
Preprint; final version to appear in IBM Journal of Research of Development, Nov. 2019

 1

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose† Amirali Boroumand† Jeremie S. Kim†§ Juan Gómez-Luna§ Onur Mutlu§†

†Carnegie Mellon University §ETH Zürich

Many modern and emerging applications must process increasingly large volumes of data.
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such large-
scale data: the energy and performance costs to move this data between the memory subsystem
and the CPU now dominate the total costs of computation. This forces system architects and
designers to fundamentally rethink how to design computers. Processing-in-memory (PIM) is a
computing paradigm that avoids most data movement costs by bringing computation to the data.
New opportunities in modern memory systems are enabling architectures that can perform
varying degrees of processing inside the memory subsystem. However, there are many practical
system-level issues that must be tackled to construct PIM architectures, including enabling
workloads and programmers to easily take advantage of PIM. This article examines three key
domains of work towards the practical construction and widespread adoption of PIM
architectures. First, we describe our work on systematically identifying opportunities for PIM in
real applications, and quantify potential gains for popular emerging applications (e.g., machine
learning, data analytics, genome analysis). Second, we aim to solve several key issues on
programming these applications for PIM architectures. Third, we describe challenges that remain
for the widespread adoption of PIM.

1. Introduction
A wide range of application domains have emerged as computing
platforms of all types have become more ubiquitous in society.
Many of these modern and emerging applications must now
process very large data sets [1-8]. As an example, an object
classification algorithm in an augmented reality application
typically trains on millions of example images and video clips,
and performs classification on real-time high-definition video
streams [7, 9]. In order to process meaningful information from
the large amounts of data, applications turn to artificial
intelligence (AI), or machine learning (ML), and data analytics to
methodically mine through the data and extract key properties
about the data set.

Due to the increasing reliance on manipulating and mining
through large sets of data, these modern applications greatly
overwhelm the data storage and movement resources of a modern
computer. In a contemporary computer, the main memory
(consisting of DRAM) is not capable of performing any
operations on data. As a result, to perform any operation on data
that is stored in memory, the data needs to be moved from the
memory to the CPU via the memory channel, a pin-limited off-
chip bus (e.g., conventional double data rate, or DDR, memories
make use of a 64-bit memory channel [10-12]). To move the data,
the CPU must issue a request to the memory controller, which
then issues commands across the memory channel to the DRAM
module containing the data. The DRAM module then reads and
returns the data across the memory channel, and the data moves
through the cache hierarchy before being stored in a CPU cache.
The CPU can operate on the data only once the data is loaded
from the cache into a CPU register.

Unfortunately, for modern and emerging applications, the large
amounts of data that need to move across the memory channel
create a large data movement bottleneck in the computing
system [13-14]. The data movement bottleneck incurs a heavy

penalty in terms of both performance and energy
consumption [13-20]. First, there is a long latency and significant
energy involved in bringing data from DRAM. Second, it is
difficult to send a large number of requests to memory in parallel,
in part because of the narrow width of the memory channel.
Third, despite the costs of bringing data into memory, much of
this data is not reused by the CPU, rendering the caching either
highly inefficient or completely unnecessary [5, 21], especially
for modern workloads with very large datasets and random access
patterns. Today, the total cost of computation, in terms of
performance and in terms of energy, is dominated by the cost of
data movement for modern data-intensive workloads such as
machine learning and data analytics [5, 15, 16, 21-25].

The high cost of data movement is forcing architects to rethink
the fundamental design of computer systems. As data-intensive
applications become more prevalent, there is a need to bring
computation closer to the data, instead of moving data across the
system to distant compute units. Recent advances in memory
design enable the opportunity for architects to avoid unnecessary
data movement by performing processing-in-memory (PIM), also
known as near-data processing (NDP). The idea of performing
PIM has been proposed for at least four decades [26-36], but
earlier efforts were not widely adopted due to the difficulty of
integrating processing elements for computation with DRAM.
Innovations such as (1) 3D-stacked memory dies that combine a
logic layer with DRAM layers [5, 37-40], (2) the ability to
perform logic operations using memory cells themselves inside a
memory chip [18, 20, 41-49], and (3) the emergence of
potentially more computation-friendly resistive memory
technologies [50-61] provide new opportunities to embed
general-purpose computation directly within the memory [5, 16-
19, 21, 22, 24, 25, 41-43, 47-49, 62-100].

While PIM can allow many data-intensive applications to avoid
moving data from memory to the CPU, it introduces new

2

challenges for system architects and programmers. In this work,
we examine two major areas of challenges, and discuss solutions
that we have developed for each challenge. First, programmers
need to be able to identify opportunities in their applications
where PIM can improve their target objectives (e.g., application
performance, energy consumption). As we discuss in Section 3,
the decision on whether to execute part or all of an application in
memory depends on (1) architectural constraints, such as area and
energy limitations, and the type of logic implementable within
memory; and (2) application properties, such as the intensities of
computation and memory accesses, and the amount of data shared
across different functions. To solve this first challenge, we have
developed toolflows that help the programmer to systematically
determine how to partition work between PIM logic (i.e.,
processing elements on the memory side) and the CPU, in order
to meet all architectural design constraints and maximize targeted
benefits [16, 22-24, 75]. Second, system architects and
programmers must establish efficient interfaces and mechanisms
that allow programs to easily take advantage of the benefits of
PIM. In particular, the processing logic inside memory does not
have quick access to important mechanisms required by modern
programs and systems, such as cache coherence and address
translation, which programmers rely on for software development
productivity. To solve this second challenge, we develop a series
of interfaces and mechanisms that are designed specifically to
allow programmers to use PIM in a way that preserves
conventional programming models [5, 16-24, 62, 75].

In providing a series of solutions to these two major challenges,
we tackle many of the fundamental barriers that have prevented
PIM from being adopted widely, in a programmer-friendly way.
We find that a number of future challenges remain against the
adoption of PIM, and we discuss them briefly in Section 6. We
hope that our work inspires researchers to address these and other
future challenges, and that both our work and future works help
to enable the widespread commercialization and usage of PIM-
based computing systems.

2. Overview of Processing-in-Memory (PIM)
The costs of data movement in an application continue to increase
significantly as applications process larger data sets. Processing-
in-memory provides a viable path to eliminate unnecessary data
movement, by bringing part or all of the computation into the
memory. In this section, we briefly examine key enabling
technologies behind PIM, and how new advances and
opportunities in memory design have brought PIM significantly
closer to realization.

2.1. The Initial Push for PIM
Proposals for PIM architectures extend back as far as the 1960s.
Stone’s Logic-in-Memory computer is one of the earliest PIM
architectures, in which a distributed array of memories combines
small processing elements with small amounts of RAM to
perform computation within the memory array [36]. Between the
1970s and the early 2000s, a number of subsequent works
propose different ways to integrate computation and memory,
which we broadly categorize into two families of work. In the
first family, which includes NON-VON [35], Computational
RAM [27, 28], EXECUBE [31], Terasys [29], and IRAM [34],
architects add logic within DRAM to perform data-parallel

operations. In the second family of works, such as Active
Pages [33], FlexRAM [30], Smart Memories [32], and
DIVA [26], architects propose more versatile substrates that
tightly integrate logic and reconfigurability within DRAM itself
to increase flexibility and the available compute power.
Unfortunately, many of these works were hindered by the
limitations of existing memory technologies, which prevented the
practical integration of logic in or near the memory.

2.2. New Opportunities in Modern Memory Systems
Due to the increasing need for large memory systems by modern
applications, DRAM scaling is being pushed to its practical
limits [101-104]. It is becoming more difficult to increase the
density [101, 105-107], reduce the latency [107-112], and
decrease the energy consumption [101, 113, 114] of conventional
DRAM architectures. In response, memory manufacturers are
actively developing two new approaches for main memory
system design, both of which can be exploited to overcome prior
barriers to implementing PIM architectures.

The first major innovation is 3D-stacked memory [5, 37-40]. In
a 3D-stacked memory, multiple layers of memory (typically
DRAM) are stacked on top of each other, as shown in Figure 1.
These layers are connected together using vertical through-
silicon vias (TSVs) [38, 39]. With current manufacturing process
technologies, thousands of TSVs can be placed within a single
3D-stacked memory chip. The TSVs provide much greater
internal memory bandwidth than the narrow memory channel.
Examples of 3D-stacked DRAM available commercially include
High-Bandwidth Memory (HBM) [37, 38], Wide I/O [115],
Wide I/O 2 [116], and the Hybrid Memory Cube (HMC) [40].

In addition to the multiple layers of DRAM, a number of
prominent 3D-stacked DRAM architectures, including HBM and
HMC, incorporate a logic layer inside the chip [37, 38, 40]. The
logic layer is typically the bottommost layer of the chip, and is
connected to the same TSVs as the memory layers. The logic
layer provides a space inside the DRAM chip where architects
can implement functionality that interacts with both the processor
and the DRAM cells. Currently, manufacturers make limited use
of the logic layer, presenting an opportunity for architects to
implement new PIM logic in the available area of the logic layer.
We can potentially add a wide range of computational logic (e.g.,
general-purpose cores, accelerators, reconfigurable architectures)
in the logic layer, as long as the added logic meets area, energy,
and thermal dissipation constraints.

Figure 1 High-level overview of a 3D-stacked DRAM architecture.
Reproduced from [14].

3

The second major innovation is the use of byte-addressable
resistive nonvolatile memory (NVM) for the main memory
subsystem. In order to avoid DRAM scaling limitations entirely,
researchers and manufacturers are developing new memory
devices that can store data at much higher densities than the
typical density available in existing DRAM manufacturing
process technologies. Manufacturers are exploring at least three
types of emerging NVMs to augment or replace DRAM at the
main memory layer: (1) phase-change memory (PCM) [50-56],
(2) magnetic RAM (MRAM) [57, 58], and (3) metal-oxide
resistive RAM (RRAM) or memristors [59-61]. All three of these
NVM types are expected to provide memory access latencies and
energy usage that are competitive with or close enough to
DRAM, while enabling much larger capacities per chip and
nonvolatility in main memory.

NVMs present architects with an opportunity to redesign how
the memory subsystem operates. While it can be difficult to
modify the design of DRAM arrays due to the delicacy of DRAM
manufacturing process technologies as we approach scaling
limitations, NVMs have yet to approach such scaling limitations.
As a result, architects can potentially design NVM memory
arrays that integrate PIM functionality. A promising direction for
this functionality is the ability to manipulate NVM cells at the
circuit level in order to perform logic operations using the
memory cells themselves. A number of recent works have
demonstrated that NVM cells can be used to perform a complete
family of Boolean logic operations [41-46], similar to such
operations that can be performed in DRAM cells [18, 20, 47-49].

2.3. Two Approaches: Processing-Near-Memory vs.
Processing-Using-Memory

Many recent works take advantage of the memory technology
innovations that we discuss in Section 2.2 to enable PIM. We find
that these works generally take one of two approaches, which are
summarized in Table 1: (1) processing-near-memory or
(2) processing-using-memory. Processing-near-memory
involves adding or integrating PIM logic (e.g., accelerators, very
small in-order cores, reconfigurable logic) close to or inside the
memory (e.g., [5, 6, 16, 21-25, 62, 64-73, 75, 77, 79, 81, 83-87,
90, 91, 117]). Many of these works place PIM logic inside the
logic layer of 3D-stacked memories or at the memory controller,
but recent advances in silicon interposers (in-package wires that
connect directly to the through-silicon vias in a 3D-stacked chip)
also allow for separate logic chips to be placed in the same die
package as a 3D-stacked memory while still taking advantage of
the TSV bandwidth. In contrast, processing-using-memory
makes use of intrinsic properties and operational principles of the
memory cells and cell arrays themselves, by inducing interactions
between cells such that the cells and/or cell arrays can perform
computation. Prior works show that processing-using-memory is
possible using static RAM (SRAM) [63, 76, 100], DRAM [17-
20, 47-49, 80, 87, 118], PCM [41], MRAM [44-46], or
RRAM/memristive [42, 43, 88, 92-99] devices. Processing-
using-memory architectures enable a range of different functions,
such as bulk copy and data initialization [17, 19, 63], bulk bitwise
operations (e.g., a complete set of Boolean logic operations) [18,
41, 44-49, 63, 80, 106-108, 118], and simple arithmetic
operations (e.g., addition, multiplication, implication) [42, 43, 63,
76, 80, 88, 92-100].

2.4. Challenges to the Adoption of PIM
In order to build PIM architectures that are adopted and readily
usable by most programmers, there are a number of challenges
that need to be addressed. In this work, we discuss two of the most
significant challenges facing PIM. First, programmers need to be
able to identify what portions of an application are suitable for
PIM, and architects need to understand the constraints imposed
by different substrates when designing PIM logic. We address
this challenge in Section 3. Second, once opportunities for PIM
have been identified and PIM architectures have been designed,
programmers need a way to extract the benefits of PIM without
having to resort to complex programming models. We address
this challenge in Section 4. While these two challenges represent
some of the largest obstacles to widespread adoption for PIM, a
number of other important challenges remain, which we discuss
briefly in Section 6.

3. Identifying Opportunities for PIM in Applications
In order to decide when to use PIM, we must first understand
which types of computation can benefit from being moved to
memory. The opportunities for an application to benefit from
PIM depend on (1) the constraints of the target architecture, and
(2) the properties of the application.

3.1. Design Constraints for PIM
The target architecture places a number of fundamental
constraints on the types of computation that can benefit from
PIM. As we discuss in Section 2.3, there are two approaches to
implementing PIM (processing-near-memory and processing-
using-memory). Each approach has its own constraints on what
type of logic can be efficiently and effectively implemented in
memory.

In the case of processing-near-memory, PIM logic must be
added close to the memory, either in the logic layer of a 3D-
stacked memory chip or in the same package. This places a limit
on how much PIM logic can be added. For example, in an HMC-
like 3D-stacked memory architecture implemented using a 22 nm
manufacturing processing technology, we estimate that there is
around 50–60 mm2 of area available for architects to add new
logic into the DRAM logic layer [40]. The available area can be
further limited by the architecture of the memory. For example,
in HMC, the 3D-stacked memory is partitioned into multiple
vaults [40], which are vertical slices of 3D-stacked DRAM. Logic
placed in a vault has fast access to data stored in the memory
layers of the same vault, as the logic is directly connected to the
memory in the vault by the TSVs (see Section 2.2), but accessing

Table 1 Summary of enabling technologies for the two approaches to
PIM used by recent works.

Approach Enabling Technologies

Processing-Near-Memory
Logic layers in 3D-stacked memory

Silicon interposers
Logic in memory controllers

Processing-Using-Memory

SRAM
DRAM

Phase-change memory (PCM)
Magnetic RAM (MRAM)

Resistive RAM (RRAM)/memristors

4

data stored in a different vault takes significantly longer latency.
As a result, architects often replicate PIM logic in each vault, to
minimize the latency of PIM operations. The trade-off of this is
that the amount of area available per vault is significantly lower:
for a 32-vault 3D-stacked memory chip, there is approximately
3.5–4.4 mm2 of area available for PIM logic [119-121].

A number of target computing platforms have additional
constraints beyond area. For example, consumer devices such as
smartphones, tablets, and netbooks are extremely stringent in
terms of both the area and energy budget they can accommodate
for any new hardware enhancement. Any additional logic added
to memory can potentially translate into a significant cost in
consumer devices. In fact, unlike PIM logic that is added to server
or desktop environments, consumer devices may not be able to
afford the addition of full-blown general-purpose PIM cores [22-
24, 68, 120], GPU PIM cores [75, 85, 90], or complex PIM
accelerators [5, 62, 119] to 3D-stacked memory. As a result, a
major challenge for enabling PIM in consumer devices is to
identify what kind of in-memory logic can both (1) maximize
energy efficiency and (2) be implemented at minimum possible
cost. Another constraint is thermal dissipation in 3D-stacked
memory, as adding PIM logic in the logic layer can potentially
raise the DRAM temperature beyond acceptable levels [85, 90].

In the case of processing-using-memory, the cells and memory
array themselves are used to implement PIM logic. Additional
logic in the controller and/or in the array itself may be required to
enable logic operations on the cells or in the memory array, or to
provide more specialized functionality beyond what the cells and
memory array themselves can perform easily (e.g., dedicated
adders or shifters).

3.2. Choosing What to Execute in Memory
After the constraints on what type of hardware can potentially be
implemented in memory are determined, the properties of the
application itself are a key indicator of whether portions of an
application benefit from PIM. A naïve assumption may be to
move highly-memory-intensive applications completely to PIM
logic. However, we find that there are cases where portions of
these applications still benefit from remaining on the CPU. For
example, many proposals for PIM architectures add small
general-purpose cores near memory (which we call PIM cores).
While PIM cores tend to be ISA-compatible with the CPU, and
can execute any part of the application, they cannot afford to have
large, multi-level cache hierarchies or execution logic that is as
complex as the CPU, due to area, energy, and thermal constraints.
PIM cores often have no or small caches, restricting the amount
of temporal locality they can exploit, and no sophisticated
aggressive out-of-order or superscalar execution logic, limiting
the PIM cores’ abilities to extract instruction-level parallelism
(ILP). As a result, portions of an application that are either
(1) compute-intensive or (2) cache-friendly should remain on the
larger, more sophisticated CPU cores [16, 21-24, 75].

We find that in light of these constraints, it is important to
identify which portions of an application are suitable for PIM.
We call such portions PIM targets. While PIM targets can be
identified manually by a programmer, the identification would
require significant programmer effort along with a detailed
understanding of the hardware trade-offs between CPU cores and

PIM cores. For architects who are adding custom PIM logic (e.g.,
fixed-function accelerators, which we call PIM accelerators) to
memory, the trade-offs between CPU cores and PIM accelerators
may not be known before determining which portions of the
application are PIM targets, since the PIM accelerators are
tailored for the PIM targets.

To alleviate the burden of manually identifying PIM targets,
we develop a systematic toolflow for identifying PIM targets in
an application [16, 22-24]. This toolflow uses a system that
executes the entire application on the CPU to evaluate whether
each PIM target meets the constraints of the system under
consideration. For example, when we evaluate workloads for
consumer devices, we use hardware performance counters and
our energy model to identify candidate functions that could be
PIM targets. A function is a PIM target candidate in a consumer
device if (1) it consumes the most energy out of all functions in
the workload, since energy reduction is a primary objective in
consumer workloads; (2) its data movement consumes a
significant fraction (e.g., more than 20%) of the total workload
energy, to maximize the potential energy benefits of offloading
to PIM; (3) it is memory-intensive (i.e., its last-level cache misses
per kilo instruction, or MPKI, is greater than 10 [122-125]), as
the energy savings of PIM is higher when more data movement
is eliminated; and (4) data movement is the single largest
component of the function’s energy consumption. We then check
if each candidate function is amenable to PIM logic
implementation using two criteria. First, we discard any PIM
targets that incur any performance loss when run on simple PIM
logic (i.e., PIM core, PIM accelerator). Second, we discard any
PIM targets that require more area than is available in the logic
layer of 3D-stacked memory. Note that for pre-built PIM
architectures with fixed PIM logic, we instead discard any PIM
targets that cannot be executed on the existing PIM logic.

While our toolflow was initially designed to identify PIM
targets for consumer devices [16], the toolflow can be modified
to accommodate any other hardware constraints. For example, in
our work on reducing the cost of cache coherence in PIM
architectures [22-24], we consider the amount of data sharing
(i.e., the total number of cache lines that are read concurrently by
the CPU and by PIM logic). In that work, we eliminate any
potential PIM target that would result in a high amount of data
sharing if the target were offloaded to a PIM core, as this would
induce a large amount of cache coherence traffic between the
CPU and PIM logic that would counteract the data movement
savings (see Section 4.2).

3.3. Case Study: PIM Opportunities in TensorFlow
By performing our constraint analysis (Section 3.1) and using

our systematic PIM target toolflow (Section 3.2), we find that a
number of key modern workloads are well-suited for PIM. In
particular, we find that machine learning and data analytics
workloads are particularly amenable for PIM, as they are often
partitioned into compute-intensive and memory-intensive
application phases. These workloads benefit highly from PIM
when only the memory-intensive PIM targets (that fit our system
constraints) are offloaded to PIM logic. Such workloads include
neural network inference [126], graph analytics [127-132], and
hybrid transactional/analytical processing databases [133-135].

5

As a case study, we present a detailed analysis using our PIM
target identification approach for TensorFlow Lite [126], a
version of Google’s TensorFlow machine learning library that is
specifically tailored for mobile and embedded platforms.
TensorFlow Lite enables a variety of tasks, such as image
classification, face recognition, and Google Translate’s instant
visual translation [136], all of which perform inference on
consumer devices using a convolutional neural network that was
pre-trained on cloud servers. We target a processing-near-
memory platform in this case study, where we add small in-order
PIM cores or fixed-function PIM accelerators into the logic layer
of a 3D-stacked DRAM. We model a 3D-stacked DRAM similar
to the Hybrid Memory Cube [40], where the memory contains
sixteen vaults (i.e., vertical slices of DRAM). We add one PIM
core or PIM accelerator per vault, ensuring that the area of the
PIM core or the PIM accelerator does not exceed the total
available area for logic inside each vault (3.5–4.4 mm2 [119-
121]). Each PIM core or PIM accelerator can execute one PIM
target at a time. Details about our methodology, along with the
specific parameters of the target platform, can be found in our
prior work [16].

Inference begins by feeding input data (e.g., an image) to a
neural network. A neural network is a directed acyclic graph
consisting of multiple layers. Each layer performs a number of
calculations and forwards the results to the next layer. The
calculation can differ for each layer, depending on the type of the
layer. A fully-connected layer performs matrix multiplication
(MatMul) on the input data, to extract high-level features. A 2-D
convolution layer applies a convolution filter (Conv2D) across
the input data, to extract low-level features. The last layer of a
neural network is the output layer, which performs classification
to generate a prediction based on the input data.

Energy Analysis: Figure 2 shows the breakdown of the energy
consumed by each function in TensorFlow Lite, for four different
input networks: ResNet-v2-152 [137], VGG-19 [138], Residual-
GRU [139], and Inception-ResNet-v2 [140]. As convolutional
neural networks (CNNs) consist mainly of 2-D convolution
layers and fully-connected layers [141], the majority of energy is
spent on these two types of layers. However, we find that there
are two other functions that consume a significant fraction of the
system energy: packing/unpacking and quantization. Packing and
unpacking reorder the elements of matrices to minimize cache
misses during matrix multiplication. Quantization converts 32-bit
floating point and integer values (used to represent both the
weights and activations of a neural network) into 8-bit integers,
which improves the execution time and energy consumption of
inference by reducing the complexity of operations that the CPU

needs to perform. These two functions together account for
39.3% of total system energy on average. The rest of the energy
is spent on a variety of other functions such as random sampling,
reductions, and simple arithmetic, each of which contributes to
less than 1% of total energy consumption (labeled Other in
Figure 2).

Even though the main goal of packing and quantization is to
reduce energy consumption and inference latency, our analysis
shows that they generate a large amount of data movement, and
thus, lose part of the energy savings they aim to achieve. Figure 3
shows that a significant portion (27.4% on average) of the
execution time is spent on the packing and quantization process.
We do not consider Conv2D and MatMul as being candidates for
offloading to PIM logic because (1) a majority (67.5%) of their
energy is spent on computation; and (2) Conv2D and MatMul
require a relatively large and sophisticated amount of PIM
logic [77, 119], which may not be cost-effective for consumer
devices.

PIM Effectiveness for Packing: We highlight how PIM can be
used to effectively improve the performance and energy
consumption of packing. GEneralized Matrix Multiplication
(GEMM) is the core building block of neural networks, and is
used by both 2-D convolution and fully-connected layers. These
two layers account for the majority of TensorFlow Lite execution
time. To implement fast and energy-efficient GEMM,
TensorFlow Lite employs a low-precision, quantized GEMM
library called gemmlowp [142]. The gemmlowp library performs
GEMM by executing its innermost kernel, an architecture-
specific GEMM code portion for small fixed-size matrix chunks,
multiple times. First, gemmlowp fetches matrix chunks which fit
into the LLC from DRAM. Then, it executes the GEMM kernel
on the fetched matrix chunks in a block-wise manner.

Each GEMM operation (i.e., a single matrix multiply
calculation using the gemmlowp library) involves three steps.
First, to minimize cache misses, gemmlowp employs a process
called packing, which reorders the matrix chunks based on the
memory access pattern of the kernel to make the chunks cache-
friendly. Second, the actual GEMM computation (i.e., the
innermost GEMM kernel) is performed. Third, after performing
the computation, gemmlowp performs unpacking, which
converts the result matrix chunk back to its original order.

Packing and unpacking account for up to 40% of the total
system energy and 31% of the inference execution time, as shown
in Figures 2 and 3, respectively. Due to their unfriendly cache
access pattern and the large matrix sizes, packing and unpacking
generate a significant amount of data movement. For instance, for

Figure 2 Energy breakdown during TensorFlow Lite inference
execution on four input networks. Reproduced from [16].

Figure 3 Execution time breakdown of inference. Reproduced from
[16].

6

VGG-19, 35.3% of the total energy goes to data movement
incurred by packing-related functions. On average, we find that
data movement is responsible for 82.1% of the total energy
consumed during the packing/unpacking process, indicating that
packing and unpacking are bottlenecked by data movement.

Packing and unpacking are simply pre-processing steps, to
prepare data in the right format for the innermost GEMM kernel.
Ideally, the CPU should execute only the innermost GEMM
kernel, and assume that packing and unpacking are already taken
care of. PIM can enable such a scenario by performing packing
and unpacking without any CPU involvement. Our PIM logic
packs matrix chunks, and sends the packed chunks to the CPU,
which executes the innermost GEMM kernel. Once the innermost
GEMM kernel completes, the PIM logic receives the result
matrix chunk from the CPU, and unpacks the chunk while the
CPU executes the innermost GEMM kernel on a different matrix
chunk.

PIM Effectiveness for Quantization: TensorFlow Lite performs
quantization twice for each Conv2D operation. First, quantization
is performed on the 32-bit input matrix before Conv2D starts,
which reduces the complexity of operations required to perform
Conv2D on the CPU by reducing the width of each matrix
element to 8 bits. Then, Conv2D runs, during which gemmlowp
generates a 32-bit result matrix. Quantization is performed for the
second time on this result matrix (this step is referred to as re-
quantization). Accordingly, invoking Conv2D more frequently
(which occurs when there are more 2-D convolution layers in a
network) leads to higher quantization overheads. For example,
VGG-19 requires only 19 Conv2D operations, incurring small
quantization overheads. On the other hand, ResNet-v2 requires
156 Conv2D operations, causing quantization to consume 16.1%
of the total system energy and 16.8% of the execution time. The
quantization overheads are expected to increase as neural
networks get deeper, as a deeper network requires a larger matrix.

Figure 4a shows how TensorFlow quantizes the result matrix
using the CPU. First, the entire matrix needs to be scanned to
identify the minimum and maximum values of the matrix (in
the figure). Then, using the minimum and maximum values, the
matrix is scanned a second time to convert each 32-bit element of
the matrix into an 8-bit integer (). These steps are repeated for
re-quantization of the result matrix (and). The majority of
the quantization overhead comes from data movement. Because
both the input matrix quantization and the result matrix re-
quantization need to scan a large matrix twice, they exhibit poor
cache locality and incur a large amount of data movement. For
example, for the ResNet-v2 network, 73.5% of the energy
consumed during quantization is spent on data movement,
indicating that the computation is relatively cheap (in
comparison, only 32.5% of Conv2D/MatMul energy goes to data
movement, while the majority goes to multiply–accumulate
computation). 19.8% of the total data movement energy of
inference execution comes from quantization and re-quantization.
As Figure 4b shows, we can offload both quantization (in the
figure) and re-quantization () to PIM to eliminate data
movement. This frees up the CPU to focus on GEMM
calculation, and allows the next Conv2D operation to be
performed in parallel with re-quantization ().

Evaluation: We evaluate how TensorFlow Lite benefits from
PIM execution using (1) custom 64-bit low power single-issue
cores similar in design to the ARM Cortex-R8 [143]; and
(2) fixed-function PIM accelerators designed for packing and
quantization operations, with each accelerator consisting of four
simple ALUs and consuming less than 0.25 mm2 of area [16].
Figure 5 (left) shows the energy consumption of PIM execution
using PIM cores (PIM-Core) or fixed-function PIM accelerators
(PIM-Acc) for the four most time- and energy-consuming GEMM
operations for each input neural network in packing and
quantization, normalized to a processor-only baseline (CPU-
Only). We make three key observations. First, PIM-Core and
PIM-Acc decrease the total energy consumption of a consumer
device system by 50.9% and 54.9%, on average across all four
input networks, compared to CPU-Only. Second, the majority of
the energy savings comes from the large reduction in data
movement, as the computation energy accounts for a negligible
portion of the total energy consumption. For instance, 82.6% of
the energy reduction for packing is due to the reduced data
movement. Third, we find that the data-intensive nature of these
kernels and their low computational complexity limit the energy
benefits PIM-Acc provides over PIM-Core.

Figure 5 (right) shows the speedup of PIM-Core and PIM-Acc
over CPU-Only as we vary the number of GEMM operations

Figure 4 Quantization on (a) CPU vs. (b) PIM. Reproduced from [16].

Figure 5 Energy (left) and performance (right) for TensorFlow Lite
kernels, averaged across four neural network inputs: ResNet-v2 [137],
VGG-19 [138], Residual-GRU [139], Inception-ResNet [140].
Adapted from [16].

7

performed. For CPU-Only, we evaluate a scenario where the CPU
performs packing, GEMM calculation, quantization, and
unpacking. To evaluate PIM-Core and PIM-Acc, we assume that
packing and quantization are handled by the PIM logic, and the
CPU performs GEMM calculation. We find that, as the number
of GEMM operations increases, PIM-Core and PIM-Acc provide
greater performance improvements over CPU-Only. For
example, for one GEMM operation, PIM-Core and PIM-Acc
achieve speedups of 13.1% and 17.2%, respectively. For 16
GEMM operations, the speedups of PIM-Core and PIM-Acc
increase to 57.2% and 98.1%, respectively, over CPU-Only.
These improvements are the result of PIM logic (1) exploiting the
higher bandwidth and lower latency of 3D-stacked memory, and
(2) enabling the CPU to perform GEMM in parallel while the
PIM logic handles packing and quantization.

We conclude that our approach to identifying PIM targets can
be used to significantly improve performance and reduce energy
consumption for the TensorFlow Lite mobile machine learning
framework.

4. Programming PIM Architectures: Key Issues
While many applications have significant potential to benefit
from PIM, a number of practical considerations need to be made
with regards to how portions of an application are offloaded, and
how this offloading can be accomplished without placing an
undue burden on the programmer. When a portion of an
application is offloaded to PIM logic, the PIM logic executes the
offloaded piece of code, which we refer to as a PIM kernel. In
this section, we study four key issues that affect the
programmability of PIM architectures: (1) the different
granularities of an offloaded PIM kernel, (2) how to handle data
sharing between PIM kernels and CPU threads, (3) how to
efficiently provide PIM kernels with access to essential virtual
memory address translation mechanisms, and (4) how to
automate the identification and offloading of PIM targets (i.e.,
portions of an application that are suitable for PIM; see
Section 3.2).

4.1. Offloading Granularity
In Section 3.3, our case study on identifying opportunities for
PIM in TensorFlow Lite makes an important assumption: PIM
kernels are offloaded at the granularity of an entire function.
However, there are a number of different granularities at which
PIM kernels can be offloaded. Each granularity requires a
different interface and different design decisions. We evaluate
four offloading granularities in this section: (1) a single
instruction, (2) a bulk operation, (3) an entire function, and (4) an
entire application.

At one extreme, a PIM kernel can consist of a single instruction
from the view of the CPU. For example, a PIM-enabled
instruction (PEI) [21] can be added to an existing ISA, where
each PIM operation is expressed and semantically operates as a
single instruction. Figure 6 shows an example architecture that
can be used to enable PEIs [21]. In this architecture, a PEI is
executed on a PEI Computation Unit (PCU). To enable PEI
execution in either the host CPU or in memory, a PCU is added
to each host CPU and to each vault in an HMC-like 3D-stacked
memory. While the work done in a PCU for a PEI might have

required multiple CPU instructions in the baseline CPU-only
architecture, the CPU only needs to execute a single PEI
instruction, which is sent to a central PEI Management Unit
(PMU in Figure 6). The PMU launches the appropriate PIM
operation on one of the PCUs. Implementing PEIs with low
complexity and minimal changes to the system requires three key
rules. First, for every PIM operation, there is a single PEI in the
ISA that is used by the CPU to trigger the operation. This keeps
the mapping between PEIs and PIM operations simple, and
allows for the gradual introduction of new instructions. This also
avoids the need for virtual memory address translation in
memory, as the translation is done in the CPU before sending the
PEI to memory. Second, a PIM operation is limited to operating
on a single cache line. This (1) eliminates the need for careful
data mapping, by ensuring that a single PEI operates on data that
is mapped to a single memory controller; and (2) eases cache
coherence, by needing no more than a single cache line to be kept
coherent between a PEI performed in memory and the CPU
cache. Third, a PEI is treated as atomic with respect to other PEIs,
and uses memory fences to enforce atomicity between a PEI and
a normal CPU instruction. An architecture with support for PEIs
increases the average performance across ten graph processing,
machine learning, and data mining applications by 32% over a
CPU-only baseline for small input sets, and by 47% for large
input sets [21]. While PEIs allow for simple coordination
between CPU threads and PIM kernels, they limit both the
complexity of computation performed and the amount of data
processed by any one PIM kernel, which can incur high
overheads when a large number of PIM operations need to be
performed.

One approach to perform more work than a single PEI is to
offload bulk operations to memory, as is done by a number of
processing-using-memory architectures. For a bulk operation, the
same operation is performed across a large, often contiguous,
region of memory (e.g., an 8KB row of DRAM). Mechanisms for
processing-using-memory can perform a variety of bulk
functions, such as bulk copy and data initialization [17, 19], bulk
bitwise operations [18, 20, 47-49, 80], and simple arithmetic
operations [42, 43, 63, 76, 88, 92-100]. As a representative
example, the Ambit processing-using-memory architecture,
which enables bulk bitwise operations using DRAM cells,
accelerates the performance of database queries and operations
on the set data structure by 3x–12x over a CPU-only
baseline [18]. There are two trade-offs to performing bulk

Figure 6 Example architecture for PIM-enabled instructions. Adapted
from [21].

8

operations in memory. First, there are limitations in the amount
of data that a single bulk operation processes: for example, a bulk
bitwise operation in Ambit cannot be performed on less than one
row at a time. Second, the operations that a processing-using-
memory architecture can perform are much simpler than those
that a general-purpose core can perform, due to limits in the
amount of logical functionality that can be implemented inside
the memory array.

A second approach to perform more work than a single PEI is
to offload at the granularity of an application function or a block
of instructions in the application [16, 22-24, 62, 75]. There are
several ways to demarcate which portions of an application
should be offloaded to PIM. One approach is to surround the
portion with compiler directives. For example, if we want to
offload a function to PIM, we can surround it with #PIM_begin
and #PIM_end directives, which a compiler can use to generate
a thread for execution on PIM. This approach requires compiler
and/or library support to dispatch a PIM kernel to memory, as the
programmer needs some way to indicate which regions of a
program should be offloaded to PIM and which regions should
not be offloaded. Our TensorFlow case study in Section 3.3
shows that offloading at the granularity of functions provides
speedups of up to 98.1% when the 16 most time- and energy-
consuming GEMM operations make use of PIM accelerators for
packing and quantization [16]. As we discuss in Sections 4.2 and
4.3, another issue with this approach is the need to coordinate
between the CPU and PIM logic, as CPU threads and PIM kernels
can potentially execute concurrently. Examples of this
coordination include cache coherence [22-24] and address
translation [62]. We note that using simple pragmas to indicate
the beginning and end of a PIM kernel represents a first step for
identifying the blocks of instructions in a program that should be
offloaded to PIM, and we encourage future works to develop
more robust and expressive interfaces and mechanisms for PIM
offloading that can allow for better coordination between the
CPU and PIM logic (e.g., by building on expressive memory
interfaces [144, 145]).

At the other extreme, a PIM kernel can consist of an entire
application. Executing an entire application in memory can avoid
the need to communicate at all with the CPU. For example, there
is no need to perform cache coherence (see Section 4.2) between
the CPU and PIM logic, as they work on different programs
entirely. While this is a simple solution to maintain
programmability and avoid significant modification to hardware,
it significantly limits the types of applications that can be
executed with PIM. As we discuss in Section 3.2, applications
with significant computational complexity or high temporal
locality are best suited for the CPU, but significant portions of
these applications can benefit from PIM. In order to obtain
benefits for such applications when only the entire application
can be offloaded, changes must be made across the entire system.
We briefly examine two successful examples of entire application
offloading: Tesseract [5] and GRIM-Filter [6].

Tesseract [5] is an accelerator for in-memory graph processing.
Tesseract adds an in-order core to each vault in an HMC-like 3D-
stacked memory, and implements an efficient communication
protocol between these in-order cores. Tesseract combines this
new architecture with a message-passing-based programming

model, where message passing is used to perform operations on
the graph nodes by moving the operations to the vaults where the
corresponding graph nodes are stored. For five state-of-the-art
graph processing workloads with large real-world graphs,
Tesseract improves the average system performance by 13.8x,
and reduces the energy consumption by 87%, over a conventional
CPU-only system [5]. Other recent works build on Tesseract by
improving locality and communication for further benefits [146,
147].

GRIM-Filter [6] is an in-memory accelerator for genome seed
filtering. In order to read the genome (i.e., DNA sequence) of an
organism, geneticists often need to reconstruct the genome from
small segments of DNA known as reads, as current DNA
extraction techniques are unable to extract the entire DNA
sequence. A genome read mapper can perform the reconstruction
by matching the reads against a reference genome, and a core part
of read mapping is a computationally-expensive dynamic
programming algorithm that aligns the reads to the reference
genome. One technique to significantly improve the performance
and efficiency of read mapping is seed filtering [148-151], which
reduces the number of reference genome seeds (i.e., segments)
that a read must be checked against for alignment by quickly
eliminating seeds with no probability of matching. GRIM-Filter
proposes a state-of-the-art filtering algorithm, and places the
entire algorithm inside memory [6]. This requires adding simple
accelerators in the logic layer of 3D-stacked memory, and
introducing a communication protocol between the read mapper
and the filter. The communication protocol allows GRIM-Filter
to be integrated into a full genome read mapper (e.g.,
FastHASH [148], mrFAST [152], BWA-MEM [153]), by
allowing (1) the read mapper to notify GRIM-Filter about the
DRAM addresses on which to execute customized in-memory
filtering operations, (2) GRIM-Filter to notify the read mapper
once the filter generates a list of seeds for alignment. Across 10
real genome read sets, GRIM-Filter improves the performance of
a full state-of-the-art read mapper by 3.65x over a conventional
CPU-only system [6].

4.2. Sharing Data Between PIM Logic and CPUs
In order to maximize resource utilization within a system capable
of PIM, PIM logic should be able to execute at the same time as
CPUs, akin to a multithreaded system. In a traditional
multithreaded execution model that uses shared memory between
threads, writes to memory must be coordinated between multiple
cores, to ensure that threads do not operate on stale data values.
Due to the per-core caches used in CPUs, this requires that when
one core writes data to a memory address, cached copies of the
data held within the caches of other cores must be updated or
invalidated, which is known as cache coherence. Cache
coherence involves a protocol that is designed to handle write
permissions for each core, invalidations and updates, and
arbitration when multiple cores request exclusive access to the
same memory address. Within a chip multiprocessor (CMP), the
per-core caches can perform coherence actions over a shared
interconnect.

Cache coherence is a major system challenge for enabling PIM
architectures as general-purpose execution engines. If PIM
processing logic is coherent with the processor, the PIM
programming model is relatively simple, as it remains similar to

9

conventional shared memory multithreaded programming, which
makes PIM architectures easier to adopt in general-purpose
systems. Thus, allowing PIM processing logic to maintain such a
simple and traditional shared memory programming model can
facilitate the widespread adoption of PIM. However, employing
traditional fine-grained cache coherence (e.g., a cache-block
based MESI protocol [154]) for PIM forces a large number of
coherence messages to traverse the narrow memory channel,
potentially undoing the benefits of high-bandwidth and low-
latency PIM execution. Unfortunately, solutions for coherence
proposed by prior PIM works [5, 21, 75] either place some
restrictions on the programming model (by eliminating coherence
and requiring message-passing-based programming) or limit the
performance and energy gains achievable by a PIM architecture.

To preserve traditional programming models and maximize
performance and energy gains, we propose a coherence
mechanism for PIM called CoNDA [22-24], which does not need
to send a coherence request for every memory access. Instead, as
shown in Figure 7, CoNDA enables efficient coherence by
having the PIM logic (1) speculatively acquire coherence
permissions for multiple memory operations over a given period
of time (which we call optimistic execution; in the figure),
(2) batch the coherence requests from the multiple memory
operations into a set of compressed coherence signatures (and
), and (3) send the signatures to the CPU to determine whether
the speculation violated any coherence semantics. Whenever the
CPU receives compressed signatures from the PIM core (e.g.,
when the PIM kernel finishes), the CPU performs coherence
resolution (), where it checks if any coherence conflicts
occurred. If a conflict exists, any dirty cache line in the CPU that
caused the conflict is flushed, and the PIM core rolls back and re-
executes the code that was optimistically executed. Our execution
model shares similarities with Bulk-style mechanisms [155-159]
(i.e., mechanisms that speculatively execute chunks of
instructions and use speculative information on memory accesses
to track potential data conflicts), and with works that use
transactional memory (TM) semantics (e.g., [160-164]).
However, unlike these past works, the CPU in CoNDA executes
conventionally, does not bundle multiple memory accesses into
an atomic transaction, and never rolls back, which can make it
easier to enable PIM by avoiding the need for complex
checkpointing logic or memory access bundling in a sophisticated
out-of-order superscalar CPU.

Figure 8 shows the performance, normalized to CPU-only, of
CoNDA and several state-of-the-art cache coherence
mechanisms for PIM [22-24]: FG (fine-grained coherence per

cache line), CG (coarse-grained locks on shared data regions),
and NC (non-cacheable data regions). We demonstrate that for
applications such as graph workloads and HTAP databases,
CoNDA improves average performance by 66.0% over the best
prior coherence mechanism for performance (FG), and comes
within 10.4% of an unrealistic ideal PIM mechanism where
coherence takes place instantly with no cost (Ideal-PIM in
Figure 8). For the same applications, CoNDA reduces memory
system energy by 18.0% (not shown) over the best prior
coherence mechanism for memory system energy (CG).
CoNDA’s benefits increase as application data sets become
larger [22]: when we increase the dataset sizes by an order of
magnitude (not shown), we find that CoNDA improves
performance by 8.4x over CPU-only and by 38.3% over the best
prior coherence mechanism for performance (FG), coming within
10.2% of Ideal-PIM.

In our prior work on CoNDA [22-24], we provide a detailed
discussion of (1) the need for a new coherence model for
workloads such as graph frameworks and HTAP databases,
(2) the hardware support needed to enable the CoNDA coherence
model, and (3) a comparison of CoNDA to multiple state-of-the-
art coherence models.

4.3. Virtual Memory
A significant hurdle to efficient PIM execution is the need for
virtual memory. An application operates in a virtual address
space, and when the application needs to access its data inside
main memory, the CPU core must first perform an address
translation, which converts the data’s virtual address into a
physical address within main memory. The mapping between a
virtual address and a physical address is stored in memory in a
multi-level page table. Looking up a single virtual-to-physical
address mapping requires one memory access per level, incurring
a significant performance penalty. In order to reduce this penalty,
a CPU contains a translation lookaside buffer (TLB), which
caches the most recently used mappings. The CPU also includes
a page table walker, which traverses the multiple page table
levels to retrieve a mapping on a TLB miss.

PIM kernels often need to perform address translation, such as
when the code offloaded to memory needs to traverse a pointer.
The pointer is stored as a virtual address, and must be translated
before PIM logic can access the physical location in memory. A
simple solution to provide address translation support for PIM
logic could be to issue any translation requests from the PIM logic
to the CPU-side virtual memory structures. However, if the PIM
logic needs to communicate with existing CPU-side address
translation mechanisms, the benefits of PIM could easily be
nullified, as each address translation would need to perform a
long-latency request across the memory channel. The translation
might sometimes require a page table walk, where the CPU must
issue multiple memory requests to read the page table, which
would further increase traffic on the memory channel.

A naive solution is to simply duplicate the TLB and page
walker within memory (i.e., within the PIM logic). Unfortunately,
this is prohibitively difficult or expensive for three reasons:
(1) coherence would have to be maintained between the CPU and
memory-side TLBs, introducing extra complexity and off-chip
requests; (2) the duplicated hardware is very costly in terms of

Figure 7 High-level operation of CoNDA. Adapted from [22].

10

storage overhead and complexity; and (3) a memory module can
be used in conjunction with many different processor
architectures, which use different page table implementations and
formats, and ensuring compatibility between the in-memory
TLB/page walker and all of these different processor
architectures is difficult.

We study how to solve the challenge of virtual memory
translation in the context of IMPICA, our in-memory accelerator
for efficient pointer chasing [62]. In order to maintain the
performance and efficiency of the PIM logic, we completely
decouple the page table of the PIM logic from that of the CPU.
This presents us with two advantages. First, the page table logic
in PIM is no longer tied to a single architecture (unlike the CPU
page table, which is part of the architectural specification), and
allows a memory chip with PIM logic to be paired with any CPU.
Second, we now have an opportunity to develop a new page table
design that is much more efficient for our in-memory accelerator.

We make two key observations about the behavior of a pointer
chasing accelerator. First, the accelerator operates only on certain
data structures that can be mapped to contiguous regions in the
virtual address space, which we refer to as PIM regions. As a
result, it is possible to map contiguous PIM regions with a
smaller, region-based page table without needing to duplicate the
page table mappings for the entire address space. Second, we
observe that if we need to map only PIM regions, we can collapse
the hierarchy present in conventional page tables, which allows
us to limit the hardware and storage overhead of the PIM page
table, and cut the number of memory accesses per page table walk
down from four (for a conventional four-level page table) to two.
Based on these observations, we build an efficient page table
structure that can be used for a wide range of PIM accelerators,
where the accelerators access data in only one region of the total
data set. The region-based page table improves the performance
of IMPICA by 13.5%, averaged across three linked data traversal
benchmarks and a real database workload [165], over a
conventional four-level page table. Note that these benefits are
part of the 34% performance improvement that IMPICA provides
across all of the workloads. More detail on our page table design
can be found in our prior work on IMPICA [62].

4.4. Enabling Programmers and Compilers to Find PIM
Targets

In Section 3.2, we discuss our toolflow for identifying PIM
targets. While this toolflow is effective at enabling the co-design
of PIM architectures and applications that can take advantage of
PIM, it still requires a non-trivial amount of effort on the part of

the programmer, as the programmer must first run the toolflow,
and then annotate programs using directives such as the ones we
discuss in Section 4.1. There is a need to develop even easier
methodologies for finding PIM targets. One alternative is to
automate the toolflow, by developing a PIM compiler that can
execute the toolflow and then automatically annotate the portions
of an application that should be offloaded to PIM. For example,
TOM [75] proposes a compiler-based technique to automatically
(1) identify basic blocks in GPU applications that should be
offloaded to PIM; and (2) map the data needed by such blocks
appropriately to memory modules, so as to minimize data
movement. Another alternative is to provide libraries of common
functions that incorporate PIM offloading. Programmers could
simply call library functions, without worrying about how PIM
offloading takes place, allowing them to easily take advantage of
the benefits of PIM. There has been little work in this area to date,
and we strongly encourage future researchers and developers to
explore these approaches to programming PIM architectures.

5. Related Work
We briefly survey recent related works in processing-in-memory.
We provide a brief discussion of early PIM proposals in
Section 2.1.

Processing-Near-Memory for 3D-Stacked Memories: With
the advent of 3D-stacked memories, we have seen a resurgence
of PIM proposals [13, 14, 20, 82]. Recent PIM proposals add
compute units within the logic layer to exploit the high bandwidth
available. These works primarily focus on the design of the
underlying logic that is placed within memory, and in many cases
propose special-purpose PIM architectures that cater only to a
limited set of applications. These works include accelerators for
matrix multiplication [91], data reorganization [117], graph
processing [5, 22-24, 84], databases [22-24, 65], in-memory
analytics [68], MapReduce [87], genome sequencing [6], data-
intensive processing [70], consumer device workloads [16],
machine learning workloads [16, 66, 77, 79], and concurrent data
structures [81]. Some works propose more generic architectures
by adding PIM-enabled instructions [21], GPGPUs [75, 85, 90],
single-instruction multiple-data (SIMD) processing units [83], or
reconfigurable hardware [67, 69, 71] to the logic layer in 3D-
stacked memory. A recently-developed framework [25, 166]
allows for the rapid design space exploration of processing-near-
memory architectures.

Processing-Using-Memory: A number of recent works have
examined how to perform memory operations directly within the

Figure 8 Speedup of PIM with various cache coherence mechanisms, including CoNDA [22-24], normalized to CPU-only. Adapted from [22].

11

memory array itself, which we refer to as processing using
memory [13, 14, 20, 49]. These works take advantage of inherent
architectural properties of memory devices to perform operations
in bulk. While such works can significantly improve
computational efficiency within memory, they still suffer from
many of the same programmability and adoption challenges that
PIM architectures face, such as the address translation and cache
coherence challenges that we focus on in this article. Mechanisms
for processing-using-memory can perform a variety of functions,
such as bulk copy and data initialization for DRAM [17, 19]; bulk
bitwise operations for DRAM [18, 47-49, 80, 118], PCM [41], or
MRAM [44-46]; and simple arithmetic operations for SRAM [63,
76, 100] and RRAM/memristors [42, 43, 88, 92-99].

Processing in the DRAM Module or Memory Controller:
Several works have examined how to embed processing
functionality near memory, but not within the DRAM chip itself.
Such an approach can reduce the cost of PIM manufacturing, as
the DRAM chip does not need to be modified or specialized for
any particular functionality. However, these works (1) are often
unable to take advantage of the high internal bandwidth of 3D-
stacked DRAM, which reduces the efficiency of PIM execution,
and (2) may still suffer from many of the same challenges faced
by architectures that embed logic within the DRAM chip.
Examples of this work include (1) Gather-Scatter DRAM [87],
which embeds logic within the memory controller to remap a
single memory request across multiple rows and columns within
DRAM; (2) work by Hashemi et al. [72, 73] to embed logic in the
memory controller that accelerates dependent cache misses and
performs runahead execution [167]; and (3) Chameleon [64] and
the Memory Channel Network architecture [168], which propose
methods to integrate logic within the DRAM module but outside
of the chip to reduce manufacturing costs.

Addressing Challenges to PIM Adoption: Recent work has
examined design challenges for systems with PIM support that
can affect PIM adoption. A number of these works improve PIM
programmability, such as CoNDA [22-24], which provides
efficient cache coherence support for PIM; the study by Sura et
al. [89], which optimizes how programs access PIM data;
PEI [21], which introduces an instruction-level interface for PIM
that preserves the existing sequential programming models and
abstractions for virtual memory and coherence; TOM [75], which
automates the identification of basic blocks that should be
offloaded to PIM and the data mapping for such blocks; work by
Pattnaik et al. [85], which automates whether portions of GPU
applications should be scheduled to run on GPU cores or PIM
cores; and work by Liu et al. [81], which designs PIM-specific
concurrent data structures to improve PIM performance. Other
works tackle hardware-level design challenges, including
IMPICA [62], which introduces in-memory support for address
translation and pointer chasing; work by Hassan et al. [74] to
optimize the 3D-stacked DRAM architecture for PIM; and work
by Kim et al. [78] that enables PIM logic to efficiently access data
across multiple memory stacks. There is recent work on modeling
and understanding the interaction between programs and PIM
hardware, such as NAPEL [25, 166], a framework that predicts
the potential performance and energy benefits of using PIM.

6. Future Challenges
In Sections 3 and 4, we demonstrate the need for several solutions
to ease programming effort in order to take advantage of the
benefits of PIM. We believe that a number of other challenges
remain for the widespread adoption of PIM:

• PIM Programming Model: Programmers need a well-defined
interface to incorporate PIM functionality into their
applications. While we briefly discuss several interfaces and
mechanisms for offloading different granularities of
applications to PIM, defining a complete programming model
for how a programmer should invoke and interact with PIM
logic remains an open problem.

• Data and Logic Mapping: To maximize the benefits of PIM,
all of the data that needs to be read from or written to by a single
PIM kernel or by a single PIM core should be mapped to the
same memory stack or memory channel [21, 75]. This requires
system architects and programmers to rethink how and where
data is allocated. Likewise, for processing-using-memory
architectures, programs often require more complex logic
functions than the bitwise operations enabled by these
architectures, and require some form of logic mapping or
synthesis to allow programmers or compilers to efficiently
implement these more complex logic functions on the
processing-using-memory substrates [169-171]. There is a
need to develop robust programmer-transparent data mapping
and logic mapping/synthesis support for PIM architectures.

• PIM Runtime Scheduling: There needs to be coordination
between PIM logic and the PIM kernels that are either being
executed currently or waiting to be executed. Determining
when to enable and disable PIM execution [21], what to
execute in memory, how to share PIM cores and PIM
accelerators across multiple CPU threads/cores, and how to
coordinate between PIM logic accesses and CPU accesses to
memory are all important runtime attributes that must be
addressed.

New performance and energy prediction frameworks [25] and
simulation tools [166] can help researchers with solving several
of the remaining challenges. We refer the reader to our overview
works [13, 14, 172, 173] on enabling the adoption of PIM for
further discussion of these challenges.

7. Conclusion
While many important classes of emerging AI, machine learning,
and data analytics applications are operating on very large data
sets, conventional computer systems are not designed to handle
such large-scale data. As a result, the performance and energy
costs associated with moving data between main memory and the
CPU dominate the total costs of computation, which is a
phenomenon known as the data movement bottleneck. To
alleviate this bottleneck, a number of recent works propose
processing-in-memory (PIM), where unnecessary data movement
is reduced or eliminated by bringing some or all of the
computation into memory. There are many practical system-level
challenges that need to be solved to enable the widespread
adoption of PIM. In this work, we examine how these challenges
relate to programmers and system architects, and describe several
of our solutions to facilitate the systematic offloading of
computation to PIM logic. In a case study, we demonstrate our

12

offloading toolflow with Google’s TensorFlow Lite framework
for neural network inference, demonstrating that we can achieve
performance improvements of up to 98.1%, while reducing
energy consumption by an average of 54.9%. We then discuss the
need for mechanisms that preserve conventional programming
models when offloading computation to PIM. We discuss several
such mechanisms, which provide various methods of offloading
portions of applications to PIM logic, sharing data between PIM
logic and CPUs, enabling efficient virtual memory access for
PIM, and automating PIM target identification and offloading.
Finally, we describe a number of remaining challenges to the
widespread adoption of PIM. We hope that our work and analysis
inspire researchers to tackle these remaining challenges, which
can enable the commercialization of PIM architectures.

Acknowledgments
We thank all of the members of the SAFARI Research Group,
and our collaborators at Carnegie Mellon, ETH Zürich, and other
universities, who have contributed to the various works we
describe in this article. Thanks also goes to our research group’s
industrial sponsors over the past ten years, especially Alibaba,
Facebook, Google, Huawei, Intel, Microsoft, NVIDIA, Samsung,
Seagate, and VMware. This work was also partially supported by
the Intel Science and Technology Center for Cloud Computing,
the Semiconductor Research Corporation, the Data Storage
Systems Center at Carnegie Mellon University, past NSF grants
1212962, 1320531, and 1409723, and past NIH grant HG006004.

References
[1] J. Dean and L. A. Barroso, “The Tail at Scale,” CACM, 2013.

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B.
Falsafi, “Clearing the Clouds: A Study of Emerging Scale-Out
Workloads on Modern Hardware,” in ASPLOS, 2012.

[3] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T.
Moseley, G.-Y. Wei, and D. Brooks, “Profiling a Warehouse-
Scale Computer,” in ISCA, 2015.

[4] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z.
Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B.
Qiu, “BigDataBench: A Big Data Benchmark Suite From
Internet Services,” in HPCA, 2014.

[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable
Processing-in-Memory Accelerator for Parallel Graph
Processing,” in ISCA, 2015.

[6] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H.
Hassan, O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast
Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies,” BMC Genomics, 2018.

[7] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P.
Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus:
Querying Large Video Datasets with Low Latency and Low
Cost,” in OSDI, 2018.

[8] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed Machine
Learning Approaching LAN Speeds,” in NSDI, 2017.

[9] G. Ananthanarayanan et al., “Real-Time Video Analytics: The
Killer App for Edge Computing”, IEEE Computer, 2017.

[10] JEDEC Solid State Technology Assn., JESD79-3F: DDR3
SDRAM Standard, July 2012.

[11] JEDEC Solid State Technology Assn., JESD79-4B: DDR4
SDRAM Standard, June 2017.

[12] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O.
Mutlu, “Decoupled Direct Memory Access: Isolating CPU and
IO Traffic by Leveraging a Dual-Data-Port DRAM,” in PACT,
2015.

[13] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O.
Mutlu, “The Processing-in-Memory Paradigm: Mechanisms to
Enable Adoption,” in Beyond-CMOS Technologies for Next
Generation Computer Design, 2019.

[14] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O.
Mutlu, “Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions,”
arXiv:1802.00320 [cs.AR], 2018.

[15] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D.
Glasco, “GPUs and the Future of Parallel Computing,” IEEE
Micro, 2011.

[16] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and
O. Mutlu, “Google Workloads for Consumer Devices: Mitigating
Data Movement Bottlenecks,” in ASPLOS, 2018.

[17] K. K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O.
Mutlu, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.

[18] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J.
Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry,
“Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” in MICRO, 2017.

[19] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G.
Pekhimenko, Y. Luo, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “RowClone: Fast and Energy-Efficient In-
DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[20] V. Seshadri and O. Mutlu, “Simple Operations in Memory to
Reduce Data Movement,” in Advances in Computers, Volume
106, 2017.

[21] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-
Memory Architecture,” in ISCA, 2015.

[22] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R.
Ausavarungnirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H.
Zheng, and O. Mutlu, “CoNDA: Efficient Cache Coherence
Support for Near-Data Accelerators,” in ISCA, 2019.

[23] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K.
Hsieh, K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: An
Efficient Cache Coherence Mechanism for Processing-in-
Memory,” CAL, 2017.

[24] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, N.
Hajinazar, K. Hsieh, K. T. Malladi, H. Zheng, and O. Mutlu,
“LazyPIM: Efficient Support for Cache Coherence in Processing-
in-Memory Architectures,” arXiv:1706.03162 [cs.AR], 2017.

[25] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda,
S. Stujik, O. Mutlu, and H. Corporaal, “NAPEL: Near-Memory
Computing Application Performance Prediction via Ensemble
Learning,” in DAC, 2019.

13

[26] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J.
Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim, and G.
Daglikoca, “The Architecture of the DIVA Processing-in-
Memory Chip,” in SC, 2002.

[27] D. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R.
McKenzie, “Computational RAM: Implementing Processors in
Memory,” IEEE Design & Test, 1999.

[28] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational
RAM: A Memory-SIMD Hybrid and Its Application to DSP,” in
CICC, 1992.

[29] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory:
The Terasys Massively Parallel PIM Array,” IEEE Computer,
1995.

[30] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P.
Pattnaik, and J. Torrellas, “FlexRAM: Toward an Advanced
Intelligent Memory System,” in ICCD, 1999.

[31] P. M. Kogge, “EXECUBE–A New Architecture for Scaleable
MPPs,” in ICPP, 1994.

[32] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M.
Horowitz, “Smart Memories: A Modular Reconfigurable
Architecture,” in ISCA, 2000.

[33] M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: A
Computation Model for Intelligent Memory,” in ISCA, 1998.

[34] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent
RAM,” IEEE Micro, 1997.

[35] D. E. Shaw, S. J. Stolfo, H. Ibrahim, B. Hillyer, G. Wiederhold,
and J. Andrews, “The NON-VON Database Machine: A Brief
Overview,” IEEE Database Eng. Bull., 1981.

[36] H. S. Stone, “A Logic-in-Memory Computer,” TC, 1970.

[37] JEDEC Solid State Technology Assn., JESD235B: High
Bandwidth Memory (HBM) DRAM Standard, November 2018.

[38] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu,
“Simultaneous Multi-Layer Access: Improving 3D-Stacked
Memory Bandwidth at Low Cost,” TACO, 2016.

[39] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core
Processors,” in ISCA, 2008.

[40] Hybrid Memory Cube Consortium, “HMC Specification 2.0,”
2014.

[41] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
Processing-in-Memory Architecture for Bulk Bitwise Operations
in Emerging Non-Volatile Memories,” in DAC, 2016.

[42] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E.
Yaakobi, and S. Kvatinsky, “Logic Operations in Memory Using
a Memristive Akers Array,” Microelectronics Journal, 2014.

[43] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G.
Friedman, A. Kolodny, and U. C. Weiser, “MAGIC—
Memristor-Aided Logic,” IEEE TCAS II: Express Briefs, 2014.

[44] S. Angizi, Z. He, and D. Fan, “PIMA-Logic: A Novel
Processing-in-Memory Architecture for Highly Flexible and
Energy-Efficient Logic Computation,” in DAC, 2018.

[45] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: An
Energy-Efficient Comparator-Based Processing-in-Memory
Neural Network Accelerator,” in DAC, 2018.

[46] S. Angizi, J. Sun, W. Zhang, and D. Fan, “AlignS: A Processing-
In-Memory Accelerator for DNA Short Read Alignment
Leveraging SOT-MRAM,” in DAC, 2019.

[47] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O.
Mutlu, P. B. Gibbons, and T. C. Mowry, “Fast Bulk Bitwise
AND and OR in DRAM,” CAL, 2015.

[48] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J.
Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry,
“Buddy-RAM: Improving the Performance and Efficiency of
Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs.AR], 2016.

[49] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution
Engine,” arXiv:1905.09822 [cs.AR], 2019.

[50] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase
Change Memory as a Scalable DRAM Alternative,” in ISCA,
2009.

[51] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change
Memory Architecture and the Quest for Scalability,” Commun.
ACM, Jul. 2010.

[52] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O.
Mutlu, and D. Burger, “Phase-Change Technology and the
Future of Main Memory,” IEEE Micro, Feb. 2010.

[53] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-Change
Memory Technology,” in ISCA, 2009.

[54] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B.
Rajendran, M. Asheghi, and K. E. Goodson, “Phase Change
Memory,” Proc. IEEE, Dec. 2010.

[55] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O.
Mutlu, “Efficient Data Mapping and Buffering Techniques for
Multi-Level Cell Phase-Change Memories,” ACM TACO, Dec.
2014.

[56] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and
Energy Efficient Main Memory Using Phase Change Memory
Technology,” in ISCA, 2009.

[57] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an Energy-Efficient Main Memory
Alternative,” in ISPASS, 2013.

[58] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J.
Tschanz, “STT-RAM Scaling and Retention Failure,” Intel
Technol. J., May 2013.

[59] L. Chua, “Memristor—The Missing Circuit Element,” IEEE
TCT, 1971.

[60] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The Missing Memristor Found,” Nature, May 2008.

[61] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S.
Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-Oxide RRAM,”
Proc. IEEE, Jun. 2012.

[62] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu, “Accelerating Pointer Chasing in 3D-
Stacked Memory: Challenges, Mechanisms, Evaluation,” in
ICCD, 2016.

[63] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D.
Blaauw, and R. Das, “Compute Caches,” in HPCA, 2017.

14

[64] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and Practical Near-DRAM Acceleration
Architecture for Large Memory Systems,” in MICRO, 2016.

[65] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing
for Databases,” in SIGMOD, 2015.

[66] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y.
Xie, “PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory,”
in ISCA, 2016.

[67] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim,
“NDA: Near-DRAM Acceleration Architecture Leveraging
Commodity DRAM Devices and Standard Memory Modules,” in
HPCA, 2015.

[68] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data
Processing for In-Memory Analytics Frameworks,” in PACT,
2015.

[69] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible
Reconfigurable Logic for Near-Data Processing,” in HPCA,
2016.

[70] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” in
ISCA, 2016.

[71] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L.
Pileggi, J. C. Hoe, and F. Franchetti, “3D-Stacked Memory-Side
Acceleration: Accelerator and System Design,” in WoNDP,
2014.

[72] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous Runahead:
Transparent Hardware Acceleration for Memory Intensive
Workloads,” in MICRO, 2016.

[73] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt,
“Accelerating Dependent Cache Misses with an Enhanced
Memory Controller,” in ISCA, 2016.

[74] S. M. Hassan, S. Yalamanchili, and S. Mukhopadhyay, “Near
Data Processing: Impact and Optimization of 3D Memory
System Architecture on the Uncore,” in MEMSYS, 2015.

[75] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Conner, N.
Vijaykumar, O. Mutlu, and S. Keckler, “Transparent Offloading
and Mapping (TOM): Enabling Programmer-Transparent Near-
Data Processing in GPU Systems,” in ISCA, 2016.

[76] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K.
Curewitz, “An Energy-Efficient VLSI Architecture for Pattern
Recognition via Deep Embedding of Computation in SRAM,” in
ICASSP, 2014.

[77] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S.
Mukhopadhyay, “Neurocube: A Programmable Digital
Neuromorphic Architecture with High-Density 3D Memory,” in
ISCA, 2016.

[78] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, “Toward
Standardized Near-Data Processing with Unrestricted Data
Placement for GPUs,” in SC, 2017.

[79] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing Near
Memory for Machine Learning Workloads with Bounded
Staleness Consistency Models,” in PACT, 2015.

[80] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A DRAM-Based Reconfigurable In-Situ Accelerator,”
in MICRO, 2017.

[81] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent Data
Structures for Near-Memory Computing,” in SPAA, 2017.

[82] G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M.
Meswani, D. P. Zhang, and M. Ignatowski, “A Processing in
Memory Taxonomy and a Case for Studying Fixed-Function
PIM,” in WoNDP, 2013.

[83] A. Morad, L. Yavits, and R. Ginosar, “GP-SIMD Processing-in-
Memory,” ACM TACO, 2015.

[84] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“GraphPIM: Enabling Instruction-Level PIM Offloading in
Graph Computing Frameworks,” in HPCA, 2017.

[85] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T.
Kandemir, O. Mutlu, and C. R. Das, “Scheduling Techniques for
GPU Architectures with Processing-in-Memory Capabilities,” in
PACT, 2016.

[86] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V.
Srinivasan, A. Buyuktosunoglu, A. Davis, and F. Li, “NDC:
Analyzing the Impact of 3D-Stacked Memory+Logic Devices on
MapReduce Workloads,” in ISPASS, 2014.

[87] V. Seshadri, T. Mullins, A. Boroumand, O. Mutli, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-Scatter DRAM: In-
DRAM Address Translation to Improve the Spatial Locality of
Non-Unit Strided Accesses,” in MICRO, 2015.

[88] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J.
P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC:
A Convolutional Neural Network Accelerator with In-Situ
Analog Arithmetic in Crossbars,” in ISCA, 2016.

[89] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C.
Bertolli, S. Antao, J. Brunheroto, Y. Park, K. O’Brien, and R.
Nair, “Data Access Optimization in a Processing-in-Memory
System,” in CF, 2015.

[90] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L.
Xu, and M. Ignatowski, “TOP-PIM: Throughput-Oriented
Programmable Processing in Memory,” in HPDC, 2014.

[91] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating Sparse Matrix-Matrix Multiplication with 3D-
Stacked Logic-in-Memory Hardware,” in HPEC, 2013.

[92] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“Memristor-Based IMPLY Logic Design Procedure,” in ICCD,
2011.

[93] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Memristor-Based Material Implication
(IMPLY) Logic: Design Principles and Methodologies,” TVLSI,
2014.

[94] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A.
Chattopadhyay, and G. De Micheli, “The Programmable Logic-
in-Memory (PLiM) Computer,” in DATE, 2016.

[95] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay,
“ReVAMP: ReRAM Based VLIW Architecture for In-Memory
Computing,” in DATE, 2017.

[96] S. Hamdioui et al., “Memristor Based Computation-in-Memory
Architecture for Data-Intensive Applications,” in DATE, 2015.

[97] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K.
Bertels, “Fast Boolean Logic Mapped on Memristor Crossbar,”
in ICCD, 2015.

[98] S. Hamdioui et al., “Memristor for Computing: Myth or
Reality?,” in DATE, 2017.

15

[99] J. Yu, H. A. D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui,
“Memristive Devices for Computation-in-Memory,” in DATE,
2018.

[100] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D.
Sylvester, D. Blaauw, and R. Das, “Neural Cache: Bit-Serial In-
Cache Acceleration of Deep Neural Networks,” in ISCA, 2018.

[101] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S.
Jang, and J. Choi, “Co-Architecting Controllers and DRAM to
Enhance DRAM Process Scaling,” in The Memory Forum, 2014.

[102] O. Mutlu, “Memory Scaling: A Systems Architecture
Perspective,” IMW, 2013.

[103] O. Mutlu, “The RowHammer Problem and Other Issues We May
Face as Memory Becomes Denser,” in DATE, 2017.

[104] O. Mutlu and L. Subramanian, “Research Problems and
Opportunities in Memory Systems,” SUPERFRI, 2014.

[105] Y. Kim, R, Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors,” in ISCA, 2014.

[106] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,”
TCAD, 2019.

[107] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse,
R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and Future
Directions for the Scaling of Dynamic Random-Access Memory
(DRAM),” IBM JRD, 2002.

[108] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D.
Lee, T. Li, G. Pekhimenko, S. Khan, and O. Mutlu,
“Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[109] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O.
Mutlu, “Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture,” in HPCA, 2013.

[110] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K.
Chang, and O. Mutlu, “Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case,” in HPCA, 2015.

[111] D. Lee, S. Khan, L. Subramanian, S. Ghose, R.
Ausavarungnirun, G. Pekhimenko, V. Seshadri, and O. Mutlu,
“Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction
Mechanisms,” in SIGMETRICS, 2017.

[112] S. Ghose, T. Li, N. Hajinazar. D. Senol Cali, and O. Mutlu,
“Demystifying Complex Workload–DRAM Interactions: An
Experimental Study,” in SIGMETRICS, 2019.

[113] S. Ghose et al., “What Your DRAM Power Models Are Not
Telling You: Lessons from a Detailed Experimental Study,” in
SIGMETRICS, 2018.

[114] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N.
Chatterjee, A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O.
Mutlu, “Understanding Reduced-Voltage Operation in Modern
DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms,” in SIGMETRICS, 2017.

[115] JEDEC Solid State Technology Assn., JESD229: Wide I/O
Single Data Rate (Wide I/O SDR) Standard, December 2011.

[116] JEDEC Solid State Technology Assn., JESD229-2: Wide I/O 2
(WideIO2) Standard, August 2014.

[117] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in
Memory Using 3D-Stacked DRAM,” in ISCA, 2015.

[118] S. Angizi and D. Fan, “Accelerating Bulk Bit-Wise X(N)OR
Operation in Processing-in-DRAM Platform,” arXiv:1904.05782
[cs.AR], 2019.

[119] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“TETRIS: Scalable and Efficient Neural Network Acceleration
with 3D Memory,” in ASPLOS, 2017.

[120] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B.
Falsafi, B. Grot, and D. Pnevmatikatos, “The Mondrian Data
Engine,” in ISCA, 2017.

[121] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM
Architecture Increases Density and Performance,” in VLSIT,
2012.

[122] C. Chou, P. Nair, and M. K. Qureshi, “Reducing Refresh Power
in Mobile Devices with Morphable ECC,” in DSN, 2015.

[123] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A
Scalable and High-Performance Scheduling Algorithm for
Multiple Memory Controllers,” in HPCA, 2010.

[124] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” in MICRO, 2010.

[125] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing Memory Interference in Multicore
Systems via Application-Aware Memory Channel Partitioning,”
in MICRO, 2011.

[126] Google LLC, “TensorFlow Lite: For Mobile & IoT,”
https://www.tensorflow.org/lite/

[127] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph
Processing Framework for Shared Memory,” in PPoPP, 2013.

[128] S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Websearch Engine,” in WWW, 1998.

[129] S. Hong et al., “Green-Marl: A DSL for Easy and Efficient
Graph Analysis,” in ASPLOS, 2012.

[130] S. Hong et al., “Simplifying Scalable Graph Processing with a
Domain-Specific Language,” in CGO, 2014.

[131] G. Malewicz et al., “Pregel: A System for Large-Scale Graph
Processing,” in SIGMOD, 2010.

[132] J. Xue et al., “Seraph: An Efficient, Low-Cost System for
Concurrent Graph Processing,” in HPDC, 2014.

[133] MemSQL, Inc., “MemSQL,” http://www.memsql.com/

[134] SAP SE, “SAP HANA,” http://www.hana.sap.com/

[135] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory
DBMS.” IEEE Data Eng. Bull., 2013.

[136] Google LLC, “Google Translate App,”
https://translate.google.com/intl/en/about/

[137] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep
Residual Networks,” in ECCV, 2016.

[138] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in ICLR, 2015.

[139] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J.
Shor, and M. Covell, “Full Resolution Image Compression with
Recurrent Neural Networks,” in CVPR, 2017.

16

[140] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,
“Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning,” in AAAI, 2017.

[141] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks,
“Fathom: Reference Workloads for Modern Deep Learning
Methods,” in IISWC, 2016.

[142] Google LLC, “gemmlowp: A Small Self-Contained Low-
Precision GEMM Library,”
https://github.com/google/gemmlowp

[143] ARM Holdings PLC, “ARM Cortex-R8,”
https://developer.arm.com/products/processors/cortex-r/cortex-r8

[144] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A Case
for Richer Cross-Layer Abstractions: Bridging the Semantic Gap
with Expressive Memory,” in ISCA, 2018.

[145] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O.
Mutlu, “The Locality Descriptor: A Holistic Cross-Layer
Abstraction to Express Data Locality in GPUs,” in ISCA, 2018.

[146] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y.
Xie, and H. Yang, “GraphH: A Processing-in-Memory
Architecture for Large-Scale Graph Processing,” TCAD, 2018.

[147] M. Zhang, Y. Zhuo, C. Wang, M. Gao. Y. Wu, K. Chen, C.
Kozyrakis, and X. Qian, “GraphP: Reducing Communication for
PIM-Based Graph Processing with Efficient Data Partition”, in
HPCA, 2018.

[148] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C.
Alkan, “Accelerating Read Mapping with FastHASH,” BMC
Genomics, 2013.

[149] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C.
Alkan, and O. Mutlu, “Shifted Hamming Distance: A Fast and
Accurate SIMD-Friendly Filter to Accelerate Alignment
Verification in Read Mapping,” Bioinformatics, 2015.

[150] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping,” Bioinformatics,
2017.

[151] M. Alser, H. Hassan, A. Kumar, O. Mutlu, and C. Alkan,
“Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence
Alignment,” Bioinformatics, 2019.

[152] C. Alkan et al., “Personalized Copy Number and Segmental
Duplication Maps Using Next-Generation Sequencing,” Nature
Genetics, 2009.

[153] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment
with Burrows-Wheeler Transform,” Bioinformatics, 2009.

[154] M. S. Papamarcos and J. H. Patel, “A Low-Overhead Coherence
Solution for Multiprocessors with Private Cache Memories,” in
ISCA, 1984.

[155] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
Enforcement of Sequential Consistency,” in ISCA, 2007.

[156] L. Ceze, J. Tuck, C. Caşcaval, and J. Torrellas, “Bulk
Disambiguation of Speculative Threads in Multiprocessors,” in
ISCA, 2006.

[157] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P.
Stenstrom, J. E. Smoth, and M. Valero, “Implementing Kilo-
Instruction Multiprocessors,” in ICPS, 2005.

[158] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Mechanisms for Store-Wait-Free Multiprocessors,” in ISCA,
2007.

[159] C. Zilles and G. Sohi, “Master/Slave Speculative Parallelization,”
in MICRO, 2002.

[160] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie, “Unbounded Transactional Memory,” in HPCA,
2005.

[161] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun, “Transactional Memory Coherence and Consistency,”
in ISCA, 2004.

[162] M. Herlihy and J. E. B. Moss, “Transactional Memory:
Architectural Support for Lock-free Data Structures,” in ISCA,
1993.

[163] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, “LogTM: Log-Based Transactional Memory,” in HPCA,
2006.

[164] N. Shavit and D. Touitou, “Software Transactional Memory,”
Distributed Computing, 1997.

[165] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores,” VLDB, 2014.

[166] SAFARI Research Group, “Ramulator for Processing-in-
Memory – GitHub Repository,” https://github.com/CMU-
SAFARI/ramulator-pim/

[167] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-Order Processors,” in HPCA, 2003.

[168] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K.
Wang, T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J.
Xiong, D. Kim, W.-m. W. Hwu, and N. S. Kim, “Application-
Transparent Near-Memory Processing Architecture with Memory
Channel Network,” in MICRO, 2018.

[169] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, “SIMPLE
MAGIC: Synthesis and In-Memory Mapping of Logic Execution
for Memristor-Aided Logic,” in ICCAD, 2017.

[170] D. Bhattacharjee and A. Chattopadhyay, “Delay-Optimal
Technology Mapping for In-Memory Computing Using ReRAM
Devices,” in ICCAD, 2016.

[171] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler,
“Logic Synthesis for RRAM-Based In-Memory Computing,”
TCAD, 2018.

[172] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun,
“Processing Data Where It Makes Sense: Enabling In-Memory
Computation,” MICPRO, 2019.

[173] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun,
“Enabling Practical Processing in and Near Memory for Data-
Intensive Computing,” in DAC, 2019.

17

Saugata Ghose Carnegie Mellon University, Pittsburgh, PA, USA
(ghose@cmu.edu). Dr. Ghose received dual B.S. degrees in Computer
Science and in Computer Engineering from Binghamton University,
State University of New York, in 2007, and received an M.S. degree and
a Ph.D. degree in Computer Engineering from Cornell University in
2014. Since 2014, he has been working at Carnegie Mellon University,
where he is currently a systems scientist in the department of Electrical
and Computer Engineering. Dr. Ghose was the recipient of the NDSEG
Fellowship and the ECE Director’s Ph.D. Teaching Award while at
Cornell, received the best paper award at the 2017 DFRWS Digital
Forensics Research Conference Europe, and won a Wimmer Faculty
Fellowship at CMU. His current research interests include processing-
in-memory, low-power memories, application-and system-aware
memory and storage systems, and data-driven architectures. For more
information, see his webpage at https://ece.cmu.edu/~saugatag/

Amirali Boroumand Carnegie Mellon University, Pittsburgh, PA, USA
(amirali@cmu.edu). Mr. Boroumand received a B.S. degree in
Computer Hardware Engineering from the Sharif University of
Technology in 2014. Since 2014, he has been a Ph.D. student at Carnegie
Mellon University. His current research interests include programming
support for processing-in-memory, and in-memory architectures for
consumer devices and for databases.

Jeremie S. Kim Carnegie Mellon University, Pittsburgh, PA, USA; ETH
Zürich, Zürich, Switzerland (jeremiek@andrew.cmu.edu). Mr. Kim
received a B.S. degree and an M.S. degree in Electrical and Computer
Engineering from Carnegie Mellon University in 2015. He is currently
working on his Ph.D. with Onur Mutlu at Carnegie Mellon University
and ETH Zürich. His current research interests are in computer
architecture, memory latency/power/reliability, hardware security, and
bioinformatics, and he has several publications on these topics.

Juan Gómez-Luna ETH Zürich, Zürich, Switzerland (juang@ethz.ch).
Dr. Gómez-Luna received a B.S. and an M.S. degree in

Telecommunication Engineering from the University of Seville in 2001,
and received a Ph.D. degree in Computer Science from the University of
Córdoba in 2012. Between 2005 and 2017, he was a lecturer at the
University of Córdoba. Since 2017, Dr. Gómez-Luna has been a
postdoctoral researcher at ETH Zürich. His current research interests
focus on software optimization for GPUs and heterogeneous systems,
GPU architectures, near memory processing, medical imaging, and
bioinformatics.

Onur Mutlu ETH Zürich, Zürich, Switzerland; Carnegie Mellon
University, Pittsburgh, PA, USA (omutlu@ethz.ch). Dr. Mutlu received
dual B.S. degrees in Computer Engineering and in Psychology from the
University of Michigan in 2000, and an M.S. degree in 2002 and a Ph.D.
degree in 2006 in Electrical and Computer Engineering from the
University of Texas at Austin. He is currently a professor of Computer
Science at ETH Zürich. He is also a faculty member at Carnegie Mellon
University, where he previously held the William D. and Nancy W.
Strecker Early Career Professorship. Dr. Mutlu's industrial experience
includes starting the Computer Architecture Group at Microsoft
Research, where he worked from 2006 to 2009, and various product and
research positions at Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the ACM SIGARCH Maurice Wilkes
Award, the inaugural IEEE Computer Society Young Computer
Architect Award, the inaugural Intel Early Career Faculty Award, faculty
partnership awards from various companies, and a healthy number of
best paper and “Top Pick” paper recognitions at various computer
systems and architecture venues. He is an ACM Fellow, IEEE Fellow,
and an elected member of the Academy of Europe (Academia Europaea).
His current broader research interests are in computer architecture,
systems, and bioinformatics. He is especially interested in interactions
across domains and between applications, system software, compilers,
and microarchitecture, with a major current focus on memory and
storage systems. For more information, see his webpage at
https://people.inf.ethz.ch/omutlu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

