for each workload type, as an illustratithe general performance of
our corroboration technique in its current form. The histograms prefenfsequency of mean evaluation
scores for application state-resource metric pairs.

From Figuredl9, 20, and21, it can be seen that the evaluation scores for all application state-cesour
metric pairs are negative, indicating that the false positive/negative rdteefchange point corroboration is
currently not sufficiently effective for the corroboration of chang&fs to be used as a problem diagnosis
algorithm.

Nonetheless, the modal mean evaluation score is approximatel.1, with a strong distribution of
mean evaluation scores around this range. This implies that there are slightlyhan two false negatives
or one false positive on average for every true positive (see Sdxgotfor a detailed definition of true/false
positives/negatives in this context). Given that the mean evaluation scafmast O and only slightly
negative, this suggests that there is potential for the algorithm to be reéfirrdduce better classification
results than a random classifier.

Finally, the histograms of mean evaluation scores for all three workloadsirarlar in shape, suggest-
ing that our approach is possibly agnostic to different workload types.

7 Related Work

7.1 Problem-Diagnosis Techniques

There are many existing techniques to perform problem diagnosis in distlisystems. ThRAMSap-
proach proposed here differs from those of Cohen etHldnd Pinpoint §] in a few ways. First, we do
not employ any learning or training prior to problem diagnosis. Our agprésabased on a hypothesized
a priori model of problem-free system behavior, and we use statistical methods iistst@hether this
hypothesized behavior is being followed. Our technique has no learaergead but is constrained by the
degree to which our hypothesized model of system behavior is applicabiledotypes of systems.

Second, both Pinpoint and Cohen’s "ensembles” utilize a system-widealgipproach that examines
metrics on every node in the distributed system. This may cause scalability isgaass of computation
and communication overhead in large systems (altholigjipfesents a scalable approach). BothRAeVS
andBlackSheempproaches addresses scalability by making the rather strong assumatioridimation
local to a node alone is sufficient for problem diagnosis, thereby sakiengetwork bandwidth needed to
transmit metrics to a central location for analysis, and limiting the analysis to thefsize performance-
data set of one node.

33

Our approach is also a black-box technique (although we do make udeiteflvox information, ob-
tained via black-box techniques, in the form of application logs), RA#1Saims for problem diagnosis
without using any application-level knowledge, in constrast with Pip’s wihibe approachl6]. Finally, the
"odd-man-out” peer-comparison heuristi5] proposed by Pertet et al might apply to the target distributed
system used in our paper, as the slave nodes in a Map/Reduce cludtecaoceivably be running very
similar workloads and therefore, might lend themselves to the peer compafigmrformance data for
problem diagnosis.

7.2 \Vertical Profiling

The idea of correlating system behavior across multiple layers of a systeat iew. Hauswirth et al's
"vertical profiling” [9] aims to understand the behavior of object-oriented applications by comgetaetrics
collected at various abstraction levels in the system. Vertical profiling wed tesdiagnose performance
problems in applications in a debugging context at development time, reqaga®ss to source code while
our approach diagnoses performance problems in production systerositwitiing application knowledge.

8 Future Work

8.1 Sliding windows forRAMS

Currently, the use of an ordinary least squares linear regressiomipute a test statistic as a criteria for
diagnosis requires the use of large windows of samples (at least 30 aofles) for the linear regression to
produce statistically sound (unbiased estimators with reasonably goodfiteates of the various parame-
ters. Hence, the next area of improvementRéMSis to use more direct measures of correlation other than
autocorrelation between lagged residuals in an ordinary least squarasrixgression. This will reduce the
computational cost of computing the test statistic needed for determining ifeaisiadoroblem node. Also,
the use of a sliding window, in conjunction with more direct measures ofletioe, will hopefully reduce
the number of samples needed for a statistically sound test statistic to be computed

8.2 Experimental Setup forBlackSheep

The two main areas of improvement for the experimental procedugéckSheepre in (i) the controlled
measuring of the overheads of instrumentation, as measured in systemteassage and impact on system
performance, and (ii) the varying of workloads for Hadoop to increéasegenerality of the experiments
ran, to create workloads with a variable mix of modes of operation (diskapate-, memory-, or network-
intensive, for instance), and to identify any characteristics of Hadaatpetthibit a stable relationship with
workloads that vary along the dimensions we have defined.

8.3 Change Point Corroboration

Various improvements and enhancements can be made to the overall chartgwpoboration algorithm
to improve its accuracy in correctly predicting application state behavior (imstef change points) using
the behavior of resource metrics, to create a viable problem diagnosisaapp

8.3.1 Accounting for edge-effects in change point corroboration

To account for edge-effects and possible lags in application behawointend to implement a low-pass
Gaussian filter over a tunable window size of change points observerklaeid after the given instance in
time of observation—for a given change point detected in the systemrcesmetric at time, if a change

34

point is observed in the application state count in a time within the given witdeyt —w,t +wj|, then, the
algorithm diagnoses the application as being problem-free with a probabilitiasa Gaussian fall-off, so
that the further front that the application state count change point is observed, the lower thelity that
the application is truly problem free. Conversely, if a change point is bs¢iwed in the system resource
metric at timet, but a change point is observed in the application state count within the givelow at

t’ € [t—w,t +w], then the algorithm diagnoses the application as having a problem with [ifgbiziat has

a Gaussian fall-off, so that the greater the differelneet’|, the lower the probability that the application has
a problem.

8.3.2 Dealing with magic numbers: Bayesian hyper-parameter learning

TheBlackSheepproach currently uses two tunable parameters: a window size andladigreHowever,
initial results have proved that optimal values for these parameters cagtg $ensitive to the particular
variables in question that they are applied to, specifically, resource matritspplication state counts.
Hence, an approach to these magic numbers, or optimal values for tuaadhegiers, would be to introduce
an additional layer of Bayesian hyper-parameter learning to learn viduésese tunable parameters that
will optimize the classification problem of change point identification in applicatates.

8.3.3 Learning workload identities

Finally, an extension of th&lackSheeghange point corroboration technique would be to use the same
change point corroboration ideas to attempt to learn identities of worklaadgp find out if the parameters
that identify these workloads can be composed in an intelligible manner to cigatgures of arbitrary
workloads as defined using change point corroborations betwednajgm state counts and resource met-
rics.

8.4 Application logs

Finally, yet another extension to the work presented here with the Hadggmlser would be to identify
characteristics of applications and their logs in general that would réimel@ramenable to similar treatment
of extracting events, and more importantly, inferring states of executiofe @pplications.

9 Conclusion

In conclusion, we have presented: (i) what we believe to be a novelfusgplication logs to extract ap-
plication events, and to use these events to infer high-level, semanticallgtatds of execution of the
application; (ii)RAMS a new, scalable black-box approach to problem diagnosis using ekfriemvdevel
metrics, hardware performance counters, in conjunction with aori statistical model of the behavior of
nodes in a distributed system, to perform node-local problem determinatodistributed system, and (iii)
BlackSheepa black-box technique for characterizing application software behbhyisynthesizing appli-
cation behavior, as reported through application logs using our newdgpied log parsing technique and
library, together with collections of operating system-reported resourtiécsjavith the eventual objective
of performing problem diagnosis by detecting anomalies from normal agiplickeehavior. Not only have
we described the principles behind the algorithm and the architecture ¢dgpparser for inferring state,
we have also presented rudimentary results demonstrating the efficRéyMBat problem determination.
Lastly, we have shown an approach to synthesizing information from apipicdogs with operating system
metrics.

35

Acknowledgements

I would like to thank Priya Narasimhan for her advice, constant enceuanagt and inspiring thoughts, and
Xinghao Pan for enduring many animated descriptions of this work, withbidhathis project would not
have been possible. This work is also dedicated to my parents and sisteeifenwavering, whole-hearted
support for me to pursue my dreams.

References

[1] M.K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. AnerousisMummert.Problem Determination
in Enterprise Middleware Systems using Change Point Correlation of TariesSData Proc. 10th
IEEE/IFIP Network Operations and Management Symposium, VancoB@e12006.

[2] P. Barham, A. Donnelly, R. Isaacs, R. Mortié&fsing Magpie for request extraction and workload
modelling. Proc. 6th Symposium on Operating Systems Design & Implementation, Sande@nc
CA, 2004.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. HoNRugebauer, I. Pratt, A. Warfielden
and the Art of Virtualization, Proc. 2003 Symposium on Operating Systems Principles, Albany, NY.

[4] M. Basseuville, I. V. Nikiforov. "Change Detection Algorithms” iDetection of Abrupt Changes: Theory
and Application1st ed. New Jersey, USA: Prentice Hall, 1983, pp. 23-62.

[5] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. BrewdPinpoint: Problem Determination in Large,
Dynamic Internet Services. Proc. International Conference on Dependable Systems and Nefworks
Bethesda, MD, 2002.

[6] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, A. FBapturing, Indexing, Clustering, and
Retrieving System History. Proc. 2003 Symposium on Operating Systems Principles, New York, NY.

[7] J. Dean, S. Ghemawa¥lapReduce: Simplified Data Processing on Large Cluster®roc. 6th Sym-
posium on Operating Systems Design & Implementation, San Francisco, OA, 20

[8] S. Ghemawat, H. Gobioff, and S. Leunbhe Google File System. 19th Proc. 19th Symposium on
Operating Systems Principles, Lake George, NY, October, 2003.

[9] M. Hauswirth, A. Diwan, P. Sweeney, M. Hind/ertical Profiling: Understanding the Behavior of
Object-Oriented Applications. presented at the 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Vancouver, 8@da, 2004.

[10] J. HansenTrend Analysis and Modeling of Uni/Multi-Processor Event Log<lectrical and Com-
puter Engineering Department, Carnegie Mellon University. PittsburghREp. CMU-ECE-1988-025,
1988.

[11] C. Huang, I. Cohen, J. Symons, T. Abdelzaher. "Achievingl&ia Automated Diagnosis of Dis-
tributed Systems Performance Problems,” Enterprise Systems and Sdfateratory, HP Labora-
tories Palo Alto. Palo Alto, CA. Rep. HPL-2006-160(R.1), 2007.

[12] T. T Y. Lin, D P Siewiorek.Error Log Analysis: Statistical Modeling and Heuristic Trend Analysis.
IEEE Transactions on Reliability, Volume 39, Issue 4, Oct 1990, pp.489-

36

[13] G. S. Maddala, "Autocorrelation” itntroduction to Econometrics3rd ed. West Sussex, UK: John
Wiley & Sons, 2001, pp. 228-249.

[14] A. Menon, J. Santos, Y. Turner, G. Janakiraman, W. ZwaeglePptagnosing Performance Overheads
in the Xen Virtual Machine Environment. Proc. First ACM/USENIX International Conference on
Virtual Execution Environments, Chicago, IL, 2005.

[15] S. Pertet, R. Gandhi, P. Narasimh&mgerpointing Correlated Failures in Replicated Systemgre-
sented at the USENIX Workshop on Tackling Computer Systems Problems veithive Learning
Techniques (SysML), Cambridge, MA, April 2007.

[16] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah, A. Vahdrip: Detecting the Unexpected in
Distributed Systems. Proc. 3rd Symposium on Networked Systems Design & Implementation, San
Jose, CA, 2006.

[17] D. Tang, R. lyerAnalysis of the VAX/VMS Error Logs in Multicomputer Environments A CastyS
Proc., 3rd International Symposium onSoftware Reliability Engineeringe&eh Triangle Park, NC,
1992.

[18] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhduiage: diagnosing production run failures at the
user’'s site. Proc. 21st Symposium on Operating Systems Principles, Stevenson 08/A, 2

[19] I. Witten, E. Frank, Data mining : practical machine learning tools and techniqu&sd ed. Boston,
MA: Morgan Kaufman, 2005, pp. 161-176.

[20] White, B. Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Néaybd., Hibler, M., Barb, C.,
Joglekar.An integrated experimental environment for distributed systems and mkstwo Proc. 5th
Symposium on Operating Systems Design & Implementation, Boston, MA, 2002.

[21] O. R. Zaane, H. M. Taxin, J. HanDiscovering Web Access Patterns and Trends by Applying OLAP
and Data Mining Technology on Web LogsProc. Advances in Digital Libraries, Pittsburgh, PA, 1998.

[22] Intel 64 and IA-32 Architectures Software Developer's Manual Vol@Be System Programming
Guide, Part 2, Intel Corporation, Santa Clara, CA, 2008.

[23] Apache Software Foundation issue database. https://issues.apggia, 2006.
[24] Apache Logging Services Project. http://logging.apache.org/log4j/7.20
[25] Hadoop. http://lucene.apache.org/hadoop, 2007.

[26] core-user@hadoop.apache.org Archives. http://mail-archpeshe.org/mognbox/hadoop-core-
user/, 2006.

[27] Java Virtual Machine Tool Interface. http://java.sun.com/j2se/1.5.8/daie/jvmti/index.html, 2004.
[28] Nutch. http://lucene.apache.org/nutch, 2004.

[29] oprofile. http://oprofile.sourceforge.net, 2003.

[30] SYSSTAT. http://pagesperso-orange.fr/sebastien.godard/, 2002

37

APPENDIX

A Hadoop Application States

The list of DataNode and TaskTracker events and states that our plampparser extracts from the DataN-
ode and TaskTracker logs respectively are as listed.|dlesstate is a special state which is never reported,
but is included for completeness’ sake. The TaskTracker and Daaledeach implied to be in thdle
state by an absence of counts of all other states.

The Error state can either be an instant or persistent state—inEtaiat states are ones reported on
encountering error messages in the log, while persigerdr states are reported when any of the other
persistent states are reported to have been terminated due to an error.

A.1 TaskTracker Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent?
Idle N N N
Error Y Y Y
ReduceTask Y Y N
ReduceCopyTask Y Y N
ReduceCopyTaskocal Y Y N
ReduceCopyTasRemote Y Y N
ReduceSortTask N N Y
ReduceMergeCopy Y Y N
ReduceReduceTask N N Y
MapTask Y Y N
CleanUp N N Y

A.2 DataNode Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent??
Idle N N N
DeleteBlock N N Y
ReadBlockRemote Y Y N
WriteBlockLocal Y Y N
WriteBlockRemote Y Y N
WriteBlockLocal Replicated Y Y N
WriteBlockRemoteReplicated Y Y N
Error Y Y Y

38

Figure 17: Plot of change points (binary indicators) of resource m&pt)utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bgiaowl, with x-axis measured in
seconds for both plots; Trace of a single run of a Nutch workload.

39

tasktracker state - TTS_ReduceTask - changepoint comparison - user - window 30 + threshold 2.000000 * mean

Corroboration - 0 true neg, 1 true pos, -1 false neg, 2 false pos)

m 2 RERR

Figure 18: Plot of change points (binary indicators) of resource mé&tft) utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in théenpddel, and the evaluation score
of the change point in the resource metric for predicting a change poing iapblication state count, with
x-axis measured in seconds for all three plots; Trace of a single rurafdomwriter workload.

40

Histogram of mean evaluation scores for metric-state pairs for randomwriter

40

Frequency

10

T T
-0.8 -0.6 -0.4 -0.2 0.0

HHWHHHHFHW WWHW

Mean Evaluation Scores

Figure 19: Plot of histogram of evaluation score values for each gegajplication state)-(resource metric)
change point series pair. Trace of a single run odadomwriter workload on a single representative node.

41

Histogram of mean evaluation scores for metric-state pairs for sort

80

Frequency
40
1

20

o a4

T T
-0.8 -0.6 -0.4 -0.2 0.0

Mean Evaluation Scores

Figure 20: Plot of histogram of evaluation score values for each gegajplication state)-(resource metric)
change point series pair. Trace of a single run séat workload.

42

Histogram of mean evaluation scores for metric-state pairs for Nutch

25

Frequency
15
L
1

10
1

J Ml

T T T T 1
-0.8 -0.6 -0.4 -0.2 0.0

Mean Evaluation Scores

Figure 21: Plot of histogram of evaluation score values for each gegajplication state)-(resource metric)
change point series pair. Trace of a single run Biach workload.

43

1401-node1 :hadoop~d: de-events

T T
DNS_DeleteBlock-InstantStateEvent

DNS_ReadBlockLocal-StateStartEvent
DNS_ReadBlockLocal-StateEndEvent

DNS_ReadBlockRemote-StateStartEvent

DNS_|
DNS_MWriteBlockLocal-StateStartEvent
DNS_MWriteBlockLocal-StateEndEvent
DNS_WriteBlockRemote-StateStartEvent
DNS_MWriteBlockRemote-StateEndEvent
6 — b 2 DNS_WriiteBlockLocal_Replicated-StateStartEvent
DNS_WriteBlockLocal _Replicated-StateEndEvent
DNS_WriteBlockRemote_Replicated-StateStartEvent
DNS_MWriteBlockRemote_Replicated-StateEndEvent
_Error-StateStartEvent

&

DNS_Error-StateEndEvent
DNS_Error-InstantStateEvent

T

| LI LTAR

o 1000 2000 3000 4000 5000 6000 7000 8000

Figure 22: Plot of time series of counts of application events as reportétiyadoop DataNode, as parsed
by our Hadoop log parser.

44

20080407-002-1401-node1 :hadoop-datanode-state

12 T T T T T T
DNS_DeleteBlock
DNS_ReadBlockLocal
DNS_ReadBlockRemote ————
DNS_MWriteBlockLocal
DNS_WriteBlockRemote
DNS_WriteBlockLocal _Replicated ———
DNS_MWriteBlockRemote_Replicated
10 — —
s _
ol _
a4l _
. _
& | | I I
o 1000 2000 3000 4000 5000 6000 7000 8000

Figure 23: Plot of time series of counts of application states as reporte@ biaiioop DataNode, as parsed
by our Hadoop log parser.

45

20080407-002-1401-nodel :hadoop-tasktracker—events
5 T T T T T T

T

TTS_Error-StateStartEvent
TTS_Error-StateEndEvent
TTS_Error—InstantStateEvent
TTS_ReduceTask-StateStartEvent
TTS_ReduceTask-StateEndEvent
TTS_ReduceTask-InstantStateEvent
TTS_ReduceCopuTask-StateStartEvent
TTS_ReduceCopyTask-StateEndEvent.
TTS_ReduceCopuTask-InstantStateEvent.
TTS_ReduceCopuTask_Local-StateStartEvent
TTS_RedudeCopuTask_Local-StateEndEvent.
TTS_ReduceCopuTask_Local-InstantStateEvent
TTS_ReduceCopyTask_Remote-StateStartEvent
5_ReduceCopyTask_Remote-StateEndEvent.
4 TT§_ReduceCopyTask_Remote-InstantStateEvent.
TTS_ReduceSortTask-StateStartEvent.
TTS_ReduceSortTask-StateEndEvent
TIS_ReduceSortTask-InstantStateEvent
JTS_ReduceMergeCopy-StateStartEvent
TT5_ReduceMergeCopy-StateEndEvent
TTS_ReduceMergeCopy-InstantStateEvent.
TTS_ReduceReduceTask-StateStartEvent.
TTS_| Task-Stat. nt

TS Task-T, tStateE:
TTS_MapTask-StateStartEvent
TTS_MapTask-StateEndEvent
TTS_CleanUp-InstantStateEvent

2

AT

o 1000 2000 3000 4000 5000 6000 7000 8000

Figure 24: Plot of time series of counts of application events as reportéidebidadoop TaskTracker, as
parsed by our Hadoop log parser.

46

2 407-002-1401 del :hadoop-tasktrack ate

5 T T T T T T T
TTS_ReduceTask
TTS_ReduceCopyTask
TTS_ReduceCopyTask_Local
TTS_ReduceCopuTask_Remote
TTS_ReduceSortTask
TTS_ReduceMergeCopy ———
TTS_ReduceReduceTask
TTS_MapTask
TTS_CleanUp
4l _
s _
2 _
L _
p | I I I I I |
o 1000 2000 3000 4000 5000 6000 7000 8000

Figure 25: Plot of time series of counts of application states as reportecelijatioop TaskTracker, as
parsed by our Hadoop log parser.

47

	Introduction
	Background
	Scalable Problem Diagnosis
	Problem Diagnosis using Multiple Data Sources
	Application Logs as a White-box Data Source
	Problem Diagnosis for Hadoop
	Hadoop failure scenarios

	Approach
	Target System
	Manifestation-centric Problem Diagnosis: Goals and Non-goals
	Available Data Sources
	Hardware Performance Counters
	Operating System-reported Resource Metrics
	Application Logs

	Analytical Framework
	RAMS: an a priori Model of System Activity
	BlackSheep: Corroborating Application Behavior with System Activity

	Application Log Parsing Case Study: Hadoop activity logs
	Log Overview
	Application Views: Events and States
	Events and States
	Events and States in Logs for Hadoop

	Parsing Algorithm
	Parser architecture
	Offline Parser Output

	RAMS: Statistical Tests of an a priori Model of System Activity
	Analytical Methodology
	Linear regression model of system activity
	Autocorrelation of residuals
	Autocorrelation tests for identifying anomalous nodes

	Experimental Setup and Methodology
	Setup
	Fault Injection
	Instrumentation and Data Collection
	Analysis

	Evaluation Results
	Statistical Characteristics of Metrics
	Efficacy of Problem Diagnosis

	BlackSheep: Application-System Corroboration through Change Point Analysis
	Analytical Methodology
	Change point analysis
	Change Point Detection Algorithm
	Corroborating system activity change points with application log events
	Building profiles of application behavior

	Experimental Setup and Methodology
	Setup and data collection
	Candidate workloads
	Change points applied: Characterizing normal application behavior
	Evaluation of corroboration between application state counts and resource metrics

	Results and Analysis
	Parameter tuning
	Distinguishing workloads
	Change point corroboration with resource metrics
	Change point corroboration: Evaluation

	Related Work
	Problem-Diagnosis Techniques
	Vertical Profiling

	Future Work
	Sliding windows for RAMS
	Experimental Setup for BlackSheep
	Change Point Corroboration
	Accounting for edge-effects in change point corroboration
	Dealing with â•œmagic numbersâ•š: Bayesian hyper-parameter learning
	Learning workload identities

	Application logs

	Conclusion
	Hadoop Application States
	TaskTracker Events and States
	DataNode Events and States

