A large-scale study of failuresin
high-per for mance-computing systems

Bianca Schroeder, Garth A. Gibson

CMU-PDL-05-112
December 2005

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Designing highly dependable systems requires a good utaaelisg of failure characteristics. Unfortunately litttaw data on
failures in large IT installations is publicly availableué to the confidential nature of this data. This paper anayson-to-be-
public failure data covering systems at a large high-pemfance-computing site. The data has been collected overt®pyears
at Los Alamos National Laboratory and includes 23000 faturecorded on more than 20 different systems, mostly léugéees of
SMP and NUMA nodes. We study the statistics of the data,dmguhe root cause of failures, the mean time between &sluand
the mean time to repair. We find for example that averagertaiates differ wildly across systems, ranging from 20-160Qires
per year, and that time between failures is modeled well bye#Wl distribution with decreasing hazard rate. From ongstem
to another, mean repair time varies from less than an hour doenthan a day, and repair times are well modeled by a lognérma

distribution.

Acknowledgements. We thank the members and companies of the PDL Consortiurtuding APC, EMC, Equallogic, Hewlett-Packard,
Hitachi, IBM, Intel, Microsoft, Network Appliance, Oragl®anasas, Seagate, and Sun) for their interest, insigledhbéck, and support.

Keywords: Failure data, Lifetime data, Root cause, Repair time, Higitiggmance computing.

1 Introduction

Research in the area of dependable computing relies in magg wn a thorough understanding of what
failures in real systems look like. For example, knowledbfiture characteristics can be used in resource
allocation to improve cluster availability [3, 18]. The dgsand analysis of checkpoint strategies relies on
certain statistical properties of failures [6, 15, 16]. &neg realistic benchmarks and testbeds for reliability
testing requires an understanding of the characteristiosabfailures.

Unfortunately, obtaining access to failure data from modkrge-scale systems is difficult, since such
data is often sensitive or classified. Existing studies fifes are often based on only a few months of
data, covering typically only a few hundred failures [14, 12, 13, 11, 5]. Many of the commonly cited
studies on failure analysis stem from the late 80’s and &&ly, when computer systems where significantly
different from today [1, 2, 4, 10, 14, 7, 8]. Finally, none bétraw data used in the above studies has been
made publicly available for use by other researchers.

This paper foreshadows the public release of a large seilofdalata. The data was collected over
the past 9 years at Los Alamos National Labs (LANL) and co2@riigh-performance-computing (HPC)
systems used at the site, adding up to a total of 4750 machitie24101 processors. The data contains an
entry for any failure that occurred during the 9-year timdgukand that required the attention of a system
administrator. For each failure the data includes stant tamd end time, the system and node affected, as
well as categorized root cause information. To the best oknawledge this is the largest set of failure data
studied in the literature to date, both in terms of the tireeqal it spans, and the number of systems and
processors it covers.

The goal of this paper is to provide a description of the stiaél properties of the data, as well as
information for other researchers on how to interpret tha.dslVe first describe the environment the data
comes from, including the systems and the workloads, thegssoused to collect the data, and the structure
of the data records (Section 2). Section 3 describes theatelitgy we use in the data analysis. We then
study the data with respect to three important propertiesystem failures: the root causes (Section 4), the
time between failures (Section 5) and the time to repairt{&e6). Section 7 compares our results to related
work. Section 8 summarizes and concludes.

2 Description of the data and environment

To provide the necessary context for analyzing the dataaseribe below the systems the data was collected
on, the workloads those systems are running, and the prasedgo collect the data.

2.1 Thesystems

The data spans 22 high-performance-computing systembdkatbeen in production use at LANL between
1996 and November 2005. Most of these systems are largeidustt either NUMA nodes, or 2-way and
4-way SMP nodes. In total the systems add up to 4750 nodes 4@l Zrocessors. Table 1 gives an
overview description of the 22 systems.

The left half of Table 1 provides high-level information feach of the 22 systems, including the
hardware architecture (NUMA vs SMP), the total number ofewdnd processors in the system, and a
system ID used throughout this paper to refer to a particsjyatem. Unfortunately, we are not able to
release vendor specific information on the hardware useach system. Instead we label system types
using capital letters, such that two systems have the sabm Wehen they use identical processor and
memory chip models. We refer to a system’s label akatsiware type

As the table shows, the LANL site has hosted a very diversefsgfstems. Systems vary widely in
size with the number of nodes ranging from 1 to 1024 and thebeurof processors ranging from 4 to

[(1) High-level system information T (I1) Information per node category |

Archi- Hardw. #Procs | Commiss. Production Mem

‘ tecture ‘ Type ID ‘ #Nodes | #Procs per node ‘ Date ‘ Time (GB) ‘ #NICs ‘

A 1 1 8 8 N/A N/A - Dec-99 16 0

B 2 1 32 32 N/A N/A - Dec-03 8 1

C 3 1 4 4 N/A N/A - Apr-03 1 0

2 Mar-01 Apr-01 - now 1 1

D 4 164 328 2 | Dec02 | Dec02-now 1 1

5 256 1024 4 Oct-01 Dec-01 - now 16 2

6 128 512 4 Aug-01 Sep-01 - Jan-02 16 2

4 Mar-02 May-02 - now 8 2

4 Mar-02 May-02 - now 16 2

7 1024 4096 4 Mar-02 May-02 - now 32 2

4 Mar-02 May-02 - now 352 2

4 Aug-02 Oct-02 - now 8 2

SMP E 8 1024 4096 4 Aug-02 Oct-02 - now 16 2

4 Aug-02 Oct-02 - now 32 2

9 128 512 4 Aug-03 Sep-03 - now 4 1

10 128 512 4 Aug-03 Sep-03 - now 4 1

11 128 512 4 Aug-03 Sep-03 - now 4 1

4 Aug-03 Sep-03 - now 4 1

12 32 128 4| Aug-03 Sep-03 - now 16 1

13 128 256 2 Aug-03 Sep-03 - now 4 1

14 256 512 2 Aug-03 Sep-03 - now 4 1

15 256 512 2 Aug-03 Sep-03 - now 4 1

F 16 256 512 2 Aug-03 Sep-03 - now 4 1

17 256 512 2 Aug-03 Sep-03 - now 4 1

2 Aug-03 Sep-03 - now 4 1

18 512 1024 2 Mar-05 Mar-05 - Jun-05 4 1

128 Oct-96 Dec-96 - Sep-02 32 4

19 16 | 2048 128 | Oct-96 | Dec-96-Sep-02| 64 4

128 Nov-96 Jan-97 - now 128 12

20 49 6152 128 Nov-96 Jan-97 - Nov-05 32 12

NUMA G 80 Apr-05 Jun-05 - now 80 0

128 Oct-98 Oct-98 - Dec-04 128 4

32 Jan-98 Jan-98 - Dec-04 16 4

21 5 544 128 Nov-02 Nov-02 - now 64 4

128 Nov-02 Nov-05 - Dec-04 32 4

H 22 1 265 256 Nov-04 Nov-04 - now 1024 0

Table 1:0Overview of systems

6152. Systems also vary in their hardware architecturerelisea large number of NUMA and SMP based
machines, and a total of eight different processor and mgmodels (types A-H).

The nodes in a cluster system are not always identical. Véllihe nodes in a system have the same
hardware type, they might differ in the number of processmi network interfaces (NICs), the amount of
main memory, or in their commission/decommission date® right half of Table 1 categorizes the nodes
in a system with respect to these properties. For exammenddes of system 12 fall into two categories,
differing only in the amount of memory per node (4 vs 16 GB).

While the table includes information on the time a system ggaamissioned and the time it actually
went into production, the data includes failure recordy doit the production time.

2.2 Theworkloads

The majority of the workloads are large-scale scientificdations, such as simulations of nuclear stockpile
stability. These applications perform long periods (ofteanths) of CPU computation, interrupted every few
hours by a few minutes of I/O for check-pointing. Simulatiworkloads are often accompanied by scientific
visualization of large-scale data. Visualization worklsare also CPU-intensive, but exhibit more reading
of data from storage than compute workloads. Finally, sootes are used purely as front-end nodes, and
others run more than one type of workload, for instance, lgcapnodes often run compute workloads as
well.

At LANL failure tolerance is frequently implemented thrdugeriodic check-pointing. When a node
fails, the job(s) running on it is stopped and restarted oiffardnt set of nodes, either starting from the
most recent checkpoint or from scratch if no check-poinstsxi

. . Root cause
Starttime Endtime System | Node | Type of Node Highievel Detailed
2005-6-21 10:54| 2005-6-21 11:00 6 1 graphics.fe Hardware | Cooling Fan
2005-6-21 15:54| 2005-6-21 16:41 10 93 compute Software | OS Software

Table 2:Sample failure records.

2.3 Data collection

The data is based on a “remedy” database created at LANL & 1886. At that time, LANL introduced

a site-wide policy that for any system failure requiring thiervention of a system administrator a record
describing the failure has to be entered into the remedybdata Consequentially, the database today
contains a record for every failure that occurred in LANLBE systems since June 1996 and that required
intervention of a system administrator.

Table 2 shows some sample records. A failure record contlaé8me when the failure started (Start-
time), the time when it was resolved (Endtime), the systethrende affected, the type of workload running
on the node and the root cause. The workload is eitberputefor computational workloadgraphicsfor
visualization workloads, ofe for front-end. Root causes fall in one of the following fiveylhilevel cate-
gories: Humanerror; Environmentincluding for example power outages or A/C failurétworkfailure;
Softwarefailure; andHardwarefailure. In addition, more detailed information on the roatise is captured,
such as the particular hardware component affected Hgrdwarefailure. The failure classification and
rules for assigning failures to categories were develop#tdly by hardware engineers, administrators and
operations staff at LANL.

Failure reporting at LANL follows the following protocol. afures are detected by an automated
monitoring system that pages operations staff wheneveda isodown. The operations staff then create a
failure record in the database specifying the Starttimé&effailure, and the system and node affected, then
turn the node over to a system administrator for repair. Upgmair, the system administrator notifies the
operations staff who then put the node back into the job mikfédhin the Endtime of the failure record.

If the system administrator was able to identify the rootseaaf the problem he provides operations staff
with the appropriate information for the “root cause” fieldtlwe failure record. Otherwise the root cause is
specified as “Unknown”. Operations staff and system adinattsrs have occasionally follow-up meetings

for failures with “Unknown” root cause. If through those rtiegs or other ways the root cause becomes
clear later on, the corresponding failure record gets aegadcordingly.

Two implications follow from the way the data was collectdeirst, this data is very different from
the error logs used in many other studies. Error logs araraatioally generated and track any exceptional
events in the system, not only errors resulting in systehariai Moreover, error logs often contain multiple
entries for the same error event.

Second, since the data was created manually by system athatiois, the data quality depends on
the accuracy of the administrators’ reporting. Two pogdnproblems in human created failure data are
underreporting of failure events and misreporting of roatise. For the LANL data we don't consider
underreporting (i.e. a failure does not get reported atadBrious concern, since failure detection is initiated
by automatic monitoring and failure reporting involvesesgy people from different administrative domains
(operations staff and system administrators). While magpdosis can never be ruled out completely, its
frequency depends on the skills of the system administrat&NL employs highly-trained staff backed
by a well-funded cutting edge technology integration teaftgen pulling new technology into existence in
collaboration with vendors.

Percentage (%)

100

100

[IHardware
Il software
| T INetwork
[JEnvironment|
B Human

Il Unknown

[IHardware
Il software
| T INetwork
[JEnvironment|
B Human

Il Unknown

801 801

60 601

a0t a0t

Percentage (%)

20 20

G H

All systems G

H All systems

Figure 1:The breakdown of failures into root causes (left) and thekdewn of downtime into root causes
(right). Each graph shows the breakdown for systems of type,[, G, and H and aggregate statistics
across all systems (A-H).

3 Methodology

We characterize an empirical distribution using three irhpwtrics: the mean, the median, and the squared
coefficient of variation@?). The squared coefficient of variation is a measure of thialiity of a distribu-

tion and is defined as the squared standard deviation dilagdde squared mean. The advantage of using
the squared coefficient of variation as a measure of vaitighihther than the variance or the standard devi-
ation, is that it is normalized by the mean, and hence allawsparison of variability across distributions
with different means.

We also consider the empirical cumulative distributiondtion (CDF) and how well it is fit by four
probability distributions commonly used in reliabilityebry': the exponential distribution; the Weibull
distribution; the gamma distribution; and the lognormadtidlbution. We parameterize the distributions
through maximum likelihood estimation and evaluate thedgess of fit both by visual inspection and the
negative log-likelihood test.

Note that the goodness of fit that a distribution achievesnép on the degrees of freedom that this
distribution offers. For example, a phase-type distrimutivith an arbitrary number of phases would likely
give a better fit than any of the above standard distribufiersch are limited to one or two parameters.
Whenever the quality of fit allows, we prefer the simpleshdtad distribution because these are well un-
derstood, simple to use and can be generated and fit efficiéntbur analysis of this data we have so far
not found any reason to depend on more degrees of freedom.

4 Root cause breakdown

An obvious question when studying failures in computeraystis what caused the failures. In this section
we study the root causes as reported in the root cause fighd ofata.

We first look at the relative frequency of the six high-levategories for root cause: human, environ-
ment, network, software, hardware, and unknown. Figureft) hows the percentage of failures in each
of the six categories. The right-most bar describes thekdmen across all failure records in the data set.
Each of the five bars to the left presents the breakdown aetbfslure records for systems of a particular
hardware type.

Figure 1 indicates that while the actual breakdown variessacsystems with different hardware type,

IWe also considered another distribution, which has regdsekn found to be useful in characterizing various aspefcts o
computer systems, the Pareto distribution. However, we'diithd it to be a better fit than any of the four standard disttions for
our data and therefore did not include it in these results.

the basic trends are similar. Hardware is the single largasiponent, with the actual percentage ranging
from 30% to more than 60%. Software is the second largestibatdr in all cases, with percentages ranging
from 5% to 24%. Systems of type D differ most from the othetesyss, in that hardware and software are
almost equally frequently reported as root cause.

It is important to observe that in most systems the root cagisgined undetermined for 20-30% of
the failures (except for type E systems, where less then S58%obfcauses are unknown). Since the fraction
of hardware failures is in all systems larger than the foactif undetermined failures, and the fraction of
software failures is close to that of undetermined failuves can still conclude that hardware and software
are among the largest contributors to failures. Howevercarenot conclude that any of the other failure
sources (Human, Environment, Network) is insignificant.

In addition to the relative frequency of the different roatises, we also consider how much each of
them contributes to the total downtime. Figure 1 (right)shthe total downtime per hardware type broken
down into the root cause that caused the downtime. The lbrasidd are similar to the root cause breakdown
by frequency: hardware tends to be the single largest coemipfollowed by software. Interestingly, for
most systems the failures with unknown root cause accoum¢$s than 5% of the total downtime, despite
the fact that the percentage of unknown root causes is highdy systems of type D and G have more than
5% of downtime with unknown root cause.

The reason for the higher fraction of downtime with unknowntrcause for systems of type D and
G lies in the circumstances surrounding their initial dgplent. Systems of type G were the first NUMA
based clusters at the site and were commissioned at a timelwAML just started to systematically record
failure data. As a result in the beginning of those systeifetithe the fraction of root causes that remained
undetermined was very high-(90%), but dropped to less than 10% within 2 years, as admatiss’ gained
more experience with the new system and the root cause @anadyslved with it. Similarly, the system of
type D was the first large-scale SMP cluster at LANL, so iititithe number of failures with unknown root
cause was high, but then quickly dropped.

In addition to the breakdown of the root cause into the fivéhhayel categories, we also looked at the
more detailed failure categorization. We find that for ateyns, memory related hardware failures make
up a significant portion of all failures. For all systems mtran 10% of all failures (nhot only hardware
failures) were due to memory, in the case of system F and Hmenea than 25%. In fact, for all systems,
except for system E, memory was the single most common "&weH! root cause. System E experienced a
very high percentage (more than 50%) of CPU related faijuhes to a major flaw in the design of the type
of CPU used in systems of type E.

The detailed breakdown for software related failures gamere across systems. For system F the most
common software failure was related to the parallel fileaystfor system H to the scheduler software and
for system E to the operating system. For system D and G a jandion of the software failures were not
specified further.

5 Analysisof failurerates

5.1 Failurerateasafunction of system and node

This section looks at how failure rates vary across diffesgstems, and across the nodes within the same
system. Studying failure rates across different systemns$dasesting since it provides insights on the effect of
parameters such as system size and hardware type. Knovdadgev failure rates vary across the nodes in
a system can be utilized in job scheduling, for instance Bygasg critical jobs or jobs with high recovery
time to more reliable nodes.

Figure 2 (left) shows for each of the 22 systems the averagdauof failures recorded per year during
the system’s production time. The yearly failure rate \&arigdely across systems, ranging from only 17

N
@

N
-]
T

Number of failures per year
Number of failures per year per node

1 2 3 4 5 6 7 8 9 5 16 17 18 19 20 21 22 1 2 2 a4 5 6 7 8 2 15 16 17 18 19 20 21 22

© 10 11 12 13 1
System ID

10 11 12 13 14
System ID

Figure 2: Average number of failures for each system per year (leftpr&ge number of failures for each
system per year normalized by number of nodes in the sysight)(rBars of systems that use the same
hardware type have the same color.

Cumulative probability

—— Data
- ---Normal distribution
= ==Poisson distribution
oo Lognormal distribution|

100

Number of failures during lifetime

30 40 60 80
Number of failures per node

20
Node 1D

Figure 3:Number of failures per node for system 20 as a function of nbdgeft) and the corresponding
CDF, fitted with a Poisson, normal and lognormal distributifright).

failures per year for system 2, to an average of 1159 failpeeyear for system 7. In fact, variability in the
failure rate is high even among systems of the same hardyjee t

The main reason for the vast differences in failure ratesscsystems is that the systems vary widely
in size. Figure 2 (right), shows for each system the averagaber of failures per year normalized by the
number of nodes in the system. The normalized failure rades relatively small variability for systems of
the same hardware For example, all systems of type E (sy&elfi} exhibit a similar average failure rate
per year per nodé despite the fact that they range in size from 128 to 1024 :i0tlee same holds for type
F systems. This indicates that failure rates don’t growisigantly faster than linearly with the number of
nodes in a system.

We next concentrate on the distribution of failures over bees within a given system. Figure 3
shows the total number of failures for each node of systemu2inigl the entire lifetime of the system. We
find a relatively uniform distribution of failures acrossdes, except for nodes 21-23, which experienced
a significantly higher number of failures than the other mod&hile nodes 21-23 make up only 6% of all
nodes, they account for 20% of all failures in the system.

One reason for the above non-uniformity might be that node22differ from the other nodes in the
workloads they run. Node 21-23 are the only nodes used faalimtion, as well as computation, resulting
in a more varied and interactive workload compared to theratiodes. We make similar observations for
other systems, where failure rates vary significantly ddjpgnon a node’s workload. For example, for
systems E and F, the front-end nodes, which run a more vaniedactive workload, exhibit a much higher
failure rate than the other nodes in the same system.

While it seems clear from Figure 3 that the graphics nodeg laavery different behavior from the
other nodes, a remaining question is how similar the failates of the remaining (compute-only) nodes

2Except for system 6, which is an unusual case in that it wasddyztion for only 5 months before it was decommissioned.

[_lHardware [_IHardware
70t H Software 4 Il Software
[INetwork 250r [INetwork
60 [JEnvironment 4 [1Environment
= =
= e Hluman £ 200 B Human
S so HE Unknown s B Unknown
= I I | I & 150
a Py
8 8
= | =
2 =
firss firsd

Months |n productlon use

20 30
Months in production use

Figure 4: Two representative examples for how the failure rate charagea function of system age (in
months). The curve on the left corresponds to system 19 whielpresentative for systems of type D and
G. The curve on the right corresponds to system 5 which issemtative for systems of type E and F.

are to each other. Figure 3 (right) shows the CDF of the medsunmber of failures per node for compute
nodes, with three different distributions fitted to it: thei$3on distribution, the normal distribution, and the
lognormal distribution. If the failure rate at all nodeslésVed a Poisson process with the same mean (as
often assumed e.g. in work on check-pointing protocol®,distribution of failures across nodes would be
expected to match a Poisson distribution. Instead we finckiieaPoisson distribution is a poor fit, mostly
because the measured data seems to have a higher varitiiglityhat of the Poisson fit. The normal and
lognormal distribution are a much better fit, both visuabyeell as measured by the negative log-likelihood.
This indicates that the assumption of Poisson failure ratdsequal means across nodes is not likely to be
realistic.

5.2 Failurerate at different time scales

This section looks at how failure rates vary across diffetene scales, from very large (system lifetime)
to very short (daily and weekly). Knowing how failure ratesry as a function of time is important for
generating realistic failure workloads and for optimiziegovery mechanisms.

We begin with the largest possible time-scale by lookingadtife rates over the entire lifetime of a
system. We find that for all systems in our data set the cunvthéofailure rate as a function of system age
follows one of two shapes. Figure 4 shows a representatimpbe for each shape.

Figure 4 (right) shows the number of failures per month fatem 5, starting at production time. The
basic characteristic of the curve is that failure rates &hb imitially, and then drop significantly during the
first 3-4 months of production use. The shape of this curviedgiiost common one and is representative of
all systems of type E and F.

The shape of this curve is intuitive in that the failure ratepd during the early age of a system, as
initial hardware and software bugs are detected and fixedadnunistrators gain experience in running
the system. One might wonder why the initial problems werttesntved during the 1-2 months of testing
before production time. The reason is that many problemsidware, software and configuration are only
exposed by real user code in the production workloads.

The curve in Figure 4 (left) corresponds to the failures olesd over the lifetime of system 19 and
represents the other commonly observed shape. The shaps ciitve is representative for systems of type
D and G, and is less intuitive: The failure rate actually gsawer a period of nearly 20 months, before it
eventually starts dropping. One possible explanationHisrtiehavior is that getting these systems into full
production was a slow and painful process.

The systems of type G were the first systems of the NUMA era dILANd the first systems ever that
arranged such a large number of NUMA machines in a clusterl f&sult the first 2 years still involved a
lot of development work among the administrators of theesysthe vendors, and the users. Administrators

2000 5000

4000

8 1500 4]
2 5
g 1000 B 3000
5] °
2 S 2000
=2 so0f 5
Z 1000
o 5 10 15 20 o
Hour of day Sun Mon TueWed Thu Fri Sat

Figure 5:Number of failures by hour of the day (left) and the day of teek«right).

had to develop new software for managing the system anddgingyvthe infrastructure to run large parallel

applications. Users developed new large-scale applitatioat wouldn't have been feasible to run on any
of the previous systems. With the slower development psoitésok longer until the systems were running

the full variety of production workloads and the majoritytb€ initial bugs were exposed and fixed. The
case for the system of type D was similar in that it was the lfirgte-scale SMP cluster at the site.

Our above explanation for the failure rate curves of systefntype D and G is supported by two
other observations. First, the failure rate curve for oBEIP clusters (systems of type E and F) that were
introduced later and were running full production worklsagrlier in their life follows the more traditional
pattern in Figure 4 (right). Second, system 21, which waethiced 2 years after the two other systems of
type G, exhibits a failure rate curve much closer to Fig 4hfdig

Next we look at how failure rates vary over smaller time sgaleis well known that usage patterns of
systems vary with the time of the day and the day of the week.qiestion we are interested in is whether
there are similar patterns for failure rates. Figure 5 aaiegs all failures in the data by hour of the day
(left) and by day of the week (right). We observe a strongedation in both cases. During peak hours of
the day the failure rate is two times higher than during tlggatiSimilarly the failure rate during weekdays
is nearly two times as high as during the weekend. We intetpre as a correlation between the failure
rate of a system and the workload run on the system, since o kased on general usage patterns (not
specifically LANL) that the workload intensity and the vayi®f workloads is lower during the night and
weekend.

Note that another possible explanation for the observationFigure 5 would be that failure rates
during the night and weekends are not lower, but that thectiete of those failures is simply delayed
until the beginning of the next (week-)day. We consider #planation less likely, since failures are
detected automatically by a monitoring system, and not l@ysuer system administrators. Moreover, if
delayed detection was the reason, one would expect a laafeopeMondays, and lower failure rates on the
following days, which is not the case in this data.

5.3 Statistical properties of time between failures

In this section we view the sequence of failure events aschathic process and study the distribution of its
inter-arrival times, i.e. the time between failures. Weetéko different views of the failure process: (i) the
view as seen by an individual node, i.e. we study the time éetxfailures that affect only this particular
node; (ii) and the view as seen by the whole system, i.e. wiliyshe time between subsequent failures that
affect any node in the system.

Since failure rates vary across the lifetime of a systerma{f&egure 4), the time between failures also
varies accordingly. We therefore analyze the time betwe#urés separately for the early production time
during which failure rates are high and the remaining liféhaf system when failure rates have come down.

We begin with the view of the time between failures as seemtpdividual node. Figure 6 shows the
corresponding empirical distribution as seen by node 2%stesn 20 during the years 1996-1999 (left) and

[

[

— Data
-- Weibull

— Data
L|--- Weibull

I
[
I
[

- Lognormal o Lognormal

Gamma Gamma

©
o
©
o

- -Exponential - --Exponential

o
IS

Cumulative probability
o
N

I
N

Cumulative probability

I
N

g T
10 10" 10° 10° 10" 10° 10" 10° 10° 10"
Time between failures (sec) Time between failures (sec)

Figure 6:Empirical CDF for inter-arrival times of failures on node 22system 20 early in production (left)
and late in production (right).

[

— Data
-- Weibull

©+ Lognormal

—— Data
-- Weibull

+ Lognormal

I
®
I
o

Gamma

o
o

Gamma

o
o

=-Exponential - -Exponential

©
IS
:

Cumulative probability
(o]
>

Cumulative probability

I
N
I
N

b e i
10° 10” 10" 10° 10° 10" 10° 10°

Time between failures (sec) Time between failures (sec)

Figure 7:Empirical CDF for inter-arrival times of failures for the siem wide view of failures in system 20
early in production (left) and late in production (right).

the years 2000-2005 (right), fitted by four standard digtiins. We observe that during years 2000-2005
the distribution between failures is well modeled by a Whkibu gamma distribution. Both distributions
create an equally good visual fit and the same negative ketjHbod. The simpler exponential distribution
is a poor fit, as it€? of 1 is lower than the data8? of 1.9.

For a given failure interarrival distribution it is usefwd know how the time since the last failure
influences the expected time until the next failure. Thisamots captured by a distribution’s hazard rate
function. An increasing hazard rate function predicts théte time since a failure is long then the next
failure is coming soon. And a decreasing hazard rate fumgiredicts the reverse. Figure 6 (right) is well
fit by a Weibull distribution with shape parameter 0.7, iradicg that the hazard rate function is decreasing,
i.e. not seeing a failure for a long time decreases the chafrgeeing one in the near future.

During years 1997-1999 the empirical distribution of thadibetween failures at node 22 looks quite
different (Figure 6 (left)) from the 2000-2005 period. Dhgithis time period the best fit is provided by the
lognormal distribution, followed by the Weibull and the gawa distribution. The exponential distribution
is an even poorer fit here than it was during the second haliehbde’s lifetime. The reason lies in the
higher variability of the time between failures wittCa of 3.9. This high variability might not be surprising
given the variability in monthly failure rates we observedFigure 4 for systems of this type during this
time period.

Next we move to the system wide view of the failures in syst@ysBown in Figure 7. The basic trend
for the years 2000-05 (Figure 7 (right)) is similar to the pede view during the same time. The Weibull
and gamma distribution are the best fit, while the lognornmal exponential fits are significantly worse.
Again the hazard rate function is decreasing (Weibull shegpameter of 0.78).

The system wide view during years 1997-1999 (Figure 7 jlefhibits a distribution that is very
different from the others we have seen and is not well cagtbyeany of the standard distributions. The
reason is an exceptionally large number 80%) of inter-arrival times that are zero, indicating thaot

Unknown | Human | Env. | Netw. | Softw. | Hardw. All

Mean (min) 398 163 | 572 247 369 342 355
Median (min) 32 44 269 70 33 64 54
Std. Dev. (min) 6099 418 808 720 6316 4202 4854
Variability (C?) 234 6 2 8 293 151 187

Table 3:Statistical properties of time to repair as a function of thet cause of the failure.

failures occurred at the same time. Since for a given node thee never two failures recorded at the
same time, a zero inter-arrival time is caused by simultagdailures in two different nodes. While we did

not perform a rigorous analysis of correlations betweeresbdhis high number of simultaneous failures
indicates the existence of a correlation.

6 Analysisof repair times

This section considers a second important metric in sysadiability, the time to repair. We first study how
parameters such as the root cause of a failure and systemgtara affect repair times. We then study the
statistical properties of repair times, including thestdbution and variability.

Table 3 shows the median and mean of time to repair as a funztithe root cause, and as an aggregate
across all failure records. We find that both the median aednikean time to repair vary significantly
depending on the root cause of the failure. The mean timeotinreanges from less than 3 hours for failures
caused by human error, to nearly 10 hours for failures duenio@mental problems. The mean time to
repair for the other root cause categories varies betweard4baours. In comparison, the mean repair
time across all failures (independent of root cause) isectos hours. The reason is that it's dominated by
hardware and software failures which are the most frequgetst of failures and exhibit mean repair times
around 6 hours.

An important observation is that the time to repair for afiag of failures is extremely variable, except
for environmental problems. For example in the case of softviailures the median time to repair is about
10 times lower than the mean, and in the case of hardwaredailtis 4 times lower than the mean. This
high variability is also reflected in extremely larGé values, as shown in the bottom row of Table 3.

One explanation for the extreme variability in the repairds of software and hardware failures might
be the diverse set of problems that can cause these failk@sexample, the root cause information for
hardware failures spans 99 different sub-categories, aomo only two (power outage and A/C failure) for
environmental problems. To test the validity of this expléon we determined th@? for several particular
types of hardware problems. We find that even within one tfgeaware problem the variability can be
high. For example, the? for repair times of CPU, memory, and node interconnect mollis 36, 87, and
154, respectively. This leads us to conclude that theretaer éactors contributing to the high variability.

Figure 8 (left) shows the empirical CDF for the repair timesoas all failures in the data, as well
as four standard distributions fitted to the data. The expibsledistribution is a very poor fit to the data,
which is not surprising given the high variability in the egptimes. Among all distributions the lognormal
distribution is the best fit, both visually as well as meadurg the negative log-likelihood. The Weibull
distribution and the gamma distribution are weaker fits therdognormal distribution, but still considerably
better than the exponential distribution.

Finally, we consider how repair times vary for differenttgyss. Figure 9 shows the mean and median
time to repair for each of the 22 systems. The figure indictitasthe hardware type has a major effect on

3The reason is that simply computing the cross-correlatian the data is not sufficient, since other correlations, with time
of the day, would blur the results.

10

1 1

0.8

o
)

0.6

I
o

0.4

°
S

— Data
----Weibull
i Lognormal

— Data
----Weibull
i Lognormal
Gamma

Cumulative probability
Cumulative probability

0.2

I
N

Gamma

Le=m7 e T s Exponentiall I
O i o ohmzz -

10° 10° 10* 10° 10° 10*
Time to Repair (min) Time to Repair (min)

----- Exponential

Figure 8:Empirical CDF of repair times across all systems (left) anddystems of type E (right).

— 350

Mean repair time (min)
Median repair time (min)

oot 4
o] i llll.lll...:l_:LCIDDD_._.l_l
° | P .__“ °
T2 3 4 5 6 7 8 9 % 15 16 18 19 20 21 22 7

10 11 12 13 1 17 T2 3 a4 5 6 8 © 10 11 12 13 14 15 16 17 18 19 20 21 22
System ID System ID

Figure 9:Mean repair time for each system (left) and median repaietfor each system (right).

repair times. While systems of the same hardware type exgiibilar mean and median time to rep4jr
repair times vary significantly across systems of diffetgpg,

Figure 9 also indicates that system size is not a significtof in repair time. For example, type E
systems range from 128 to 1024 nodes, but still exhibit sintépair times. In fact, systems 7 and 8, the
largest systems of type E, are among the ones with the lowediam repair time.

The relatively consistent repair times across systemsecdime hardware type are also reflected in the
empirical CDF. Figure 8 (right) shows the CDF for the repaires of all systems of type E. The CDF is
less variable than that taken across all systems (compd#ne=igure 8 (left)) which results in an improved
(albeit still sub-optimal) fit by the exponential distrifmirt.

7 Comparison with related work

Work on characterizing failures in computer systems falldifferent categories depending on the type of
data used; the type and number of systems under study; thefidata collection; and the number of failure
or error records in the data set. Table 4 gives an overview\adral commonly cited studies of failure data.
Four of the above studies include root cause statistic)214, 5]. The percentage of software-related
failures is reported to be around 20% [1, 10, 12] to 50% [2,Hédrdware is reported to make up 10-30%
of all failures [2, 10, 12, 5]. Environment problems are mpd to account for around 5% [2]. Network
problems are reported to make up between 20% [12] and 40%Jfy [2] reports 10-15% of problems
due to human error, while Oppenheimer et al. [12] report @%63The main difference to our results is the
lower percentage of human error and network problems in auk wTlhere are two possible explanations.
First, the root cause of 20-30% of failures in our data is wwkm and could lie in the human or network
category. Second, the LANL environment is an expensive amyg eontrolled environment with national

safety obligations and priorities, in which greater effody be put into these parts of the infrastructure than
in commercial environments.

4With the exception of system 13, which experienced thresuamonths-long downtimes

11

[Study | Date | Length | Environment | Typeof Data | # Failures | Statistics

[1,2] | 1990 3 years Tandem systems Customer datal 800 Root cause
[5] 1999 6 months 70 Windows NT mail server Error logs 1100 Root cause
[12] 2003 | 3-6 months 3000 machines in Internet services Error logs 501 Root cause
[10] 1995 7 years VAX systems Field data N/A Root cause
[14] 1990 8 months 7 VAX systems Error logs 364 TBF
[7] 1990 | 22 months 13 VICE file servers Error logs 300 TBF
[4] 1986 3years 2 IBM 370/169 mainframes Error logs 456 TBF
[13] 2004 1 year 395 nodes in machine room Error logs 1285 TBF
[3] 2002 | 1-36 months| 70 nodes in university and Internet services Error logs 3200 TBF
[17] 1999 4 months 503 nodes in corporate envr. Error logs 2127 TBF

Table 4:Overview of related studies

Several studies analyze the time between failures [13, ,14/]3 Three of the studies use distribution
fitting and find the Weibull distribution to be a good fit [3, I7], which agrees with our results. All four
studies looked at the hazard rate function, but come tordifteconclusions. Three of them [3, 17, 7] find
decreasing hazard rates (Weibull shape paramet@5). Others find that hazard rates are flat [14], or
increasing [13]. We find decreasing hazard rates with Wedihalpe parameter of 0.7-0.8.

Two other studies [4, 13] report correlation between wakll@nd failure rate. Sahoo et al. [13]
conclude that there is a correlation between the type of adkand the failure rate, while lyer et al. report
a correlation between the workload intensity (CPU utila} and the failure rate. We find evidence for
both correlations, in that we observe different failureesafior compute, graphics, and front-end nodes, and
different failure rates for different hours of the day angslaf the week.

Sahoo et al.[13] also study the correlations of failure waith hour of the day and the distribution of
failures across cluster nodes and find even stronger ctoredathan we do. They report that less than 4%
of the nodes in a machine room experience almost 70% of thedaiand find hourly failure rates during
the day to be four times higher than during the night.

We are not aware of any studies that report failure rates theerentire lifetime of large systems.
However, there exist commonly used models for individudiveare or hardware components. The failures
over the lifecycle of hardware components are often assuméadlow a “bathtub curve” with high failure
rates at the beginning (infant mortality) and the end (wadj-of the lifecycle. The failure rate curve for
software products is often assumed to drop over time (as tnage are detected and removed), with the
exception of some spikes caused by the release of new versfdhe software [10, 9]. We find that the
failure rate over the lifetime of large-scale HPC systemmsdiffer significantly from the above two patterns
(recall Figure 4).

8 Summary

Many researchers have pointed out the importance of amgfailure data and the need for a public data
repository of failure data [12]. In this paper we study a éasgt of failure data that was collected over the
past decade at a high-performance computing site and vaii be made publicly available. We hope that
this data might serve as a first step towards a public datssitepp and encourage efforts at other sites to
collect and clear data for public release.

Below we summarize a few of the findings of our study.

¢ Mean failure rates vary widely across systems, ranging f26no more than 1000 failures per year.
The failure rate depends mostly on the size of a system aadiethe particular hardware.

e There’s evidence of a correlation between the failure ragesystem and the type and intensity of the
workload running on the system.

12

e The curve of the failure rate over the lifetime of an HPC sysleoks often very different from
lifecycle curves reported in the literature for individigrdware or software components.

¢ Interarrival times of failures at individual nodes, as veadlat an entire system are fit well by a gamma
distribution or a Weibull distribution with decreasing bad rate.

e Mean repair times vary widely across systems, ranging frdrauk to more than a day. Repair times
depend mostly on the type of the system, and are relativebnisitive to the size of a system.

¢ Repair times are extremely variable, even within one systemd hence poorly modeled by an expo-
nential distribution. We find the best fit to be a lognormatritisition.

Our study is only a first step in analyzing the wealth of infation provided by the data. There are
many different ways in which the data could be used in futuoekw

An important question we haven't touched on is what the Ugithgy correlation structures in the mea-
sured failure processes look like, including for exampleaation between failures at the same node and
correlations across nodes. An interesting study would lseécstatistical methods from time-series analysis
to identify the underlying correlation structures.

Another interesting question is how the data could be usetktte realistic simulators or benchmarks.
This involves the question of whether using simple distrdns under the i.i.d. assumption is sufficient to
achieve realistic results, or whether more complex modelfiacessary.

Finally, an interesting avenue for future work would be adetl study of the relationship between the
workload of a system and its failure rate. Our results ingi¢hat the workload intensity as well as the type
of workload affect failure rates. It would be interestingststematically characterize this relationship and
develop models that capture it.

9 Acknowledgments

We thank Gary Grider, Laura Davey, and the Computing, Comecations, and Networking Division at
LANL for their efforts in collecting the data and clearingfdtr public release. We also thank Roy Maxion,
Priya Narasimhan, and the participants of the ISSRE’05 R&foop on dependability benchmarking” for
the many useful comments and questions.

References

[1] J. Gray. Why do computers stop and what can be done aholn ®roc. of the 5th Symposium on
Reliability in Distributed Software and Database Systeh®86.

[2] J. Gray. A census of tandem system availability betwe@85land 1990. IEEE Transactions on
Reliability, 39(4), 1990.

[3] T. Heath, R. P. Martin, and T. D. Nguyen. Improving clustgailability using workstation validation.
In Proc. of the 2002 ACM SIGMETRICS international conferencéM@asurement and modeling of
computer system2002.

[4] R. K. lyer, D. J. Rossetti, and M. C. Hsueh. Measuremeit modeling of computer reliability as
affected by system activityACM Trans. Comput. Sys#(3), 1986.

[5] M. Kalyanakrishnam, Z. Kalbarczyk, and R. lyer. Failudata analysis of a LAN of Windows NT
based computers. Iaroc. of the 18th IEEE Symposium on Reliable Distributedesys 1999.

13

[6] G.P.Kavanaugh and W. H. Sanders. Performance analfysiodime-based coordinated checkpoint-
ing protocols. InProc. Pacific Rim International Symposium on Fault-Toleér8pstems1997.

[7] T.-T. Y. Lin and D. P. Siewiorek. Error log analysis: S&tital modeling and heuristic trend analysis.
IEEE Transactions on Reliabilifyd9, 1990.

[8] J. Meyer and L. Wei. Analysis of workload influence on degability. InProc. International Sympo-
sium on Fault-tolerant computing 988.

[9] B. Mullen and Dave R. Lifecycle analysis using softwasdatts per million (swdpm). IRresentation
at the 16th international symposium on software reliapi(iSSRE’05)2005.

[10] B. Murphy and T. Gent. Measuring system and softwarialéity using an automated data collection
process.Quality and Reliability Engineering International1(5), 1995.

[11] Daniel N., John B., and R. Wolski. Modeling machine #afaility in enterprise and wide-area dis-
tributed computing environments. Euro-Par'05 2005.

[12] D. L. Oppenheimer, A. Ganapathi, and D. A. Pattersony\dhinternet services fail, and what can be
done about it? IJUSENIX Symposium on Internet Technologies and Sysg&@8.

[13] R. K. Sahoo, R. K., A. Sivasubramaniam, M. S. Squillarstied Y. Zhang. Failure data analysis of
a large-scale heterogeneous server environmentPrdan. of the 2004 international Conference on
Dependable Systems and Networks (DSN’2ap4.

[14] D. Tang, R. K. lyer, and S. S. Subramani. Failure analgsid modelling of a VAX cluster system. In
Proc. International Symposium on Fault-tolerant compgitifi990.

[15] N. H. Vaidya. A case for two-level distributed recovesghemes. IProc. of the 1995 ACM SIGMET-
RICS joint international conference on Measurement andetiogl of computer system$995.

[16] K. F. Wong and M. Franklin. Checkpointing in distribdteomputing systemsJ. Parallel Distrib.
Comput, 35(1), 1996.

[17] J. Xu, Z. Kalbarczyk, and R. K. lyer. Networked Windowd Nystem field failure data analysis. In
Proc. of the 1999 Pacific Rim International Symposium on Ddpble Computing1999.

[18] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R.S&hoo. Performance implications of
failures in large-scale cluster scheduling. Rroc. 10th Workshop on Job Scheduling Strategies for
Parallel Processing2004.

14

	Introduction
	Description of the data and environment
	The systems
	The workloads
	Data collection

	Methodology
	Root cause breakdown
	Analysis of failure rates
	Failure rate as a function of system and node
	Failure rate at different time scales
	Statistical properties of time between failures

	Analysis of repair times
	Comparison with related work
	Summary
	Acknowledgments

