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Many modern and emerging applications must process increasingly large volumes of data. 
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such large-
scale data: the energy and performance costs to move this data between the memory subsystem 
and the CPU now dominate the total costs of computation. This forces system architects and 
designers to fundamentally rethink how to design computers. Processing-in-memory (PIM) is a 
computing paradigm that avoids most data movement costs by bringing computation to the data. 
New opportunities in modern memory systems are enabling architectures that can perform 
varying degrees of processing inside the memory subsystem. However, there are many practical 
system-level issues that must be tackled to construct PIM architectures, including enabling 
workloads and programmers to easily take advantage of PIM. This article examines three key 
domains of work towards the practical construction and widespread adoption of PIM 
architectures. First, we describe our work on systematically identifying opportunities for PIM in 
real applications, and quantify potential gains for popular emerging applications (e.g., machine 
learning, data analytics, genome analysis). Second, we aim to solve several key issues on 
programming these applications for PIM architectures. Third, we describe challenges that remain 
for the widespread adoption of PIM. 

1. Introduction 
A wide range of application domains have emerged as computing 
platforms of all types have become more ubiquitous in society. 
Many of these modern and emerging applications must now 
process very large data sets [1-8]. As an example, an object 
classification algorithm in an augmented reality application 
typically trains on millions of example images and video clips, 
and performs classification on real-time high-definition video 
streams [7, 9]. In order to process meaningful information from 
the large amounts of data, applications turn to artificial 
intelligence (AI), or machine learning (ML), and data analytics to 
methodically mine through the data and extract key properties 
about the data set. 

Due to the increasing reliance on manipulating and mining 
through large sets of data, these modern applications greatly 
overwhelm the data storage and movement resources of a modern 
computer. In a contemporary computer, the main memory 
(consisting of DRAM) is not capable of performing any 
operations on data. As a result, to perform any operation on data 
that is stored in memory, the data needs to be moved from the 
memory to the CPU via the memory channel, a pin-limited off-
chip bus (e.g., conventional double data rate, or DDR, memories 
make use of a 64-bit memory channel [10-12]). To move the data, 
the CPU must issue a request to the memory controller, which 
then issues commands across the memory channel to the DRAM 
module containing the data. The DRAM module then reads and 
returns the data across the memory channel, and the data moves 
through the cache hierarchy before being stored in a CPU cache. 
The CPU can operate on the data only once the data is loaded 
from the cache into a CPU register. 

Unfortunately, for modern and emerging applications, the large 
amounts of data that need to move across the memory channel 
create a large data movement bottleneck in the computing 
system [13-14]. The data movement bottleneck incurs a heavy 

penalty in terms of both performance and energy 
consumption [13-20]. First, there is a long latency and significant 
energy involved in bringing data from DRAM. Second, it is 
difficult to send a large number of requests to memory in parallel, 
in part because of the narrow width of the memory channel. 
Third, despite the costs of bringing data into memory, much of 
this data is not reused by the CPU, rendering the caching either 
highly inefficient or completely unnecessary [5, 21], especially 
for modern workloads with very large datasets and random access 
patterns. Today, the total cost of computation, in terms of 
performance and in terms of energy, is dominated by the cost of 
data movement for modern data-intensive workloads such as 
machine learning and data analytics [5, 15, 16, 21-25]. 

The high cost of data movement is forcing architects to rethink 
the fundamental design of computer systems. As data-intensive 
applications become more prevalent, there is a need to bring 
computation closer to the data, instead of moving data across the 
system to distant compute units. Recent advances in memory 
design enable the opportunity for architects to avoid unnecessary 
data movement by performing processing-in-memory (PIM), also 
known as near-data processing (NDP). The idea of performing 
PIM has been proposed for at least four decades [26-36], but 
earlier efforts were not widely adopted due to the difficulty of 
integrating processing elements for computation with DRAM. 
Innovations such as (1) 3D-stacked memory dies that combine a 
logic layer with DRAM layers [5, 37-40], (2) the ability to 
perform logic operations using memory cells themselves inside a 
memory chip [18, 20, 41-49], and (3) the emergence of 
potentially more computation-friendly resistive memory 
technologies [50-61] provide new opportunities to embed 
general-purpose computation directly within the memory [5, 16-
19, 21, 22, 24, 25, 41-43, 47-49, 62-100]. 

While PIM can allow many data-intensive applications to avoid 
moving data from memory to the CPU, it introduces new 
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challenges for system architects and programmers. In this work, 
we examine two major areas of challenges, and discuss solutions 
that we have developed for each challenge. First, programmers 
need to be able to identify opportunities in their applications 
where PIM can improve their target objectives (e.g., application 
performance, energy consumption). As we discuss in Section 3, 
the decision on whether to execute part or all of an application in 
memory depends on (1) architectural constraints, such as area and 
energy limitations, and the type of logic implementable within 
memory; and (2) application properties, such as the intensities of 
computation and memory accesses, and the amount of data shared 
across different functions. To solve this first challenge, we have 
developed toolflows that help the programmer to systematically 
determine how to partition work between PIM logic (i.e., 
processing elements on the memory side) and the CPU, in order 
to meet all architectural design constraints and maximize targeted 
benefits [16, 22-24, 75]. Second, system architects and 
programmers must establish efficient interfaces and mechanisms 
that allow programs to easily take advantage of the benefits of 
PIM. In particular, the processing logic inside memory does not 
have quick access to important mechanisms required by modern 
programs and systems, such as cache coherence and address 
translation, which programmers rely on for software development 
productivity. To solve this second challenge, we develop a series 
of interfaces and mechanisms that are designed specifically to 
allow programmers to use PIM in a way that preserves 
conventional programming models [5, 16-24, 62, 75]. 

In providing a series of solutions to these two major challenges, 
we tackle many of the fundamental barriers that have prevented 
PIM from being adopted widely, in a programmer-friendly way. 
We find that a number of future challenges remain against the 
adoption of PIM, and we discuss them briefly in Section 6. We 
hope that our work inspires researchers to address these and other 
future challenges, and that both our work and future works help 
to enable the widespread commercialization and usage of PIM-
based computing systems. 

2. Overview of Processing-in-Memory (PIM) 
The costs of data movement in an application continue to increase 
significantly as applications process larger data sets. Processing-
in-memory provides a viable path to eliminate unnecessary data 
movement, by bringing part or all of the computation into the 
memory. In this section, we briefly examine key enabling 
technologies behind PIM, and how new advances and 
opportunities in memory design have brought PIM significantly 
closer to realization. 

2.1. The Initial Push for PIM 
Proposals for PIM architectures extend back as far as the 1960s. 
Stone’s Logic-in-Memory computer is one of the earliest PIM 
architectures, in which a distributed array of memories combines 
small processing elements with small amounts of RAM to 
perform computation within the memory array [36]. Between the 
1970s and the early 2000s, a number of subsequent works 
propose different ways to integrate computation and memory, 
which we broadly categorize into two families of work. In the 
first family, which includes NON-VON [35], Computational 
RAM [27, 28], EXECUBE [31], Terasys [29], and IRAM [34], 
architects add logic within DRAM to perform data-parallel 

operations. In the second family of works, such as Active 
Pages [33], FlexRAM [30], Smart Memories [32], and 
DIVA [26], architects propose more versatile substrates that 
tightly integrate logic and reconfigurability within DRAM itself 
to increase flexibility and the available compute power. 
Unfortunately, many of these works were hindered by the 
limitations of existing memory technologies, which prevented the 
practical integration of logic in or near the memory. 

2.2. New Opportunities in Modern Memory Systems 
Due to the increasing need for large memory systems by modern 
applications, DRAM scaling is being pushed to its practical 
limits [101-104]. It is becoming more difficult to increase the 
density [101, 105-107], reduce the latency [107-112], and 
decrease the energy consumption [101, 113, 114] of conventional 
DRAM architectures. In response, memory manufacturers are 
actively developing two new approaches for main memory 
system design, both of which can be exploited to overcome prior 
barriers to implementing PIM architectures. 

The first major innovation is 3D-stacked memory [5, 37-40]. In 
a 3D-stacked memory, multiple layers of memory (typically 
DRAM) are stacked on top of each other, as shown in Figure 1. 
These layers are connected together using vertical through-
silicon vias (TSVs) [38, 39]. With current manufacturing process 
technologies, thousands of TSVs can be placed within a single 
3D-stacked memory chip. The TSVs provide much greater 
internal memory bandwidth than the narrow memory channel. 
Examples of 3D-stacked DRAM available commercially include 
High-Bandwidth Memory (HBM) [37, 38], Wide I/O [115], 
Wide I/O 2 [116], and the Hybrid Memory Cube (HMC) [40]. 

In addition to the multiple layers of DRAM, a number of 
prominent 3D-stacked DRAM architectures, including HBM and 
HMC, incorporate a logic layer inside the chip [37, 38, 40]. The 
logic layer is typically the bottommost layer of the chip, and is 
connected to the same TSVs as the memory layers. The logic 
layer provides a space inside the DRAM chip where architects 
can implement functionality that interacts with both the processor 
and the DRAM cells. Currently, manufacturers make limited use 
of the logic layer, presenting an opportunity for architects to 
implement new PIM logic in the available area of the logic layer. 
We can potentially add a wide range of computational logic (e.g., 
general-purpose cores, accelerators, reconfigurable architectures) 
in the logic layer, as long as the added logic meets area, energy, 
and thermal dissipation constraints. 

Figure 1 High-level overview of a 3D-stacked DRAM architecture.
Reproduced from [14]. 
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The second major innovation is the use of byte-addressable 
resistive nonvolatile memory (NVM) for the main memory 
subsystem. In order to avoid DRAM scaling limitations entirely, 
researchers and manufacturers are developing new memory 
devices that can store data at much higher densities than the 
typical density available in existing DRAM manufacturing 
process technologies. Manufacturers are exploring at least three 
types of emerging NVMs to augment or replace DRAM at the 
main memory layer: (1) phase-change memory (PCM) [50-56], 
(2) magnetic RAM (MRAM) [57, 58], and (3) metal-oxide 
resistive RAM (RRAM) or memristors [59-61]. All three of these 
NVM types are expected to provide memory access latencies and 
energy usage that are competitive with or close enough to 
DRAM, while enabling much larger capacities per chip and 
nonvolatility in main memory. 

NVMs present architects with an opportunity to redesign how 
the memory subsystem operates. While it can be difficult to 
modify the design of DRAM arrays due to the delicacy of DRAM 
manufacturing process technologies as we approach scaling 
limitations, NVMs have yet to approach such scaling limitations. 
As a result, architects can potentially design NVM memory 
arrays that integrate PIM functionality. A promising direction for 
this functionality is the ability to manipulate NVM cells at the 
circuit level in order to perform logic operations using the 
memory cells themselves. A number of recent works have 
demonstrated that NVM cells can be used to perform a complete 
family of Boolean logic operations [41-46], similar to such 
operations that can be performed in DRAM cells [18, 20, 47-49]. 

2.3. Two Approaches: Processing-Near-Memory vs. 
Processing-Using-Memory 

Many recent works take advantage of the memory technology 
innovations that we discuss in Section 2.2 to enable PIM. We find 
that these works generally take one of two approaches, which are 
summarized in Table 1: (1) processing-near-memory or 
(2) processing-using-memory. Processing-near-memory 
involves adding or integrating PIM logic (e.g., accelerators, very 
small in-order cores, reconfigurable logic) close to or inside the 
memory (e.g., [5, 6, 16, 21-25, 62, 64-73, 75, 77, 79, 81, 83-87, 
90, 91, 117]). Many of these works place PIM logic inside the 
logic layer of 3D-stacked memories or at the memory controller, 
but recent advances in silicon interposers (in-package wires that 
connect directly to the through-silicon vias in a 3D-stacked chip) 
also allow for separate logic chips to be placed in the same die 
package as a 3D-stacked memory while still taking advantage of 
the TSV bandwidth. In contrast, processing-using-memory 
makes use of intrinsic properties and operational principles of the 
memory cells and cell arrays themselves, by inducing interactions 
between cells such that the cells and/or cell arrays can perform 
computation. Prior works show that processing-using-memory is 
possible using static RAM (SRAM) [63, 76, 100], DRAM [17-
20, 47-49, 80, 87, 118], PCM [41], MRAM [44-46], or 
RRAM/memristive [42, 43, 88, 92-99] devices. Processing-
using-memory architectures enable a range of different functions, 
such as bulk copy and data initialization [17, 19, 63], bulk bitwise 
operations (e.g., a complete set of Boolean logic operations) [18, 
41, 44-49, 63, 80, 106-108, 118], and simple arithmetic 
operations (e.g., addition, multiplication, implication) [42, 43, 63, 
76, 80, 88, 92-100]. 

2.4. Challenges to the Adoption of PIM 
In order to build PIM architectures that are adopted and readily 
usable by most programmers, there are a number of challenges 
that need to be addressed. In this work, we discuss two of the most 
significant challenges facing PIM. First, programmers need to be 
able to identify what portions of an application are suitable for 
PIM, and architects need to understand the constraints imposed 
by different substrates when designing PIM logic. We address 
this challenge in Section 3. Second, once opportunities for PIM 
have been identified and PIM architectures have been designed, 
programmers need a way to extract the benefits of PIM without 
having to resort to complex programming models. We address 
this challenge in Section 4. While these two challenges represent 
some of the largest obstacles to widespread adoption for PIM, a 
number of other important challenges remain, which we discuss 
briefly in Section 6. 

3. Identifying Opportunities for PIM in Applications 
In order to decide when to use PIM, we must first understand 
which types of computation can benefit from being moved to 
memory. The opportunities for an application to benefit from 
PIM depend on (1) the constraints of the target architecture, and 
(2) the properties of the application. 

3.1. Design Constraints for PIM 
The target architecture places a number of fundamental 
constraints on the types of computation that can benefit from 
PIM. As we discuss in Section 2.3, there are two approaches to 
implementing PIM (processing-near-memory and processing-
using-memory). Each approach has its own constraints on what 
type of logic can be efficiently and effectively implemented in 
memory. 

In the case of processing-near-memory, PIM logic must be 
added close to the memory, either in the logic layer of a 3D-
stacked memory chip or in the same package. This places a limit 
on how much PIM logic can be added. For example, in an HMC-
like 3D-stacked memory architecture implemented using a 22 nm 
manufacturing processing technology, we estimate that there is 
around 50–60 mm2 of area available for architects to add new 
logic into the DRAM logic layer [40]. The available area can be 
further limited by the architecture of the memory. For example, 
in HMC, the 3D-stacked memory is partitioned into multiple 
vaults [40], which are vertical slices of 3D-stacked DRAM. Logic 
placed in a vault has fast access to data stored in the memory 
layers of the same vault, as the logic is directly connected to the 
memory in the vault by the TSVs (see Section 2.2), but accessing 

Table 1 Summary of enabling technologies for the two approaches to 
PIM used by recent works. 
 

Approach Enabling Technologies 

Processing-Near-Memory 
Logic layers in 3D-stacked memory 

Silicon interposers 
Logic in memory controllers 

Processing-Using-Memory 

SRAM 
DRAM 

Phase-change memory (PCM) 
Magnetic RAM (MRAM) 

Resistive RAM (RRAM)/memristors 
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data stored in a different vault takes significantly longer latency. 
As a result, architects often replicate PIM logic in each vault, to 
minimize the latency of PIM operations. The trade-off of this is 
that the amount of area available per vault is significantly lower: 
for a 32-vault 3D-stacked memory chip, there is approximately 
3.5–4.4 mm2 of area available for PIM logic [119-121]. 

A number of target computing platforms have additional 
constraints beyond area. For example, consumer devices such as 
smartphones, tablets, and netbooks are extremely stringent in 
terms of both the area and energy budget they can accommodate 
for any new hardware enhancement. Any additional logic added 
to memory can potentially translate into a significant cost in 
consumer devices. In fact, unlike PIM logic that is added to server 
or desktop environments, consumer devices may not be able to 
afford the addition of full-blown general-purpose PIM cores [22-
24, 68, 120], GPU PIM cores [75, 85, 90], or complex PIM 
accelerators [5, 62, 119] to 3D-stacked memory. As a result, a 
major challenge for enabling PIM in consumer devices is to 
identify what kind of in-memory logic can both (1) maximize 
energy efficiency and (2) be implemented at minimum possible 
cost. Another constraint is thermal dissipation in 3D-stacked 
memory, as adding PIM logic in the logic layer can potentially 
raise the DRAM temperature beyond acceptable levels [85, 90]. 

In the case of processing-using-memory, the cells and memory 
array themselves are used to implement PIM logic. Additional 
logic in the controller and/or in the array itself may be required to 
enable logic operations on the cells or in the memory array, or to 
provide more specialized functionality beyond what the cells and 
memory array themselves can perform easily (e.g., dedicated 
adders or shifters). 

3.2. Choosing What to Execute in Memory 
After the constraints on what type of hardware can potentially be 
implemented in memory are determined, the properties of the 
application itself are a key indicator of whether portions of an 
application benefit from PIM. A naïve assumption may be to 
move highly-memory-intensive applications completely to PIM 
logic. However, we find that there are cases where portions of 
these applications still benefit from remaining on the CPU. For 
example, many proposals for PIM architectures add small 
general-purpose cores near memory (which we call PIM cores). 
While PIM cores tend to be ISA-compatible with the CPU, and 
can execute any part of the application, they cannot afford to have 
large, multi-level cache hierarchies or execution logic that is as 
complex as the CPU, due to area, energy, and thermal constraints. 
PIM cores often have no or small caches, restricting the amount 
of temporal locality they can exploit, and no sophisticated 
aggressive out-of-order or superscalar execution logic, limiting 
the PIM cores’ abilities to extract instruction-level parallelism 
(ILP). As a result, portions of an application that are either 
(1) compute-intensive or (2) cache-friendly should remain on the 
larger, more sophisticated CPU cores [16, 21-24, 75]. 

We find that in light of these constraints, it is important to 
identify which portions of an application are suitable for PIM. 
We call such portions PIM targets. While PIM targets can be 
identified manually by a programmer, the identification would 
require significant programmer effort along with a detailed 
understanding of the hardware trade-offs between CPU cores and 

PIM cores. For architects who are adding custom PIM logic (e.g., 
fixed-function accelerators, which we call PIM accelerators) to 
memory, the trade-offs between CPU cores and PIM accelerators 
may not be known before determining which portions of the 
application are PIM targets, since the PIM accelerators are 
tailored for the PIM targets. 

To alleviate the burden of manually identifying PIM targets, 
we develop a systematic toolflow for identifying PIM targets in 
an application [16, 22-24]. This toolflow uses a system that 
executes the entire application on the CPU to evaluate whether 
each PIM target meets the constraints of the system under 
consideration. For example, when we evaluate workloads for 
consumer devices, we use hardware performance counters and 
our energy model to identify candidate functions that could be 
PIM targets. A function is a PIM target candidate in a consumer 
device if (1) it consumes the most energy out of all functions in 
the workload, since energy reduction is a primary objective in 
consumer workloads; (2) its data movement consumes a 
significant fraction (e.g., more than 20%) of the total workload 
energy, to maximize the potential energy benefits of offloading 
to PIM; (3) it is memory-intensive (i.e., its last-level cache misses 
per kilo instruction, or MPKI, is greater than 10 [122-125]), as 
the energy savings of PIM is higher when more data movement 
is eliminated; and (4) data movement is the single largest 
component of the function’s energy consumption. We then check 
if each candidate function is amenable to PIM logic 
implementation using two criteria. First, we discard any PIM 
targets that incur any performance loss when run on simple PIM 
logic (i.e., PIM core, PIM accelerator). Second, we discard any 
PIM targets that require more area than is available in the logic 
layer of 3D-stacked memory. Note that for pre-built PIM 
architectures with fixed PIM logic, we instead discard any PIM 
targets that cannot be executed on the existing PIM logic. 

While our toolflow was initially designed to identify PIM 
targets for consumer devices [16], the toolflow can be modified 
to accommodate any other hardware constraints. For example, in 
our work on reducing the cost of cache coherence in PIM 
architectures [22-24], we consider the amount of data sharing 
(i.e., the total number of cache lines that are read concurrently by 
the CPU and by PIM logic). In that work, we eliminate any 
potential PIM target that would result in a high amount of data 
sharing if the target were offloaded to a PIM core, as this would 
induce a large amount of cache coherence traffic between the 
CPU and PIM logic that would counteract the data movement 
savings (see Section 4.2). 

3.3. Case Study: PIM Opportunities in TensorFlow 
By performing our constraint analysis (Section 3.1) and using 

our systematic PIM target toolflow (Section 3.2), we find that a 
number of key modern workloads are well-suited for PIM. In 
particular, we find that machine learning and data analytics 
workloads are particularly amenable for PIM, as they are often 
partitioned into compute-intensive and memory-intensive 
application phases. These workloads benefit highly from PIM 
when only the memory-intensive PIM targets (that fit our system 
constraints) are offloaded to PIM logic. Such workloads include 
neural network inference [126], graph analytics [127-132], and 
hybrid transactional/analytical processing databases [133-135].  
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As a case study, we present a detailed analysis using our PIM 
target identification approach for TensorFlow Lite [126], a 
version of Google’s TensorFlow machine learning library that is 
specifically tailored for mobile and embedded platforms. 
TensorFlow Lite enables a variety of tasks, such as image 
classification, face recognition, and Google Translate’s instant 
visual translation [136], all of which perform inference on 
consumer devices using a convolutional neural network that was 
pre-trained on cloud servers. We target a processing-near-
memory platform in this case study, where we add small in-order 
PIM cores or fixed-function PIM accelerators into the logic layer 
of a 3D-stacked DRAM. We model a 3D-stacked DRAM similar 
to the Hybrid Memory Cube [40], where the memory contains 
sixteen vaults (i.e., vertical slices of DRAM). We add one PIM 
core or PIM accelerator per vault, ensuring that the area of the 
PIM core or the PIM accelerator does not exceed the total 
available area for logic inside each vault (3.5–4.4 mm2 [119-
121]). Each PIM core or PIM accelerator can execute one PIM 
target at a time. Details about our methodology, along with the 
specific parameters of the target platform, can be found in our 
prior work [16]. 

Inference begins by feeding input data (e.g., an image) to a 
neural network. A neural network is a directed acyclic graph 
consisting of multiple layers. Each layer performs a number of 
calculations and forwards the results to the next layer. The 
calculation can differ for each layer, depending on the type of the 
layer. A fully-connected layer performs matrix multiplication 
(MatMul) on the input data, to extract high-level features. A 2-D 
convolution layer applies a convolution filter (Conv2D) across 
the input data, to extract low-level features. The last layer of a 
neural network is the output layer, which performs classification 
to generate a prediction based on the input data. 

Energy Analysis: Figure 2 shows the breakdown of the energy 
consumed by each function in TensorFlow Lite, for four different 
input networks: ResNet-v2-152 [137], VGG-19 [138], Residual-
GRU [139], and Inception-ResNet-v2 [140]. As convolutional 
neural networks (CNNs) consist mainly of 2-D convolution 
layers and fully-connected layers [141], the majority of energy is 
spent on these two types of layers. However, we find that there 
are two other functions that consume a significant fraction of the 
system energy: packing/unpacking and quantization. Packing and 
unpacking reorder the elements of matrices to minimize cache 
misses during matrix multiplication. Quantization converts 32-bit 
floating point and integer values (used to represent both the 
weights and activations of a neural network) into 8-bit integers, 
which improves the execution time and energy consumption of 
inference by reducing the complexity of operations that the CPU 

needs to perform. These two functions together account for 
39.3% of total system energy on average. The rest of the energy 
is spent on a variety of other functions such as random sampling, 
reductions, and simple arithmetic, each of which contributes to 
less than 1% of total energy consumption (labeled Other in 
Figure 2). 

Even though the main goal of packing and quantization is to 
reduce energy consumption and inference latency, our analysis 
shows that they generate a large amount of data movement, and 
thus, lose part of the energy savings they aim to achieve. Figure 3 
shows that a significant portion (27.4% on average) of the 
execution time is spent on the packing and quantization process. 
We do not consider Conv2D and MatMul as being candidates for 
offloading to PIM logic because (1) a majority (67.5%) of their 
energy is spent on computation; and (2) Conv2D and MatMul 
require a relatively large and sophisticated amount of PIM 
logic [77, 119], which may not be cost-effective for consumer 
devices. 

PIM Effectiveness for Packing: We highlight how PIM can be 
used to effectively improve the performance and energy 
consumption of packing. GEneralized Matrix Multiplication 
(GEMM) is the core building block of neural networks, and is 
used by both 2-D convolution and fully-connected layers. These 
two layers account for the majority of TensorFlow Lite execution 
time. To implement fast and energy-efficient GEMM, 
TensorFlow Lite employs a low-precision, quantized GEMM 
library called gemmlowp [142]. The gemmlowp library performs 
GEMM by executing its innermost kernel, an architecture-
specific GEMM code portion for small fixed-size matrix chunks, 
multiple times. First, gemmlowp fetches matrix chunks which fit 
into the LLC from DRAM. Then, it executes the GEMM kernel 
on the fetched matrix chunks in a block-wise manner. 

Each GEMM operation (i.e., a single matrix multiply 
calculation using the gemmlowp library) involves three steps. 
First, to minimize cache misses, gemmlowp employs a process 
called packing, which reorders the matrix chunks based on the 
memory access pattern of the kernel to make the chunks cache-
friendly. Second, the actual GEMM computation (i.e., the 
innermost GEMM kernel) is performed. Third, after performing 
the computation, gemmlowp performs unpacking, which 
converts the result matrix chunk back to its original order. 

Packing and unpacking account for up to 40% of the total 
system energy and 31% of the inference execution time, as shown 
in Figures 2 and 3, respectively. Due to their unfriendly cache 
access pattern and the large matrix sizes, packing and unpacking 
generate a significant amount of data movement. For instance, for 

Figure 2 Energy breakdown during TensorFlow Lite inference 
execution on four input networks. Reproduced from [16]. 

Figure 3 Execution time breakdown of inference. Reproduced from 
[16]. 



 

6 

VGG-19, 35.3% of the total energy goes to data movement 
incurred by packing-related functions. On average, we find that 
data movement is responsible for 82.1% of the total energy 
consumed during the packing/unpacking process, indicating that 
packing and unpacking are bottlenecked by data movement. 

Packing and unpacking are simply pre-processing steps, to 
prepare data in the right format for the innermost GEMM kernel. 
Ideally, the CPU should execute only the innermost GEMM 
kernel, and assume that packing and unpacking are already taken 
care of. PIM can enable such a scenario by performing packing 
and unpacking without any CPU involvement. Our PIM logic 
packs matrix chunks, and sends the packed chunks to the CPU, 
which executes the innermost GEMM kernel. Once the innermost 
GEMM kernel completes, the PIM logic receives the result 
matrix chunk from the CPU, and unpacks the chunk while the 
CPU executes the innermost GEMM kernel on a different matrix 
chunk. 

PIM Effectiveness for Quantization: TensorFlow Lite performs 
quantization twice for each Conv2D operation. First, quantization 
is performed on the 32-bit input matrix before Conv2D starts, 
which reduces the complexity of operations required to perform 
Conv2D on the CPU by reducing the width of each matrix 
element to 8 bits. Then, Conv2D runs, during which gemmlowp 
generates a 32-bit result matrix. Quantization is performed for the 
second time on this result matrix (this step is referred to as re-
quantization). Accordingly, invoking Conv2D more frequently 
(which occurs when there are more 2-D convolution layers in a 
network) leads to higher quantization overheads. For example, 
VGG-19 requires only 19 Conv2D operations, incurring small 
quantization overheads. On the other hand, ResNet-v2 requires 
156 Conv2D operations, causing quantization to consume 16.1% 
of the total system energy and 16.8% of the execution time. The 
quantization overheads are expected to increase as neural 
networks get deeper, as a deeper network requires a larger matrix. 

Figure 4a shows how TensorFlow quantizes the result matrix 
using the CPU. First, the entire matrix needs to be scanned to 
identify the minimum and maximum values of the matrix ( in 
the figure). Then, using the minimum and maximum values, the 
matrix is scanned a second time to convert each 32-bit element of 
the matrix into an 8-bit integer (). These steps are repeated for 
re-quantization of the result matrix ( and ). The majority of 
the quantization overhead comes from data movement. Because 
both the input matrix quantization and the result matrix re-
quantization need to scan a large matrix twice, they exhibit poor 
cache locality and incur a large amount of data movement. For 
example, for the ResNet-v2 network, 73.5% of the energy 
consumed during quantization is spent on data movement, 
indicating that the computation is relatively cheap (in 
comparison, only 32.5% of Conv2D/MatMul energy goes to data 
movement, while the majority goes to multiply–accumulate 
computation). 19.8% of the total data movement energy of 
inference execution comes from quantization and re-quantization. 
As Figure 4b shows, we can offload both quantization ( in the 
figure) and re-quantization () to PIM to eliminate data 
movement. This frees up the CPU to focus on GEMM 
calculation, and allows the next Conv2D operation to be 
performed in parallel with re-quantization (). 

Evaluation: We evaluate how TensorFlow Lite benefits from 
PIM execution using (1) custom 64-bit low power single-issue 
cores similar in design to the ARM Cortex-R8 [143]; and 
(2) fixed-function PIM accelerators designed for packing and 
quantization operations, with each accelerator consisting of four 
simple ALUs and consuming less than 0.25 mm2 of area [16]. 
Figure 5 (left) shows the energy consumption of PIM execution 
using PIM cores (PIM-Core) or fixed-function PIM accelerators 
(PIM-Acc) for the four most time- and energy-consuming GEMM 
operations for each input neural network in packing and 
quantization, normalized to a processor-only baseline (CPU-
Only). We make three key observations. First, PIM-Core and 
PIM-Acc decrease the total energy consumption of a consumer 
device system by 50.9% and 54.9%, on average across all four 
input networks, compared to CPU-Only. Second, the majority of 
the energy savings comes from the large reduction in data 
movement, as the computation energy accounts for a negligible 
portion of the total energy consumption. For instance, 82.6% of 
the energy reduction for packing is due to the reduced data 
movement. Third, we find that the data-intensive nature of these 
kernels and their low computational complexity limit the energy 
benefits PIM-Acc provides over PIM-Core. 

Figure 5 (right) shows the speedup of PIM-Core and PIM-Acc 
over CPU-Only as we vary the number of GEMM operations 

Figure 4 Quantization on (a) CPU vs. (b) PIM. Reproduced from [16].

Figure 5 Energy (left) and performance (right) for TensorFlow Lite
kernels, averaged across four neural network inputs: ResNet-v2 [137], 
VGG-19 [138], Residual-GRU [139], Inception-ResNet [140].
Adapted from [16]. 
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performed. For CPU-Only, we evaluate a scenario where the CPU 
performs packing, GEMM calculation, quantization, and 
unpacking. To evaluate PIM-Core and PIM-Acc, we assume that 
packing and quantization are handled by the PIM logic, and the 
CPU performs GEMM calculation. We find that, as the number 
of GEMM operations increases, PIM-Core and PIM-Acc provide 
greater performance improvements over CPU-Only. For 
example, for one GEMM operation, PIM-Core and PIM-Acc 
achieve speedups of 13.1% and 17.2%, respectively. For 16 
GEMM operations, the speedups of PIM-Core and PIM-Acc 
increase to 57.2% and 98.1%, respectively, over CPU-Only. 
These improvements are the result of PIM logic (1) exploiting the 
higher bandwidth and lower latency of 3D-stacked memory, and 
(2) enabling the CPU to perform GEMM in parallel while the 
PIM logic handles packing and quantization. 

We conclude that our approach to identifying PIM targets can 
be used to significantly improve performance and reduce energy 
consumption for the TensorFlow Lite mobile machine learning 
framework. 

4. Programming PIM Architectures: Key Issues 
While many applications have significant potential to benefit 
from PIM, a number of practical considerations need to be made 
with regards to how portions of an application are offloaded, and 
how this offloading can be accomplished without placing an 
undue burden on the programmer. When a portion of an 
application is offloaded to PIM logic, the PIM logic executes the 
offloaded piece of code, which we refer to as a PIM kernel. In 
this section, we study four key issues that affect the 
programmability of PIM architectures: (1) the different 
granularities of an offloaded PIM kernel, (2) how to handle data 
sharing between PIM kernels and CPU threads, (3) how to 
efficiently provide PIM kernels with access to essential virtual 
memory address translation mechanisms, and (4) how to 
automate the identification and offloading of PIM targets (i.e., 
portions of an application that are suitable for PIM; see 
Section 3.2). 

4.1. Offloading Granularity 
In Section 3.3, our case study on identifying opportunities for 
PIM in TensorFlow Lite makes an important assumption: PIM 
kernels are offloaded at the granularity of an entire function. 
However, there are a number of different granularities at which 
PIM kernels can be offloaded. Each granularity requires a 
different interface and different design decisions. We evaluate 
four offloading granularities in this section: (1) a single 
instruction, (2) a bulk operation, (3) an entire function, and (4) an 
entire application. 

At one extreme, a PIM kernel can consist of a single instruction 
from the view of the CPU. For example, a PIM-enabled 
instruction (PEI) [21] can be added to an existing ISA, where 
each PIM operation is expressed and semantically operates as a 
single instruction. Figure 6 shows an example architecture that 
can be used to enable PEIs [21]. In this architecture, a PEI is 
executed on a PEI Computation Unit (PCU). To enable PEI 
execution in either the host CPU or in memory, a PCU is added 
to each host CPU and to each vault in an HMC-like 3D-stacked 
memory. While the work done in a PCU for a PEI might have 

required multiple CPU instructions in the baseline CPU-only 
architecture, the CPU only needs to execute a single PEI 
instruction, which is sent to a central PEI Management Unit 
(PMU in Figure 6). The PMU launches the appropriate PIM 
operation on one of the PCUs. Implementing PEIs with low 
complexity and minimal changes to the system requires three key 
rules. First, for every PIM operation, there is a single PEI in the 
ISA that is used by the CPU to trigger the operation. This keeps 
the mapping between PEIs and PIM operations simple, and 
allows for the gradual introduction of new instructions. This also 
avoids the need for virtual memory address translation in 
memory, as the translation is done in the CPU before sending the 
PEI to memory. Second, a PIM operation is limited to operating 
on a single cache line. This (1) eliminates the need for careful 
data mapping, by ensuring that a single PEI operates on data that 
is mapped to a single memory controller; and (2) eases cache 
coherence, by needing no more than a single cache line to be kept 
coherent between a PEI performed in memory and the CPU 
cache. Third, a PEI is treated as atomic with respect to other PEIs, 
and uses memory fences to enforce atomicity between a PEI and 
a normal CPU instruction. An architecture with support for PEIs 
increases the average performance across ten graph processing, 
machine learning, and data mining applications by 32% over a 
CPU-only baseline for small input sets, and by 47% for large 
input sets [21]. While PEIs allow for simple coordination 
between CPU threads and PIM kernels, they limit both the 
complexity of computation performed and the amount of data 
processed by any one PIM kernel, which can incur high 
overheads when a large number of PIM operations need to be 
performed. 

One approach to perform more work than a single PEI is to 
offload bulk operations to memory, as is done by a number of 
processing-using-memory architectures. For a bulk operation, the 
same operation is performed across a large, often contiguous, 
region of memory (e.g., an 8KB row of DRAM). Mechanisms for 
processing-using-memory can perform a variety of bulk 
functions, such as bulk copy and data initialization [17, 19], bulk 
bitwise operations [18, 20, 47-49, 80], and simple arithmetic 
operations [42, 43, 63, 76, 88, 92-100]. As a representative 
example, the Ambit processing-using-memory architecture, 
which enables bulk bitwise operations using DRAM cells, 
accelerates the performance of database queries and operations 
on the set data structure by 3x–12x over a CPU-only 
baseline [18]. There are two trade-offs to performing bulk 

Figure 6 Example architecture for PIM-enabled instructions. Adapted
from [21]. 
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operations in memory. First, there are limitations in the amount 
of data that a single bulk operation processes: for example, a bulk 
bitwise operation in Ambit cannot be performed on less than one 
row at a time. Second, the operations that a processing-using-
memory architecture can perform are much simpler than those 
that a general-purpose core can perform, due to limits in the 
amount of logical functionality that can be implemented inside 
the memory array. 

A second approach to perform more work than a single PEI is 
to offload at the granularity of an application function or a block 
of instructions in the application [16, 22-24, 62, 75]. There are 
several ways to demarcate which portions of an application 
should be offloaded to PIM. One approach is to surround the 
portion with compiler directives. For example, if we want to 
offload a function to PIM, we can surround it with #PIM_begin 
and #PIM_end directives, which a compiler can use to generate 
a thread for execution on PIM. This approach requires compiler 
and/or library support to dispatch a PIM kernel to memory, as the 
programmer needs some way to indicate which regions of a 
program should be offloaded to PIM and which regions should 
not be offloaded. Our TensorFlow case study in Section 3.3 
shows that offloading at the granularity of functions provides 
speedups of up to 98.1% when the 16 most time- and energy-
consuming GEMM operations make use of PIM accelerators for 
packing and quantization [16]. As we discuss in Sections 4.2 and 
4.3, another issue with this approach is the need to coordinate 
between the CPU and PIM logic, as CPU threads and PIM kernels 
can potentially execute concurrently. Examples of this 
coordination include cache coherence [22-24] and address 
translation [62]. We note that using simple pragmas to indicate 
the beginning and end of a PIM kernel represents a first step for 
identifying the blocks of instructions in a program that should be 
offloaded to PIM, and we encourage future works to develop 
more robust and expressive interfaces and mechanisms for PIM 
offloading that can allow for better coordination between the 
CPU and PIM logic (e.g., by building on expressive memory 
interfaces [144, 145]). 

At the other extreme, a PIM kernel can consist of an entire 
application. Executing an entire application in memory can avoid 
the need to communicate at all with the CPU. For example, there 
is no need to perform cache coherence (see Section 4.2) between 
the CPU and PIM logic, as they work on different programs 
entirely. While this is a simple solution to maintain 
programmability and avoid significant modification to hardware, 
it significantly limits the types of applications that can be 
executed with PIM. As we discuss in Section 3.2, applications 
with significant computational complexity or high temporal 
locality are best suited for the CPU, but significant portions of 
these applications can benefit from PIM. In order to obtain 
benefits for such applications when only the entire application 
can be offloaded, changes must be made across the entire system. 
We briefly examine two successful examples of entire application 
offloading: Tesseract [5] and GRIM-Filter [6]. 

Tesseract [5] is an accelerator for in-memory graph processing. 
Tesseract adds an in-order core to each vault in an HMC-like 3D-
stacked memory, and implements an efficient communication 
protocol between these in-order cores. Tesseract combines this 
new architecture with a message-passing-based programming 

model, where message passing is used to perform operations on 
the graph nodes by moving the operations to the vaults where the 
corresponding graph nodes are stored. For five state-of-the-art 
graph processing workloads with large real-world graphs, 
Tesseract improves the average system performance by 13.8x, 
and reduces the energy consumption by 87%, over a conventional 
CPU-only system [5]. Other recent works build on Tesseract by 
improving locality and communication for further benefits [146, 
147]. 

GRIM-Filter [6] is an in-memory accelerator for genome seed 
filtering. In order to read the genome (i.e., DNA sequence) of an 
organism, geneticists often need to reconstruct the genome from 
small segments of DNA known as reads, as current DNA 
extraction techniques are unable to extract the entire DNA 
sequence. A genome read mapper can perform the reconstruction 
by matching the reads against a reference genome, and a core part 
of read mapping is a computationally-expensive dynamic 
programming algorithm that aligns the reads to the reference 
genome. One technique to significantly improve the performance 
and efficiency of read mapping is seed filtering [148-151], which 
reduces the number of reference genome seeds (i.e., segments) 
that a read must be checked against for alignment by quickly 
eliminating seeds with no probability of matching. GRIM-Filter 
proposes a state-of-the-art filtering algorithm, and places the 
entire algorithm inside memory [6]. This requires adding simple 
accelerators in the logic layer of 3D-stacked memory, and 
introducing a communication protocol between the read mapper 
and the filter. The communication protocol allows GRIM-Filter 
to be integrated into a full genome read mapper (e.g., 
FastHASH [148], mrFAST [152], BWA-MEM [153]), by 
allowing (1) the read mapper to notify GRIM-Filter about the 
DRAM addresses on which to execute customized in-memory 
filtering operations, (2) GRIM-Filter to notify the read mapper 
once the filter generates a list of seeds for alignment. Across 10 
real genome read sets, GRIM-Filter improves the performance of 
a full state-of-the-art read mapper by 3.65x over a conventional 
CPU-only system [6]. 

4.2. Sharing Data Between PIM Logic and CPUs 
In order to maximize resource utilization within a system capable 
of PIM, PIM logic should be able to execute at the same time as 
CPUs, akin to a multithreaded system. In a traditional 
multithreaded execution model that uses shared memory between 
threads, writes to memory must be coordinated between multiple 
cores, to ensure that threads do not operate on stale data values. 
Due to the per-core caches used in CPUs, this requires that when 
one core writes data to a memory address, cached copies of the 
data held within the caches of other cores must be updated or 
invalidated, which is known as cache coherence. Cache 
coherence involves a protocol that is designed to handle write 
permissions for each core, invalidations and updates, and 
arbitration when multiple cores request exclusive access to the 
same memory address. Within a chip multiprocessor (CMP), the 
per-core caches can perform coherence actions over a shared 
interconnect. 

Cache coherence is a major system challenge for enabling PIM 
architectures as general-purpose execution engines. If PIM 
processing logic is coherent with the processor, the PIM 
programming model is relatively simple, as it remains similar to 
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conventional shared memory multithreaded programming, which 
makes PIM architectures easier to adopt in general-purpose 
systems. Thus, allowing PIM processing logic to maintain such a 
simple and traditional shared memory programming model can 
facilitate the widespread adoption of PIM. However, employing 
traditional fine-grained cache coherence (e.g., a cache-block 
based MESI protocol [154]) for PIM forces a large number of 
coherence messages to traverse the narrow memory channel, 
potentially undoing the benefits of high-bandwidth and low-
latency PIM execution. Unfortunately, solutions for coherence 
proposed by prior PIM works [5, 21, 75] either place some 
restrictions on the programming model (by eliminating coherence 
and requiring message-passing-based programming) or limit the 
performance and energy gains achievable by a PIM architecture. 

To preserve traditional programming models and maximize 
performance and energy gains, we propose a coherence 
mechanism for PIM called CoNDA [22-24], which does not need 
to send a coherence request for every memory access. Instead, as 
shown in Figure 7, CoNDA enables efficient coherence by 
having the PIM logic (1) speculatively acquire coherence 
permissions for multiple memory operations over a given period 
of time (which we call optimistic execution;  in the figure), 
(2) batch the coherence requests from the multiple memory 
operations into a set of compressed coherence signatures ( and 
), and (3) send the signatures to the CPU to determine whether 
the speculation violated any coherence semantics. Whenever the 
CPU receives compressed signatures from the PIM core (e.g., 
when the PIM kernel finishes), the CPU performs coherence 
resolution (), where it checks if any coherence conflicts 
occurred. If a conflict exists, any dirty cache line in the CPU that 
caused the conflict is flushed, and the PIM core rolls back and re-
executes the code that was optimistically executed. Our execution 
model shares similarities with Bulk-style mechanisms [155-159] 
(i.e., mechanisms that speculatively execute chunks of 
instructions and use speculative information on memory accesses 
to track potential data conflicts), and with works that use 
transactional memory (TM) semantics (e.g., [160-164]). 
However, unlike these past works, the CPU in CoNDA executes 
conventionally, does not bundle multiple memory accesses into 
an atomic transaction, and never rolls back, which can make it 
easier to enable PIM by avoiding the need for complex 
checkpointing logic or memory access bundling in a sophisticated 
out-of-order superscalar CPU. 

Figure 8 shows the performance, normalized to CPU-only, of 
CoNDA and several state-of-the-art cache coherence 
mechanisms for PIM [22-24]: FG (fine-grained coherence per 

cache line), CG (coarse-grained locks on shared data regions), 
and NC (non-cacheable data regions). We demonstrate that for 
applications such as graph workloads and HTAP databases, 
CoNDA improves average performance by 66.0% over the best 
prior coherence mechanism for performance (FG), and comes 
within 10.4% of an unrealistic ideal PIM mechanism where 
coherence takes place instantly with no cost (Ideal-PIM in 
Figure 8). For the same applications, CoNDA reduces memory 
system energy by 18.0% (not shown) over the best prior 
coherence mechanism for memory system energy (CG). 
CoNDA’s benefits increase as application data sets become 
larger [22]: when we increase the dataset sizes by an order of 
magnitude (not shown), we find that CoNDA improves 
performance by 8.4x over CPU-only and by 38.3% over the best 
prior coherence mechanism for performance (FG), coming within 
10.2% of Ideal-PIM. 

In our prior work on CoNDA [22-24], we provide a detailed 
discussion of (1) the need for a new coherence model for 
workloads such as graph frameworks and HTAP databases, 
(2) the hardware support needed to enable the CoNDA coherence 
model, and (3) a comparison of CoNDA to multiple state-of-the-
art coherence models. 

4.3. Virtual Memory 
A significant hurdle to efficient PIM execution is the need for 
virtual memory. An application operates in a virtual address 
space, and when the application needs to access its data inside 
main memory, the CPU core must first perform an address 
translation, which converts the data’s virtual address into a 
physical address within main memory. The mapping between a 
virtual address and a physical address is stored in memory in a 
multi-level page table. Looking up a single virtual-to-physical 
address mapping requires one memory access per level, incurring 
a significant performance penalty. In order to reduce this penalty, 
a CPU contains a translation lookaside buffer (TLB), which 
caches the most recently used mappings. The CPU also includes 
a page table walker, which traverses the multiple page table 
levels to retrieve a mapping on a TLB miss. 

PIM kernels often need to perform address translation, such as 
when the code offloaded to memory needs to traverse a pointer. 
The pointer is stored as a virtual address, and must be translated 
before PIM logic can access the physical location in memory. A 
simple solution to provide address translation support for PIM 
logic could be to issue any translation requests from the PIM logic 
to the CPU-side virtual memory structures. However, if the PIM 
logic needs to communicate with existing CPU-side address 
translation mechanisms, the benefits of PIM could easily be 
nullified, as each address translation would need to perform a 
long-latency request across the memory channel. The translation 
might sometimes require a page table walk, where the CPU must 
issue multiple memory requests to read the page table, which 
would further increase traffic on the memory channel. 

A naive solution is to simply duplicate the TLB and page 
walker within memory (i.e., within the PIM logic). Unfortunately, 
this is prohibitively difficult or expensive for three reasons: 
(1) coherence would have to be maintained between the CPU and 
memory-side TLBs, introducing extra complexity and off-chip 
requests; (2) the duplicated hardware is very costly in terms of 

Figure 7 High-level operation of CoNDA. Adapted from [22]. 
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storage overhead and complexity; and (3) a memory module can 
be used in conjunction with many different processor 
architectures, which use different page table implementations and 
formats, and ensuring compatibility between the in-memory 
TLB/page walker and all of these different processor 
architectures is difficult. 

We study how to solve the challenge of virtual memory 
translation in the context of IMPICA, our in-memory accelerator 
for efficient pointer chasing [62]. In order to maintain the 
performance and efficiency of the PIM logic, we completely 
decouple the page table of the PIM logic from that of the CPU. 
This presents us with two advantages. First, the page table logic 
in PIM is no longer tied to a single architecture (unlike the CPU 
page table, which is part of the architectural specification), and 
allows a memory chip with PIM logic to be paired with any CPU. 
Second, we now have an opportunity to develop a new page table 
design that is much more efficient for our in-memory accelerator. 

We make two key observations about the behavior of a pointer 
chasing accelerator. First, the accelerator operates only on certain 
data structures that can be mapped to contiguous regions in the 
virtual address space, which we refer to as PIM regions. As a 
result, it is possible to map contiguous PIM regions with a 
smaller, region-based page table without needing to duplicate the 
page table mappings for the entire address space. Second, we 
observe that if we need to map only PIM regions, we can collapse 
the hierarchy present in conventional page tables, which allows 
us to limit the hardware and storage overhead of the PIM page 
table, and cut the number of memory accesses per page table walk 
down from four (for a conventional four-level page table) to two. 
Based on these observations, we build an efficient page table 
structure that can be used for a wide range of PIM accelerators, 
where the accelerators access data in only one region of the total 
data set. The region-based page table improves the performance 
of IMPICA by 13.5%, averaged across three linked data traversal 
benchmarks and a real database workload [165], over a 
conventional four-level page table. Note that these benefits are 
part of the 34% performance improvement that IMPICA provides 
across all of the workloads. More detail on our page table design 
can be found in our prior work on IMPICA [62]. 

4.4. Enabling Programmers and Compilers to Find PIM 
Targets 

In Section 3.2, we discuss our toolflow for identifying PIM 
targets. While this toolflow is effective at enabling the co-design 
of PIM architectures and applications that can take advantage of 
PIM, it still requires a non-trivial amount of effort on the part of 

the programmer, as the programmer must first run the toolflow, 
and then annotate programs using directives such as the ones we 
discuss in Section 4.1. There is a need to develop even easier 
methodologies for finding PIM targets. One alternative is to 
automate the toolflow, by developing a PIM compiler that can 
execute the toolflow and then automatically annotate the portions 
of an application that should be offloaded to PIM. For example, 
TOM [75] proposes a compiler-based technique to automatically 
(1) identify basic blocks in GPU applications that should be 
offloaded to PIM; and (2) map the data needed by such blocks 
appropriately to memory modules, so as to minimize data 
movement. Another alternative is to provide libraries of common 
functions that incorporate PIM offloading. Programmers could 
simply call library functions, without worrying about how PIM 
offloading takes place, allowing them to easily take advantage of 
the benefits of PIM. There has been little work in this area to date, 
and we strongly encourage future researchers and developers to 
explore these approaches to programming PIM architectures. 

5. Related Work 
We briefly survey recent related works in processing-in-memory. 
We provide a brief discussion of early PIM proposals in 
Section 2.1. 

Processing-Near-Memory for 3D-Stacked Memories: With 
the advent of 3D-stacked memories, we have seen a resurgence 
of PIM proposals [13, 14, 20, 82]. Recent PIM proposals add 
compute units within the logic layer to exploit the high bandwidth 
available. These works primarily focus on the design of the 
underlying logic that is placed within memory, and in many cases 
propose special-purpose PIM architectures that cater only to a 
limited set of applications. These works include accelerators for 
matrix multiplication [91], data reorganization [117], graph 
processing [5, 22-24, 84], databases [22-24, 65], in-memory 
analytics [68], MapReduce [87], genome sequencing [6], data-
intensive processing [70], consumer device workloads [16], 
machine learning workloads [16, 66, 77, 79], and concurrent data 
structures [81]. Some works propose more generic architectures 
by adding PIM-enabled instructions [21], GPGPUs [75, 85, 90], 
single-instruction multiple-data (SIMD) processing units [83], or 
reconfigurable hardware [67, 69, 71] to the logic layer in 3D-
stacked memory.  A recently-developed framework [25, 166] 
allows for the rapid design space exploration of processing-near-
memory architectures. 

Processing-Using-Memory: A number of recent works have 
examined how to perform memory operations directly within the 

 

Figure 8 Speedup of PIM with various cache coherence mechanisms, including CoNDA [22-24], normalized to CPU-only. Adapted from [22]. 



 

11 

memory array itself, which we refer to as processing using 
memory [13, 14, 20, 49]. These works take advantage of inherent 
architectural properties of memory devices to perform operations 
in bulk. While such works can significantly improve 
computational efficiency within memory, they still suffer from 
many of the same programmability and adoption challenges that 
PIM architectures face, such as the address translation and cache 
coherence challenges that we focus on in this article. Mechanisms 
for processing-using-memory can perform a variety of functions, 
such as bulk copy and data initialization for DRAM [17, 19]; bulk 
bitwise operations for DRAM [18, 47-49, 80, 118], PCM [41], or 
MRAM [44-46]; and simple arithmetic operations for SRAM [63, 
76, 100] and RRAM/memristors [42, 43, 88, 92-99]. 

Processing in the DRAM Module or Memory Controller: 
Several works have examined how to embed processing 
functionality near memory, but not within the DRAM chip itself. 
Such an approach can reduce the cost of PIM manufacturing, as 
the DRAM chip does not need to be modified or specialized for 
any particular functionality. However, these works (1) are often 
unable to take advantage of the high internal bandwidth of 3D-
stacked DRAM, which reduces the efficiency of PIM execution, 
and (2) may still suffer from many of the same challenges faced 
by architectures that embed logic within the DRAM chip. 
Examples of this work include (1) Gather-Scatter DRAM [87], 
which embeds logic within the memory controller to remap a 
single memory request across multiple rows and columns within 
DRAM; (2) work by Hashemi et al. [72, 73] to embed logic in the 
memory controller that accelerates dependent cache misses and 
performs runahead execution [167]; and (3) Chameleon [64] and 
the Memory Channel Network architecture [168], which propose 
methods to integrate logic within the DRAM module but outside 
of the chip to reduce manufacturing costs. 

Addressing Challenges to PIM Adoption: Recent work has 
examined design challenges for systems with PIM support that 
can affect PIM adoption. A number of these works improve PIM 
programmability, such as CoNDA [22-24], which provides 
efficient cache coherence support for PIM; the study by Sura et 
al. [89], which optimizes how programs access PIM data; 
PEI [21], which introduces an instruction-level interface for PIM 
that preserves the existing sequential programming models and 
abstractions for virtual memory and coherence; TOM [75], which 
automates the identification of basic blocks that should be 
offloaded to PIM and the data mapping for such blocks; work by 
Pattnaik et al. [85], which automates whether portions of GPU 
applications should be scheduled to run on GPU cores or PIM 
cores; and work by Liu et al. [81], which designs PIM-specific 
concurrent data structures to improve PIM performance. Other 
works tackle hardware-level design challenges, including 
IMPICA [62], which introduces in-memory support for address 
translation and pointer chasing; work by Hassan et al. [74] to 
optimize the 3D-stacked DRAM architecture for PIM; and work 
by Kim et al. [78] that enables PIM logic to efficiently access data 
across multiple memory stacks. There is recent work on modeling 
and understanding the interaction between programs and PIM 
hardware, such as NAPEL [25, 166], a framework that predicts 
the potential performance and energy benefits of using PIM. 

6. Future Challenges 
In Sections 3 and 4, we demonstrate the need for several solutions 
to ease programming effort in order to take advantage of the 
benefits of PIM. We believe that a number of other challenges 
remain for the widespread adoption of PIM: 

• PIM Programming Model: Programmers need a well-defined 
interface to incorporate PIM functionality into their 
applications. While we briefly discuss several interfaces and 
mechanisms for offloading different granularities of 
applications to PIM, defining a complete programming model 
for how a programmer should invoke and interact with PIM 
logic remains an open problem. 

• Data and Logic Mapping: To maximize the benefits of PIM, 
all of the data that needs to be read from or written to by a single 
PIM kernel or by a single PIM core should be mapped to the 
same memory stack or memory channel [21, 75]. This requires 
system architects and programmers to rethink how and where 
data is allocated. Likewise, for processing-using-memory 
architectures, programs often require more complex logic 
functions than the bitwise operations enabled by these 
architectures, and require some form of logic mapping or 
synthesis to allow programmers or compilers to efficiently 
implement these more complex logic functions on the 
processing-using-memory substrates [169-171]. There is a 
need to develop robust programmer-transparent data mapping 
and logic mapping/synthesis support for PIM architectures. 

• PIM Runtime Scheduling: There needs to be coordination 
between PIM logic and the PIM kernels that are either being 
executed currently or waiting to be executed. Determining 
when to enable and disable PIM execution [21], what to 
execute in memory, how to share PIM cores and PIM 
accelerators across multiple CPU threads/cores, and how to 
coordinate between PIM logic accesses and CPU accesses to 
memory are all important runtime attributes that must be 
addressed. 

New performance and energy prediction frameworks [25] and 
simulation tools [166] can help researchers with solving several 
of the remaining challenges. We refer the reader to our overview 
works [13, 14, 172, 173] on enabling the adoption of PIM for 
further discussion of these challenges. 

7. Conclusion 
While many important classes of emerging AI, machine learning, 
and data analytics applications are operating on very large data 
sets, conventional computer systems are not designed to handle 
such large-scale data. As a result, the performance and energy 
costs associated with moving data between main memory and the 
CPU dominate the total costs of computation, which is a 
phenomenon known as the data movement bottleneck. To 
alleviate this bottleneck, a number of recent works propose 
processing-in-memory (PIM), where unnecessary data movement 
is reduced or eliminated by bringing some or all of the 
computation into memory. There are many practical system-level 
challenges that need to be solved to enable the widespread 
adoption of PIM. In this work, we examine how these challenges 
relate to programmers and system architects, and describe several 
of our solutions to facilitate the systematic offloading of 
computation to PIM logic. In a case study, we demonstrate our 
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offloading toolflow with Google’s TensorFlow Lite framework 
for neural network inference, demonstrating that we can achieve 
performance improvements of up to 98.1%, while reducing 
energy consumption by an average of 54.9%. We then discuss the 
need for mechanisms that preserve conventional programming 
models when offloading computation to PIM. We discuss several 
such mechanisms, which provide various methods of offloading 
portions of applications to PIM logic, sharing data between PIM 
logic and CPUs, enabling efficient virtual memory access for 
PIM, and automating PIM target identification and offloading.  
Finally, we describe a number of remaining challenges to the 
widespread adoption of PIM. We hope that our work and analysis 
inspire researchers to tackle these remaining challenges, which 
can enable the commercialization of PIM architectures. 
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