
Preprint; final version to appear in POMACS, 2019.

Understanding the Interactions of Workloads and DRAM Types:
A Comprehensive Experimental Study
Saugata Ghose† Tianshi Li† Nastaran Hajinazar‡†

Damla Senol Cali† Onur Mutlu§†

†Carnegie Mellon University ‡Simon Fraser University §ETH Zürich

ABSTRACT
It has become increasingly difficult to understand the complex inter-
actions between modern applications and main memory, composed
of Dynamic RandomAccess Memory (DRAM) chips. Manufacturers
are now selling and proposing many different types of DRAM, with
each DRAM type catering to different needs (e.g., high throughput,
low power, high memory density). At the same time, memory access
patterns of prevalent and emerging applications are rapidly diverg-
ing, as these applicationsmanipulate larger data sets in very different
ways. As a result, the combined DRAM–workload behavior is often
difficult to intuitively determine today, which can hinder memory
optimizations in both hardware and software.

In this work, we identify important families of workloads, as well
as prevalent types of DRAM chips, and rigorously analyze the com-
bined DRAM–workload behavior. To this end, we perform a compre-
hensive experimental study of the interaction between nine different
DRAM types and 115modern applications andmultiprogrammed
workloads. We draw 12 key observations from our characterization,
enabled in part by our development of new metrics that take into
account contention betweenmemory requests due to hardware de-
sign. Notably, we find that (1) newer DRAM technologies such as
DDR4 and HMC often do not outperform older technologies such as
DDR3, due to higher access latencies and, also in the case of HMC,
poor exploitation of locality; (2) there is no single memory type that
can effectively cater to all of the components of a heterogeneous
system (e.g., GDDR5 significantly outperforms other memories for
multimediaacceleration,whileHMCsignificantlyoutperformsother
memories for network acceleration); and (3) there is still a strong
need to lower DRAM latency, but unfortunately the current design
trend of commodityDRAM is toward higher latencies to obtain other
benefits.We hope that the trendswe identify can drive optimizations
in both hardware and software design. To aid further study, we open-
source our extensively-modified simulator, as well as a benchmark
suite containing our applications.

1 INTRODUCTION
Mainmemory in modern computing systems is built using Dynamic
Random Access Memory (DRAM) technology. The performance
of DRAM is an increasingly critical factor in overall system and
application performance, due to the increasing memory demands
of modern and emerging applications. As modern DRAM designers
strive to improve performance and energy efficiency, theymust deal
with three major issues. First, DRAM consists of capacitive cells,
and the latency to access these DRAM cells [73] is two or more
orders of magnitude greater than the execution latency of a CPU add

instruction [136]. Second, while the impact of long access latency
can potentially be overcome by increasing data throughput, DRAM
chip throughput is also constrained because conventional DRAM
modules are discrete devices that reside off-chip from the CPU, and
are connected to the CPU via a narrow, pin-limited bus. For example,
Double Data Rate (e.g., DDR3, DDR4) memories exchange data with
the CPU using a 64-bit bus. DRAMdata throughput can be increased
by increasing the DRAM bus frequency and/or the bus pin count,
but both of these options incur significant cost in terms of energy
and/or DRAM chip area. Third, DRAM power consumption is not
reducing as the memory density increases. Today, DRAM consumes
as much as half of the total power consumption of a system [33, 56,
111, 120, 147, 188, 189]. As a result, the amount of DRAM that can be
added to a system is now constrained by its power consumption.

In addition to the major DRAM design issues that need to be
overcome, memory systems must now serve an increasingly diverse
set of applications, sometimes concurrently. For example, workloads
designed for high-performance and cloud computing environments
process very large amounts of data, and do not always exhibit high
temporal or spatial locality. In contrast, network processors exhibit
very bursty memory access patterns with low temporal locality. As
a result, it is becoming increasingly difficult for a single design point
in the memory design space (i.e., one type of DRAM interface and
chip) to performwell for all of such a diverse set of applications. In
response to these key challenges, DRAMmanufacturers have been
developing a number of different DRAM types over the last decade,
such asWide I/O [72] andWide I/O 2 [75], High-BandwidthMemory
(HBM) [1, 74, 108], and theHybridMemory Cube (HMC) [59, 69, 148,
157].

With the increasingly-diversifying application behavior and the
wide array of available DRAM types, it has become very difficult
to identify the best DRAM type for a given workload, let alone for
a system that is running a number of different workloads. Much
of this difficulty lies in the complex interaction between memory
access latency, bandwidth, parallelism, energy consumption, and
application memory access patterns. Importantly, changes made
by manufacturers in newDRAM types can significantly affect the
behavior of an application in ways that are often difficult to intu-
itively and easily determine. In response, prior work has introduced
a number of detailedmemory simulators (e.g., [37, 96, 158]) tomodel
the performance of different DRAM types, but end users must set up
and simulate eachworkload that they care about, for each individual
DRAM type.Our goal in this work is to comprehensively study the
strengths and weaknesses of each DRAM type based on the memory
demands of each of a diverse range of workloads.

1

ar
X

iv
:1

90
2.

07
60

9v
4

 [
cs

.A
R

]
 2

9
Ju

l 2
01

9

Prior studies of memory behavior (e.g., [2, 3, 10, 22, 28, 29, 46,
48, 53, 54, 96, 113, 114, 122, 133, 153, 158, 167, 179, 195, 196]) usually
focus on a single type of workload (e.g., desktop/scientific applica-
tions), and often examine only a single memory type (e.g., DDR3).
We instead aim to provide a muchmore comprehensive experimen-
tal study of the application and memory landscape today. Such a
comprehensive study has been difficult to perform in the past, and
cannot be conducted on real systems, because a given CPU chip does
not support more than a single type of DRAM. As a result, there is
no way to isolate only the changes due to using one memory type
in place of another memory type on real hardware, since doing so
requires the use of a different CPU to test the new memory type.
Comprehensive simulation-based studies are also difficult, due to
the extensive time required to implement each DRAM type, to port a
large number of applications to the simulation platform, and to cap-
ture both application-level and intricate processor-level interactions
that impact memory access patterns. To overcome these hurdles, we
extensively modify a state-of-the-art, flexible and extensible mem-
ory simulator, Ramulator [96], to (1) model newDRAM types that
have recently appeared on the market; and (2) efficiently capture
processor-level interactions (e.g., instruction dependencies, cache
contention, data sharing) (see Appendix B).

Usingourmodifiedsimulator,weperformacomprehensiveexperi-
mental studyof the combinedbehavior of prevalent andemergingap-
plicationswith a large number of contemporaryDRAMtypes (which
we refer to as the combined DRAM–workload behavior). We study
the design and behavior of nine different commercial DRAM types:
DDR3 [73], DDR4 [79], LPDDR3 [76], LPDDR4 [78], GDDR5 [77],
Wide I/O[72],Wide I/O2 [75],HBM[1], andHMC[59].Wecharacter-
ize each DRAM type using 87 applications and 28 multiprogrammed
workloads (115 in total) from six diverse application families: desk-
top/scientific, server/cloud, multimedia acceleration, network accel-
eration, general-purpose GPU (GPGPU), and common OS routines.
We perform a rigorous experimental characterization of system per-
formance and DRAM energy consumption, and introduce newmet-
rics to capture the sophisticated interactionsbetweenmemoryaccess
patterns and the underlying hardware. Our characterization yields
twelve key observations (highlighted in boxes) and many other find-
ings (embedded in the text) about the combined DRAM–workload
behavior (as we describe in detail in Sections 5–9).

We highlight our five most significant experimental observations
here:
(1) The newer, higher bandwidth DDR4 rarely outperforms DDR3 on

the applications we evaluate. Compared to DDR3, DDR4 doubles
the number of banks in a DRAM chip, in order to enable more
bank-level parallelism and higher memory bandwidth. However,
as a result of architectural changes to provide higher bandwidth
and bank-level parallelism, the access latency of DDR4 is 11–14%
higher than that of DDR3.We find that most of our applications
do not exploit enough bank-level parallelism to overcome the
increased access latency.

(2) The high-bandwidth HMC does not outperform DDR3 for most
single-threaded and several multithreaded applications. This is be-
causeHMC’s design trade-offs fundamentally limit opportunities
for exploiting spatial locality (due to its 97% smaller rowwidth
than DDR3), and the aforementioned applications are unable to
exploit the additional bank-level parallelism provided by HMC.

For example, single-threaded desktop and scientific applications
actually perform 5.8%worsewith HMC than with DDR3, on av-
erage, even though HMC offers 87.4%more memory bandwidth.
HMCprovides significant performance improvements over other
DRAM types in cases where application spatial locality is low
(or is destroyed) and bank-level parallelism is high, such as for
highly-memory-intensive multiprogrammedworkloads.

(3) While low-power DRAM types (i.e., LPDDR3, LPDDR4, Wide I/O,
Wide I/O 2) typically perform worse than standard-power DRAM
for most memory-intensive applications, some low-power DRAM
types perform well when bandwidth demand is very high. For
example, on average, LPDDR4 performs only 7.0% worse than
DDR3 for multiprogrammed desktop workloads, while consum-
ing 68.2% less energy. Similarly, we find thatWide I/O 2, another
low-powerDRAM type, actually performs 2.3% better thanDDR3
on average for multimedia applications, asWide I/O 2 provides
more opportunities for parallelismwhile maintaining lowmem-
ory access latencies.

(4) The best DRAM type for a heterogeneous system depends heav-
ily on the predominant function(s) performed by the system.We
study three types of applications for heterogeneous systems:
multimedia acceleration, network acceleration, and GPGPU ap-
plications. First,multimedia accelerationbenefitsmost fromhigh-
throughput memories that exploit a high amount of spatial lo-
cality, running up to 21.6% faster with GDDR5 and 14.7% faster
with HBM than with DDR3, but only 5.0% faster with HMC (due
to HMC’s limited ability to exploit spatial locality). Second, net-
work acceleration memory requests are highly bursty and do
not exhibit significant spatial locality, making network accel-
eration a good fit for HMC’s very high bank-level parallelism
(with a mean performance increase of 88.4% over DDR3). Third,
GPGPU applications exhibit a wide range of memory intensity,
but memory-intensive GPGPU applications typically take advan-
tage of spatial locality due to memory coalescing [8, 23], making
HBM (26.9% higher on average over DDR3) and GDDR5 (39.7%)
more effective for GPGPU applications than other DRAM types
such as DDR3 and HMC.

(5) Several common OS routines (e.g., file I/O, process forking) perform
better with memories such as DDR3 and GDDR5, which have lower
access latencies than the other memory types that we study.This is
because the routines exhibit very high spatial locality, and do not
benefit from high amounts of bank-level parallelism. Since OS
routines are used across most computer systems in a widespread
manner, we believe DRAM designers must provide low-latency
access. Our recommendation goes against the current trend of
increasing the latency in order to deliver other benefits.
We hope and expect that the results of our rigorous experimen-

tal characterization will be informative and useful for application
developers, system architects, and DRAM architects alike. To foster
further work in both academia and industry, we release the appli-
cations and multiprogrammed workloads that we study as a new
memory benchmark suite [160], along with our heavily-modified
memory simulator [161].

This paper makes the following contributions:
• We perform the first comprehensive study of the interaction be-
tweenmodern DRAM types andmodern workloads. Our study
covers the interactionsof 115applications andworkloads fromsix

2

different application familieswithninedifferentDRAMtypes.We
are the first, to our knowledge, to (1) quantify how newDRAM
types (e.g., Wide I/O, HMC, HBM) compare to commonplace
DDRx and LPDDRx DRAM types across a wide variety of work-
loads, and (2) report findings where newer memories often per-
formworse than older ones.

• Toourknowledge, this paper is thefirst to performadetailed com-
parisonof thememoryaccessbehaviorbetweendesktop/scientific
applications, server/cloud applications, heterogeneous system
applications, GPGPU applications, andOS kernel routines. These
insights can help DRAM architects, system designers, and appli-
cation developers pinpoint bottlenecks in existing systems, and
can inspire newmemory, system, and application designs.

• Wemake several new observations about the combined behavior
of various DRAM types and different families of workloads. In
particular, we find that new memory types, such as DDR4 and
HMC, make a number of underlying design trade-offs that cause
them to performworse than older DRAM types, such as DDR3,
for a variety of applications. In order to aid the development of
new memory architectures and new system designs based on
our observations, we release our extensively-modifiedmemory
simulator [161] and a memory benchmark suite [160] consisting
of our applications and workloads.

2 BACKGROUND & MOTIVATION
In this section, we provide necessary background on basic DRAM
design and operation (Section 2.1), and on the evolution of new
DRAM types (Section 2.2).

2.1 Basic DRAM Design & Operation
Figure 1 (left) shows the basic overview of a DRAM-based memory
system. The memory system is organized in a hierarchical manner.
The highest level in the hierarchy is amemory channel. Each channel
has (1) its own bus to the host device (e.g., processor), and (2) a
dedicated memory controller that interfaces between the DRAM
and the host device. A channel connects to one or more dual inline
memory modules (DIMMs). Each DIMM contains multiple DRAM
chips. ADRAM row typically spans across several of these chips, and
all of the chips containing the row perform operations in lockstep
with each other. Each group of chips operating in lockstep is known
as a rank. Inside each rank, there are several banks, where each bank
is a DRAM array. Each bank can operate concurrently, but the banks
share a single memory bus. As a result, the memory controller must
schedule requests such that operations in different banks do not
interfere with each other on the memory bus.

Processor
Core Core

Memory
Controller

DRAM Module
Rank
. . .Chip Chip

memory
channel

Row Buffer

DRAM cell

activation

Figure 1:Memory hierarchy (left) and bank structure (right).

A DRAM bank typically consists of thousands of rows of cells,
where each cell contains a capacitor and an access transistor. To start
processing a request, the controller issues a command to activate the
row containing the target address of the request (i.e., open the row
to perform reads andwrites), as shown in Figure 1 (right). The row
buffer latches the opened row, at which point the controller sends

read and write commands to the row. Each read/write command
operates on one column of data at a time. Once the read and write
operations to the row are complete, the controller issues a precharge
command, to prepare the bank for commands to a different row. For
more detail on DRAM operation, we refer the reader to our prior
works [19, 21, 92, 93, 97, 98, 105, 106, 109, 110, 115, 165, 166].

2.2 Modern DRAM Types
We briefly describe several commonly-used and emerging DRAM
types, all of which we evaluate in this work. Table 1 summarizes the
key properties of each of these DRAM types.We provide more detail
about each DRAM type in Appendix A.

2.2.1 DDR3 and DDR4. DDR3 [73] is the third generation of
DDRx memory, where a burst of data is sent on both the positive
and negative edge of the bus clock to double the data rate. DDR3
contains eight banks of DRAM in every rank. DDR4 [79] increases
the number of banks per rank, to 16, by introducing bank groups, a
new level of hierarchy in the DRAM subsystem. Due to the way in
which bank groups are connected to I/O, a typical memory access
takes longer inDDR4 than it did inDDR3, but the bus clock frequency
is significantly higher in DDR4, which enables DDR4 to have higher
bandwidth.

2.2.2 Graphics DDR5 (GDDR5). Similar to DDR4, GDDR5 [77]
doubles thenumberofbanksoverDDR3usingbankgroups.However,
unlike DDR4, GDDR5 does so by increasing the die area and energy
over DDR3 instead of the memory latency. GDDR5 also increases
memory throughput by doubling the amount of data sent in a single
clock cycle, as compared to DDR3.

2.2.3 High Bandwidth Memory (HBM). High BandwidthMem-
ory [1, 74] is a 3D-stacked memory [108, 117] that provides high
throughput. designed for devices such as GPUs. Unlike GDDR5,
which uses faster clock frequencies to increase throughput, HBM
connects 4–8 memory channels to a single DRAM device to service
manymore requests in parallel.

2.2.4 Wide I/O and Wide I/O 2. Wide I/O [72] and Wide I/O
2 [75] are 3D-stacked memories that are designed for low-power
devices such as mobile phones. Similar to HBM,Wide I/O andWide
I/O 2 connect multiple channels to a single DRAMdevice [90], but
have fewer (2–4) channels than HBM and contain fewer banks (8)
than HBM and GDDR5 in order to lower energy consumption.

2.2.5 Hybrid Memory Cube (HMC). The Hybrid Memory
Cube [59, 69, 148, 157] is a 3D-stacked memory with more design
changes compared to HBM andWide I/O. An HMC device (1) per-
forms request scheduling inside the device itself, as opposed to rely-
ing on an external memory controller for scheduling; and (2) parti-
tions the DRAM array into multiple vaults, which are small, vertical
slices of memory of which each contains multiple banks. The vault-
based structure significantly increases the amount of bank-level
parallelism inside the DRAM device (with 256 banks in total), but
greatly reduces the size of a row (to 256 bytes). The HMC specifica-
tion [59] provides an alternate mode, which we callHMC-Alt, that
uses a different address mapping than the default mode to maximize
the limited spatial locality available in the smaller DRAM rows.

3

Table 1: Key properties of the nine DRAM types evaluated in this work.

DRAM Type Standard Power Low Power
DDR3 DDR4 GDDR5 HBM HMC LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Data Rate (MT/s) 2133 3200 7000 1000 2500 2133 3200 266 1067
Clock Frequency (MHz) 1067 1600 1750 500 1250 1067 1600 266 533

Maximum Bandwidth (GBps) 68.3 102.4 224.0 128.0 320.0 68.3 51.2 17.0 34.1
Channels/Ranks per Channel 4/1 4/1 4/1 8/1 1/1 4/1 4/1 4/1 4/2

Banks per Rank 8 16 16 16 256 (32 vaults) 8 16 4 8
Channel Width (bits) 64 64 64 128 32 64 64 128 64

Row Buffer Size 8KB 8KB 8KB 2KB 256B 8KB 4KB 2KB 4KB
Row Hit/Miss Latencies (ns) 15.0/26.3 16.7/30.0 13.1/25.1 18.0/32.0 16.8/30.4 21.6/40.3 26.9/45.0 30.1/38.9 22.5/41.3

Minimum Row Conflict Latency† (ns) 37.5 43.3 37.1 46.0 44.0 59.1 61.9 67.7 60.0
†See Section 4 for definition.

2.2.6 LPDDR3 and LPDDR4. LPDDR3 [76] and LPDDR4 [78] are
low-power variants of DDR3 and DDR4, respectively. These DRAM
types lower power consumption by using techniques such as a lower
core voltage, two voltage domains on a single chip, temperature-
controlled self refresh, deep power-downmodes, reduced chipwidth,
and fewer (1–2) chips per DRAMmodule [124] than their standard-
power counterparts. These trade-offs increase the memory access
latency, and limit the total capacity of the low-power DRAM chip.

2.3 Motivation
As DRAM scaling is unable to keep pace with processor scaling,
there is a growing need to improve DRAM performance. Today,
conventionalDDRxDRAMtypessuffer fromthreemajorbottlenecks.
First, prior works have shown that the underlying design used by
DDR3 and DDR4 remains largely the same as earlier generations
of DDRmemory, and as a result, the DRAM access latency has not
changed significantly over the last decade [20, 21, 107, 109, 110, 170].
Second, it is becoming increasingly difficult to increase the density of
thememory chip, due to a number of challenges that DRAMvendors
face when they scale up the size of the DRAM array [83, 97, 115, 116,
121, 134, 136, 139]. Third, DDRx connects to the host processor using
a narrow, pin-limited off-chip channel, which restricts the available
memory bandwidth.

Aswe describe in Section 2.2, newDRAM types contain a number
of key changes to mitigate one or more of these bottlenecks. Due to
the non-obvious impact of such changes on application performance
andenergyconsumption, there is aneed toperformcareful character-
ization of how various applications behave under each newDRAM
type, and how this behavior compares to the application behavior
under conventional DDRx architectures. Our goal in this paper is to
rigorously characterize, analyze, and understand the complex inter-
actions between several modern DRAM types and a diverse set of
modern applications, through the use of detailed simulation models
and newmetrics that capture the sources of these interactions.

3 METHODOLOGY
Wecharacterize the nine differentDRAMtypes on 87 different single-
threaded andmultithreaded applications [5, 6, 10, 12, 24, 27, 36, 38, 43,
53, 55, 66, 144,164,173,183,184,191], and28multiprogrammedwork-
loads, using a heavily-modified version of Ramulator [96], a detailed
and extensible open-source DRAM simulator. Many of these applica-
tions come from commonly-used benchmark suites, including SPEC
CPU2006 [173], CORAL [183] andCORAL-2 [184], PARSEC [10], the

Yahoo Cloud Suite [27], MediaBench II [43], Mars [53], Rodinia [24],
LonestarGPU [12], IOzone [66], and Netperf [55].

We categorize each of our applications into one of six fami-
lies: desktop/scientific [10, 173, 183, 184], server/cloud [5, 6, 27, 36,
38, 191], multimedia acceleration [43], network acceleration [144],
GPGPU [12, 24, 53], and OS routines [55, 66, 164]. Tables 3–6 in
Appendix C provide a complete list of the 87 applications that we
evaluate. We use these 87 applications to assemble our multipro-
grammed workloads, which we list in Tables 7 and 8 in Appendix C.

For our desktop/scientific andmultimedia applications, we record
per-core traces using Intel’s Pin software [118], which uses dynamic
binary instrumentation to analyze real CPU behavior at runtime.
These traces are collected using a machine containing an Intel Core
i7-975K processor [62] and running the Ubuntu Server 14.04 op-
erating system [13]. In order to accurately record the behavior of
multithreaded desktop/scientific applications, we make use of a
modified Pintool [149], which accurately captures synchronization
behavior across threads. Wemodify this Pintool to generate traces
that are compatible with Ramulator, and to record a separate trace
for each thread. In order to test the scalability of the multithreaded
applications that we study [10, 183, 184], we run the applications
and our modified Pintool on amachine that contains dual Intel Xeon
E5-2630 v4 processors [63], providing us with the ability to execute
40 threads concurrently. These machines run Ubuntu Server 14.04,
and contain 128 GB of DRAM.We have open-sourced our modified
Pintool [160] along with our modified version of Ramulator [161].

For our server/cloud applications and OS routines, we collect
per-core traces using the Bochs full system emulator [101] in order
to record both user-mode and kernel-mode memory operations.
Thoughpriorworksoftenoverlookkernel-modememoryoperations,
recent studies reveal that many programs spend the majority of
of their execution time in kernel mode [150, 178]. Unfortunately,
Pin cannot capture kernel-mode operations, so we cannot collect
truly-representative traces using Pin. We use Bochs [101] because it
emulates both user-mode and kernel-mode operations. As we are
constrained to using the processor models available in Bochs, we
choose the Intel Core i7-2600K [61], which is the closest available to
the i7-975K processor [62] we use with Pin. The emulator runs the
Ubuntu Server 16.04 operating system [14].

Our network accelerator applications are collected from a com-
mercial network processor [144]. We add support in Ramulator to
emulate the injection rate of requests from the network, by limiting
the total number of requests that are in flight at any given time. For
each workload, we evaluate four different rates: 5 in-flight requests,
10 in-flight requests, 20 in-flight requests, and 50 in-flight requests.

4

For GPGPU applications, we integrate Ramulator into GPGPU-
Sim [8], and collect statistics in Ramulator as the integrated sim-
ulator executes. We collect all results using the NVIDIA GeForce
GTX 480 [143] configuration. We have open-sourced our integrated
version of GPGPU-Sim and Ramulator [159].

All of the traces that we record include the delays incurred by
each CPU instruction during execution, and we replay these traces
with our core and cache models in Ramulator. We make several
modifications toRamulator to improve thefidelityofourexperiments
for all applications. We describe our modifications in Appendix B.
With our modifications, Ramulator provides near-identical results
(with an average error of only 6.1%; see Appendix B) to a simulator
with a detailed, rigorously-validated out-of-order processor core
model [11], while being significantly faster. We have open-sourced
our modified version of Ramulator [161] and a benchmark suite
consisting of our application traces [160].

Table 2 shows the system configuration parameters used for all
of our experiments. For all of the DRAM types, we model a 4GB
capacity, distributed across channels and ranks as listed in Table 1,
and use thewidely-used FR-FCFSmemory scheduler [155, 197], with
32-entry read and write queues. For all DRAM types except HMC,
we use cache line interleaving [80, 94, 98, 156, 193] for the physical
address, where consecutive cache lines are interleaved across mul-
tiple channels (and then across multiple banks within a channel)
to maximize the amount of memory-level parallelism. Cache line
interleaving is used by processors such as the Intel Core [64], Intel
Xeon [65, 112], and IBM POWER9 [60] series. The HMC specifica-
tion [59] explicitly specifies two fixed interleavings for the physical
address. The first interleaving, which is the default for HMC, in-
terleaves consecutive cache lines across multiple vaults, and then
across multiple banks. The second interleaving, which we use for
HMC-Alt (see Section 2.2.5), interleaves consecutive cache lines only
across multiple vaults. For each DRAM type currently in production,
we select the fastest frequency variant of the DRAM type on the
market today (see Table 1 for key DRAM properties), as we can find
reliable latency and power information for these products. As timing
parameters for HMC have yet to be publicly released, we use the
information provided in prior work [69, 89] to model the latencies.

Table 2: Evaluated system configuration.

Processor
x86-64 ISA, 128-entry instruction window, 4-wide issue
single-threaded/multiprogrammed: 4 cores, 4.0GHz
multithreaded: 20 cores, 2 threads per core, 2.2GHz

Caches
per-core L1: 64 kB, 4-way set associative
per-core L2: 256 kB, 4-way set associative
shared L3: 2MB for every core, 8-way set associative

Memory 32/32-entry read/write request queues, FR-FCFS [155, 197],
Controller open-page policy, cache line interleaving [80, 94, 98, 156, 193]

We integrate DRAMPower [16], an open-source DRAM power
profiling tool, into Ramulator such that it can perform power pro-
filing while Ramulator executes. To isolate the effects of DRAM
behavior, we focus on the power consumed by DRAM instead of
total system power.We report power numbers only for the DRAM
types for which vendors have publicly released power consumption
specifications [126–129, 168], to ensure the accuracy of the results
that we present.

4 CHARACTERIZATION METRICS
Performance Metrics. We measure single-threaded application
performance using instructions per cycle (IPC). For multithreaded
applications, we show parallel speedup (i.e., the single-threaded exe-
cution time divided by the parallel execution time), which accounts
for synchronization overheads. For multiprogrammedworkloads,
we use weighted speedup [169], which represents the job through-
put [42]. We verify that trends for other metrics (e.g., harmonic
speedup [119], which represents the inverse of the job turnaround
time) are similar. To quantify thememory intensity of an application,
we use the number ofmisses per kilo-instruction (MPKI) issued by
the last-level cache for that application to DRAM.

Our network accelerator workloads are collected from a commer-
cial networkprocessor [144],whichhas amicroarchitecturedifferent
from a traditional processor. We present performance results for the
network accelerator in terms of sustained memory bandwidth.
Parallelism Metrics. Prior works have used eithermemory-level
parallelism (MLP) [26, 47, 137, 152, 181] or bank-level parallelism
(BLP)] [95, 103, 135, 180] to quantify the amount of parallelismacross
memory requests. Unfortunately, neither metric fully represents the
actual parallelism exploited in DRAM.MLPmeasures the average
number of outstanding memory requests for an application, but this
does not capture the amount of parallelism offered by the underlying
hardware. BLPmeasures the average number of memory requests
that are actively being serviced for a single thread during a given time
interval. While BLP can be used to compare the bank parallelism
used by one thread within an interval to the usage of another thread,
it does not capture the average bank parallelism exploited by all
concurrently-executing threads and applications across the entire
execution, which can provide insight into whether the additional
banks present in bymany of the DRAM types (compared to DDR3)
are being utilized.

We define a newmetric, called bank parallelism utilization (BPU),
which quantifies the average number of banks in main memory that
are beingused concurrently. TomeasureBPU,we sample the number
of active banks for every cycle that theDRAM is processing a request,
and report the average utilization of banks:

BPU =
∑
i # active banks in cycle i

cycles memory is active (1)

A larger BPU indicates that applications are making better use of
the bank parallelism available in a particular DRAM type. Unlike
MLP and BLP, BPU fully accounts for (1) whether requests from
any thread contend with each other for the same bank, and (2) how
much parallelism is offered by the memory device. As we see in
our analysis (Sections 5–9), BPU helps explain why somememory-
intensive applicationsdonot benefit fromhigh-bandwidthmemories
such as HMC,while othermemory-intensive applications do benefit.
Contention Metrics. An important measure of spatial and tem-
poral locality in memory is the row buffer hit rate, also known as
row buffer locality. To quantify the row hit rate, prior works count
the number of row buffer hits and the number of row buffer misses,
which they define as any request that does not hit in the currently-
open row. Unfortunately, this categorization does not distinguish
between misses where a bank does not have any row open, and
misses where a bank is currently processing a request to a different

5

row (i.e., a row buffer conflict). This distinction is important, as a
row buffer conflict typically takes longer to service than a row buffer
miss, as a conflict must wait to issue a precharge operation, and may
also need to wait for an earlier request to the bank to complete. A
row buffer conflict takes at least as much as double the row miss
latency, when the conflicting request arrives just after a request with
a row miss starts accessing the DRAM. Table 1 lists theminimum
row buffer conflict latency for each DRAM type, assuming that no
prior memory request has already issued the precharge operation
for the conflicting row. Note that if there is more than one pending
memory request that needs to access the conflicting row, the row
buffer conflict latency could be even higher.

To accurately capture rowbuffer locality,we introduce anewchar-
acterization methodology where we break downmemory requests
into: (1) row buffer hits; (2) row buffer misses, which only include
misses for a DRAM request where the bank does not have any row
open; and (3) row buffer conflicts, which consist of misses where
another row is currently open in the bank andmust be closed (i.e.,
precharged) first. Row buffer conflicts provide us with important in-
formation about how the amount of parallelism exposed by a DRAM
type can limit opportunities to concurrently serve multiple memory
requests, which in turn hurts performance.

5 SINGLE-THREADED/MULTIPROGRAMMED
DESKTOP AND SCIENTIFIC PROGRAMS

We first study the memory utilization, performance, and DRAM
energy consumption of our tested DRAM types on single-threaded
desktop and scientific applications from the SPEC 2006 benchmark
suite [173], and onmultiprogrammed bundles of these applications.

5.1 Workload Characteristics
Using the DDR3 memory type, we study the memory intensity of
each workload. The workloads encompass a wide range of intensity,
with some CPU-bound applications (e.g., gamess, calculix) issuing
memory requests only infrequently, and othermemory-bound appli-
cations (e.g.,mcf) issuing over 15 L3 cachemisses per kiloinstruction
(MPKI). The workloads also exhibit a large range of row buffer lo-
cality, with row buffer hit rates falling anywhere between 2.4–53.1%
(see Appendix D.1).

We study the relationship between the performance (IPC) and
memory intensity (MPKI) of the desktop and scientific applications
(see Appendix D.1 for details and plots). In general, we observe that
the IPC decreases as theMPKI increases, but there are two notable
exceptions: namd and gobmk. To understand these exceptions, we
study the amount of bank parallelism that an application is able to
exploit by using the BPUmetric we introduced in Section 4 (see Ap-
pendix D.1 for BPU values for all applications). In our configuration,
DDR3 has 32 banks spread across four memory channels. For most
applications with lowmemory intensity (i.e., MPKI < 4.0), the BPU
for DDR3 is very low (ranging between 1.19 and 2.01) due to the low
likelihood of having many concurrent memory requests. The two
exceptions are namd and gobmk, which have BPU values of 4.03 and
2.91, respectively. The higher BPU values at lowmemory intensity
imply that these applications exhibit more bursty memory behavior,
issuing requests in clusters. Thus, they could benefit more when a

DRAM type offers a greater amount of bank parallelism (compared
to a DRAM type that offers reduced latency).

From the perspective of memory, we find that there is no dis-
cernible difference between applicationswithpredominantly integer
computation and applications with predominantly floating point
computation (see Appendix D.1). As a result, we do not distinguish
between the two in this section.

5.2 Single-Thread Performance
Figure 2 (top) shows the performance of the desktop workloads
under each of our standard-power DRAM types, normalized to the
performance of each workload when using a DDR3-2133 memory.
Along the x-axis, the applications are sorted byMPKI, from least to
greatest. Wemake two observations from these experiments.

0.75

1.00

1.25

1.50

1.75

ga
m
es
s

po
vr
ay

ca
lcu

lix
h2

64
re
f

pe
rlb

en
ch

hm
m
er

bz
ip
2

sje
ng

sp
hi
nx
3

na
m
d

as
ta
r

go
bm

k
ze
us
m
p

ca
ct
us
AD

M gc
c

om
ne

tp
p

so
pl
ex

bw
av
es

Ge
m
sF
DT

D
m
ilc

lib
qu

an
tu
m

m
cfIP

C
No

rm
al

ize
d

to
 D

DR
3 DDR4 GDDR5 HBM HMC HMC-Alt

0.4
0.6
0.8
1.0
1.2
1.4

ga
m

es
s

po
vr

ay
ca

lcu
lix

h2
64

re
f

pe
rlb

en
ch

hm
m

er
bz

ip
2

sje
ng

sp
hi

nx
3

na
m

d
as

ta
r

go
bm

k
ze

us
m

p
ca

ct
us

AD
M gc
c

om
ne

tp
p

so
pl

ex
bw

av
es

Ge
m

sF
DT

D
m

ilc
lib

qu
an

tu
m

m
cfIP

C
No

rm
al

ize
d

to
 D

DR
3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Figure 2: Performance of desktop and scientific applications
for standard-power (top) and low-power (bottom) DRAM
types, normalized to DDR3.

OBSERVATION 1: DDR4 does not perform better than DDR3
for the vast majority of our desktop/scientific applications.

Even though DDR4 has 50% higher bandwidth than DDR3 and
contains double the number of banks (64 in our four-channel DDR4
configuration vs. 32 in our four-channel DDR3 configuration), DDR4
performs 0.2%worse thanDDR3, on average across all of our desktop
and scientific applications, as we see in Figure 2 (top). The best per-
formance with DDR4 is formcf, with an improvement of only 0.5%
over DDR3.We find that bothmajor advantages of DDR4 over DDR3
(i.e., greater bandwidth, more banks) are not useful to our applica-
tions. Figure 3 shows the BPU for three representative workloads
(libquantum,mcf, and namd). Across all of our applications, we find
that there is not enoughBPU to take advantage of the 32DDR3banks,
let alone the 64 DDR4 banks. mcf has the highest BPU, at 5.33 in
DDR4, still not enough to benefit from the additional banks. Instead,
desktop and scientific applications are sensitive to thememory la-
tency. Applications are hurt by the increased access latency in DDR4
(11/14% higher in DDR4 for a row hit/miss than in DDR3), which is a
result of the bank group organization (which does not exist in DDR3;
see Section 2.2).

6

0
2
4
6
8

10

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

libquantum mcf namd
Figure 3: BPU for representative desktop/scientific applica-
tions.

OBSERVATION 2: HMC performs significantly worse than
DDR3 when a workload can exploit row buffer locality

and is not highly memory intensive.

From Figure 2 (top), we observe that few standard-power DRAM
types can improve performance across all desktop and scientific
applications over DDR3. Notably, we find that HMC actually results
in significant slowdowns over DDR3 for most of our single-threaded
applications. Averaged across all workloads, HMC performs 5.8%
worse than DDR3. To understand why, we examine the row buffer
locality of our applications when running with different memory
types. Recall fromSection2.2 thatHMCreduces rowbuffer locality in
exchange for a much greater number of banks (256 in HMC vs. 32 in
DDR3) andmuch greater bandwidth (4.68× the bandwidth of DDR3).
We already see in Figure 3 that, with the exception of mcf, HMC
cannot provide significant BPU increases for our single-threaded
applications, indicating that the applications cannot take advantage
of the increased bank count and higher bandwidth.

Figure 4 shows the row buffer locality (see Section 4) for our three
representative applications. As we observe from the figure, HMC
eliminates nearly all of the row hits that other memories attain in
libquantum and namd. This is a result of the row size in HMC, which
is 97% smaller than the rowsize inDDR3. This causesmanymore row
misses to occur, without significantly affecting the number of row
conflicts. As a result, the average memory request latency (across all
applications) in HMC is 25.6% higher than that in DDR3. The only
application with a lower average memory request latency in HMC is
mcf, because the majority of its memory requests in all DRAM types
are row conflicts (see middle graph in Figure 4). Thus, due to its low
spatial locality and high BPU,mcf is the only application that sees a
significant speedup with HMC (63.4% over DDR3).

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

libquantum mcf namd
Figure 4: Breakdown of row buffer locality for representa-
tive single-threaded desktop/scientific applications.

Unlike HMC, GDDR5 successfully improves the performance of
all of our desktop and scientific applications with higher memory
intensity. This is because GDDR5 delivers higher bandwidth at a
lower latency than DDR3 (see Table 1), which translates into an
average performance improvement of 6.4%. In particular, for applica-
tions with high memory intensity (i.e., MPKI > 15.0), GDDR5 has an

average speedup of 16.1%, as these applications benefit most from
a combination of higher memory bandwidth and lower memory
request latencies.

Figure 2 (bottom) shows the performance of the desktop and
scientific applications when we use low-power or mobile DRAM
types. In general, we note that as thememory intensity (i.e.,MPKI) of
an application increases, its performance with low-power memory
decreases compared to DDR3. In particular, LPDDR3 and LPDDR4
perform worse because they take longer to complete a memory
request, increasing the latency for a rowmiss over DDR3 and DDR4
by 53.2% and 50.0%, respectively (see Table 1). Wide I/O DRAM
performs significantly worse than the other DRAM types, as (1) its
much lower clock frequency greatly restricts its overall throughput,
and (2) its row hit latency is longer.Wide I/O 2 offers significantly
higher row buffer locality and lower hit latency thanWide I/O. As
a result, applications such as namd and libquantum perform well
underWide I/O 2.

We conclude that even though single-threaded desktop and scien-
tific applications display a wide range of memory access behavior,
they generally need DRAM types that offer (1) low access latency and
(2) high row buffer locality.

5.3 Multiprogrammed Workload Performance
We combine the single-threaded applications into 20 four-core mul-
tiprogrammedworkloads (see Table 7 in Appendix C for workload
details), to study how thememory access behavior changes. Figure 5
shows the performance of the workloads with each DRAM type. We
draw out three findings from the figure.

0.8
1.0
1.2
1.4
1.6
1.8
2.0

bu
nd

le
 D

19
 (1

.7
)

bu
nd

le
 D

16
 (8

.4
)

bu
nd

le
 D

17
 (2

4.
8)

bu
nd

le
 D

18
 (3

2.
6)

bu
nd

le
 D

14
 (4

0.
2)

bu
nd

le
 D

12
 (5

0.
0)

bu
nd

le
 D

11
 (7

1.
3)

bu
nd

le
 D

13
 (7

2.
9)

bu
nd

le
 D

15
 (1

02
.5

)
bu

nd
le

 D
8

(1
03

.6
)

bu
nd

le
 D

5
(1

24
.5

)
bu

nd
le

 D
6

(1
25

.6
)

bu
nd

le
 D

9
(1

67
.4

)
bu

nd
le

 D
2

(1
88

.1
)

bu
nd

le
 D

10
 (1

93
.1

)
bu

nd
le

 D
4

(2
21

.1
)

bu
nd

le
 D

7
(2

29
.3

)
bu

nd
le

 D
0

(2
63

.2
)

bu
nd

le
 D

1
(2

74
.6

)
bu

nd
le

 D
3

(2
97

.5
)

No
rm

al
ize

d
W

ei
gh

te
d

Sp
ee

du
p DDR4 GDDR5 HBM HMC HMC-Alt

0.2
0.4
0.6
0.8
1.0
1.2

bu
nd

le
 D

19
bu

nd
le

 D
16

bu
nd

le
 D

17
bu

nd
le

 D
18

bu
nd

le
 D

14
bu

nd
le

 D
12

bu
nd

le
 D

11
bu

nd
le

 D
13

bu
nd

le
 D

15
bu

nd
le

 D
8

bu
nd

le
 D

5
bu

nd
le

 D
6

bu
nd

le
 D

9
bu

nd
le

 D
2

bu
nd

le
 D

10
bu

nd
le

 D
4

bu
nd

le
 D

7
bu

nd
le

 D
0

bu
nd

le
 D

1
bu

nd
le

 D
3

No
rm

ali
ze

d
W

eig
ht

ed
 Sp

ee
du

p LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Figure 5: Performance ofmultiprogrammed desktop and sci-
entific workloads for standard-power (top) and low-power
(bottom) DRAM types, normalized to DDR3. MPKI listed in
parentheses.

OBSERVATION 3: Multiprogrammed workloads with high
aggregate memory intensity benefit significantly from HMC,
due to a combination of high BPU and poor row buffer locality.

7

First, formultiprogrammedworkloads,HMCperformsbetter than
the other DRAM types despite its significantly smaller row buffer
size. On average, HMC improves system performance (as measured
by weighted speedup) by 17.0% over DDR3. Note that while some
workloads do very well under HMC (with the greatest performance
improvement being 83.1% for bundle D7), many workloads with
lowermemory intensity (i.e., MPKI < 70) still perform slightlyworse
than they do under DDR3 (with the greatest performance loss being
3.4% for bundle D12). We find two major reasons for HMC’s high
performance with multiprogrammed workloads: poor row buffer
locality and high BPU.

The row buffer locality of the multiprogrammed workloads is
much lower than that of the single-threaded applications. Figure 6
shows row buffer locality for three representative workloads. For
bundle D9, which has anMPKI of 167.4, the row buffer hit rate never
exceeds 5.6% on any DRAM type. We observe that for all of our
workloads, the vast majority of memory accesses are row conflicts.
This is because each application in a multiprogrammed workload
accesses a different address space, and these competing applications
frequently interfere with each other when they conflict in banks
or channels within the shared DRAM, as also observed in prior
works [50, 52, 98, 110].

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

bundle D11 bundle D9 bundle D7
Figure 6: Breakdown of row buffer locality for representa-
tive multiprogrammed desktop/scientific workloads.

With HMC, we find that the BPU of highly-memory-intensive
workloads is significantly higher than the BPUwith DDR3. Figure 7
shows the BPU for the three representative workloads. Bundle D11,
which has anMPKI of 71.3, does not issue enough parallel memory
requests, limiting its BPU. For bundle D7, which has a much higher
MPKI of 229.3, concurrent memory requests are distributed across
the memory address space, as three out of the four applications in
the workload (libquantum,mcf, andmilc) are memory intensive (i.e.,
MPKI ≥ 4.0 for single-threaded applications). As a result, with HMC,
the workload achieves 2.05× the BPU that it does with DDR3.

0
5

10
15
20
25

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

bundle D11 bundle D9 bundle D7
Figure 7: BPU for representative multiprogrammed desk-
top/scientific workloads.

Second, unlike HMC, which does not performwell for most non-
memory-intensive multiprogrammed workloads, GDDR5 improves
performance for all 20 of our multiprogrammed workloads. This
is because GDDR5 provides a balanced combination of low mem-
ory latencies, high bank parallelism, and high bandwidth. However,

GDDR5’s balance across thesemetrics is not enough tomaximize the
performance of our highly-memory-intensive workloads, which re-
quire very high bandwidth, and thus GDDR5’s average performance
improvement over DDR3 onmultiprogrammed workloads, 13.0%, is
lower than that of HMC (17.0%).

Third, some low-power DRAM types can provide energy savings
(see Section 5.4) formultiprogrammedworkloadswithout sacrificing
performance. From Figure 5 (bottom), we observe that LPDDR4 and
Wide I/O 2 perform competitively with DDR3 for highly-memory-
intensive workloads. This is because both DRAM types provide
higher amounts of parallelism and bandwidth than DDR3, and the
highly-memory-intensive applications make significant use of the
available parallelism andmemory bandwidth, which lowers applica-
tionexecutiontime.Asaresult, suchapplicationsarenotsignificantly
impacted by the increased memory access latency in LPDDR4 and
Wide I/O 2.

We conclude that for multiprogrammed workloads, DRAM types
that provide high bank parallelism and bandwidth can significantly
improve performance when a workload exhibits (1) high memory
intensity, (2) high BPU, and (3) poor row buffer locality.

5.4 DRAM Energy Consumption
Wecharacterize theenergyconsumptionofourdesktopandscientific
workloads for the DRAM types that we have accurate power models
for (i.e., datasheet values for power consumption that are provided
by vendors for actual off-the-shelf parts). Figure 8 shows the average
DRAMenergy consumption byDDR3, DDR4, GDDR5, LPDDR3, and
LPDDR4 for our single-threaded applications andmultiprogrammed
workloads, normalized to the energy consumption of DDR3. We
make two new observations from the figure.

0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
En

er
gy

Single-Threaded Multiprogrammed

Figure 8: Mean DRAM energy consumption for single-
threaded (left) and multiprogrammed (right) desktop and
scientific applications, normalized to DDR3.

OBSERVATION 4: LPDDR3/4 reduce DRAM energy
consumption by as much as 54–68% over DDR3/4, but

LPDDR3/4 provide worse performance for single-threaded
applications, with their performance loss increasing as the

memory intensity increases.

For all of our desktop/scientific workloads, LPDDR3/4 consume
significantly less energy than DDR3/4 due to the numerous low-
power features incorporated in their design (see Section 2.2). In
particular, as we discuss in Appendix E, standby power is the sin-
gle largest source of power consumption for these workloads, and
LPDDR3/4 incorporate a number of optimizations to reduce standby
power. Unfortunately, these optimizations lead to increasedmemory
request latencies (see Table 1). This, in turn, hurts the overall perfor-
mance of single-threaded applications, aswe see in Figure 2 (bottom).
GDDR5makes the opposite trade-off, with reduced memory request

8

latencies and thus higher performance, but at the cost of 2.15×more
energy than DDR3 for single-threaded applications.

OBSERVATION 5: For highly-memory-intensive
multiprogrammed workloads, LPDDR4 provides significant
energy savings over DDR3 without sacrificing performance.

Formultiprogrammedworkloads, LPDDR4delivers a 68.2% reduc-
tion in energy consumption, on average across all workloads, while
losing only 7.0% performance compared to DDR3 (see Section 5.3).
This is because LPDDR4 compensates for its higher memory request
latency over DDR3 by having a greater number of banks. As we
discuss in Section 5.3, highly-memory-intensive multiprogrammed
workloads can achieve a high BPU, which allows them to take ad-
vantage of the increased bank parallelism available in LPDDR4. As a
comparison, LPDDR3 still performs poorly with these workloads be-
cause it has lower bandwidth and a lower bank count than LPDDR4.
In contrast, GDDR5 provides higher throughput than LPDDR4, and
due to the high memory intensity of multiprogrammedworkloads,
the workloads complete much faster with GDDR5 than DDR3 (13.0%
higher performance on average; see Section 5.3). The increased per-
formance ofGDDR5 comes at the cost of consuming only 25.6%more
energy on average than DDR3, which is a much smaller increase
than what we observe for the single-threaded applications.

We conclude that (1) low-power DRAM variants (LPDDR3/4) are
effective at reducing overall DRAM energy consumption, especially
for applications that exhibit high BPU; and (2) the performance im-
provements of GDDR5 come with a significant energy penalty for
single-threaded applications, but with a smaller penalty for multipro-
grammed workloads.

6 MULTITHREADED DESKTOP AND
SCIENTIFIC PROGRAMS

Manymodern applications, especially in the high-performance com-
puting domain, launchmultiple threads on a machine to exploit the
thread-level parallelism available in multicore systems. We evaluate
the following applications:
• blackscholes, canneal, fluidanimate, raytrace, bodytrack, facesim,
freqmine, streamcluster, and swaptions fromPARSEC3.0 [10], and

• miniFE, quicksilver, and pennant from CORAL [183]/CORAL-
2 [184].

6.1 Workload Characteristics
Multithreadedworkloads oftenwork on very large datasets (e.g., sev-
eral gigabytes in size) that are partitioned across themultiple threads.
Amajor component of multithreaded application behavior is how
the application scales with the number of threads. This scalability
is typically a function of (1) howmemory-bound an application is,
(2) howmuch synchronization must be performed across threads,
and (3) how balanced the work done by each thread is.

We provide a detailed experimental analysis of the IPC andMPKI
of the multithreaded applications in Appendix D.2. From the anal-
ysis, we find that these applications have a narrower IPC range
than the single-threaded desktop applications. This is often because
multithreaded applications are designed to strike a careful balance
between computation and memory usage, which is necessary to
scale the algorithms to large numbers of threads. Due to this balance,

memory-intensive multithreaded applications have significantly
higher IPCs compared to memory-intensive single-threaded desk-
top/scientific applications, even as we scale the number of threads.
For example, the aggregate MPKI ofminiFE increases from 11.5 with
only one thread to 68.1with 32 threads, but its IPCper thread remains
around 1.5 (for both one thread and 32 threads). The relatively high
IPC indicates that the application is not completely memory-bound
even when its MPKI is high.

6.2 Performance
To study performance and scalability, we evaluate 1, 2, 4, 8, 16, and
32 thread runs of each multithreaded application on each DRAM
type. All performance plots show parallel speedup, normalized to
one-thread execution on DDR3, on the y-axis, and the thread count
(in log scale) on the x-axis. For brevity, we do not show individual
results for each application.We find that the applications generally
fall into one of three categories: (1) memory-agnostic, where the
application is able to achieve near-linear speedup acrossmost thread
counts for all DRAM types; (2) throughput-bound memory-sensitive,
where the application is highly memory-intensive, and has trouble
approaching linear speedup for most DRAM types; and (3) irregular
memory-sensitive, where the application is highlymemory-intensive,
and its irregular memory access patterns allow it to benefit from
either lower memory latency or higher memory throughput.
Memory-Agnostic Applications. Six of our applications are
memory-agnostic: blackscholes, raytrace, swaptions, quicksilver, pen-
nant, and streamcluster. Figure9showstheperformanceofquicksilver
across all thread counts, which is representative of the memory-
agnostic applications. We draw out three findings from the figure.

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Figure 9: Performance of quicksilver for standard-power
(left) and low-power (right) DRAM types, normalized to
single-thread performance with DDR3.

First, regardless of theDRAM type, the performance of quicksilver
scales well with the thread count, with no tapering of performance
improvements for the standard-power DRAM types (i.e., DDR3/4,
GDDR5,HBM,HMC). This is becausememory-agnostic applications
have relatively lowMPKI values (see Appendix D.2), even at high
thread counts (e.g., quicksilver has an MPKI of 20.9 at 32 threads).
Therefore, all of the standard-powerDRAM types are able to keep up
as the thread counts increase, and thememory-agnostic applications
do not benefit significantly from one DRAM type over another.

Second, like many of our memory-agnostic applications, quick-
silver does not have a fully-linear speedup at 32 threads. This is
because when the number of threads increases from 1 to 32, the
row hit rate decreases significantly (e.g., for DDR3, from 83.1% with
one thread to 7.2% with 32 threads), as shown in Figure 10, due to
contention among the threads for shared last-level cache space and
shared DRAM banks. The significantly lower row hit rate results
in an increase in the average memory request latency. Two of our

9

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

quicksilver facesim miniFE1 thread

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

quicksilver facesim miniFE32 threads

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C
HBM
GDDR5
DDR4
DDR3

Figure 10: Breakdown of row buffer locality for three repre-
sentative multithreaded applications.

memory-agnostic applications (swaptions and pennant) maintain
higher row hit rates (e.g., 46.6% for pennant at 32 threads; not shown)
because they have significantly lower memory intensity (i.e., MPKI
< 3 at 32 threads) than our other memory-agnostic applications,
generating less contention at the last-level cache and DRAM banks.
As a result, these two applications have a fully-linear speedup at
32 threads.

Third, due to the memory-agnostic behavior of these applica-
tions, there is no discernible difference in performance between
standard-power DRAM types, LPDDR3/4, and Wide I/O 2. Given
the minimal memory needs of these applications, the increased la-
tencies and reduced bandwidth of low-power DRAM types do not
have a significant impact on the applications in most cases.1 Based
on these observations, we believe that the LPDDR3/4 andWide I/O 2
low-power DRAM types are promising to use for memory-agnostic
applications, as they can lower the DRAM power consumption with
little impact on performance.
Throughput-Bound Memory Sensitive Applications. Five of
our applications are throughput-bound memory-sensitive: bodytrack,
canneal, fluidanimate, facesim, and freqmine. Figure 11 shows the
performance of facesim across all thread counts, which is representa-
tive of the throughput-bound memory-sensitive applications. These
applications become highly memory-intensive (i.e., they have very
high aggregate MPKI values) at high thread counts. As more threads
contend for the limited shared space in the last-level cache, the cache
hit rate drops, placing greater pressure on the memory system. This
has twoeffects. First, since thememory requests are generated across
multiple threads, where each thread operates on its own working
set of data, there is little spatial locality among the requests that are
waiting to be serviced by DRAM at any given time. As we see in
Figure 10, facesim does not exploit row buffer locality at 32 threads.
Second, because of their high memory intensity and poor spatial
locality, these applications benefit greatly from amemory like HMC,
which delivers higher memory-level parallelism and higher band-
width than DDR3 at the expense of spatial locality and latency. As

1The one exception is Wide I/O, for which performance scaling begins to taper off at
32 threads. Wide I/O’s poor scalability is a result of its combination of high memory
access latency and a memory bandwidth that is significantly lower than the other
DRAM types (see Table 1).

Figure 11 shows, (1) theperformanceprovidedby theothermemories
cannot scale at the rate provided by HMC at higher thread counts;
and (2) HMC outperforms even GDDR5 and HBM, which in turn
outperform other DRAM types.

0
4
8

12
16
20
24

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

4

8

12

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Figure 11: Performance of facesim for standard-power (left)
and low-power (right) DRAM types, normalized to single-
thread performance with DDR3.

Irregular Memory-Sensitive Applications. Only one applica-
tion is irregular memory-sensitive:miniFE. Figure 12 shows the per-
formance of miniFE across all thread counts. miniFE operates on
sparse matrices, which results in irregular memory access patterns
that compilers cannot easily optimize. One result of this irregular
behavior is low BPU at all thread counts, corroborating similar ob-
servations by prior work [180] forminiFE and other irregular multi-
threaded workloads. As a result, for smaller problem sizes (e.g., 32 x
32 x 32 forminiFE),miniFE becomes memory-latency-bound, and
behaves much like our single-threaded desktop applications in Sec-
tion 5.We draw out two findings from Figure 12. First,miniFEwith a
32 x 32 x 32 problem size benefits most from traditional, low-latency
memories such as DDR3/4 and GDDR5, while it fails to achieve such
high benefits with throughput-oriented memories such as HMC and
HBM. In fact, just as we see formemory-agnostic applications, many
of the low-powermemories outperformHMC andHBM at all thread
counts. Second, as the core count increases,miniFE benefits more
from high memory throughput and high bank-level parallelism. As
a result, while the performance improvement with DDR3 starts lev-
eling off after 16 threads, the performance improvements with HBM
and with HMC continue to scale at 32 threads. Unlike DDR3, DDR4
continues to scale as well, as DDR4 provides higher throughput and
more banks than DDR3.

0

8

16

24

32

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

6

12

18

24

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Figure 12: Performance of miniFE with a 32 x 32 x 32 prob-
lem size for standard-power (left) and low-power (right)
DRAM types, normalized to single-thread performancewith
DDR3.

The irregular behavior of miniFE changes as the problem size
grows. Figure 13 shows the performance ofminiFE aswe increase the
problem size to 64 x 64 x 64.Weobserve that as the number of threads
increases, the scaling trends look significantly different than they do
for the smaller 32 x 32 x 32 problem size (Figure 12). For reference,
with a single thread and with the DDR3 DRAM type, the 64 x 64 x 64
problemsize takes 13.6x longer than the32x32x32problemsize. The

10

larger problem size puts more pressure on the cache hierarchy and
thememorysubsystem(e.g., thememory footprint increasesby449%;
see Table 3 in Appendix C), which causesminiFE to transition from
memory-latency-bound to memory-throughput-bound. As a result,
when the number of threads increases, lower-throughput DRAM
types such as DDR3 and DDR4 become the bottleneck to scalability,
limiting parallel speedup at 32 threads to only 6.1x. Likewise, we
observe that all of our low-power DRAM types cannot deliver the
throughput required byminiFE at high thread counts. In contrast,
HMC can successfully take advantage of the high throughput and
high contention between threads, due to its large number of banks
and high bandwidth. As a result, HMC reaches a parallel speedup of
17.3x at 32 threads, with no drop-off in its scalability as the number
of threads increases from 1 to 32. This behavior is similar to what we
observe for throughput-boundmemory-sensitive applications (e.g.,
the performance of facesim in Figure 11).

0
4
8

12
16
20

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

DDR3 DDR4
GDDR5 HBM
HMC

0

2

4

6

1 2 4 8 16 32No
rm

. P
ar

al
le

l S
pe

ed
up

Number of Threads

LPDDR3
LPDDR4
Wide I/O
Wide I/O 2

Figure 13: Performance of miniFE with a 64 x 64 x 64 prob-
lem size for standard-power (left) and low-power (right)
DRAM types, normalized to single-thread performancewith
DDR3.

OBSERVATION 6: The behavior of multithreaded
applications with irregular memory access patterns

depends on the problem size.

At small problem sizes, these applications are latency-bound,
and thus benefit from DRAM types that provide low latency.

As the problem size increases, these applications become
throughput-bound, behaving like the throughput-bound

memory-sensitive applications, and thus benefit from DRAM
types that provide high throughput.

We conclude that the ideal DRAM type for a multithreaded ap-
plication is highly dependent on the application behavior, and that
for many such applications, such as memory-agnostic or irregu-
lar memory-sensitive applications with smaller problem sizes, low-
power DRAM types such as LPDDR4 can perform competitively with
standard-power DRAM types.

7 SERVER AND CLOUDWORKLOADS
Server and cloudworkloads are designed to accommodate very large
data sets, and can often coordinate requests betweenmultiple ma-
chines across a network. We evaluate the following workloads with
representative inputs:
• themap and reduce tasks [34] for grep,wordcount, and sort, im-
plemented using Hadoop [5] for scalable distributed processing
(we use fourmap threads for each application);

• YCSB [27] OLTP (OnLine Transaction Processing) server work-
loads A–E, and the background process forked by workload A to
write the log to disk (bgsave), executing on the Redis in-memory
key-value store [191],

• an Apache server [6], which services a series of wget requests
from a remote server;

• Memcached [38], using amicrobenchmark that inserts key-value
pairs into a memory cache; and

• theMySQL database [36], using amicrobenchmark that loads the
sample employeedb database.

7.1 Workload Characteristics
From our analysis, we find that while server and cloud workloads
tend to work on very large datasets (e.g., gigabytes of data), the
workloads are written to maximize the efficiency of their on-chip
cache utilization. As a result, these applications only infrequently
issue requests to DRAM, and typically exhibit lowmemory intensity
(i.e.,MPKI<10)andhighIPCs.WeshowIPCplots for theseworkloads
in Appendix D.3.

For each of our Hadoop applications, we find that the fourmap
threads exhibit near-identical behavior. As a result, we show the
characterization of only one out of the fourmap threads (map 0) in
the remainder of this section.

7.2 Single-Thread Performance
Figure 14 shows the performance of single-threaded applications for
server and cloud environments when run on our evaluated DRAM
types, normalized to DDR3. We find that none of our workloads
benefit significantly from using HBM, HMC, orWide I/O 2. These
DRAM types sacrifice DRAM latency to provide high throughput.
Since our workloads have lowmemory bandwidth needs, they are
unable to benefit significantly from this additional throughput.

0.8

0.9

1.0

1.1

1.2

IP
C

No
rm

al
ize

d
to

 D
DR

3 DDR4 GDDR5 HBM HMC HMC-Alt

0.6
0.7
0.8
0.9
1.0
1.1

IP
C

No
rm

al
ize

d
to

 D
DR

3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Figure 14: Performance of server/cloud applications for
standard-power (top) and low-power (bottom) DRAM types,
normalized to DDR3.

11

OBSERVATION 7: Due to their low memory intensity and
poor BPU, most of the server and cloud workloads that we study
do not benefit significantly from high-throughput memories.

To understand why high-throughput memories do not benefit
these applications, we focus on YCSB (the leftmost six workloads
in Figure 14). For these workloads, we observe that as the memory
intensity increases, HMC performs increasingly worse compared
to DDR3.We find that the YCSBworkloads exhibit low BPU values
(never exceeding 1.80). Figure 15 shows the BPU (left) and row buffer
locality (right) forworkload A: server, as a representative YCSBwork-
load. Due to the low BPU of the workload across all DRAM types,
the high number of banks provided by HBM, HMC, andWide I/O
are wasted. HMC also destroys the row hits (and, thus, lower access
latencies) that other DRAM types provide, resulting in a significant
performance loss of 11.6% over DDR3, on average across the YCSB
workloads. HMC avoids performance loss for applications that have
high BPU, such as the map process for grep (with a BPU of 18.3; not
shown).However, suchhighBPUvalues are not typical for the server
and cloud workloads we examine.

0.0
0.5
1.0
1.5
2.0

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

0%
25%
50%
75%

100%

M
em

or
y

Re
qu

es
ts

Row Hits
Row Misses
Row Conflicts

W
ide I/O 2

W
ide I/O

LPDDR4
LPDDR3
HM

C-Alt
HM

C
HBM
GDDR5
DDR4
DDR3

Figure 15: BPU (left) and row buffer locality (right) of work-
load A: server.

We find two effects of the low memory intensity and low BPU
of server and cloud workloads. First, these workloads are highly
sensitive to memory request latency. The limited memory-level par-
allelism exposes the latency of a memory request to the processor
pipeline [32, 44, 99, 138, 140, 141, 152]. Second, the performance
loss due to using the low-power DRAM types is mainly due to the
increased memory access latencies, and not reduced throughput.
For example, as we observe in Figure 14 (bottom), Wide I/O’s per-
formance loss is comparable to the performance loss with other
low-powerDRAMtypes formany of our server and cloudworkloads,
even though the available bandwidth ofWide I/O is only 25% of the
bandwidth available with LPDDR4 (see Table 1).

We conclude that the server and cloud workloads we evaluate are
highly sensitive to the memory access latency, and are not significantly
impacted by memory throughput.

7.3 Multiprogrammed Performance
We combine the single-threaded server and cloud applications into
eight four-core multiprogrammed workloads (see Table 8 in Ap-
pendix C for workload details). Figure 16 shows the performance
of executing four-core multiprogrammedworkloads for our YCSB
workload bundles (Y0–Y4) and Hadoop workload bundles (H0–H2)
with each DRAM type.We identify two trends from the figure.

First, we observe that the multiprogrammed YCSB workloads
see little benefit from high-throughput memories, much like the
single-threadedYCSBapplications.One exception to this iswhen the

0.9
1.0
1.1
1.2
1.3
1.4

No
rm

. W
ei

gh
te

d
Sp

ee
du

p DDR4 GDDR5 HBM HMC HMC-Alt

YCSB + Redis Hadoop

0.4

0.6

0.8

1.0

1.2

No
rm

. W
eig

ht
ed

 Sp
ee

du
p LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Figure 16: Performance of multiprogrammed server/cloud
workloads for standard-power (top) and low-power (bottom)
DRAM types, normalized to performance with DDR3. MPKI
listed in parentheses.

workloads run on GDDR5, which provides a mean speedup of 10.2%
over DDR3 due to the increased memory intensity (and thus higher
memory bandwidth demand) of the multiprogrammedworkloads.
On low-powerDRAM types, themultiprogrammed YCSBworkloads
experience larger performance drops over DDR3 than the single-
threaded applications. For LPDDR3, LPDDR4, andWide I/O 2, the
performance drop ranges between 14.5% and 17.2%. ForWide I/O, the
performance drop is even worse, with an average drop of 33.3%. Be-
cause the multiprogrammed workloads are more memory-intensive
than thesingle-threadedapplications, the reduced throughputof low-
powerDRAMtypes compared toDDR3has a greater negative impact
on the multiprogrammed workloads than on the single-threaded
applications.

Second, we observe that HMC significantly improves the perfor-
mance of the Hadoop workloads, because the working sets of the
individual applications in each workload conflict with each other
in the last-level CPU cache. This increases the last-level cache miss
rate, which in turn significantly increases the memory intensity
compared to the memory intensity of the single-threaded Hadoop
applications. Due to the increased memory intensity, the queuing
latency of memory requests make up a significant fraction of the
DRAM access latency. For example, on DDR3, queuing accounts
for 77.2% of the total DRAM access latency for workload H0 (not
shown). HMC is able to alleviate queuing significantly for the mul-
tiprogrammedHadoop workloads compared to DDR3 (reducing it
to only 23.8% of the total DRAM access latency), similar to what
we saw for multiprogrammed desktop and scientific workloads in
Section 5.3. On average, with HMC, the Hadoop workloads achieve
2.62× the BPU, with an average performance improvement of 9.3%
over DDR3.

We conclude that the performance of multiprogrammed server
and cloud workloads depends highly on the interference that occurs
between the applications in the workload, and that HMC provides
performance benefits when such application interference results in
high memory intensity.

12

7.4 DRAM Energy Consumption

OBSERVATION 8: For server and cloud workloads, LPDDR3
and LPDDR4 greatly minimize standby power consumption

without imposing a large performance penalty.

Figure 17 shows the DRAM energy consumption for the single-
threadedandmultiprogrammedserver andcloudworkloads.GDDR5
consumes a significant amount of energy (2.65× the energy con-
sumed by DDR3 for single-threaded applications, and 2.23× for mul-
tiprogrammed workloads). Given the modest performance gains
overDDR3 (3.8% for single-threaded applications, and 9.4% formulti-
programmed workloads), GDDR5 is much less energy efficient than
DDR3. This makes GDDR5 especially unsuitable for a datacenter
setting, where energy consumption and efficiency are first-order
design concerns. In contrast, we find that LPDDR3/LPDDR4 save a
significant amount of DRAMenergy (58.6%/61.6% on average), while
causing only relatively small performance degradations for single-
threaded applications compared to DDR3 (8.0%/11.0% on average).
Thus, we believe LPDDR3 and LPDDR4 can be competitive candi-
dates for the server and cloud environments, as they have higher
memory energy efficiency than DDR3.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

Single-Threaded Multiprogrammed

Figure 17: Mean DRAM energy consumption for single-
threaded (left) and multiprogrammed (right) server/cloud
applications, normalized to DDR3.

We conclude that low-power DRAM types can be viable options to
improve energy efficiency in server and cloud environments, while
DRAM types such as GDDR5 are not as energy efficient as DDR3.

8 HETEROGENEOUS SYSTEMWORKLOADS
In this section, we study the performance and energy consumption
of workloads that are representative of those that run on threemajor
types of processors and accelerators in heterogeneous systems, such
as systems-on-chip (SoCs) and mobile processors: (1)multimedia
acceleration, which we approximate using benchmarks from the
MediaBench II suite for JPEG-2000 and H.264 video encoding and
decoding [43]; (2) network acceleration, for which we use traces
collected fromacommercialnetworkprocessor [144]; and (3)general-
purpose GPU (GPGPU) applications from theMars [53], Rodinia [24],
and LonestarGPU [12] suites.

8.1 Multimedia Workload Performance
Multimedia accelerators are designed to perform high-throughput
parallel operations onmedia content, such as video, audio, and im-
age processing [43]. Often, the content is encoded or decoded in a
streaming manner, where pieces of the content are accessed from
memory and processed in order. Multimedia accelerators typically
work one file at a time, and tend to exhibit high spatial locality due
to the streaming behavior of their algorithms. The algorithms we

explore are often bound by the time required to encode or decode
each piece of media (e.g., a video frame). We find that JPEG pro-
cessing and H.264 encoding applications are highly compute-bound
(i.e., MPKI < 5.0), and exhibit very slow streaming behavior (i.e., the
requests are issued in a streaming fashion, but exhibit lowmemory
intensity). In contrast, we find that H.264 decoding exhibits a highly
memory-bound fast streaming behavior, with anMPKI of 124.5.

OBSERVATION 9: Highly-memory-intensive multimedia
applications benefit from high-bandwidth DRAM types with

wide rows.

Figure 18 shows the performance of the multimedia applications
on eachDRAM type, normalized toDDR3.We draw out two findings
from the figure. First, JPEG encoding/decoding and H.264 encoding
do not benefit from any of the high-bandwidth DRAM types, due to
the applications’ lowmemory intensity. The performance of some
of these applications is actually hurt significantly by HMC, due to
HMC’s small rowsizeandhighaccess latencies. In contrast, the larger
row width of Wide I/O 2 allows these applications to experience
modest speedups over DDR3, by increasing the row hit rate.

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

No
rm

al
ize

d
to

 D
DR

3
DDR4 GDDR5 HBM
HMC HMC-Alt

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

No
rm

al
ize

d
to

 D
DR

3

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Figure 18: Performance of multimedia applications for
standard-power (left) and low-power (right) DRAM types,
normalized to performance with DDR3. MPKI listed in
parentheses.

Second, unlike the othermultimedia applications, H.264 decoding
performssignificantlybetterwithcertainhigh-bandwidthmemories:
with GDDR5/HBM, its performance improves by 21.6%/14.7% over
DDR3.Wefind thatGDDR5andHBMcaterwell toH.264decoding, as
the application exhibits highmemory intensitywithhighly-localized
streaming access patterns, causing the majority of its memory re-
quests to be row hits. Due to its streaming nature, H.264 decoding
still relies heavily on DRAM types with wide rows, which can take
advantage of spatial locality. As a result, even though the BPU of
H.264 decoding increases in HMC by 177.2% over DDR3 (due to the
distribution of streaming requests across multiple banks), the ap-
plication does not see large performance improvements with HMC.
The highly-localized access pattern also hurts the performance of
H.264 decoding with DDR4. Much like with DDR3, the application’s
memory requests exploit spatial locality within a DDR4 DRAM row,
but make use of only a limited amount of bank parallelism. As a
result, the application cannot take advantage of the additional banks
in DDR4 over DDR3, and DDR4 slows downH.264 decoding by 2.6%
compared to DDR3 due to its increased access latency.

13

8.2 Network Accelerator Performance
The network accelerators we study handle a number of data pro-
cessing tasks (e.g., processing network packets, issuing network
responses, storing the data in an application buffer). Such network
accelerators can be found in dedicated network processing chips,
SoCs, and server chips [144]. Unlike multimedia accelerators, which
exhibit regular streaming access patterns, network accelerator mem-
ory access patterns are dependent on the rate of incoming network
traffic. A network accelerator monitors traffic entering from the
network adapter, performs depacketization and error correction,
and transfers the data to the main memory system. As a result of
its dependency on incoming network traffic, the network accelera-
tor exhibits highly bursty behavior, where it occasionally writes to
DRAM, but has a high memory intensity during each write burst.

OBSERVATION 10: Network accelerators experience very
high queuing latencies at DRAM even at low MPKI, and benefit

greatly from a high-bandwidth DRAM with large bank
parallelism, such as HMC.

Figure 19 shows the sustained bandwidth provided by different
memory types when running the network accelerators, normalized
to DDR3.We sweep the number of network accelerator requests that
are allowed to be in flight at any given time, to emulate different
network injection rates. We find that the network accelerator work-
loads behave quite differently than our other applications. Thanks
to the highly-bursty nature of the memory requests, the queuing
latency accounts for 62.1% of the total request latency, averaged
across our workloads. For these workloads, HMC’s combination of
high available bandwidth and a very large number of banks allows
it to increase the BPU by 2.28× over DDR3, averaged across all of
our workloads. This reduces the average queuing latency by 91.9%,
leading to an averageperformance improvement of 63.3%overDDR3.
HMC-Alt combines HMC’s low queuing latencies with improved
row locality, which better exploits the large (i.e., multi-cache-line)
size of each network packet. As a result, HMC-Alt performs 88.4%
better than DDR3, on average.

0

1

2

3

4

BW
 N

or
m

al
ize

d
to

 D
DR

3

DDR4 GDDR5 HBM
HMC HMC-Alt

0

1

2

3

4

BW
 N

or
m

al
ize

d
to

 D
DR

3

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Figure 19: Network accelerator bandwidth (BW) for
standard-power (left) and low-power (right) DRAM types,
normalized to BW with DDR3. Maximum in-flight requests
listed after the trace name, and MPKI listed in parentheses.

We conclude that SoC accelerators benefit significantly from high-
bandwidth memories (e.g., HMC, GDDR5), but the diverse behavior
of the different types of accelerators (e.g., multimedia vs. network)
makes it difficult to identify a single DRAM type that performs best
across the board.

8.3 GPGPU Application Performance
We study ten applications from the Mars [53], Rodinia [24], and
LonestarGPU [12] suites. These applications have diverse memory
intensities, with last-level cacheMPKIs ranging from 0.005 (dmr) to
25.3 (sp). Figure 20 shows the performance of the applications.

0.5
1.0
1.5
2.0
2.5
3.0

dm
r (

0.
0)

iix
 (0

.0
)

hs
 (0

.4
)

bp
 (0

.4
)

ss
 (1

.1
)

bh
 (2

.2
)

m
st

 (3
.9

)
sc

 (5
.4

)
bf

s (
14

.0
)

sp
 (2

5.
3)

No
rm

al
ize

d
IP

C

DDR4 GDDR5 HBM
HMC HMC-Alt 3.54

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

dm
r iix hs bp ss bh m

st sc bf
s sp

No
rm

ali
ze

d
IP

C

LPDDR3 LPDDR4
Wide I/O Wide I/O 2

Figure 20: Performance of GPGPU applications for standard-
power (left) and low-power (right) DRAM types, normalized
to DDR3. MPKI in parentheses.

We draw out two key findings from the figure. First, we find that
for our applications that are not memory intensive (MPKI < 1 for
GPGPUapplications), all ofourDRAMtypesperformnear identically.
Second, six of our applications (ss, bh,mst, sc, bfs, sp) are memory
intensive, and benefit significantly from executing on a systemwith
high-bandwidth DRAM types (i.e., GDDR5, HBM, or HMC). On
average, the IPC of memory-intensive GPGPU applications is 39.7%
higher with GDDR5, 26.9% higher with HBM, and 18.3% higher
with both HMC and HMC-Alt, compared to DDR3. Unlike the other
applications we study, the memory-intensive GPGPU applications
also see significant performance improvements with DDR4, which
provides an average performance improvement of 16.4% over DDR3.

A large reason for the high speedups of the memory-intensive
GPGPU workloads with high-bandwidth DRAM types ismemory
coalescing [8, 23]. In a GPU, the memory controller coalesces (i.e.,
combines) multiple memory requests that target nearby locations
in memory into a single memory request. This is particularly useful
for GPU and GPGPU applications, where a large number of threads
operate in lockstep, and often operate on neighboring pieces of data.
Memory coalescing exploits the spatial locality between multiple
threads, in order to reduce pressure on the memory system and
reduce queuing delays. The coalesced memory requests take sig-
nificant advantage of the high bandwidth available in GDDR5, and
the additional bank parallelism available in DDR4. Coalescing is
particularly helpful for sc, where the memory requests are highly
bound by the available memory bandwidth [100]. This leads to very
high speedups on GDDR5 (253.6%) for sc over DDR3.

Unlike the other memory-intensive applications, memory re-
quests from sp are typically not coalesced [23] (i.e., requests from
multiple threads cannot be combined easily to exploit locality).With-
outcoalescing, theapplicationissuesmanyrequestsatoncetoDRAM,
and, thus, performs best when it is run on a DRAM type that can
provide both high bandwidth and high bank parallelism to service
many requests concurrently, such asHBMorHMC.As a result, for sp,
HBM outperforms GDDR5 by 8.3%, and HMC outperforms GDDR5
by 11.3%. HMC and HMC-Alt perform within 0.2% of each other,
as sp does not have significant locality for HMC-Alt to exploit for
additional performance benefits.

14

We conclude that for memory-intensive GPGPU applications,
GDDR5 provides significant performance improvements as long as
memory requests can be coalesced, while HBM and HMC improve per-
formance even more when memory requests are not coalesced because
both of these DRAM types provide high bank parallelism.

8.4 DRAM Energy Consumption

OBSERVATION 11: For the accelerators
that have high memory throughput requirements,
GDDR5 provides much greater energy efficiency

(i.e., large performance gains with a
small energy increase) than DDR3.

Figure 21 shows the normalized energy consumption for the
threemajor types of heterogeneous systemworkloads that we study:
(1)multimedia acceleration, (2) network acceleration, and (3)GPGPU
applications, averaged across all applications of each type. Overall,
for multimedia acceleration and GPGPU applications, we observe
that GDDR5 consumes more than double the energy of the other
memory types, while for network acceleration, GDDR5 consumes
only 24.8%more energy than DDR3.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

Multimedia GPGPUNetwork

Figure 21:MeanDRAMenergy consumption formultimedia
(left) and network (right) acceleration, normalized to DDR3.

Upon closer inspection, however,we find that for the set of hetero-
geneous system applications that require high memory throughput
(H.264decoding, all of ournetworkacceleration traces, sc,bfs, and sp),
GDDR5’s energy consumption comes with large performance bene-
fits. Figure 22 shows the energy consumption of the high-throughput
multimedia and GPGPU applications (see Figure 21 for the network
accelerator energy). Averaged across these high-throughput applica-
tions, GDDR5 consumes only 31.4%more energy than DDR3, while
delivering a performance improvement of 65.6% (not shown). In the
extreme case, for sc, GDDR5 consumes only 20.2%more energy than
DDR3 to provide a 253.6% speedup. For such accelerator applications,
where high memory throughput is combined with high spatial lo-
cality, we conclude that GDDR5 can be significantly more energy
efficient than the other DRAM types.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

al
ize

d
En

er
gy

H.264 decode spbfssc

Figure 22: DRAM energy consumption for high-memory-
throughput multimedia and GPGPU applications, normal-
ized to DDR3.

We conclude that certain types of accelerators can achieve higher
energy efficiency (i.e., large performance increases with a small energy
increase) than with DDR3, by using aggressive DRAM types such
as GDDR5, when the accelerators perform tasks that require high
memory throughput.

9 COMMON OS ROUTINES
We collect several traces capturing common kernel-mode activities
for different benchmarks:
• IOzone [66], a file system benchmark suite that tests a number of
I/O performance tasks (Tests 0–12);

• Netperf [55], which tests TCP/UDP network calls (UDP_RR,
UDP_STREAM, TCP_RR, TCP_STREAM);

• bootup [164], a representative phase of the boot operation in the
Debian operating system;

• forkbench [164], a microbenchmark trace that creates a 64MB
array of random values, forks itself, and has its child process
update 1K random pages; and

• shell [164], amicrobenchmark traceofaUnixshell script that runs
find on a directory tree and executes ls on each subdirectory.

9.1 Workload Characteristics
While the OS routines that we study perform a variety of different
tasks, we find that they exhibit very similar behavior. We depict the
row buffer locality of the routines with DDR3 DRAM in Figure 23.
From the figure, we find that most of the routines have exceptionally
high row buffer locality, with row buffer hit rates greater than 75%.
This behavior occurs because many of the OS routines are based
on files and file-like structures, and these files are often read or
written in large sequential blocks. This causes the routines to access
most, if not all, of the data mapped to an OS page (and therefore to
the open DRAM row that houses the page). We also observe that
memory requests from these routines reach the DRAM at regular
time intervals, as opposed to in bursts. The regularly-timed memory
requests reduce the peak throughput demand on DRAM.

0%
25%
50%
75%

100%

sh
el

l
bo

ot
up fo
rk

UD
P_

RR
TC

P_
RR

UD
P_

ST
RE

AM
TC

P_
ST

RE
AM

Te
st

 4
Te

st
 1

1
Te

st
 1

0
Te

st
 9

Te
st

 8
Te

st
 5

Te
st

 3
Te

st
 1

Te
st

 7
Te

st
 1

2
Te

st
 2

Te
st

 0
Te

st
 6M

em
or

y
Re

qu
es

ts Row Hits Row Misses Row Conflicts

Netperf IOzone, 64MB File

Figure 23: DDR3 row buffer locality for OS routines.

9.2 Performance
Figure 24 shows the performance of the OS routines on standard-
power DRAM types, normalized to their performance under DDR3.
We find that the overall performance of the routines is similar to the
performance trends observed for server and cloud workloads (see
Section 7.2): only GDDR5memory outperforms DDR3 for the major-
ity of routines. The other high-throughput memories are generally
unable to significantly improve performance (except HBM, for some
workloads), and in many cases actually hurt performance.

15

0.8

0.9

1.0

1.1

1.2
sh

el
l (

0.
2)

bo
ot

up
 (1

.1
)

fo
rk

be
nc

h
(4

9.
5)

UD
P_

RR
 (0

.1
)

TC
P_

RR
 (0

.1
)

UD
P_

ST
RE

AM
 (0

.1
)

TC
P_

ST
RE

AM
 (0

.1
)

Te
st

 4
 (3

.4
)

Te
st

 1
1

(4
.5

)
Te

st
 1

0
(4

.7
)

Te
st

 9
 (4

.7
)

Te
st

 8
 (4

.7
)

Te
st

 5
 (1

0.
1)

Te
st

 3
 (1

3.
3)

Te
st

 1
 (1

3.
6)

Te
st

 7
 (1

3.
7)

Te
st

 1
2

(1
5.

4)
Te

st
 2

 (1
5.

6)
Te

st
 0

 (1
5.

7)
Te

st
 6

 (1
6.

5)IP
C

No
rm

al
ize

d
to

 D
DR

3 DDR4 GDDR5 HBM HMC HMC-Alt

Netperf IOzone, 64MB File
Figure 24: Performance of common OS routines for
standard-power DRAM types, normalized to performance
with DDR3. MPKI listed in parentheses.

OBSERVATION 12: OS routines benefit most from
DRAM types with low access latencies

that exploit spatial locality (e.g., GDDR5).

Lower-latency DRAM types such as GDDR5 are best for OS rou-
tines due to (1) the serialized access patterns of most of the routines
(e.g., dependent memory requests) and (2) the regular time intervals
between DRAM requests (see Section 9.1). The regular, serialized
accesses require lower latency to be served faster and do not ben-
efit from high memory throughput. As a result, DRAM types that
increase access latency to provide higher throughput often hurt the
performance of OS routines. This is particularly true of HMC, which
greatly sacrifices row buffer locality with its narrow rows to provide
high bank parallelism (which OS routines typically cannot take ad-
vantage of due to their low BPUs). As we show in Figure 24, if we
employour locality-aware addressingmode forHMC(HMC-Alt), the
performance of HMC improves for some (but not all) of the routines,
as HMC-Alt can exploit more of the high spatial locality present in
OS routines than HMC. GDDR5 provides the highest performance
across all OS routines because it reduces latency over DDR3while
also increasing bandwidth.

Figure 25 shows the performance of the common OS routines
on low-power DRAM types. We draw out four findings from the
figure. First, we observe that the average performance loss from
using low-power DRAM types, compared to DDR3, can be relatively
small. For example, LPDDR3 leads to an average slowdown of only
6.6% over DDR3. Second, we observe that due to the high sensitivity
of OS routines to DRAM access latency, LPDDR4 causes a larger
slowdown (9.6% on average over DDR3) than LPDDR3 due to its
higher access latency. Third, we observe that there are four routines
whereWide I/O 2 provides significant performance improvements
overDDR3:Test 12,Test 2,Test 0, andTest 6. This is becauseWide I/O2
significantly increases the rowhit rate.AsFigure 23 shows, these four
routines havemuch lower rowhit rates (an average of 56.1%) than the
other routines inDDR3. This is because the four routines have access
patterns that lead to a large number of row conflicts. Specifically,
Test 12 reads data fromafile and scatters it intomultiple buffers using
thepreadv()systemcall,whileTest 2,Test 0, andTest 6 aredominated
by write system calls that update both the data and any associated
metadata. The data and associated metadata often reside in different
parts of the memory address space, which leads to row conflicts in
many DRAM types. Wide I/O 2 reduces these row conflicts, and the

average row hit rate for these four routines increases to 91.0% (not
shown). Fourth, we observe that the performance reduction that
forkbench experiences on low-power DRAM types versus DDR3 is
much larger than the reduction other routines experience. This is
due to the fact that forkbench is significantlymorememory intensive
(with anMPKI of 49.5) than the other OS routines.

0.6

0.8

1.0

1.2

1.4

sh
el

l
bo

ot
up

fo
rk

be
nc

h
UD

P_
RR

TC
P_

RR
UD

P_
ST

RE
AM

TC
P_

ST
RE

AM
Te

st
 4

Te
st

 1
1

Te
st

 1
0

Te
st

 9
Te

st
 8

Te
st

 5
Te

st
 3

Te
st

 1
Te

st
 7

Te
st

 1
2

Te
st

 2
Te

st
 0

Te
st

 6IP
C

No
rm

ali
ze

d
to

 D
DR

3 LPDDR3 LPDDR4 Wide I/O Wide I/O 2

Netperf IOzone, 64MB File

Figure 25: Performance of common OS routines for low-
powerDRAM types, normalized to performancewithDDR3.

We conclude that OS routines perform better on memories that
(1) provide low-latency access and (2) exploit the high amount of
spatial locality that exists in the memory access patterns of these
routines.

9.3 DRAM Energy Consumption
Figure 26 shows the energy consumed by each of the DRAM types
that we have accurate power models for, normalized to DDR3 en-
ergy consumption, and averaged across all of the OS routines. We
find that the DRAM energy consumption trends of the OS routines
is very similar to the trends that we observed for desktop work-
loads in Section 5.4. Without a large improvement in average per-
formance, GDDR5 consumes 2.1xmore energy than DDR3, while
LPDDR3/LPDDR4 consume 52.6%/58.0% less energy than DDR3.

0.0
0.5
1.0
1.5
2.0
2.5

DDR3 DDR4 GDDR5 LPDDR3 LPDDR4No
rm

al
ize

d
En

er
gy

Figure 26: Mean DRAM energy consumption for common
OS routines, normalized to DDR3.

LPDDR3/LPDDR4 incur a much smaller average performance
loss (6.6%/9.6%; see Section 9.2) over DDR3 for OS routines than
for desktop and scientific applications. While both the OS routines
and our desktop and scientific applications exhibit high row buffer
locality and lowmemory intensity, the average row buffer locality is
higher for the OS routines, while the average memory intensity is
lower. As a result, LPDDR3 and LPDDR4 strike a better compromise
between performance and energy consumption for OS routines than
they do for desktop and scientific applications.

We conclude that OS routines can attain high energy efficiency (i.e.,
large energy reductions with a small performance impact), compared
to DDR3, when run on low-power DRAM types that provide large row
sizes to exploit spatial locality (e.g., LPDDRx).

16

10 KEY TAKEAWAYS
From our detailed characterization, and from the twelve key obser-
vations that wemake, we find that there are a number of high-level
lessons and takeaways that can be of use for future DRAM archi-
tects, system architects, and programmers.We discuss the four most
important (as we deem) takeaways here.

(1) DRAM latency remains a critical bottleneck formany ap-
plications. For many of our applications, we observe that the
overall application performance improves (degrades) when the
DRAM access latency decreases (increases). These applications
cannot easily takeadvantageofgreatermemory-level parallelism
or higher memory throughput, often because the memory in-
tensity of the applications is not high enough to take advantage
of the maximum bandwidth offered by DDR3. As a result, even
though many new DRAM types offer higher bandwidth and
higher bank parallelism than DDR3, they do not significantly
improve performance. In fact, in many cases, newDRAM types
reduce performance, because the increased bandwidth and bank
parallelism they provide come at the cost of higher latency.
For DRAM architects, this means that newer DRAM types re-
quire ways to bring down the latency of a single access, which
goes against the recent trend of increasing latency in order to
provide other benefits. Several recent works propose ways of
reducing DRAM latency at low cost [15, 18, 21, 25, 50, 52, 91, 98,
105, 109, 110, 164, 187, 192].We believe such approaches are very
promising and critical for modern and future applications, and
we encourage the development of more such novel latency re-
duction mechanisms for DRAM.
For system architects, there is a need to reconsider whether sys-
tems should be built with older, lower-latency DRAM types such
as DDR3 and GDDR5 instead of with newer, higher-throughput
DRAM types such as DDR4 and HMC. The use of memory con-
troller mechanisms to reduce DRAM latency is also promis-
ing [15, 21, 52, 91, 105, 109, 187, 192].

(2) Bank parallelism is not fully utilized by a wide variety
of our applications.As we show in our characterization, bank
parallelism utilization (BPU; see Section 4) is a key indicator of
whether applications benefit from high-throughput and highly-
parallel DRAM types such as HBM and HMC. BPU expresses a
combination of the memory intensity and the memory-level
parallelism of an application. While there are some applica-
tions (e.g.,multiprogrammedworkloads, high-memory-intensity
GPGPU applications) that have high BPU and benefit from using
DRAM types such as HBM and HMC, a variety of our applica-
tions have low BPU (e.g., single-thread desktop/scientific appli-
cations, irregular memory-sensitive multithreaded applications,
and server/cloud applications), and thus do not experience ap-
preciable performance gains with HBM and HMC.
For DRAM architects, this indicates that providing a greater num-
ber of banks in newer DRAM types may not provide significant
gains for especially single-thread performance. For example,
while DDR4 doubles the number of banks over DDR3, the in-
creased bank count requires architectural changes (e.g., the in-
troduction of bank groups; see Section 2.2 and Appendix A) that

increase access latency. An important (critical) thread with low
BPUmay not be able to overcome the latency increase, and thus
the additional banks would not benefit performance. We see this
behavior in several of ourworkloads, and thus their performance
degrades when DDR4 is used instead of DDR3.
For system architects, it may be useful to consider using cheaper
DRAMtypeswith fewer banks (and also low latencies) in systems
that run applications with low BPU.
Wedonote that thereare several caseswhere rowconflicts remain
high evenwhen BPU is low (e.g., our example YCSB server work-
load in Figure 15, irregular memory-intensive multithreaded
workloads, cactusADM,omnetpp, andGemsFDTD). This canoccur
if memory requests are unevenly distributed across the memory
banks, causing some of the banks to be highly contended for
while other banks remain idle. For both DRAM architects and pro-
grammers, this indicates that there are opportunities to change
address interleavings, memory schedulers, memory allocation,
and program access patterns to make better use of the available
bank-level parallelism.

(3) Spatial locality continues to provide significant perfor-
mance benefits if it is exploited by the memory subsys-
tem.One of the more significant changes made in HMC versus
other DRAM types is the reduction of the row buffer size. A row
in HMC (256 B) is 97% smaller than a row in DDR3/DDR4 (8 kB).
HMC uses the shorter row size to significantly increase bank-
levelparallelismandmemory throughput.Due to the limitedBPU
of many applications, the increased parallelism and throughput
only occasionally provide benefits when using HMC. In contrast
to bank parallelism, applications and virtual memory managers
still try to maximize spatial locality as much as they can.While
most DRAM types exploit this spatial locality (by using large
rows to amortize the high penalty of a row conflict), HMC’s small
rows are unable to effectively capture much of this locality. As a
result, HMC provides notable performance improvements only
in cases where spatial locality is low (or is destroyed), such as for
highly-memory-intensive multiprogrammedworkloads where
multiple applications significantly interferewith each other. Oth-
erwise, HMC can lead to large performance losses compared to
other high-throughputmemories (e.g., GDDR5, HBM), andHMC
often performs worse thanmost other DRAM types.
For DRAM architects, our observations indicate that newDRAM
types that activate at a rowgranularity should not reduce the row
width. A reduced rowwidth typically requires more row activa-
tion operations for the same amount of data, which introduces a
significant overhead that cannot be (easily) amortized by other
benefits (such as higher memory-level parallelism in HMC).
For programmers, applications should maximize the amount of
spatial locality that they exploit, as most DRAM types are de-
signed to perform better with higher locality. This could require
(a) redesigning data structures to maximize spatial locality based
on the application’s memory access patterns, and (b) issuing
fewer, larger memory allocation requests that the virtual mem-
orymanager can attempt to allocate contiguously in the physical
address space. Alternatively, for programs that will execute on
systems that make use of low-spatial-locality memories such

17

as HMC, programmers should take the poor hardware locality
into account and perhaps rewrite their applications to take better
advantage of the large available bank-level parallelism.

(4) For some classes of applications, low-powermemory can
provide large energy savings without sacrificing signif-
icant performance. In particular, if we compare DDR3 with
LPDDR4, we find that there are two types of memory behavior
whereLPDDR4significantlyreducesDRAMenergyconsumption
without a significant performance overhead. First, applications
with low memory intensity do not perform a large number of
memory accesses. As a result, despite the much higher access
latency of LPDDR4 (45.0 ns for a row miss) over that of DDR3
(26.3 ns), such applications do not experience a significant im-
pact on their overall execution time. Second, applications with
high BPU can take advantage of the larger number of banks in
LPDDR4. The greater number of banks in LPDDR4 (16 per rank)
than in DDR3 (8 per rank) actually helps LPDDR4 to (partially)
overcome the overhead of additional latency.
For system architects, this means that there are a number of cases
where they can deploy systems that use LPDDR4 to reduce the
system energy consumption with a small impact on system per-
formance, thereby improving energy efficiency.
For DRAM architects, there is a need to develop newDRAM types
and subsystems that consume low energy without impacting
system performance across a broad range of applications.

11 RELATEDWORK
To our knowledge, this is (1) the first work to uncover new trends
about and interactions between different DRAM types and the per-
formance and energy consumption of modern workloads, (2) the
most extensive study performed to date on the combined DRAM–
workloadbehavior, and (3) themost comprehensive study todate that
compares the performance of monolithic (i.e., 2D) and 3D-stacked
DRAM. No prior work presents a comprehensive study across such
a wide variety of workloads (115 of them) and DRAM types (nine of
them).We briefly discuss the most closely related works.

Cuppu et al. [28, 29] present a study of seven DRAM types and
their interaction with a suite of desktop and scientific applications.
Their work, more than two decades old now, noted several charac-
teristics emerging from then-contemporary DRAM designs (many
of which do not exist in the field today), andmade recommendations
based on these insights. Similar to some of our findings, Cuppu et al.
recommend that memory latency needs to be reduced, and spatial
locality needs to be further exploited by the memory subsystem.
Other recommendations from Cuppu et al. are more relevant for the
older DRAM types that they study, and in some cases do not apply to
the modern DRAM types that we study in this work. Later work by
Cuppuand Jacob [30] studies the impact of differentmemorychannel
configurations on application performance, which is orthogonal to
the characterizations that we perform.

Zhu and Zhang [196] study how various DRAM types can be
optimized to work with simultaneous multithreading (SMT) proces-
sors, but do not perform a broad characterization of applications.
Zheng and Zhu [195] compare the performance of DDR3 DRAM to

DDR2 [71] and FB-DIMM [70] for 26 desktop and scientific applica-
tions. Gomony et al. [48] characterize three low-power DRAM types
for mobile systems, and propose a tool to select the right type for
real-timemobile systems. All of these studies predate the emergence
of most of the DRAM types that we characterize (DDR4, LPDDR3,
LPDDR4, HBM, HMC,Wide I/O 2), do not evaluate energy consump-
tion, and focus only on a limited set of applications.

Li et al. [114] evaluate the performance and power of nine mod-
ern DRAM types, including two versions each of HMC and HBM.
However, unlike our wide range of applications, their evaluation
studies only 10 desktop and scientific applications. Furthermore,
their memory configuration uses row interleaving, which reduces
the bank-level parallelism compared to manymodern systems that
use cache line interleaving [60, 64, 65, 80, 94, 98, 112, 156, 193].

Several works study the impact of new and existing memory
controller policies on performance (e.g., [7, 15, 17, 21, 31, 39, 40,
44, 52, 57, 67, 68, 81, 82, 84, 91, 94, 95, 102–106, 109, 115, 130–
132, 135, 140, 142, 154–156, 163, 174–177, 185–187, 190, 192–194]).
These works are orthogonal to our study, which keeps controller
policies constant and explores the effect of the underlying DRAM
type. Other works profile the low-level behavior of DRAM types by
characterizing real DRAM chips (e.g., [15, 19, 21, 45, 51, 85–88, 91–
93, 97, 105, 109, 116, 145, 146, 151]). These works focus on a sin-
gle DRAM type (DDR3 or LPDDR4), and do not use real-world
applications to perform their characterization, since their goal is
to understand device behavior independently of workloads. A few
works [58, 123, 162, 171, 172] perform large-scale characterization
studies of DRAM errors in the field. These works examine reliability
in a specific setting (e.g., datacenters, supercomputers), and as a
result they do not focus onmetrics such as performance or energy,
and do not consider a broad range of application domains.

A number of works study the memory access behavior of bench-
mark suites (e.g., [2, 10, 22, 53, 54, 122, 133, 167]). These works fo-
cus on only a single DRAM type. Conversely, several works pro-
pose DRAM simulators and use the simulators to study the memory
access behavior of a limited set of workloads on several memory
types [3, 46, 96, 113, 153, 158, 179]. None of these studies (1) take
a comprehensive look at as wide a range of workloads and DRAM
types as we do, or (2) evaluate energy consumption.

12 CONCLUSION
It has become very difficult to intuitively understand howmodern
applications interact with different DRAM types. This is due to the
emergence of (1) many newDRAM types, each catering to different
needs (e.g., high bandwidth, low power, high memory density); and
(2) new applications that are often data intensive. The combined
behavior of each pair of workload and DRAM type is impacted by
the complex interaction between memory latency, bandwidth, bank
parallelism, row buffer locality, memory access patterns, and energy
consumption. In this work, we perform a comprehensive experi-
mental study to analyze these interactions, by characterizing the
behavior of 115 applications andworkloads across nineDRAM types.
With the help of newmetrics that capture the interaction between
memory access patterns and the underlying hardware, we make
12 key observations and draw out many new findings about the
combined DRAM–workload behavior. We then provide a number of

18

recommendations for DRAM architects, system architects, and pro-
grammers. We hope that our observations inspire the development
of manymemory optimizations in both hardware and software. To
this end, we have released our toolchain with the hope that the tools
can assist with future studies and research on memory optimization
in both hardware and software.

ACKNOWLEDGMENTS
WethankourshepherdEvgeniaSmirniandtheanonymousreviewers
for feedback. We thank the SAFARI Research Group members for
feedback and the stimulating intellectual environment they provide.
We acknowledge the generous support of our industrial partners:
Alibaba, Facebook, Google, Huawei, Intel, Microsoft, and VMware.
This research was supported in part by the Semiconductor Research
Corporation and the National Science Foundation.

REFERENCES
[1] Advanced Micro Devices, Inc., “High Bandwidth Memory (HBM) DRAM,” 2013.
[2] K. K. Agaram, S. W. Keckler, C. Lin, and K. S. McKinley, “Decomposing Memory

Performance: Data Structures and Phases,” in ISMM, 2006.
[3] J. Ahn, N. Jouppi, C. Kozyrakis, J. Leverich, and R. Schreiber, “Future Scaling of

Processor-Memory Interfaces,” in SC, 2009.
[4] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A. Navaux,

“SiNUCA: A Validated Micro-Architecture Simulator,” in HPCC/CSS/ICESS, 2015.
[5] Apache Foundation, “Apache Hadoop,” http://hadoop.apache.org/.
[6] Apache Foundation, “Apache HTTP Server Project,” http://www.apache.org/.
[7] R. Ausavarungnirun, K. K. Chang, L. Subramanian, G. H. Loh, and O. Mutlu,

“Staged Memory Scheduling: Achieving High Performance and Scalability in
Heterogeneous Systems,” in ISCA, 2012.

[8] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[9] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. H. K. Narayanan,
A. A. Chien, P. Hovland, and B. Norris, “Exascale Workload Characterization
and Architecture Implications,” in ISPASS, 2013.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications,” Princeton Univ. Dept. of Computer
Science, Tech. Rep. TR-811-08, 2008.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “gem5: A Multiple-ISA Full System Simulator with
Detailed Memory Model,” CAN, 2011.

[12] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of Irregular Pro-
grams on GPUs,” in IISWC, 2012.

[13] Canonical Ltd., “Ubuntu 14.04 LTS (Trusty Tahr),” http://releases.ubuntu.com/
14.04/, 2014.

[14] Canonical Ltd., “Ubuntu 16.04 LTS (Xenial Xerus),” http://releases.ubuntu.com/
16.04/, 2016.

[15] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens, “Exploiting Expendable Process-Margins in DRAMs for Run-Time
Performance Optimization,” in DATE, 2014.

[16] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson,
N. Wehn, and K. Goossens, “DRAMPower: Open-Source DRAM Power & Energy
Estimation Tool,” http://www.drampower.info.

[17] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes With
Accesses,” in HPCA, 2014.

[18] K. K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[19] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[20] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Mem-
ory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[21] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhi-
menko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[22] M. J. Charney and T. R. Puzak, “Prefetching and Memory System Behavior of
the SPEC95 Benchmark Suite,” IBM JRD, 1997.

[23] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian,
“Managing DRAM Latency Divergence in Irregular GPGPU Applications,” in SC,
2014.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC, 2009.

[25] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L.-S. Kim, “Multiple Clone
Row DRAM: A Low Latency and Area Optimized DRAM,” in ISCA, 2015.

[26] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations for Exploit-
ing Memory-Level Parallelism,” in ISCA, 2004.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-
ing Cloud Serving Systems with YCSB,” in SoCC, 2010.

[28] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A Performance Comparison of
Contemporary DRAM Architectures,” in ISCA, 1999.

[29] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “High-Performance DRAMs in
Workstation Environments,” in IEEE Transactions on Computers, 2001.

[30] V. Cuppu and B. Jacob, “Concurrency, Latency, or System Overhead: Which
Has the Largest Impact on Uniprocessor DRAM-System Performance?” in ISCA,
2001.

[31] A. Das, H. Hassan, and O. Mutlu, “VRL-DRAM: Improving DRAM Performance
via Variable Refresh Latency,” in DAC, 2018.

[32] R. Das, O. Mutlu, T. Moscibroda, and C. Das, “Application-Aware Prioritization
Mechanisms for On-Chip Networks,” in MICRO, 2009.

[33] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory Power
Management via Dynamic Voltage/Frequency Scaling,” in ICAC, 2011.

[34] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in OSDI, 2004.

[35] R. Desikan, D. Burger, and S. W. Keckler, “Measuring Experimental Error in
Microprocessor Simulation,” in ISCA, 2001.

[36] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “OLTP-Bench: An
Extensible Testbed for Benchmarking Relational Databases,” in VLDB, 2004.

[37] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory,” TCAD, 2012.

[38] Dormando, “Memcached: High-Performance Distributed Memory Object
Caching System,” http://memcached.org/.

[39] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware Shared Resource
Management for Multi-Core Systems,” in ISCA, 2011.

[40] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.
Patt, “Parallel application memory scheduling,” in MICRO, 2011.

[41] F. A. Endo, D. Coroussé, and H.-P. Charles, “Micro-Architectural Simulation of
In-Order and Out-of-Order ARM Microprocessors with gem5,” in SAMOS, 2014.

[42] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[43] J. Fritts and B. Mangione-Smith, “MediaBench II - Technology, Status, and
Cooperation,” in The Workshop on Media and Stream Processors, 2002.

[44] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via
Processor-Side Load Criticality Information,” in ISCA, 2013.

[45] S. Ghose, A. G. Yağlıkçı, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu, H. Hassan, K. K.
Chang, N. Chatterjee, A. Agrawal, M. O’Connor, and O. Mutlu, “What Your
DRAMPowerModels Are Not Telling You: Lessons from aDetailed Experimental
Study,” in SIGMETRICS, 2018.

[46] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. Chen, R. Patti, B. Hold,
C. Chakrabarti, T. Mudge, and D. Blaauw, “Exploring DRAM Organizations for
Energy-Efficient and Resilient Exascale Memories,” in SC, 2013.

[47] A. Glew, “MLP Yes! ILP No! Memory Level Parallelism, or Why I No Longer
Care About Instruction Level Parallelism,” in ASPLOS WACI, 1998.

[48] M. D. Gomony, C.Weis, B. Akesson, N.Wehn, and K. Goossens, “DRAMSelection
and Configuration for Real-Time Mobile Systems,” in DATE, 2012.

[49] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and More
Flexible Program Phase Analysis,” JILP, 2005.

[50] H. Hassan, M. Patel, J. S. Kim, A. G. Yağlıkçı, N. Vijaykumar, N. M. Ghiasi,
S. Ghose, and O. Mutlu, “CROW: A Low-Cost Substrate for Improving DRAM
Performance, Energy Efficiency, and Reliability,” in ISCA, 2019.

[51] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infras-
tructure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[52] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[53] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mars: A MapReduce
Framework on Graphics Processors,” in PACT, 2008.

[54] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Mil-
lennium,” IEEE Computer, 2000.

[55] Hewlett-Packard, “Netperf: A Network Performance Benchmark (Rev. 2.1),” 1996.
[56] U. Holzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.
[57] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” in MICRO,

2004.
[58] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice:

Understanding the Nature of DRAM Errors and the Implications for System
Design,” in ASPLOS, 2012.

[59] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification 2.1,”
2015.

[60] IBM Corp., POWER9 Processor RegistersSpecification, Vol. 3, May 2017.

19

[61] Intel Corp., “Product Specification: Intel® Core™ i7-2600K,” https://ark.intel.
com/products/52214/.

[62] Intel Corp., “Product Specification: Intel® Core™ i7-975 Processor Extreme
Edition,” https://ark.intel.com/products/37153/.

[63] Intel Corp., “Product Specification: Intel® Xeon® Processor E5-2630 v4,” https:
//ark.intel.com/products/92981/.

[64] Intel Corp., 7th Generation Intel® Processor Families for S Platforms and Intel®
Core™ X-Series Processor Family Datasheet, Vol. 1, December 2018.

[65] Intel Corp., Intel® Xeon® Processor E5-1600/2400/2600/4600 (E5-Product Family)
Product Families Datasheet Vol. 2, May 2018.

[66] IOzone Lab, “IOzone Filesystem Benchmark,” http://www.iozone.org/, 2016.
[67] E. İpek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach,” in ISCA, 2008.
[68] C. Isen and L. John, “ESKIMO — Energy Savings Using Semantic Knowledge of

Inconsequential Memory Occupancy for DRAM Subsystem,” in MICRO, 2009.
[69] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Architecture

Increases Density and Performance,” in VLSIT, 2012.
[70] JEDEC Solid State TechnologyAssn., JESD206: FBDIMMArchitecture and Protocol,

January 2007.
[71] JEDEC Solid State Technology Assn., JESD79-2F: DDR2 SDRAM Standard, No-

vember 2009.
[72] JEDEC Solid State Technology Assn., JESD229: Wide I/O Single Data Rate (Wide

I/O SDR) Standard, December 2011.
[73] JEDEC Solid State Technology Assn., JESD79-3F: DDR3 SDRAM Standard, July

2012.
[74] JEDEC Solid State Technology Assn., JESD235: High Bandwidth Memory (HBM)

DRAM, October 2013.
[75] JEDEC Solid State Technology Assn., JESD229-2: Wide I/O 2 (WideIO2) Standard,

August 2014.
[76] JEDEC Solid State Technology Assn., JESD209-3C: Low Power Double Data Rate

3 (LPDDR3) Standard, August 2015.
[77] JEDEC Solid State Technology Assn., JESD212C: Graphics Double Data Rate

(GDDR5) SGRAM Standard, February 2016.
[78] JEDEC Solid State Technology Assn., JESD209-4B: Low Power Double Data Rate

4 (LPDDR4) Standard, March 2017.
[79] JEDEC Solid State Technology Assn., JESD79-4B: DDR4 SDRAM Standard, June

2017.
[80] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez, “Balancing

DRAM Locality and Parallelism in Shared Memory CMP Systems,” in HPCA,
2012.

[81] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-Aware Memory Con-
troller for Dynamically Balancing GPU and CPU Bandwidth Use in an MPSoC,”
in DAC, 2012.

[82] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[83] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[84] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM
Page-Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.

[85] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique
to Detect Data Dependent Failures in DRAM,” in DSN, 2016.

[86] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[87] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” CAL, 2016.

[88] S. Khan, C. Wilkerson, Z. Wang, A. Alameldeen, D. Lee, and O. Mutlu, “Detecting
and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory
Content,” in MICRO, 2017.

[89] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System Interconnect
Design with Hybrid Memory Cubes,” in PACT, 2013.

[90] J. S. Kim, C. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J. G. Kim,
H. Park, J. W. Ryu, K. Park, S. K. Kang, S. Y. Kim, H. Kim, J. M. Bang, H. Cho,
M. Jang, C. Han, J. B. Lee, K. Kyung, J. S. Choi, and Y. H. Jun, “A 1.2V 12.8GB/s
2Gb Mobile Wide-I/O DRAM with 4x128 I/Os Using TSV-Based Stacking,” in
ISSCC, 2011.

[91] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing DRAM
Access Latency by Exploiting the Variation in Local Bitlines,” in ICCD, 2018.

[92] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeoff in Modern DRAM Devices,” in HPCA, 2018.

[93] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Com-
modity DRAM Devices to Generate True Random Numbers with Low Latency
and High Throughput,” in HPCA, 2019.

[94] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

[95] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[96] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM
Simulator,” CAL, 2015.

[97] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[98] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[99] N. Kırman, M. Kırman, M. Chaudhuri, and J. F. Martínez, “Checkpointed Early
Load Retirement,” in HPCA, 2005.

[100] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge,
and S. Mahlke, “WarpPool: Sharing Requests with Inter-Warp Coalescing for
Throughput Processors,” in MICRO, 2015.

[101] K. Lawton, B. Denney, and C. Bothamy, “The Bochs IA-32 emulator project,”
http://bochs.sourceforge.net, 2006.

[102] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-
trollers,” in MICRO, 2008.

[103] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[104] C. J. Lee, E. Ebrahimi, V. Narasiman, O. Mutlu, and Y. N. Patt, “DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory
Systems,” Univ. of Texas at Austin, High Performance Systems Group, Tech. Rep.
TR-HPS-2010-002, 2010.

[105] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in
SIGMETRICS, 2017.

[106] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[107] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon Univ., 2016.

[108] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO,
2016.

[109] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[110] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[111] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller, “Energy
Management for Commercial Servers,” Computer, 2003.

[112] Lenovo Group Ltd., “Intel Xeon Scalable Family Balanced Memory Configura-
tions,” https://lenovopress.com/lp0742.pdf, 2017.

[113] A. Li, W. Liu, M. R. B. Kistensen, B. Vinter, H. Wang, K. Hou, A. Marquez, and
S. L. Song, “Exploring and Analyzing the Real Impact of Modern On-Package
Memory on HPC Scientific Kernels,” in SC, 2017.

[114] S. Li, D. Reddy, and B. Jacob, “A Performance & Power Comparison of Modern
High-Speed DRAM Architectures,” in MEMSYS, 2018.

[115] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[116] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Profiling Mechanisms,” in ISCA, 2013.

[117] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” in
ISCA, 2008.

[118] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI, 2005.

[119] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Throughput and Fairness in
SMT Processors,” in ISPASS, 2001.

[120] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis, and
M. Horowitz, “Towards Energy-Proportional Datacenter Memory with Mobile
DRAM,” in ISCA, 2012.

[121] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni,
Y. Li, and C. J. Radens, “Challenges and Future Directions for the Scaling of
Dynamic Random-Access Memory (DRAM),” IBM JRD, 2002.

[122] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current High
Performance Computers,” TCCA Newsletter, 1995.

[123] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[124] Micron Technology, Inc., Technical Note TN-46-12: Mobile DRAM Power-
Saving Features and Calculations, May 2009, https://www.micron.com/~/media/
documents/products/technical-note/dram/tn4612.pdf.

[125] Micron Technology, Inc., “DDR3 SDRAM Verilog Model, v. 1.74,”
https://www.micron.com/-/media/client/global/documents/products/sim-
model/dram/ddr3/ddr3-sdram-verilog-model.zip, 2015.

20

[126] Micron Technology, Inc., 178-Ball 2E0F Mobile LPDDR3 SDRAM Data Sheet, April
2016.

[127] Micron Technology, Inc., 2Gb: x4, x8, x16 DDR3 SDRAM Data Sheet, February
2016.

[128] Micron Technology, Inc., 200-Ball Z01M LPDDR4 SDRAM Automotive Data Sheet,
May 2018.

[129] Micron Technology, Inc., 4Gb: x4, x8, x16 DDR4 SDRAM Data Sheet, June 2018.
[130] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application

to Multi-Core DRAM Controllers,” in PODC, 2008.
[131] J. Mukundan and J. F. Martínez, “MORSE: Multi-objective Reconfigurable Self-

Optimizing Memory Scheduler,” in HPCA, 2012.
[132] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,

“Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning,” in MICRO, 2011.

[133] R. C. Murphy and P. M. Kogge, “On the Memory Access Patterns of Supercom-
puter Applications: Benchmark Selection and Its Implications,” TC, 2007.

[134] O. Mutlu, “The RowHammer Problem and Other Issues WeMay Face as Memory
Becomes Denser,” in DATE, 2017.

[135] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[136] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[137] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for Efficient Processing in Runa-

head Execution Engines,” in ISCA, 2005.
[138] O. Mutlu, H. Kim, and Y. N. Patt, “Efficient Runahead Execution: Power-Efficient

Memory Latency Tolerance,” IEEE Micro, 2006.
[139] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.
[140] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[141] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An

Alternative to Very Large Instruction Windows for Out-of-Order Processors,”
in HPCA, 2003.

[142] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair Queuing Memory
Systems,” in MICRO, 2006.

[143] NVIDIA Corp., “GeForce GTX 480: Specifications,” https://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-480/specifications.

[144] NXP Semiconductors, “QorIQ Processing Platforms: 64-Bit Multicore
SoCs,” https://www.nxp.com/products/processors-and-microcontrollers/
applications-processors/qoriq-platforms:QORIQ_HOME.

[145] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Modeling
On-Die Error Correction in Modern DRAM: An Experimental Study Using Real
Devices,” in DSN, 2019.

[146] M. Patel, J. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,”
in ISCA, 2017.

[147] I. Paul,W. Huang,M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute
and Memory Power in High-Performance GPUs,” in ISCA, 2015.

[148] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in HC, 2011.
[149] S. Pelley, “atomic-memory-trace,” https://github.com/stevenpelley/atomic-

memory-trace, 2013.
[150] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson,

and T. Roscoe, “Arrakis: The Operating System Is the Control Plane,” TOCS,
2016.

[151] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[152] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-Aware
Cache Replacement,” in ISCA, 2006.

[153] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee, P. Radojković,
and E. Ayaguadé, “Another Trip to the Wall: How Much Will Stacked DRAM
Benefit HPC?” in MEMSYS, 2015.

[154] S. Rixner, “Memory Controller Optimizations for Web Servers,” in MICRO, 2004.
[155] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access

Scheduling,” in ISCA, 2000.
[156] T. Rokicki, “IndexingMemory Banks toMaximize PageMode Hit Percentage and

Minimize Memory Latency,” HP Laboratories Palo Alto, Tech. Rep. HPL-96-95,
1996.

[157] P. Rosenfeld, E. Cooper-Balis, T. Farrell, D. Resnick, and B. Jacob, “Peering
Over the Memory Wall: Design Space and Performance Analysis of the Hybrid
Memory Cube,” Univ. of Maryland Systems and Computer Architecture Group,
Tech. Rep. UMD-SCA-2012-10-01, 2012.

[158] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate
Memory System Simulator,” CAL, 2011.

[159] SAFARI Research Group, “GPGPUSim+Ramulator — GitHub Repository,” https:
//github.com/CMU-SAFARI/GPGPUSim-Ramulator.

[160] SAFARI Research Group, “MemBen: A Memory Benchmark Suite for Ramulator
— GitHub Repository,” https://github.com/CMU-SAFARI/MemBen.

[161] SAFARI Research Group, “Ramulator: A DRAM Simulator — GitHub Repository,”
https://github.com/CMU-SAFARI/ramulator.

[162] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A
Large-Scale Field Study,” in SIGMETRICS, 2009.

[163] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “The Dirty-Block Index,” in ISCA, 2014.

[164] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[165] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO,
2017.

[166] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” in Ad-
vances in Computers, 2020, available as arXiv:1905.09822 [cs.AR].

[167] S. Singh and M. Awasthi, “Memory Centric Characterization and Analysis of
SPEC CPU2017 Suite,” in ICPE, 2019.

[168] SK Hynix Inc., 2Gb (64Mx32) GDDR5 SGRAM Data Sheet, November 2011.
[169] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous

Multithreading Processor,” in ASPLOS, 2000.
[170] Y. H. Son, S. O, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory Access Latency

with Asymmetric DRAM Bank Organizations,” in ISCA, 2013.
[171] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi,

“Feng Shui of Supercomputer Memory: Positional Effects in DRAM and SRAM
Faults,” in SC, 2013.

[172] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, The Bad,
and the Ugly,” in ASPLOS, 2015.

[173] Standard Performance Evaluation Corp., “SPEC CPU2006 Benchmarks,” http:
//www.spec.org/cpu2006/.

[174] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John, “Elastic Refresh: Tech-
niques to Mitigate Refresh Penalties in High Density Memory,” in MICRO, 2010.

[175] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The Virtual
Write Queue: Coordinating DRAM and Last-Level Cache Policies,” in ISCA, 2010.

[176] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” TPDS,
2016.

[177] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting
Memory Scheduler: Achieving High Performance and Fairness at Low Cost,” in
ICCD, 2014.

[178] B. Sun, X. Li, Z. Zhu, and X. Zhou, “Behavior Gaps and Relations between
Operating System and Applications on Accessing DRAM,” in ICECCS, 2014.

[179] A. Suresh, P. Cicotti, and L. Carrington, “Evaluation of Emerging Memory
Technologies for HPC, Data Intensive Applications,” in CLUSTER, 2014.

[180] X. Tang, M. Kandemir, P. Yedlapalli, and J. Kotra, “Improving Bank-Level Paral-
lelism for Irregular Applications,” in MICRO, 2016.

[181] J. Tuck, L. Ceze, and J. Torrellas, “Scalable Cache Miss Handling for High
Memory-Level Parallelism,” in MICRO, 2006.

[182] R. Ubal, B. Jand, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A Simulation
Framework for CPU–GPU Computing,” in PACT, 2012.

[183] United States Department of Energy, “CORAL Benchmark Codes,” https://asc.
llnl.gov/CORAL-benchmarks/, 2014.

[184] United States Department of Energy, “CORAL-2 Benchmarks,” https://asc.llnl.
gov/coral-2-benchmarks/, 2017.

[185] H. Usui, L. Subramanian, K. K. Chang, and O. Mutlu, “DASH: Deadline-Aware
High-Performance Memory Scheduler for Heterogeneous Systems with Hard-
ware Accelerators,” TACO, 2016.

[186] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in
DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA,
2006.

[187] Y. Wang, A. Tavakkol, L. Orosa, S. Ghose, N. Mansouri Ghiasi, M. Patel, J. S.
Kim, H. Hassan, M. Sadrosadati, and O. Mutlu, “Reducing DRAM Latency via
Charge-Level-Aware Look-Ahead Partial Restoration,” in MICRO, 2018.

[188] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter,
“Architecting for Power Management: The IBM POWER7 Approach,” in HPCA,
2010.

[189] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan, “BOOM: Enabling
Mobile Memory Based Low-Power Server DIMMs,” in ISCA, 2012.

[190] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity Effective Memory
Access Scheduling for Many-Core Accelerator Architectures,” in MICRO, 2009.

[191] J. Zawodny, “Redis: Lightweight Key/Value Store That Goes the Extra Mile,” in
Linux Magazine, 2009.

[192] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “Restore Truncation for Perfor-
mance Improvement in Future DRAM Systems,” in HPCA, 2016.

[193] Z. Zhang, Z. Zhu, and X. Zhang, “A Permutation-Based Page Interleaving
Scheme to Reduce Row-Buffer Conflicts and Exploit Data Locality,” in MICRO,
2000.

[194] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and High-Performance Memory
Control for Persistent Memory Systems,” in MICRO, 2014.

[195] H. Zheng and Z. Zhu, “Power and Performance Trade-Offs in Contemporary
DRAM System Designs for Multicore Processors,” TC, 2010.

[196] Z. Zhu and Z. Zhang, “A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors,” in HPCA, 2005.

[197] W. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That Maxi-
mizes Throughput by Allowing Memory Requests and Commands to Be Issued
Out of Order,” U.S. Patent No. 5,630,096, 1997.

21

APPENDIX
A BACKGROUND ON MODERN DRAM TYPES
DDR3. Double Data Rate (DDR3) [73] memory is the third gener-
ation of DDR DRAM. Each rank in DDR3 consists of eight banks,
which ideally allows eight memory requests to be performed in
parallel in a rank. All of the banks share a single memory channel,
and the memory controller must schedule resources to ensure that
request responses do not conflict with each other on the channel
when each response is being sent fromDRAM to the processor. In
order to reduce memory channel contention and increase memory
throughput, DDR3 transmits data on both the positive and negative
edges of the bus clock,which doubles the data rate by allowing a data
burst (i.e., a piece of data) to be transmitted in only half a clock cycle.
In DDR3, eight 64-bit data bursts are required for each 64-byte read
request [73]. DDR3 was first released in 2007 [73], but continues to
be one of the most popular types of DRAM available on the market
today due to its low cost. However, with the limited number of banks
per rank and the difficulties of increasing DDR3 bus clock frequen-
cies, manufacturers no longer aggressively increase the density of
DDR3memories.
DDR4. DDR4 [79] has evolved from the DDR3 DRAM type as a
response to solving some of the issues of earlier DDR designs. A
major barrier to DRAM scalability is the eight-bank design used in
DDR3memories, as it is becomingmoredifficult to increase thesizeof
theDRAMarraywithineachbank. In response to this,DDR4employs
bank groups [79], which enable DDR4 to double the number of banks
in a cost-effective manner. A bank group represents a new level of
hierarchy, where it is faster to access two banks in two different
bank groups than it is to access two banks within the same group.
This is a result of the additional I/O sharing that takes place within
a bank group, which reduces hardware cost but leads to conflicts
when two requests access different banks in the same bank group.
One drawback of the DDR4 implementation of bank groups is that
the average memory access takes longer in DDR4 than it did in
DDR3. DRAM vendors make the trade-off of having additional bank-
level parallelism and higher bus throughput in DDR4, which can
potentiallyoffset the latency increasewhenanapplicationeffectively
exploits bank-level parallelism.
GDDR5. Like DDR4, Graphics DDR5 (GDDR5) [77] memory uses
bank groups to double the number of banks. However, GDDR5 does
so without increasing memory latency, instead increasing the die
area and energy. Due to these additional costs, GDDR5 is currently
unable to support the memory densities available in DDR4. GDDR5
increases memory throughput significantly over DDR3 by quad
pumping its data (i.e., it effectively sends four pieces of data in a
single clock cycle, as opposed to the two pieces sent by DDR3) [77].
In addition, GDDR5memories are clocked at a faster frequency. This
aggressive throughput is especially helpful for GPUs, as they often
performmany data-parallel operations that require high memory
throughput. As a result, many GPUs use GDDR5memory.
3D-Stacked DRAM. Thanks to recent innovations, manufacturers
are now able to build 3D-stackedmemories, wheremultiple layers of
DRAM are stacked on top of one another. Amajor advantage of 3D
stacking is the availability of through-silicon vias [108, 117], vertical
interconnects that provide a high-bandwidth interface across the

layers. TheHighBandwidthMemory (HBM),Wide I/O, andWide I/O
2DRAMtypesexploit 3Dstacking fordifferentpurposes.HBM[1, 74]
is a response to the need for improved memory bandwidth for GPUs
without the high power costs associated with GDDR5. HBMDRAM
is clocked much slower than GDDR5, but connects four to eight
memory channels to a single DRAMmodule. The large number of
memorychannelsallowseachHBMmodule to servicea largenumber
of requests in parallel without I/O contention. Wide I/O [72] and
Wide I/O 2 [75] apply the same principle while targeting low-power
devices (e.g.,mobile phones) [90]. Asmobile devices are not expected
to require as much throughput as GPUs, Wide I/O andWide I/O 2
have fewer memory channels connected to each stack, and use fewer
banks than HBM and GDDR5.

The Hybrid Memory Cube (HMC) [59, 69, 148, 157] makes more
radical changes to the memory design. HMC is a 3D-stacked mem-
ory designed to maximize the amount of parallelism that DRAM
can deliver. It has increased access latencies in order to provide a
significant increase in the number of banks (256 in HMC v2.1 [59]).
Instead of employing a traditional on-chip memory controller, a
processor using an HMC chip simply sends requests in FIFO order
to the memory, over a high-speed serial link. Unlike other DRAM
types, all scheduling constraints in HMC are handled within the
memory itself, as the HMCmemory controller in the logic layer of
thememory chip performs scheduling. To keep this scheduling logic
manageable, HMC partitions its DRAM into multiple vaults, each
of which consists of a small, multi-bank vertical slice of memory.
To facilitate the partitioning of memory into vaults, HMC reduces
the size of each row in memory from the typical 4–8 kB down to
256 bytes.
LPDDR3 and LPDDR4. In order to decrease the power consumed
by DDRx DRAM, manufacturers have created low-power (LP) vari-
ants, known as LPDDR3 and LPDDR4. LPDDR3 [76] reduces power
over DDR3 by using a lower core voltage, employing deep power-
downmodes, and reducing the number of chips used in each DRAM
module. One drawback of the lower core voltage and the deep power-
downmode is thatmemory accesses take significantly longer on low-
power memories (see Table 1). LPDDR4 [78] achieves even greater
power savings by cutting the width of each chip in half with respect
to LPDDR3. A smaller chipwidth leads to lower power consumption,
but requires LPDDR4 to perform double the number of data bursts
(i.e., have higher latency) for each request to keep the throughput
intact.

B RAMULATOR MODIFICATIONS
We characterize the different DRAM architectures using a heavily-
modified version of Ramulator [96]. Ramulator is a detailed and
extensible open-source DRAM simulator [161]. We make several
modifications to Ramulator to improve the fidelity of our experi-
ments. First, we implement a shared last-level cache, to ensure that
the initial contention betweenmemory requests from different cores
takes place before the requests reach memory, just as they would
in a real computer. Second, we add support for virtual-to-physical
address translation. Third, we implement a faithful model of HMC
version 2.1 [59]. Our model accurately replicates the high-speed se-
rial link in HMC, and includes a logic layer where DRAM commands
are scheduled.

22

Our modifications allow us to use application traces to drive the
simple core model built into Ramulator, as opposed to using a de-
tailed CPU timing simulator to execute the application, without
losing accuracy. As a result, we can significantly reduce the total
simulation time required, and can simulate applications with much
larger memory footprints without the need for large computing re-
sources. We simulate a 4 GHz, 4-issue processor with a 128-entry
reorder buffer, and an 8-way set associative shared last-level cache
(seeTable 2 inSection3).Wehaveopen-sourcedourmodifiedversion
of Ramulator [161].
Validation.We validate our trace-based approach by comparing
(a) the simple core model results from our modified version of Ra-
mulator with (b) results generated when we execute applications
using gem5 [11], a detailed, full-system, cycle-accurate CPU timing
simulator.We integrate gem5 [11]with the unmodified version of Ra-
mulator to accuratelymodel thememory system. Priorwork [96] has
already validated the memorymodel in the unmodified Ramulator
with a Verilog memory model provided byMicron [125].

To perform our validation, we run all of our SPEC CPU2006 [173]
applications using both our trace-driven modified Ramulator and
the full-system gem5 with Ramulator. We configure both simulators
to use the system configuration in Table 2. As we are interested in
comparing trends across applications and across memory types, we
normalize the performance (i.e., execution time) of each application
to one benchmark (gamess). We find that normalized performance
results fromourtrace-drivenmodifiedRamulatordifferbyanaverage
of only 6.1% from the performance results when using full-system
gem5 and Ramulator. As other works have shown, much larger
differences between a simulation platform and the system being
modeled by the simulator are still representative of the behavior
of the modeled system. For example, other popular and publicly-
available simulators that have been validated report average errors
of 4.9% [41], 12–19% [4], 20% [182], and 19.5% [35]. We believe that
our average validation error, which at 6.1% is on the lower end of
this error range, represents that the quantitative values generated
by our simulator can be trusted, and that the general observations
that wemake are accurate.

C WORKLOAD DETAILS
We study 87 different applications, spread over a diverse range of
uses. In our characterization,we categorize our applications into one
of six families: desktop/scientific [10, 173, 183, 184], server/cloud [5,
6, 27, 36, 38, 191], multimedia acceleration [43], network accelera-
tion [144], GPGPU [12, 24, 53], and OS routines [55, 66, 164]. These
applications have been collected from a wide variety of sources. The
87 evaluated applications are listed across four tables: Table 3 lists
desktop/scientific applications (characterized in Sections 5 and 6);
Table 4 lists server/cloud applications (characterized in Section 7); Ta-
ble 5 lists multimedia, network accelerator, and GPGPU applications
(characterized in Section 8); and Table 6 lists OS routines (charac-
terized in Section 9). In each table, we list the input size, and the
total DRAM footprint of memory accesses performed in DRAM (i.e.,
the number of unique byte addresses that are read from or written
to DRAM). Note that the DRAM footprints consider only last-level
cachemisses toDRAM, and donot include anymemory accesses that

Table 3: Evaluated desktop/scientific applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

SPEC CPU2006

gamess ref 0.8MB
povray ref 1.0MB
calculix ref 1.1MB
h264ref ref 9.4MB
perlbench ref 20.4MB
hmmer ref 7.5MB
bzip2 ref 9.0MB
sjeng ref 166.0MB

sphinx3 ref 17.1MB
namd ref 39.9MB
astar ref 25.1MB
gobmk ref 25.6MB
zeusmp ref 128.0MB

cactusADM ref 166.5MB
gcc ref 91.2MB

omnetpp ref 145.6MB
soplex ref 58.0MB
bwaves ref 559.8MB

GemsFDTD ref 718.5MB
milc ref 362.0MB

libquantum ref 32.0MB
mcf ref 1673.0MB

PARSEC

blackscholes simmedium 3.8MB
canneal simmedium 2268.7MB

fluidanimate simmedium 350.5MB
raytrace simmedium 323.0MB
bodytrack simmedium 65.3MB
facesim simmedium 374.3MB
freqmine simmedium 503.3MB

streamcluster simmedium 72.1MB
swaptions simmedium 31.1MB

CORAL miniFE 32 x 32 x 32 52.5MB
64 x 64 x 64 288.1MB

CORAL-2 quicksilver Coral2_P1.inp, 4 x 4 x 4 56.6MB
pennant leblanc.pnt 8.6MB

Table 4: Evaluated server/cloud applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

Hadoop

grep 1GB

map 0: 147.5MB
map 1: 149.2MB
map 2: 147.1MB
map 3: 145.9MB
reduce: 26.9MB

wordcount 1GB

map 0: 1332.2MB
map 1: 1307.3MB
map 2: 1308.2MB
map 3: 1360.3MB
reduce: 81.2MB

sort 1GB
map 0: 19.1MB
map 1: 19.9MB
map 2: 19.5MB
map 3: 21.0MB

YCSB + Redis

workload A — server: 217.9MB
bgsave: 195.0MB

workload B — server: 219.5MB
workload C — server: 218.6MB
workload D — server: 193.2MB
workload E — server: 27.0MB

—
MySQL employeedb 65.1MB

Memcached continuous insertions 177.4MB
Apache2 continuous wget() calls 200.0MB

hit in the caches. As a result, the DRAM footprints that we report
may be smaller than the working set sizes reported in other works.

We run our workloads to completion, with three exceptions. For
our desktop benchmarks, we identify a representative phase of ex-
ecution using Simpoint [49]. During simulation, we warm up the

23

Table 5: Evaluated heterogeneous system applications.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

MediaBench II
H.264 encode base_4CIF 10.2MB
H.264 decode base_4CIF 8.3MB

JPEG-2000 encode base_4CIF 24.4MB
JPEG-2000 decode base_4CIF 21.5MB

NXP Network Trace A — 0.7MB
Accelerator Trace B — 0.8MB

LonestarGPU

dmr r1M 0.1MB
bh 50K bodies 0.5 kB
mst USA-road-d.FLA 4.0MB
bfs rmat20 4.0MB
sp 4.2M literals, 1M clauses 34.3MB

Rodinia
hs 512 3.2MB
bp 64K nodes 4.9MB
sc 64K points 40.1MB

Mars iix 3 web pages 31.3 kB
ss 1024 x 256 6.0MB

Table 6: Evaluated OS routines.

Application Benchmark Input Set/ DRAM
Suite Name Problem Size Footprint

Netperf
UDP_RR — 6.2MB

UDP_STREAM — 7.9MB
TCP_RR — 6.7MB

TCP_STREAM — 7.8MB

IOzone

Test 0 (write/re-write) 64MB file 110.7MB
Test 1 (read/re-read) 64MB file 107.2MB

Test 2 (random-read/write) 64MB file 111.8MB
Test 3 (read backwards) 64MB file 107.0MB
Test 4 (record re-write) 64MB file 41.9MB
Test 5 (strided read) 64MB file 108.1MB

Test 6 (fwrite/re-fwrite) 64MB file 112.3MB
Test 7 (fread/re-fread) 64MB file 109.2MB
Test 8 (random mix) 64MB file 42.8MB

Test 9 (pwrite/re-pwrite) 64MB file 42.7MB
Test 10 (pread/re-pread) 64MB file 44.1MB

Test 11 (pwritev/re-pwritev) 64MB file 42.0MB
Test 12 (preadv/re-preadv) 64MB file 112.7MB

—
shell — 4.3MB
bootup — 21.0MB
fork 64MB shared data, 22.8MB1K updates

caches for 100 million instructions, and then run a 1-billion instruc-
tion representative phase.We execute each GPGPU application until
the application completes, or until the GPU executes 100 million
instructions, whichever occurs first. For Netperf, we emulate 10
real-world seconds of execution time for each benchmark.

In addition to our 87 applications listed in Tables 3–6, we assem-
ble 28 multiprogrammed workloads for our desktop (Table 7) and
server/cloud (Table 8) applications by selecting bundles of four appli-
cations to represent varying levels of memory intensity. To ensure
that we accurately capture system-level contention, we restart any
applications that finish until all applications in the bundle complete.
Note that we stop collecting statistics for an application once it has
restarted.

D DETAILEDWORKLOAD
CHARACTERIZATION RESULTS

D.1 Single-Threaded Desktop/Scientific
Applications

Figure 27 shows the instructions per cycle (IPC) for each of the
desktop applications when run on a system with DDR3 memory.

Table 7: Multiprogrammed workloads of desktop and sci-
entific applications. For each application, we indicate what
fraction of the applications in the workload are memory in-
tensive (i.e., MPKI > 15.0).

Bundle Applications % Mem Memory
Name in Workload Intensive Footprint
D0 milc, GemsFDTD, mcf, libquantum 100% 5673.4MB
D1 bwaves, omnetpp, mcf, libquantum 100% 3304.3MB
D2 libquantum, bwaves, soplex, GemsFDTD 100% 3698.6MB
D3 soplex, mcf, omnetpp, milc 100% 3512.2MB
D4 milc, mcf, GemsFDTD, h264ref 75% 5539.9MB
D5 soplex, omnetpp, milc, namd 75% 1801.9MB
D6 libquantum, omnetpp, bwaves, povray 75% 1377.3MB
D7 libquantum, mcf, milc, zeusmp 75% 3503.4MB
D8 omnetpp, GemsFDTD, cactusADM, hmmer 50% 3141.0MB
D9 GemsFDTD, mcf, gamess, zeusmp 50% 4006.5MB
D10 milc, mcf, bzip2, h264ref 50% 3196.6MB
D11 bwaves, soplex, gamess, namd 50% 1095.1MB
D12 omnetpp, sjeng, namd, gcc 25% 1137.5MB
D13 GemsFDTD, hmmer, zeusmp, astar 25% 2643.0MB
D14 GemsFDTD, povray, sphinx3, calculix 25% 1341.7MB
D15 soplex, zeusmp, sphinx3, gcc 25% 502.4MB
D16 povray, astar, gobmk, perlbench 0% 188.4MB
D17 povray, bzip2, sphinx3, cactusADM 0% 345.9MB
D18 astar, sjeng, gcc, cactusADM 0% 1132.4MB
D19 calculix, namd, perlbench, gamess 0% 117.2MB

Table 8: Multiprogrammed workloads of server and cloud
applications.

Application Bundle Applications Memory
Suite Name in Workload Footprint

YCSB + Redis

Y0 workload A: server, workload B:
server, workload C: server, workload
D: server

1492.0MB

Y1 workload A: server, workload B:
server, workload C: server, workload
E: server

1262.2MB

Y2 workload A: server, workload B:
server, workload D: server, workload
E: server

1274.1MB

Y3 workload A: server, workload C:
server, workload D: server, workload
E: server

1212.5MB

Y4 workload B: server, workload C:
server, workload D: server, workload
E: server

889.9MB

Hadoop

H0 four grep: map processes with dif-
ferent inputs

1726.9MB

H1 four wordcount: map processes with
different inputs

2240.3MB

H2 four sort:map processes with differ-
ent inputs

94.9MB

The benchmarks along the x-axis are sorted in ascending order of
MPKI (i.e., memory intensity). As we discuss in Section 5.1, our desk-
top applications consist of both applications with predominantly
integer computations and applications with predominantly float-
ing point computations. Prior work shows that within the CPU,
there is a notable difference in the behavior of integer applications
(typically desktop and/or business applications) from floating point
applications (typically scientific applications) [54]. From Figure 27,
we observe that the performance of the two groups is interspersed
throughout the range of MPKIs and IPCs. Thus, we conclude that
there is no discernible difference between integer and floating point
applications, from the perspective of main memory.

We observe from Figure 27 that, in general, the overall IPC of
desktop and scientific applications decreases as the MPKI increases.
However, there are two notable exceptions: namd and gobmk. We

24

0

1

2

3

4

IP
C

Figure 27: IPC for desktop and scientific applications execut-
ing on a system with DDR3-2133 memory. In parentheses,
we show each benchmark’s MPKI, and whether the bench-
mark consists of predominantly integer (INT) or floating
point (FP) operations.

discuss how these exceptions are the result of differences in bank
parallelism utilization (BPU) in Section 5.1. Figure 28 shows the
BPU of each application when run with the DDR3 DRAM type. Note
that our DDR3 configuration, with four channels, and eight banks
per channel, has a total of 32 banks available. Thus, the theoretical
maximum BPU is 32, though this does not account for (1) request
serialization for banks that share a memory channel or that are
part of the same bank group, or (2) maintenance operations such as
refresh that reduce the bank parallelism of requests. As we observe
from the figure, none of our desktop and scientific applications come
close to the maximumBPU.We find that namd and gobmk exhibit
much higher BPU values than other applications with similar MPKI
values. This indicates that these two applications often issue their
memory requests in clusters, i.e., they have burstymemory access
patterns. As a result, these two applications exploitmemory-level
parallelism (MLP), where the latencies of multiple memory requests
are overlapped with each other, better than other applications. This
increasedMLP reduces the application stall time [32, 44, 99, 138, 140,
141, 152], which in turn increases the IPC of the application.

0

2

4

6

ga
m
es
s

po
vr
ay

ca
lcu

lix
h2

64
re
f

pe
rlb

en
ch

hm
m
er

bz
ip
2

sje
ng

sp
hi
nx
3

na
m
d

as
ta
r

go
bm

k
ze
us
m
p

ca
ct
us
AD

M gc
c

om
ne

tp
p

so
pl
ex

bw
av
es

Ge
m
sF
DT

D
m
ilc

lib
qu

an
tu
m

m
cf

Ba
nk

 P
ar

al
le

lis
m

Ut
ili

za
tio

n

Figure 28: DDR3 BPU for single-threaded desktop/scientific
applications.

Figure 29 shows the row buffer locality of each single-threaded
desktop/scientific application when run on DDR3.We do not see a
correlation between the memory intensity of an application and its
row buffer locality. This suggests that the locality is predominantly a
function of the application’s memory access patterns and row buffer
size, and isnot related tomemory intensity (asexpected).Wecompare
the row buffer locality under DDR3 to the row buffer locality with
our other DRAM types (not shown for brevity). We find that, with
the exception of HMC (which reduces the rowwidth by 97%), row
buffer locality characteristics remain similar across different DRAM
types.

0%
25%
50%
75%

100%

ga
m

es
s

po
vr

ay
ca

lcu
lix

h2
64

re
f

pe
rlb

en
ch

hm
m

er
bz

ip
2

sje
ng

sp
hi

nx
3

na
m

d
as

ta
r

go
bm

k
ze

us
m

p
ca

ct
us

AD
M gc
c

om
ne

tp
p

so
pl

ex
bw

av
es

Ge
m

sF
DT

D
m

ilc
lib

qu
an

tu
m

m
cfM
em

or
y

Re
qu

es
ts Row Hits Row Misses Row Conflicts

Figure 29: DDR3 row buffer locality for single-threaded
desktop/scientific applications.

D.2 Multithreaded Desktop/Scientific
Applications

To gain insight on limiting factors on the scalability of our multi-
threaded applications (see Section 6), we study the MPKI and IPC
of each application when run using DDR3-2133, and when the ap-
plication runs with 1, 2, 4, 8, 16, and 32 threads. Figure 30 shows the
per-thread IPC for all 12 applications, when the applications are run
with one thread and with 32 threads, and lists both the 1-thread and
32-threadMPKI (which quantifies thememory intensity of the appli-
cation). We observe from the figure that unlike our single-threaded
desktop/scientific applications, many of our multithreaded applica-
tions maintain a relatively high IPC even at 32 threads, despite the
high memory intensity. This is often because multithreaded applica-
tions are designed to strike a careful balance between computation
and memory usage, which is necessary to scale the algorithms to
large numbers of threads. As a result, several memory-intensive
multithreaded applications have significantly higher IPCs when
compared to single-threaded desktop/scientific applications with
similar MPKI values. We note that as a general trend, multithreaded
applications with a higher MPKI tend to have a lower IPC relative to
multithreaded applications with a lower MPKI.

0

1

2

3

4

Pe
r-T

hr
ea

d
IP

C 1 thread 32 threads

Figure 30: Per-thread IPC formultithreaded applications ex-
ecuting on a system with DDR3-2133 memory. In parenthe-
ses, we show each benchmark’s 1-thread MPKI followed by
its 32-thread MPKI.

As an example, we see that miniFE becomes more memory-
intensiveas thenumberof threads increases,with itsMPKI increasing
from 11.5 with only one thread to 68.1 with 32 threads. Despite this
increase in memory intensity, its per-thread IPC remains around
1.5, indicating that the application is not completely memory-bound.
Prior work [9] corroborates this behavior, with an analysis ofminiFE
showing that in its two hotspot functions, the application spends
about 40% of its time on load instructions, but also spends about 40%
of its time on integer or floating-point instructions. This exemplifies
the balanced approach between computation andmemory that most

25

of our multithreaded applications take, regardless of their memory
intensity.

D.3 Server and Cloud Workloads
To characterize our server and cloud workloads (see Section 7), we
study their performance and memory intensity using the DDR3
DRAM type. Figure 31 shows the performance of each application
(IPC; see Section 4), and lists its MPKI. As we see from the figure, the
IPCof all of the applications is very high,with the lowest-performing
application(Apache2)havinganIPCof1.9 (outofamaximumpossible
IPC of 4.0). The high performance is a result of the low memory
utilization of our server and cloud workloads, which are highly
optimized to take advantage of on-chip caches.

0

1

2

3

4

IP
C

YCSB + Redis Hadoop

Figure 31: IPC for server/cloud applications executing on a
system with DDR3-2133 memory. In parentheses, we show
each benchmark’s MPKI.

E DRAM POWER BREAKDOWN
Figure 32 shows the breakdown of power consumed by the five
DRAM types for which we have accurate power models, averaged

across all of our single-threaded applications and across our multi-
programmedworkloads from Section 5.We observe that all of the
evaluated DRAM types consume a large amount of standby power
(we simulate a DRAMcapacity of 4GB), with DDR3’s standby power
representing 77.8% of its total power consumption. As the density
and capacity of DRAM continues to increase, the standby power
consumption is expected to grow as well. However, the total power
consumed varies widely between DRAM types. For example, for our
single-threaded desktop and scientificworkloads, GDDR5 consumes
2.25x the power of DDR3, while LPDDR4 consumes 67.7% less power
than DDR3.

Across all of our workloads (including other workload categories,
not shown for brevity), we observe three major trends: (1) standby
power is the single biggest source of average power consumption in
standard-power DRAM types (because most of the DRAM capacity
is idle at any given time); (2) LPDDR3 and LPDDR4 cut down standby
power consumption significantly, due to a number of design opti-
mizations that specifically target standby power (see Appendix A);
and (3)workloadswith a high rate of row conflicts and/or rowmisses
spendmore power on activate and precharge commands, as a new
rowmust be opened for each conflict or miss.

0
500

1000
1500
2000
2500
3000
3500

DR
AM

 P
ow

er
 (m

W
) Standby Activate Precharge Read Write Refresh I/O

Single-Threaded Multiprogrammed
Figure 32: Breakdown of mean DRAM power consump-
tion when executing single-threaded (left) and multipro-
grammed (right) desktop and scientific applications.

26

