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Abstract

Modern Graphics Processing Units (GPUs) are well provi-
sioned to support the concurrent execution of thousands of
threads. Unfortunately, diUerent bottlenecks during execution
and heterogeneous application requirements create imbalances
in utilization of resources in the cores. For example, when a GPU
is bottlenecked by the available oU-chip memory bandwidth, its
computational resources are often overwhelmingly idle, waiting
for data from memory to arrive.

This paper introduces the Core-Assisted Bottleneck Accelera-
tion (CABA) framework that employs idle on-chip resources to
alleviate diUerent bottlenecks in GPU execution. CABA provides
Wexible mechanisms to automatically generate “assist warps”
that execute on GPU cores to perform speciVc tasks that can
improve GPU performance and eXciency.
CABA enables the use of idle computational units and

pipelines to alleviate the memory bandwidth bottleneck, e.g.,
by using assist warps to perform data compression to transfer
less data from memory. Conversely, the same framework can
be employed to handle cases where the GPU is bottlenecked by
the available computational units, in which case the memory
pipelines are idle and can be used by CABA to speed up compu-
tation, e.g., by performing memoization using assist warps.

We provide a comprehensive design and evaluation of CABA
to perform eUective and Wexible data compression in the GPU
memory hierarchy to alleviate the memory bandwidth bottle-
neck. Our extensive evaluations show that CABA, when used
to implement data compression, provides an average perfor-
mance improvement of 41.7% (as high as 2.6X) across a variety
of memory-bandwidth-sensitive GPGPU applications.

1. Introduction

Modern Graphics Processing Units (GPUs) play an important
role in delivering high performance and energy eXciency for
many classes of applications and diUerent computational plat-
forms. GPUs employ Vne-grained multi-threading to hide the
high memory access latencies with thousands of concurrently
running threads [50]. GPUs are well provisioned with diUerent
resources (e.g., SIMD-like computational units, large register
Vles) to support the execution of a large number of these hard-
ware contexts. Ideally, if the demand for all types of resources
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is properly balanced, all these resources should be fully utilized
by the application. Unfortunately, this balance is very diXcult
to achieve in practice.
As a result, bottlenecks in program execution, e.g., limita-

tions in memory or computational bandwidth, lead to long
stalls and idle periods in the shader pipelines of modern
GPUs [45, 46, 60, 74]. Alleviating these bottlenecks with op-
timizations implemented in dedicated hardware requires sig-
niVcant engineering cost and eUort. Fortunately, the resulting
under-utilization of on-chip computational and memory re-
sources from these imbalances in application requirements,
oUers some new opportunities. For example, we can use
these resources for eXcient integration of hardware-generated
threads that perform useful work to accelerate the execu-
tion of the primary threads. Similar helper threading ideas
have been proposed in the context of general-purpose proces-
sors [19, 20, 24, 27, 28, 69, 86] to either extend the pipeline with
more contexts or use spare hardware contexts to pre-compute
useful information that aids main code execution (e.g., to aid
branch prediction, prefetching, etc.).

We believe that the general idea of helper threading can lead
to even more powerful optimizations and new opportunities
in the context of modern GPUs than in CPUs because (1) the
abundance of on-chip resources in a GPU obviates the need for
idle hardware contexts [24, 25] or the addition of more storage
(registers, rename tables, etc.) and compute units [19, 59] re-
quired to handle more contexts and (2) the relative simplicity of
the GPU pipeline avoids the complexities of handling register
renaming, speculative execution, precise interrupts, etc. [20].
However, GPUs that execute and manage thousands of thread
contexts at the same time pose new challenges for employing
helper threading, which must be addressed carefully. First,
the numerous regular program threads executing in parallel
could require an equal or larger number of helper threads to
be managed at low cost. Second, the compute and memory re-
sources are dynamically partitioned between threads in GPUs,
and resource allocation for helper threads should be cognizant
of resource interference and overheads. Third, lock-step ex-
ecution and complex scheduling—which are characteristic of
GPU architectures—exacerbate the complexity of Vne-grained
management of helper threads.
In this paper, we develop a new, Wexible framework for bot-

tleneck acceleration in GPUs via helper threading (called Core-
Assisted Bottleneck Acceleration or CABA), which exploits the
aforementioned new opportunities while eUectively handling
the new challenges. CABA performs acceleration by generating
special warps—assist warps —that can execute code to speed up
application execution. To simplify the support of the numerous
assist threads with CABA, we manage their execution at the
granularity of a warp and use a centralized mechanism to track



the progress of each assist warp throughout its execution. To
reduce the overhead of providing and managing new contexts
for each generated thread, as well as to simplify scheduling and
data communication, an assist warp shares the same context
as the regular warp it assists. Hence, the regular warps are
overprovisioned with available registers to enable each of them
to host its own assist warp.
Use of CABA for compression. We illustrate an important

use case for the CABA framework: alleviating the memory
bandwidth bottleneck by enabling Wexible data compression
in the memory hierarchy. The basic idea is to have assist
warps that (1) compress cache blocks before they are written
to memory, and (2) decompress cache blocks before they are
placed into the cache.
CABA-based compression/decompression provides several

beneVts over a purely hardware-based implementation of data
compression for memory. First, CABA primarily employs hard-
ware that is already available on-chip but is otherwise under-
utilized. In contrast, hardware-only compression implemen-
tations require dedicated logic for speciVc algorithms. Each
new algorithm (or a modiVcation of an existing one) requires
engineering eUort and incurs hardware cost. Second, diUerent
applications tend to have distinct data patterns [65] that are
more eXciently compressed with diUerent compression algo-
rithms. CABA oUers versatility in algorithm choice as we Vnd
that many existing hardware-based compression algorithms
(e.g., Base-Delta-Immediate (BDI) compression [65], Frequent
Pattern Compression (FPC) [4], and C-Pack [22]) can be imple-
mented using diUerent assist warps with the CABA framework.
Third, not all applications beneVt from data compression. Some
applications are constrained by other bottlenecks (e.g., over-
subscription of computational resources), or may operate on
data that is not easily compressible. As a result, the beneVts of
compression may not outweigh the cost in terms of additional
latency and energy spent on compressing and decompressing
data. In these cases, compression can be easily disabled by
CABA, and the CABA framework can be used in other ways to
alleviate the current bottleneck.
Other uses of CABA. The generality of CABA enables its

use in alleviating other bottlenecks with diUerent optimizations.
We discuss two examples: (1) using assist warps to perform
memoization to eliminate redundant computations that have
the same or similar inputs [12, 26, 77], by storing the results
of frequently-performed computations in the main memory
hierarchy (i.e., by converting the computational problem into a
storage problem) and, (2) using the idle memory pipeline to per-
form opportunistic prefetching to better overlap computation
with memory access. Assist warps oUer a hardware/software
interface to implement hybrid prefetching algorithms [31] with
varying degrees of complexity.

Contributions. We make the following contributions:
• We introduce the Core-Assisted Bottleneck Acceleration
(CABA) Framework, which can mitigate diUerent bottlenecks
in modern GPUs by using underutilized system resources for
assist warp execution.

• We provide a detailed description of how our framework can
be used to enable eUective and Wexible data compression in
GPU memory hierarchies.

• We comprehensively evaluate the use of CABA for data com-
pression to alleviate the memory bandwidth bottleneck. Our

evaluations across a wide variety applications fromMars [39],
CUDA [62], Lonestar [17], and Rodinia [21] benchmark suites
show that CABA-based compression on average (1) reduces
memory bandwidth by 2.1X, (2) improves performance by
41.7%, and (3) reduces overall system energy by 22.2%.

2. Motivation

We observe that diUerent bottlenecks and imbalances during
program execution leave resources unutilized within the GPU
cores. We motivate CABA by examining these ineXciencies
and leverage them as an opportunity to perform useful work.
Unutilized Compute Resources. A GPU core employs Vne-

grained multithreading of warps, i.e., groups of threads exe-
cuting the same instruction, to hide long memory and ALU
operation latencies. If the number of available warps is insuX-
cient to cover these long latencies, the core stalls or becomes
idle. To understand the key sources of ineXciency in GPU
cores, we conduct an experiment where we show the break-
down of the applications’ execution time spent on either useful
work (Active Cycles) or stalling due to one of the four reasons:
Compute, Memory, Data Dependence Stalls and Idle Cycles. We
also vary the amount of available oU-chip memory bandwidth:
(i) half (1/2xBW), (ii) equal to (1xBW), and (iii) double (2xBW)
the peak memory bandwidth of our baseline GPU architecture.
Section 5 details our architecture and methodology.
Figure 1 shows the percentage of total issue cycles, divided

into Vve components (as described above). The Vrst two com-
ponents—Memory and Compute Stalls—are attributed to the
main memory and ALU-pipeline structural stalls. These stalls
are because of backed-up pipelines due to oversubscribed re-
sources that prevent warps from being issued to the respective
pipelines. The third component (Data Dependence Stalls) is due
to data dependence stalls. These stalls prevent warps from issu-
ing new instruction(s) when the previous instruction(s) from
the same warp are stalled on long-latency operations (usually
memory load operations). In some applications (e.g., dmr),
special-function-unit (SFU) ALU operations that may take tens
of cycles to Vnish are also the source of data dependence stalls.
The fourth component, Idle Cycles, refers to idle cycles when
all the available warps are either issued to the pipelines and
not ready to execute their next instruction or the instruction
buUers may have been Wushed due to a mispredicted branch.
All these components are sources of ineXciency that cause the
cores to be underutilized. The last component, Active Cycles,
indicates the fraction of cycles during which at least one warp
was successfully issued to the pipelines.

We make two observations from Figure 1. First, Compute,
Memory, and Data Dependence Stalls are the major sources of
underutilization in many GPU applications. We distinguish ap-
plications based on their primary bottleneck as either Memory
or Compute Bound. We observe that a majority of the applica-
tions in our workload pool (17 out of 27 studied) are Memory
Bound, and bottlenecked by the oU-chip memory bandwidth.

Second, for the Memory Bound applications, we observe that
theMemory and Data Dependence stalls constitute a signiVcant
fraction (61%) of the total issue cycles on our baseline GPU
architecture (1xBW). This fraction goes down to 51% when
the peak memory bandwidth is doubled (2xBW), and increases
signiVcantly when the peak bandwidth is halved (1/2xBW),
indicating that limited oU-chip memory bandwidth is a crit-
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Figure 1: Breakdown of total issue cycles for 27 representative CUDA applications. See Section 5 for methodology.

ical performance bottleneck for Memory Bound applications.
Some applications, e.g., BFS, are limited by the interconnect
bandwidth. In contrast, the Compute Bound applications are
primarily bottlenecked by stalls in the ALU pipelines. An in-
crease or decrease in the oU-chip bandwidth has little eUect on
the performance of these applications.
Unutilized On-chip Memory. The occupancy of any GPU

Streaming Multiprocessor (SM), i.e., the number of threads
running concurrently, is limited by a number of factors: (1)
the available registers and shared memory, (2) the hard limit
on the number of threads and thread blocks per core, (3) the
number of thread blocks in the application kernel. Very often,
the factor determining the occupancy is the thread or thread
block limit imposed by the architecture. In this case, there are
many registers that are left unallocated to any thread block.
Also, the number of available registers may not be a multiple
of those required by each thread block. The remaining regis-
ters are not enough to schedule an entire extra thread block,
which leaves a signiVcant fraction of the register Vle and shared
memory unallocated and unutilized by the thread blocks. Fig-
ure 2 shows the fraction of statically unallocated registers in a
128KB register Vle (per SM) with a 1536 thread, 8 thread block
occupancy limit, for diUerent applications. We observe that
on average 24% of the register Vle remains unallocated. This
phenomenon has previously been observed and analyzed in
detail in [3, 35, 36, 37, 52]. We observe a similar trend with the
usage of shared memory (not graphed).
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Figure 2: Fraction of statically unallocated registers.

Our Goal. We aim to exploit the underutilization of compute
resources, registers and on-chip shared memory as an oppor-
tunity to enable diUerent optimizations to accelerate various
bottlenecks in GPU program execution. To do so, we need to dy-
namically generate threads in hardware that use the available
on-chip resources. In the next section, we present the detailed
design of our CABA framework that enables the generation
and management of these threads.

3. The CABA Framework

In order to understand the major design choices behind the
CABA framework, we Vrst present our major design goals and
describe the key challenges in applying helper threading to
GPUs. We then show the detailed design, hardware changes,
and operation of CABA. Finally, we brieWy describe potential
applications of our proposed framework.

3.1. Goals and Challenges

The purpose of CABA is to leverage underutilized GPU re-
sources for useful computation. To this end, we need to eX-
ciently execute subroutines that perform optimizations to accel-
erate bottlenecks in application execution. The key diUerence
between CABA’s assisted execution and regular execution is
that CABA must be low overhead and, therefore, helper threads
need to be treated diUerently from regular threads. The low
overhead goal imposes several key requirements in designing
a framework to enable helper threading. First, we should be
able to easily manage helper threads—to enable, trigger, and
kill threads when required. Second, helper threads need to be
Wexible enough to adapt to the runtime behavior of the regular
program. Third, a helper thread needs to be able to commu-
nicate with the original thread. Finally, we need a Wexible
interface to specify new subroutines, with the framework being
generic enough to handle various optimizations.
With the above goals in mind, enabling helper threading in

GPU architectures introduces several new challenges. First, ex-
ecution on GPUs involves context switching between hundreds
of threads. These threads are handled at diUerent granularities
in hardware and software. The programmer reasons about
these threads at the granularity of a thread block. However, at
any point in time, the hardware executes only a small subset of
the thread block, also referred to as a warp. Therefore, we need
to deVne the abstraction levels for reasoning about and manag-
ing helper threads from the point of view of the programmer,
the hardware as well as the compiler/runtime. In addition, each
of the thousands of executing threads could simultaneously
invoke an associated helper thread subroutine. To keep the
management overhead low, we need an eXcient mechanism to
handle helper threads at this magnitude.

Furthermore, GPUs use Vne-grained multithreading [76, 80]
to time multiplex the Vxed number of compute units among the
hundreds of threads. Similarly, the on-chip memory resources
(i.e., the register Vle and shared memory) are statically parti-
tioned between the diUerent threads at compile time. Helper
threads also require their own registers and compute cycles to
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execute. A straightforward approach would be to add a few
registers and compute units just for helper thread execution,
but this option is both expensive and wasteful. In fact, our pri-
mary motivation is to utilize existing idle resources for helper
thread execution. In order to do this, we aim to enable sharing
of the existing resources between primary threads and helper
threads at low cost, while minimizing the interference to pri-
mary thread execution. In the remainder of this section, we
describe the design of our low-overhead CABA framework.

3.2. Design of the CABA Framework

We choose to implement CABA using a hardware/software
co-design, as pure hardware or pure software approaches pose
certain challenges that we describe below. There are two alter-
natives for a fully software-based approach to helper threads.
The Vrst alternative, treating each helper thread as indepen-
dent kernel code, has high overhead, since we are now treating
the helper threads as, essentially, regular threads. This would
reduce the primary thread occupancy in each SM (there is a
hard limit on the number of threads and blocks that an SM can
support). Moreover, this would require additional hardware
changes to support blocks executing diUerent program code
simultaneously within an SM. It would also complicate the data
communication between the primary and helper threads, since
no simple interface exists for inter-kernel communication. The
second alternative, embedding the helper thread code within
the primary thread kernel itself, oUers little Wexibility in adapt-
ing to runtime requirements, since such helper threads cannot
be triggered or squashed independently of the primary thread.
On the other hand, a pure hardware solution would make

register allocation for the assist warps and the data communi-
cation between the helper threads and primary threads more
diXcult. Registers are allocated to each thread block by the
compiler and are then mapped to the sections of the hardware
register Vle at runtime. Mapping registers for helper threads
and enabling data communication between those registers and
the primary thread registers would be non-trivial. Furthermore,
a fully hardware approach would make oUering the program-
mer a Wexible interface more challenging.

Hardware support enables simpler Vne-grained management
of helper threads, aware of micro-architectural events and run-
time program behavior. Compiler/runtime support enables
simpler context management for helper threads and more Wexi-
ble programmer interfaces. Thus, to get the best of both worlds,
we propose a hardware/software cooperative approach, where
the hardware manages the scheduling and execution of helper
thread subroutines, while the compiler performs the allocation
of shared resources (e.g., register Vle and shared memory) for
the helper threads and the programmer or the microarchitect
provides the helper threads themselves.
3.2.1. Hardware-based management of threads. To use the
available on-chip resources the same way that thread blocks do
during program execution, we dynamically insert sequences of
instructions into the execution stream. We track and manage
these instructions at the granularity of a warp, and refer to them
as Assist Warps. An assist warp is a set of instructions issued
into the core pipelines. Each instruction is executed in lock-step
across all the SIMT lanes, just like any regular instruction, with
an active mask to disable lanes as necessary. The assist warp
does not own a separate context (e.g., registers, local memory),

and instead shares both a context and a warp ID with the
regular warp that invoked it. In other words, each assist warp
is coupled with a parent warp. In this sense, it is diUerent from
a regular warp and does not reduce the number of threads that
can be scheduled on a single SM. Data sharing between the two
warps becomes simpler, since the assist warps share the register
Vle with the parent warp. Ideally, an assist warp consumes
resources and issue cycles that would otherwise be idle. We
describe the structures required to support hardware-based
management of assist warps in Section 3.3.
3.2.2. Register Vle/shared memory allocation. Each helper
thread subroutine requires a diUerent number of registers de-
pending on the actions it performs. These registers have a short
lifetime, with no values being preserved between diUerent invo-
cations of an assist warp. To limit the register requirements for
assist warps, we impose the restriction that only one instance
of each helper thread routine can be active for each thread. All
instances of the same helper thread for each parent thread use
the same registers, and the registers are allocated to the helper
threads statically by the compiler. One of the factors that de-
termines the runtime SM occupancy is the number of registers
required by a thread block (i.e, per-block register requirement).
For each helper thread subroutine that is enabled, we add its
register requirement to the per-block register requirement, to
ensure the availability of registers for both the parent threads
as well as every assist warp. The registers that remain unallo-
cated after allocation among the parent thread blocks should
suXce to support the assist warps. If not, register-heavy assist
warps may limit the parent thread block occupancy in SMs
or increase the number of register spills in the parent warps.
Shared memory resources are partitioned in a similar manner
and allocated to each assist warp as and if needed.
3.2.3. Programmer/developer interface. The assist warp sub-
routine can be written in two ways. First, it can be supplied
and annotated by the programmer/developer using CUDA ex-
tensions with PTX instructions and then compiled with regular
program code. Second, the assist warp subroutines can be
written by the microarchitect in the internal GPU instruction
format. These helper thread subroutines can then be enabled
or disabled by the application programmer. This approach is
similar to that proposed in prior work (e.g., [19]). It oUers the
advantage of potentially being highly optimized for energy
and performance while having Wexibility in implementing opti-
mizations that are not trivial to map using existing GPU PTX
instructions. The instructions for the helper thread subroutine
are stored in an on-chip buUer (described in Section 3.3).
Along with the helper thread subroutines, the programmer

also provides: (1) the priority of the assist warps to enable
the warp scheduler to make informed decisions, (2) the trigger
conditions for each assist warp, and (3) the live-in and live-out
variables for data communication with the parent warps.

Assist warps can be scheduled with diUerent priority lev-
els in relation to parent warps by the warp scheduler. Some
assist warps may perform a function that is required for cor-
rect execution of the program and are blocking. At this end of
the spectrum, the high priority assist warps are treated by the
scheduler as always taking higher precedence over the parent
warp execution. Assist warps should be given a high prior-
ity only when they are required for correctness. Low priority
assist warps, on the other hand, are scheduled for execution
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only when computational resources are available, i.e., during
idle cycles. There is no guarantee that these assist warps will
execute or complete.

The programmer also provides the conditions or events that
need to be satisVed for the deployment of the assist warp. This
includes a speciVc point within the original program and/or
a set of other microarchitectural events that could serve as a
trigger for starting the execution of an assist warp.

3.3. Main Hardware Additions

Figure 3 shows a high-level block diagram of the GPU
pipeline [38]. To support assist warp execution, we add three
new components: (1) an Assist Warp Store to hold the assist
warp code, (2) an Assist Warp Controller to perform the deploy-
ment, tracking, and management of assist warps, and (3) an
Assist Warp BuUer to stage instructions from triggered assist
warps for execution.
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Figure 3: CABA framework Wow within a typical GPU
pipeline [38]. The shaded blocks are the components introduced
for the framework.

Assist Warp Store (AWS). DiUerent assist warp subroutines
are possible based on the purpose of the optimization. These
code sequences for diUerent types of assist warps need to be
stored on-chip. An on-chip storage structure called the Assist
Warp Store (Í) is preloaded with these instructions before
application execution. It is indexed using the subroutine index
(SR.ID) along with the instruction ID (Inst.ID).

Assist Warp Controller (AWC). The AWC (Ë) is responsi-
ble for the triggering, tracking, and management of assist warp
execution. It stores a mapping between trigger events and a
subroutine index in the AWS, as speciVed by the programmer.
The AWC monitors for such events, and when they take place,
triggers the fetch, decode and execution of instructions from
the AWS for the respective assist warp.

Deploying all the instructions within an assist warp, back-to-
back, at the trigger point may require increased fetch/decode
bandwidth and buUer space after decoding [20]. To avoid this,
at each cycle, only a few instructions from an assist warp,
at most equal to the available decode/issue bandwidth, are
decoded and staged for execution. Within the AWC, we simply
track the next instruction that needs to be executed for each
assist warp and this is stored in the Assist Warp Table (AWT), as
depicted in Figure 4. The AWT also tracks additional metadata
required for assist warp management, which is described in
more detail in Section 3.4.
Assist Warp BuUer (AWB). Fetched and decoded instruc-

tions (Ë) belonging to the assist warps that have been triggered
need to be buUered until the assist warp can be selected for
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Figure 4: Fetch Logic: Assist Warp Table (contained in the AWC)
and the Assist Warp Store (AWS).

issue by the scheduler. These instructions are then staged in the
Assist Warp BuUer (Ï) along with their warp IDs. The AWB
is contained within the instruction buUer (IB), which holds de-
coded instructions for the parent warps. The AWB makes use of
the existing IB structures. The IB is typically partitioned among
diUerent warps executing in the SM. Since each assist warp is
associated with a parent warp, the assist warp instructions are
directly inserted into the same partition within the IB as that of
the parent warp. This simpliVes warp scheduling, as the assist
warp instructions can now be issued as if they were parent
warp instructions with the same warp ID. In addition, using
the existing partitions avoids the cost of separate dedicated in-
struction buUering for assist warps. We do, however, provision
a small additional partition with two entries within the IB, to
hold non-blocking low priority assist warps that are scheduled
only during idle cycles. This additional partition allows the
scheduler to distinguish low priority assist warp instructions
from the parent warp and high priority assist warp instructions,
which are given precedence during scheduling, allowing them
to make progress.

3.4. The Mechanism

Trigger and Deployment. An assist warp is triggered (Ê) by
the AWC (Ë) based on a speciVc set of architectural events
and/or a triggering instruction (e.g., a load instruction). When
an assist warp is triggered, its speciVc instance is placed into
the Assist Warp Table (AWT) within the AWC (Figure 4). Every
cycle, the AWC selects an assist warp to deploy in a round-robin
fashion. The AWS is indexed (Ì) based on the subroutine ID
(SR.ID)—which selects the instruction sequence to be executed
by the assist warp, and the instruction ID (Inst.ID)—which is
a pointer to the next instruction to be executed within the
subroutine (Figure 4). The selected instruction is entered (Î)
into the AWB (Ï) and, at this point, the instruction enters the
active pool with other active warps for scheduling. The Inst.ID
for the assist warp is updated in the AWT to point to the next
instruction in the subroutine. When the end of the subroutine
is reached, the entry within the AWT is freed.
Execution. Assist warp instructions, when selected for issue

by the scheduler, are executed in much the same way as any
other instructions. The scoreboard tracks the dependencies
between instructions within an assist warp in the same way
as any warp, and instructions from diUerent assist warps are
interleaved in execution in order to hide latencies. We also
provide an active mask (stored as a part of the AWT), which
allows for statically disabling/enabling diUerent lanes within a
warp. This is useful to provide Wexibility in lock-step instruction
execution when we do not need all threads within a warp to
execute a speciVc assist warp subroutine.
Dynamic Feedback and Throttling. Assist warps, if not

properly controlled, may stall application execution. This can
happen due to several reasons. First, assist warps take up issue
cycles, and only a limited number of instructions may be issued
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per clock cycle. Second, assist warps require structural re-
sources: the ALU units and resources in the load-store pipelines
(if the assist warps consist of computational and memory in-
structions, respectively). We may, hence, need to throttle assist
warps to ensure that their performance beneVts outweigh the
overhead. This requires mechanisms to appropriately balance
and manage the aggressiveness of assist warps at runtime.

The overheads associated with assist warps can be controlled
in diUerent ways. First, the programmer can statically specify
the priority of the assist warp. Depending on the criticality of
the assist warps in making forward progress, the assist warps
can be issued either in idle cycles or with varying levels of
priority in relation to the parent warps. For example, warps
performing decompression are given a high priority whereas
warps performing compression are given a low priority. Low
priority assist warps are inserted into the dedicated partition in
the IB, and are scheduled only during idle cycles. This priority
is statically deVned by the programmer. Second, the AWC can
control the number of times the assist warps are deployed into
the AWB. The AWC monitors the utilization of the functional
units (Ð) and idleness of the cores to decide when to throttle
assist warp deployment.
Communication and Control. An assist warp may need to

communicate data with its parent warp. For example, memory
addresses from the parent warp need to be communicated to
assist warps performing decompression or prefetching. The
IDs of the registers containing the live-in data for each assist
warp are saved in the AWT when an assist warp is triggered.
Similarly, if an assist warp needs to report results to its parent
warp (e.g., in the case of memoization), the register IDs are
also stored in the AWT. When the assist warps execute, MOVE
instructions are Vrst executed to copy the live-in data from the
parent warp registers to the assist warp registers. Live-out data
is communicated to the parent warp in a similar fashion, at the
end of assist warp execution.
Assist warps may need to be killed when they are not re-

quired (e.g., if the data does not require decompression) or
when they are no longer beneVcial. In this case, the entries in
the AWT and AWB are simply Wushed for the assist warp.

3.5. Applications of the CABA Framework

We envision multiple applications for the CABA framework,
e.g., data compression [4, 22, 65, 84], memoization [12, 26, 77],
data prefetching [13, 34, 47, 64]. In Section 4, we provide a de-
tailed case study of enabling data compression with the frame-
work, discussing various tradeoUs. We believe CABA can be
useful for many other optimizations, and we discuss some of
them brieWy in Section 7.

4. A Case for CABA: Data Compression

Data compression is a technique that exploits the redun-
dancy in the applications’ data to reduce capacity and band-
width requirements for many modern systems by saving and
transmitting data in a more compact form. Hardware-based
data compression has been explored in the context of on-
chip caches [4, 10, 22, 29, 43, 65, 67, 71, 84] and main mem-
ory [2, 33, 66, 75, 82] as a means to save storage capacity as well
as memory bandwidth. In modern GPUs, memory bandwidth
is a key limiter to system performance in many workloads (Sec-
tion 2). As such, data compression is a promising technique to

help alleviate this bottleneck. Compressing data enables less
data to be transferred from/to DRAM and the interconnect.

In bandwidth-constrained workloads, idle compute pipelines
oUer an opportunity to employ CABA to enable data com-
pression in GPUs. We can use assist warps to (1) decompress
data, before loading it into the caches and registers, and (2)
compress data before writing it back to memory. Since assist
warps execute instructions, CABA oUers some Wexibility in the
compression algorithms that can be employed. Compression
algorithms that can be mapped to the general GPU execution
model can be Wexibly implemented with the CABA framework.

4.1. Mapping Compression Algorithms into Assist Warps

In order to employ CABA to enable data compression, we need
to map compression algorithms into instructions that can be
executed within the GPU cores. For a compression algorithm to
be amenable for implementation with CABA, it ideally needs to
be (1) reasonably parallelizable and (2) simple (for low latency).
Decompressing data involves reading the encoding associated
with each cache line that deVnes how to decompress it, and
then triggering the corresponding decompression subroutine in
CABA. Compressing data, on the other hand, involves testing
diUerent encodings and saving data in the compressed format.
We perform compression at the granularity of a cache line.

The data needs to be decompressed before it is used by any pro-
gram thread. In order to utilize the full SIMD width of the GPU
pipeline, we would like to decompress/compress all the words
in the cache line in parallel. With CABA, helper thread routines
are managed at the warp granularity, enabling Vne-grained trig-
gering of assist warps to perform compression/decompression
when required. However, the SIMT execution model in a GPU
imposes some challenges: (1) threads within a warp operate in
lock-step, and (2) threads operate as independent entities, i.e.,
they do not easily communicate with each other.
In this section, we discuss the architectural changes and al-

gorithm adaptations required to address these challenges and
provide a detailed implementation and evaluation of Data Com-
pression within the CABA framework using the Base-Delta-
Immediate compression algorithm [65]. Section 4.1.3 brieWy
discusses implementing other compression algorithms.
4.1.1. Algorithm Overview. Base-Delta-Immediate compres-
sion (BDI) is a simple compression algorithm that was origi-
nally proposed in the context of caches [65]. It is based on the
observation that many cache lines contain data with low dy-
namic range. BDI exploits this observation to represent a cache
line with low dynamic range using a common base (or multiple
bases) and an array of deltas (diUerences between values within
the cache line and the common base). Since the deltas require
fewer bytes than the values themselves, the combined size after
compression can be much smaller. Figure 5 shows the compres-
sion of an example 64-byte cache line from the PageViewCount
(PVC) application using BDI. As Figure 5 indicates, in this case,
the cache line can be represented using two bases (an 8-byte
base value, 0x8001D000, and an implicit zero value base) and
an array of eight 1-byte diUerences from these bases. As a
result, the entire cache line data can be represented using 17
bytes instead of 64 bytes (1-byte metadata, 8-byte base, and
eight 1-byte deltas), saving 47 bytes of the originally used space.
Our example implementation of the BDI compression algo-

rithm [65] views a cache line as a set of Vxed-size values i.e., 8
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Figure 5: Cache line from PVC compressed with BDI.

8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line.
For the size of the deltas, it considers three options: 1, 2 and 4
bytes. The key characteristic of BDI, which makes it a desirable
compression algorithm to use with the CABA framework, is its
fast parallel decompression that can be eXciently mapped into
instructions that can be executed on GPU hardware. Decom-
pression is simply a masked vector addition of the deltas to the
appropriate bases [65].
4.1.2. Mapping BDI to CABA. In order to implement BDI with
the CABA framework, we need to map compression/decom-
pression algorithms into GPU instruction subroutines (stored
in the AWS and deployed as assist warps). We provide a brief
overview of how to do this, and leave the details to our ex-
tended technical report [83].
Decompression. To decompress the data compressed with

BDI, we need a simple addition of deltas to the appropriate
bases. The CABA decompression subroutine Vrst loads the
words within the compressed cache line into assist warp regis-
ters, and then performs the base-delta additions in parallel on
the wide ALU pipeline.1 The subroutine then writes back the
uncompressed cache line to the cache. It skips the addition for
the lanes with an implicit base of zero by updating the active
lane mask based on the cache line encoding. We store a sepa-
rate subroutine for each possible BDI encoding that loads the
appropriate bytes in the cache line as the base and the deltas.
Compression. To compress data, the CABA compression

subroutine tests several possible encodings (each representing
a diUerent size of base and deltas) in order to achieve a high
compression ratio. The Vrst few bytes (2–8 depending on the
encoding tested) of the cache line are always used as the base.
Each possible encoding is tested to check whether the cache line
can be successfully encoded with it. In order to perform com-
pression at a warp granularity, we need to check whether all
of the words at every SIMD lane were successfully compressed.
In other words, if any one word cannot be compressed, that
encoding cannot be used across the warp. We can perform this
check by adding a global predicate register, which stores the
logical AND of the per-lane predicate registers. Applications
with homogeneous data structures can typically use the same
encoding for most of their cache lines. We use this observation
to reduce the number of encodings we test to just one in many
cases. All necessary operations are done in parallel using the
full width of the GPU SIMD pipeline.
4.1.3. Implementing Other Algorithms. The BDI compres-
sion algorithm is naturally amenable towards implementation
using assist warps because of its data-parallel nature and sim-
plicity. The CABA framework can also be used to realize other
algorithms. The challenge in implementing algorithms like
FPC [5] and C-Pack [22]2, which have variable-length com-
pressed words, is primarily in the placement of compressed

1Multiple instructions are required if the number of deltas exceeds the width
of the ALU pipeline. We use a 32-wide pipeline.

2Our technical report [83] and the original works [5, 22] provide more details
on the speciVcs of these algorithms.

words within the compressed cache lines. In BDI, the com-
pressed words are in Vxed locations within the cache line and,
for each encoding, all the compressed words are of the same
size and can, therefore, be processed in parallel. In contrast, C-
Pack may employ multiple dictionary values as opposed to just
one base in BDI. In order to realize algorithms with variable
length words and dictionary values with assist warps, we lever-
age the coalescing/address generation logic [61, 63] already
available in the GPU cores. We make two minor modiVcations
to these algorithms [5, 22] to adapt them for use with CABA.
First, similar to prior works [5, 22, 33], we observe that few
encodings are suXcient to capture almost all the data redun-
dancy. In addition, the impact of any loss in compressibility
due to fewer encodings is minimal as the beneVts of bandwidth
compression are only at multiples of a single DRAM burst (e.g.,
32B for GDDR5 [41]). We exploit this to reduce the number
of supported encodings. Second, we place all the metadata
containing the compression encoding at the head of the cache
line to be able to determine how to decompress the entire line
upfront. In the case of C-Pack, we place the dictionary entries
after the metadata. Our technical report [83] describes how
these algorithms are enabled with the CABA framework.
We note that it can be challenging to implement complex

algorithms eXciently with the simple computational logic avail-
able in GPU cores. Fortunately, there are already Special Func-
tion Units (SFUs) [18, 55] present in the GPU SMs, used to
perform eXcient computations of elementary mathematical
functions. SFUs could potentially be extended to implement
primitives that enable the fast iterative comparisons performed
frequently in some compression algorithms. This would enable
more eXcient execution of the described algorithms, as well as
implementation of more complex compression algorithms, us-
ing CABA. We leave the exploration of an SFU-based approach
to future work.

4.2. Walkthrough of CABA-based Compression

We show the detailed operation of CABA-based compression
and decompression mechanisms in Figure 6. We assume a
baseline GPU architecture with three levels in the memory
hierarchy – two levels of caches (private L1s and a shared
L2) and the main memory. DiUerent levels can potentially
store compressed data. In this section and in our evaluations,
we assume that only the L2 cache and main memory contain
compressed data. Note that there is no capacity beneVt in the
baseline mechanism as compressed cache lines still occupy the
full uncompressed slot, i.e., we only evaluate the bandwidth-
saving beneVts of compression in GPUs.
4.2.1. The Decompression Mechanism. Load instructions
that access global memory data in the compressed form trigger
the appropriate assist warp to decompress the data before it is
used. The subroutines to decompress data are stored in the As-
sist Warp Store (AWS). The AWS is indexed by the compression
encoding at the head of the cache line and by a bit indicating
whether the instruction is a load (decompression is required)
or a store (compression is required). Each decompression assist
warp is given high priority and, hence, stalls the progress of its
parent warp until it completes its execution.
L1 Access. We store data in L1 in the uncompressed form.

An L1 hit does not require an assist warp for decompression.
L2/Memory Access. Global memory data cached in
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Figure 6: Walkthrough of CABA-based Compression.

L2/DRAM could potentially be compressed. A bit indicating
whether the cache line is compressed is returned to the core
along with the cache line (Ê). If the data is uncompressed,
the line is inserted into the L1 cache and the writeback phase
resumes normally. If the data is compressed, the compressed
cache line is inserted into the L1 cache. The encoding of the
compressed cache line and the warp ID are relayed to the Assist
Warp Controller (AWC), which then triggers the AWS (Ë) to
deploy the appropriate assist warp (Ì) to decompress the line.
During regular execution, the load information for each thread
is buUered in the coalescing/load-store unit [61, 63] until all
the data is fetched. We continue to buUer this load information
(Í) until the line is decompressed.

After the CABA decompression subroutine ends execution,
the original load that triggered decompression is resumed (Í).
4.2.2. The Compression Mechanism. The assist warps to per-
form compression are triggered by store instructions. When
data is written to a cache line (i.e., by a store), the cache line
can be written back to main memory either in the compressed
or uncompressed form. Compression is oU the critical path and
the warps to perform compression can be scheduled when the
required resources are available.

Pending stores are buUered in a few dedicated sets within the
L1 cache or in available shared memory (Î). In the case of an
overWow in this buUer space (Î), the stores are released to the
lower levels of the memory system in the uncompressed form
(Ï). Upon detecting the availability of resources to perform
the data compression, the AWC triggers the deployment of the
assist warp that performs compression (Ë) into the AWB (Ì),
with low priority. The scheduler is then free to schedule the
instructions from the compression subroutine.
L1 Access. On a hit in the L1 cache, the cache line is al-

ready available in the uncompressed form. Depending on the
availability of resources, the cache line can be scheduled for
compression or simply written to the L2 and main memory
uncompressed when evicted.
L2/Memory Access. Data in memory is compressed at the

granularity of a full cache line, but stores can be at granular-
ites smaller than the size of the cache line. This poses some
additional diXculty if the destination cache line for a store
is already compressed in main memory. Partial writes into a
compressed cache line would require the cache line to be de-
compressed Vrst, then updated with the new data, and written
back to main memory. The common case—where the cache line
being written into is uncompressed initially—can be easily han-
dled. However, in the worst case, the cache line being partially

written to is already in the compressed form in memory. We
now describe the mechanism to handle these cases.
Initially, to reduce the store latency, we assume that the

cache line is uncompressed, and issue a store to the lower levels
of the memory hierarchy, while buUering a copy in L1. If
the cache line is found in L2/memory in the uncompressed
form (Ê), the assumption was correct. The store then proceeds
normally and the buUered stores are evicted from L1. If the
assumption is incorrect, the cache line is retrieved (Ð) and
decompressed before the store is retransmitted to the lower
levels of the memory hierarchy.

4.3. Realizing Data Compression

Supporting data compression requires additional support from
the main memory controller and the runtime system, as we
describe below. Our technical report [83] contains more details.
4.3.1. Initial Setup and ProVling. Data compression with
CABA requires a one-time data setup before the data is trans-
ferred to the GPU. We assume initial software-based data prepa-
ration where the input data is stored in CPU memory in the
compressed form with an appropriate compression algorithm
before transferring the data to GPU memory. Transferring data
in the compressed form can also reduce PCIe bandwidth usage.3

Memory-bandwidth-limited GPU applications are the best
candidates for employing data compression using CABA. The
compiler (or the runtime proVler) is required to identify those
applications that are most likely to beneVt from this framework.
For applications where bandwidth is not a bottleneck, data
compression is simply disabled.
4.3.2. Memory Controller Changes. Data compression re-
duces oU-chip bandwidth requirements by transferring the
same data in fewer DRAM bursts. The memory controller
(MC) needs to know whether the cache line data is compressed
and how many bursts (1–4 bursts in GDDR5 [41]) are needed
to transfer the data from DRAM to the MC. Similar to prior
work [66, 72], we require metadata information for every cache
line that keeps track of how many bursts are needed to transfer
the data. Similar to prior work [72], we simply reserve 8MB
of GPU DRAM space for the metadata (~0.2% of all available
memory). Unfortunately, this simple design would require an
additional access for the metadata for every access to DRAM
eUectively doubling the required bandwidth. To avoid this, a
simple metadata (MD) cache that keeps frequently-accessed
metadata on chip (near the MC) is required. Our experiments
show that a small 8 KB 4-way associative MD cache is suX-
cient to provide a hit rate of 85% on average (more than 99%
for many applications) across all applications in our workload
pool.4 Hence, in the common case, a second access to DRAM
to fetch compression-related metadata can be avoided.

5. Methodology

We model the CABA framework in GPGPU-Sim 3.2.1 [14].
Table 1 provides the major parameters of the simulated system.
We use GPUWattch [54] to model GPU power and CACTI [81]
to evaluate the power/energy overhead associated with the MD
cache (Section 4.3.2) and the additional components (AWS and

3This requires changes to the DMA engine to recognize compressed lines.
4For applications where MD cache miss rate is low, we observe that MD cache
misses are usually also TLB misses. Hence, most of the overhead of MD cache
misses in these applications is outweighed by the cost of page table lookups.
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AWC) of the CABA framework. We implement BDI [65] using
the Synopsys Design Compiler with 65nm library (to evaluate
the energy overhead of compression/decompression for the
dedicated hardware design for comparison to CABA), and then
use ITRS projections [44] to scale our results to 32nm.

System Overview 15 SMs, 32 threads/warp, 6 memory channels

Shader Core ConVg 1.4GHz, GTO scheduler [68], 2 schedulers/SM

Resources / SM 48 warps/SM, 32768 registers, 32KB Shared Memory

L1 Cache 16KB, 4-way associative, LRU replacement policy

L2 Cache 768KB, 16-way associative, LRU replacement policy

Interconnect 1 crossbar/direction (15 SMs, 6 MCs), 1.4GHz

Memory Model 177.4GB/s BW, 6 GDDR5 Memory Controllers (MCs),
FR-FCFS scheduling, 16 banks/MC

GDDR5 Timing [41] tCL = 12, : tRP = 12, : tRC = 40, : tRAS = 28,
tRCD = 12, : tRRD = 6 : tCLDR = 5 : tWR = 12

Table 1: Major parameters of the simulated systems.

Evaluated Applications. We use a number of CUDA ap-
plications derived from CUDA SDK [62] (BFS, CONS, JPEG,
LPS, MUM, RAY, SLA, TRA), Rodinia [21] (hs, nw), Mars [39]
(KM, MM, PVC, PVR, SS) and lonestar [17] (bfs, bh, mst, sp,
sssp) suites. We run all applications to completion or 1 bil-
lion instructions (whichever comes Vrst). CABA-based data
compression is mainly beneVcial for bandwidth-limited appli-
cations. In computation-resource limited applications, data
compression is not only unrewarding, but it can also cause
signiVcant performance degradation due to the computational
overheads associated with assist warps. We rely on static pro-
Vling to identify bandwidth-limited applications and disable
CABA-based compression for the others. In our evaluation
(Section 6), we demonstrate detailed results for applications
that exhibit some compressibility in bandwidth (at least 10%).
Applications without compressible data (e.g., sc, SCP) do not
gain any performance from the CABA framework, and we
veriVed that these applications do not incur any degradation
(because the assist warps are not triggered for them).

Evaluated Metrics. We present Instruction per Cycle (IPC)
as the primary performance metric. We also use average band-
width utilization, deVned as the fraction of total DRAM cycles
that the DRAM data bus is busy, and compression ratio, deVned
as the ratio of the number of DRAM bursts required to transfer
data in the compressed vs. uncompressed form. As reported in
prior work [65], we use decompression/compression latencies
of 1/5 cycles for the hardware implementation of BDI.

6. Results

To evaluate the eUectiveness of using CABA to employ data
compression, we compare Vve diUerent designs: (i) Base -
the baseline system with no compression, (ii) HW-BDI-Mem
- hardware-based memory bandwidth compression with ded-
icated logic (data is stored compressed in main memory
but uncompressed in the last-level cache, similar to prior
works [66, 72]), (iii) HW-BDI - hardware-based interconnect
and memory bandwidth compression (data is stored uncom-
pressed only in the L1 cache) (iv) CABA-BDI - Core-Assisted
Bottleneck Acceleration (CABA) framework (Section 3) with all
associated overheads of performing compression (for both inter-
connect and memory bandwidth), (v) Ideal-BDI - compression
(for both interconnect and memory) with no latency/power

overheads for compression or decompression. This section pro-
vides our major results and analyses. Our technical report [83]
provides more detailed analyses.

6.1. EUect on Performance and Bandwidth Utilization

Figures 7 and 8 show, respectively, the normalized performance
(vs. Base) and the memory bandwidth utilization of the Vve
designs. We make three major observations.
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Figure 7: Normalized performance of CABA.
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Figure 8: Memory bandwidth utilization.

First, all compressed designs are eUective in providing high
performance improvement over the baseline. Our approach
(CABA-BDI) provides a 41.7% average improvement, which is
only 2.8% less than the ideal case (Ideal-BDI) with none of the
overheads associated with CABA. CABA-BDI’s performance
is 9.9% better than the previous [72] hardware-based memory
bandwidth compression design (HW-BDI-Mem), and only 1.6%
worse than the purely hardware-based design (HW-BDI) that
performs both interconnect and memory bandwidth compres-
sion. We conclude that our framework is eUective in enabling
the beneVts of compression without requiring specialized hard-
ware compression and decompression logic.

Second, performance beneVts, in many workloads, correlate
with the reduction in memory bandwidth utilization. For a
Vxed amount of data, compression reduces the bandwidth uti-
lization, and, thus, increases the eUective available bandwidth.
Figure 8 shows that CABA-based compression 1) reduces the
average memory bandwidth utilization from 53.6% to 35.6% and
2) is eUective in alleviating the memory bandwidth bottleneck
in most workloads. In some applications (e.g., bfs and mst),
designs that compress both the on-chip interconnect and the
memory bandwidth, i.e. CABA-BDI and HW-BDI, perform
better than the design that compresses only the memory band-
width (HW-BDI-Mem). Hence, CABA seamlessly enables the
mitigation of the interconnect bandwidth bottleneck as well,
since data compression/decompression is Wexibly performed at
the cores.
Third, for some applications, CABA-BDI is slightly (within

3%) better in performance than Ideal-BDI and HW-BDI. The
reason for this counter-intuitive result is the eUect of warp over-
subscription [49, 68]. In these cases, too many warps execute in
parallel, polluting the last level cache. CABA-BDI sometimes
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reduces pollution as a side eUect of performing more compu-
tation in assist warps, which slows down the progress of the
parent warps.
We conclude that the CABA framework can eUectively en-

able data compression to reduce both on-chip interconnect and
oU-chip memory bandwidth utilization, thereby improving the
performance of modern GPGPU applications.

6.2. EUect on Energy

Compression decreases energy consumption in two ways: 1)
by reducing bus energy consumption, 2) by reducing execution
time. Figure 9 shows the normalized energy consumption of
the Vve systems. We model the static and dynamic energy of
the cores, caches, DRAM, and all buses (both on-chip and oU-
chip), as well as the energy overheads related to compression:
metadata (MD) cache and compression/decompression logic.
We make two major observations.
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Figure 9: Normalized energy consumption of CABA.

First, CABA-BDI reduces energy consumption by as much
as 22.2% over the baseline. This is especially noticeable for
bandwidth-limited applications, e.g., PVC, mst. This is a re-
sult of two factors: (i) the reduction in the amount of data
transferred between the LLC and DRAM (we observe a 29.5%
average reduction in DRAM power) and (ii) the reduction in
total execution time. This observation agrees with several prior
works on bandwidth compression [66, 75]. We conclude that
the CABA framework is capable of reducing the overall system
energy, primarily by decreasing the oU-chip memory traXc.

Second, CABA-BDI’s energy consumption is only 3.6% more
than that of the HW-BDI design, which uses dedicated logic
for memory bandwidth compression. It is also only 4.0% more
than that of the Ideal-BDI design, which has no compression-
related overheads. CABA-BDI consumes more energy because
it schedules and executes assist warps, utilizing on-chip register
Vles, memory and computation units, which is less energy-
eXcient than using dedicated logic for compression. However,
as results indicate, this additional energy cost is small compared
to the performance gains of CABA (recall, 41.7% over Base),
and may be amortized by using CABA for other purposes as
well (see Section 7).

Power Consumption. CABA-BDI increases the system
power consumption by 2.9% over the baseline (not graphed),
mainly due to the additional hardware and higher utilization
of the compute pipelines. However, the power overhead en-
ables energy savings by reducing bandwidth use and can be
amortized across other uses of CABA (Section 7).

6.3. EUect of Enabling DiUerent Compression Algorithms

The CABA framework is not limited to a single compression al-
gorithm, and can be eUectively used to employ other hardware-
based compression algorithms (e.g., FPC [4] and C-Pack [22]).

The eUectiveness of other algorithms depends on two key fac-
tors: (i) how eXciently the algorithm maps to GPU instructions,
(ii) how compressible the data is with the algorithm. We map
the FPC and C-Pack algorithms to the CABA framework and
evaluate the framework’s eXcacy.5

Figure 10 shows the normalized speedup with four ver-
sions of our design: CABA-FPC, CABA-BDI, CABA-C-Pack,
and CABA-BestOfAll with the FPC, BDI, C-Pack compression
algorithms. CABA-BestOfAll is an idealized design that selects
and uses the best of all three algorithms in terms of compres-
sion ratio for each cache line, assuming no selection overhead.
We make three major observations.
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Figure 10: Speedup with diUerent compression algorithms.

First, CABA signiVcantly improves performance with any
compression algorithm (20.7% with FPC, 35.2% with C-Pack).
Similar to CABA-BDI, the applications that beneVt the most
are those that are both bandwidth-sensitive (Figure 8) and
compressible (Figure 11). We conclude that our proposed frame-
work, CABA, is general and Wexible enough to successfully
enable diUerent compression algorithms.
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Figure 11: Compression ratio of algorithms with CABA.

Second, applications beneVt diUerently from each algorithm.
For example, LPS, JPEG, MUM, nw have higher compression
ratios with FPC or C-Pack, whereas MM, PVC, PVR compress
better with BDI. This motivates the necessity of having Wexible
data compression with diUerent algorithms within the same
system. Implementing multiple compression algorithms com-
pletely in hardware is expensive as it adds signiVcant area
overhead, whereas CABA can Wexibly enable the use of diUer-
ent algorithms via its general assist warp framework.
Third, the design with the best of three compression algo-

rithms, CABA-BestOfAll, can sometimes improve performance
more than each individual design with just one compression
algorithm (e.g., for MUM and KM). This happens because even
within an application, diUerent cache lines compress better
with diUerent algorithms. At the same time, diUerent compres-
sion related overheads of diUerent algorithms can cause one to
have higher performance than another even though the latter
may have a higher compression ratio. For example, CABA-BDI
provides higher performance on LPS than CABA-FPC, even

5Our technical report [83] details how these algorithms are mapped to CABA.
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though BDI has a lower compression ratio than FPC for LPS,
because BDI’s compression/decompression latencies are much
lower than FPC’s. Hence, a mechanism that selects the best
compression algorithm based on both compression ratio and
the relative cost of compression/decompression is desirable to
get the best of multiple decompression algorithms. The CABA
framework can Wexibly enable the implementation of such a
mechanism, whose design we leave for future work.

6.4. Sensitivity to Peak Main Memory Bandwidth

As described in Section 2, main memory (oU-chip) bandwidth
is a major bottleneck in GPU applications. In order to conVrm
that CABA works for diUerent designs with varying amounts of
available bandwidth, we conduct an experiment where CABA-
BDI is used in three systems with 0.5X, 1X and 2X amount of
bandwidth of the baseline.
Figure 12 shows the results of this experiment. We observe

that, as expected, the CABA designs (*-CABA) signiVcantly
outperform the corresponding baseline designs with the same
amount of bandwidth. The performance improvement of CABA
is often equivalent to the doubling the oU-chip bandwidth.
We conclude that CABA-based bandwidth compression, on
average, oUers almost all the performance beneVts of doubling
the available oU-chip bandwidth with only modest complexity
to support assist warps.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee
du

p

1/2x‐Base 1/2x‐CABA 1x‐Base 1x‐CABA 2x‐Base 2x‐CABA

Figure 12: Sensitivity of CABA to memory bandwidth.

6.5. Selective Cache Compression with CABA

In addition to reducing bandwidth consumption, data com-
pression can also increase the eUective capacity of on-chip
caches. While compressed caches can be beneVcial—as higher
eUective cache capacity leads to lower miss rates—supporting
cache compression requires several changes in the cache de-
sign [4, 22, 65, 71].

Figure 13 shows the eUect of four cache compression designs
using CABA-BDI (applied to both L1 and L2 caches with 2x or
4x the number of tags of the baseline6) on performance. We
make two major observations. First, several applications from
our workload pool are not only bandwidth sensitive, but also
cache sensitive. For example, bfs and sssp signiVcantly beneVt
from L1 cache compression, while TRA and KM beneVt from
L2 compression. Second, L1 cache compression can severely
degrade the performance of some applications, e.g., hw and LPS.
The reason for this is the overhead of decompression, which
can be especially high for L1 caches as they are accessed very
frequently. This overhead can be easily avoided by disabling
compression at any level of the memory hierarchy.
The CABA framework allows us to store compressed data

selectively at diUerent levels of the memory hierarchy. We
consider an optimization where we avoid the overhead of de-
compressing data in L2 by storing data in uncompressed form.
6The number of tags limits the eUective compressed cache size [4, 65].
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Figure 13: Speedup of cache compression with CABA.

This provides another tradeoU between the savings in on-chip
traXc (when data in L2 is compressed – default option), and
savings in decompression latency (when data in L2 is uncom-
pressed). Several applications in our workload pool (e.g., RAY)
beneVt from storing data uncompressed as these applications
have high hit rates in the L2 cache. We conclude that oUering
the choice of enabling or disabling compression at diUerent lev-
els of the memory hierarchy can provide application developers
with an additional per-application performance knob.

7. Other Uses of the CABA Framework

The CABA framework can be employed in various ways to
alleviate system bottlenecks and increase system performance
and energy eXciency. In this section, we discuss two other
potential applications of CABA: Memoization and Prefetching.

7.1. Memoization

Hardware memoization is a technique used to avoid redundant
computations by reusing the results of previous computations
that have the same or similar inputs. Prior work [8, 12, 70]
observed redundancy in inputs to data in GPU workloads. In
applications limited by available compute resources, memoiza-
tion oUers an opportunity to trade oU computation for stor-
age, thereby enabling potentially higher energy eXciency and
performance. In order to realize memoization in hardware,
a look-up table (LUT) is required to dynamically cache the
results of computations as well as the corresponding inputs.
The granularity of computational reuse can be at the level of
fragments [12], basic blocks, functions [7, 9, 26, 40, 77], or long-
latency instructions [23]. The CABA framework is a natural
way to implement such an optimization. The availability of
on-chip memory lends itself for use as the LUT. In order to
cache previous results in on-chip memory, look-up tags (similar
to those proposed in [37]) are required to index correct results.
With applications tolerant of approximate results (e.g., image
processing, machine learning, fragment rendering kernels), the
computational inputs can be hashed to reduce the size of the
LUT. Register values, texture/constant memory or global mem-
ory sections that are not subject to change are potential inputs.
An assist warp can be employed to perform memoization in
the following way: (1) compute the hashed value for look-up
at predeVned trigger points, (2) use the load/store pipeline to
save these inputs in available shared memory, and (3) eliminate
redundant computations by loading the previously computed
results in the case of a hit in the LUT.

7.2. Prefetching

Prefetching has been explored in the context of GPUs [11, 45,
46, 52, 53, 58, 73] with the goal of reducing eUective memory
latency. With memory-latency-bound applications, the load-
/store pipelines can be employed by the CABA framework
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to perform opportunistic prefetching into GPU caches. The
CABA framework can potentially enable the eUective use of
prefetching in GPUs due to several reasons: (1) Even simple
prefetchers such as the stream [47, 64, 78] or stride [13, 34]
prefetchers are non-trivial to implement in GPUs since access
patterns need to be tracked and trained at the granularity of
warps [53, 73]. CABA could enable Vne-grained book-keeping
by using spare registers and assist warps to save metadata for
each warp. The computational units could then be used to
continuously compute strides in access patterns both within
and across warps. (2) It has been demonstrated that software
prefetching and helper threads [1, 16, 25, 42, 42, 52, 57, 79] are
very eUective in performing prefetching for irregular access
patterns. Assist warps oUer the hardware/software interface
to implement application-speciVc prefetching algorithms with
varying degrees of complexity without the additional cost of
hardware implementation. (3) In bandwidth-constrained GPU
systems, uncontrolled prefetching could potentially Wood the
oU-chip buses, delaying demand requests. CABA can enable
Wexible prefetch throttling (e.g., [30, 32, 78]) by scheduling as-
sist warps that perform prefetching, only when the memory
pipelines are idle. (4) Prefetching with CABA entails using load
or prefetch instructions, which not only enables prefetching
to the hardware-managed caches, but also simpliVes usage of
unutilized shared memory or register Vle as prefetch buUers.

8. Related Work

To our knowledge, this paper is the Vrst to (1) propose a Wexible
and general framework for employing idle GPU resources for
useful computation that can aid regular program execution,
and (2) use the general concept of helper threading to per-
form memory and interconnect bandwidth compression. We
demonstrate the beneVts of our new framework by using it to
implement multiple compression algorithms on a throughput-
oriented GPU architecture. We brieWy discuss related works in
helper threading and bandwidth compression.
Helper Threading. Previous works [1, 16, 19, 20, 24, 25, 27,

28, 42, 48, 51, 56, 57, 79, 85, 86] demonstrated the use of helper
threads in the context of Simultaneous Multithreading (SMT)
and multi-core processors, primarily to speed up single-thread
execution by using idle SMT contexts or idle cores in CPUs.
These works typically use helper threads (generated by the
software, the hardware, or cooperatively) to pre-compute useful
information that aids the execution of the primary thread (e.g.,
by prefetching, branch outcome pre-computation, and cache
management). No previous work discussed the use of helper
threads for memory/interconnect bandwidth compression or
cache compression.

While our work was inspired by these prior studies of helper
threading in latency-oriented architectures (CPUs), develop-
ing a framework for helper threading (or assist warps) in
throughput-oriented architectures (GPUs) enables new oppor-
tunities and poses new challenges, both due to the massive
parallelism and resources present in a throughput-oriented ar-
chitecture (as discussed in Section 1). Our CABA framework
exploits these new opportunities and addresses these new chal-
lenges, including (1) low-cost management of dozens of assist
warps that could be running concurrently with regular program
warps, (2) means of state/context management and scheduling
for assist warps to maximize eUectiveness and minimize inter-

ference, and (3) diUerent possible applications of the concept of
assist warps in a throughput-oriented architecture.
In the GPU domain, CudaDMA [15] is a recent proposal

that aims to ease programmability by decoupling execution and
memory transfers with specialized DMAwarps. This work does
not provide a general and Wexible hardware-based framework
for using GPU cores to run warps that aid the main program.
Compression. Several prior works [6, 10, 66, 67, 72, 75, 82]

study memory and cache compression with several diUerent
compression algorithms [4, 10, 22, 43, 65, 84], in the context of
CPUs or GPUs. Our work is the Vrst to demonstrate how one
can adapt some of these algorithms for use in a general helper
threading framework for GPUs. As such, compression/decom-
pression using our new framework is more Wexible since it
does not require a specialized hardware implementation for
any algorithm and instead utilizes the existing GPU core re-
sources to perform compression and decompression. Finally,
as discussed in Section 7, our CABA framework is applicable
beyond compression and can be used for other purposes.

9. Conclusion

This paper makes a case for the Core-Assisted Bottleneck Ac-
celeration (CABA) framework, which automatically generates
assist warps to alleviate diUerent bottlenecks in GPU execution.
CABA is based on the key observation that various imbalances
and bottlenecks in GPU execution leave on-chip resources, i.e.,
computational units, register Vles and on-chip memory, un-
derutilized. We provide a detailed design and analysis of how
CABA can be used to perform Wexible data compression in
GPUs to mitigate the memory bandwidth bottleneck. Our ex-
tensive evaluations across a variety of workloads and system
conVgurations show that the use of CABA for memory com-
pression signiVcantly improves system performance (by 41.7%
on average on a set of bandwidth-sensitive GPU applications)
by reducing the bandwidth requirements of both the on-chip
and oU-chip buses. Hence, we conclude that CABA is a general
substrate that can alleviate the memory bandwidth bottleneck
in modern GPU systems by enabling Wexible implementations
of data compression algorithms. We believe CABA is a general
framework that can have a wide set of use cases to mitigate
many diUerent system bottlenecks in throughput-oriented ar-
chitectures, and we hope that future work explores both new
uses of CABA and more eXcient implementations of it.
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