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Abstract—Dataflow analysis-based dynamic parallel moni-
toring (DADPM) is a recent approach for identifying bugs
in parallel software as it executes, based on the key insight
of explicitly modeling a sliding window of uncertainty across
parallel threads. While this makes the approach practical and
scalable, it also introduces the possibility of false positives in
the analysis. In this paper, we improve upon the DADPM
framework through two observations. First, by explicitly
tracking new “uncertain” states in the metadata lattice, we
can distinguish potential false positives from true positives.
Second, as the analysis tool runs dynamically, it can use the
existence (or absence) of observed uncertain states to adjust
the tradeoff between precision and performance on-the-fly. For
example, we demonstrate how the epoch size parameter can
be adjusted dynamically in response to uncertainty in order
to achieve better performance and precision than when the
tool is statically configured. This paper shows how to adapt a
canonical dataflow analysis problem (reaching definitions) and
a popular security monitoring tool (TAINTCHECK) to our new
uncertainty-tracking framework, and provides new provable
guarantees that reported true errors are now precise.

I. INTRODUCTION

Dynamic analysis tools [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (aka

“lifeguards”) help programmers find bugs by performing

sophisticated instruction-grain dynamic analysis of software

as it executes. Lifeguards maintain metadata—shadow state

about the application’s memory and register state—to reason

about whether the program is violating the lifeguard’s model

of correct execution. For example, TAINTCHECK [1] is

a popular security lifeguard that detects stack-smashing

attacks and other security exploits by tracking the flow of

tainted data (i.e., data whose source is untrusted) through-

out the application. TAINTCHECK ensures that operations

such as pointer dereferences, indirect jumps and system calls

always take trusted arguments.

While a variety of tools successfully monitor sequential

programs, the monitoring of parallel programs is far more

challenging due to inter-thread data dependences and shared
memory consistency models. Consider the two application

threads shown in Figure 1, each being monitored by its own

TAINTCHECK thread, with metadata shared between them.

If Thread 0 was the entire (sequential) program, it is trivial

to conclude that p is untainted when it is dereferenced.

When examining both parallel threads together, whether
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Figure 1: Impact of inter-thread data dependences on
TAINTCHECK. Instruction A (C) untaints (respectively, taints) p.
(a) The safety of *p in instruction B depends on (b) which of the
interleavings occur.
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Figure 2: Dividing memory operations into provably safe (precise),
true error (precise) and potential errors (conservative). Tracking
uncertainty enables separation of potential errors and true errors;
dynamic adaptations reduce analysis uncertainty.

or not the dereference of p is safe depends on which of

the interleavings occurs in the application (shown at right).

Moreover, the set of possible interleavings is dictated in part

by the memory consistency model of the machine running

the program.

Dataflow Analysis-Based Dynamic Parallel Monitoring.
In prior work, we introduced dataflow analysis-based dy-
namic parallel monitoring (DADPM) [11, 12], an approach

that enables parallel dynamic application monitoring and

supports relaxed memory consistency models without re-

quiring detailed inter-thread data dependence tracking or

specialized hardware. DADPM (described in further detail

in Section II) represents parallel execution using bounded

windows of uncertainty, which model the finite upper bound

of delay between when an instruction is issued and when its

effects become globally visible. This platform-specific upper

bound on the delay dictates the minimum size of a DADPM
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epoch; however, epochs may be larger than this minimum

in order to reduce monitoring overheads, at the cost of

a possible degradation in analysis precision [11]. Because

epochs contain 1K–64K program instructions per thread,

reasoning about all potential memory access interleavings

within a window of uncertainty would be prohibitively

expensive. Instead, DADPM employs a “closure” operation,

inspired by region-based dataflow analysis, which quickly

and conservatively accounts for the worst possible interleav-

ing scenario.

Drawback: Errors Not Isolated From False Positives.
While our prior works on DADPM (i.e., Butterfly Analy-
sis [11] and Chrysalis Analysis [12]) have provided provable

guarantees of zero missed errors, their conservative approach

can lead to imprecision in cases where they falsely classify
a safe event as a potential error. Consider Figure 2(a),

illustrating a division of application events into provably safe

operations and potential errors. Both Butterfly Analysis and

Chrysalis Analysis reuse a single metadata state (e.g., taint)

for both precise determinations (e.g., locations known to be

tainted) and conservative judgments (e.g., locations where

metadata state cannot be determined). As a result, neither
can distinguish true errors from potential errors.

This Work: Explicitly Track and Dynamically Reduce
Uncertainty. In this paper, we propose, prove the soundness

of, and evaluate the effectiveness of extensions to dataflow

analysis-based dynamic parallel monitoring that enable ex-
plicit tracking of uncertainty within the analysis. Unlike all

previous work on must and may analysis in prior dataflow

settings (e.g., [13, 14, 15, 16]), the uncertainty in DADPM

arises not from control flow or memory aliasing, but instead

due to the concurrent interleaving of threads. A primary

goal of this work is to separate known errors from potential

errors, as shown in Figure 2(b). We extend Butterfly Analysis

in this paper; the corresponding extensions and proofs for

Chrysalis Analysis are available in [17].

Besides improving the precision of state-of-the-art

DADPM while maintaining correctness guarantees, track-

ing uncertainty also enables lifeguards to “drill down” on

potential errors in order to remove uncertainty: with further

analysis, many potential errors can be better classified as

provably safe or as true errors (Figure 2(c)). As a case study,

we explore the overhead vs. precision tradeoff noted above,

by running the TAINTCHECK lifeguard with a larger epoch

size (for lower overhead) but dynamically adjusting to a

smaller epoch size precisely when uncertainty is detected

(for higher precision). We show this achieves better perfor-
mance and precision than any statically configured epoch
size. Moreover, because the lifeguard analysis is happen-

ing on-the-fly while the program is executing, one might

expect that periodic checkpoints of the shared metadata

state, as well as per-thread trace logs of the program’s

execution since the last checkpoint, would be required to

enable rollback for further analysis. Perhaps surprisingly, we

Table I: Comparison of Parallel Program Monitoring Frameworks

General Software Loosely Handles

purpose only coupled weak

consistency

FlexiTaint [6] X X X �
Thread-safe DBT [5] � uses STM X �
HAPM [8, 9, 10] � X � TSO only

DADPM [11, 12] � � � �

show that our approach can remove significant uncertainty

without any additional checkpointing or logging! Note that

our drill-down techniques are also useful for improving

precision in prior DADPM approaches—the main advantage

of dynamic adaptations alongside tracking uncertainty is that

these adaptations will be undertaken precisely when there is
a possibility to eliminate the uncertainty.

Contributions. The main contributions of this paper are:

• We present the first dataflow analysis-based dynamic
parallel monitoring (DADPM) framework that can ex-

plicitly track uncertainty, thereby isolating known true

errors from potential errors, with the guarantee that

any false positive derives from a lifeguard check on

metadata marked as “uncertain”.

• We present (sound) formalizations for Butterfly Anal-

ysis with uncertainty extensions. To ease comparison

to prior work, our extensions are based on reaching

definitions, though our formalization is more similar to

constant propagation. Expanding the metadata lattice

from 2 to 3 states introduced a number of challenges

into the formulas and proofs, e.g., dataflow transfer
functions that are different from meet functions.

• We show how to use our uncertainty extensions for

TAINTCHECK, a security lifeguard that is challenging

to handle because taint status propagates from instruc-

tion sources to destinations.

• We present an approach for dynamically adapting the

epoch size when uncertainty is detected. Our approach

maintains soundness guarantees without requiring addi-

tional checkpointing. We show experimentally that for

a variety of parallel applications being monitored by

TAINTCHECK, our dynamic adaptations to uncertainty

can deliver the precision comparable to small epochs

with the performance comparable to large epochs.

II. BACKGROUND AND RELATED WORK

We begin with general lifeguard background before dis-

cussing DADPM in depth, and conclude with related work.

A. Lifeguard Frameworks

Lifeguards have been written to find security [1], mem-

ory [2] and concurrency [3, 4] bugs, among others. While

lifeguard analysis always occurs dynamically, it can be either

synchronous or asynchronous. In synchronous frameworks,

lifeguard metadata is always updated immediately so that the

input state of each instruction in the monitored application
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can be checked before it executes. This tight coupling—

where metadata is updated atomically with the correspond-

ing application event—delays the application whenever a

slow metadata operation arises, and requires either trans-

actional memory [5] or special hardware support [6]. In

contrast, asynchronous (a.k.a., “decoupled” or “loosely cou-

pled”) frameworks allow metadata updates (and evaluations

for correctness) to lag behind the events that triggered them,1

which typically results in much higher performance (because

it is more tolerant of bursts in metadata computation) [7].

Table I compares monitoring frameworks where both

the program and the lifeguard are parallel programs. Flex-

iTaint [6] is specific to TAINTCHECK and hence not

“general purpose”. Thread-safe DBT [5] uses (software)

transactional memory. Hardware-assisted parallel monitoring

(HAPM) frameworks such as Paralog [8], PTAT/PTRT [9]

and FADE [10] are general purpose and asynchronous, but

they require special hardware support to track inter-thread

data dependences and do not support memory consistency

models weaker than TSO. DADPM, in contrast, is a general

purpose, software-only, asynchronous approach that supports

weak memory consistency memory models (specifically, any

consistency model that provides at least cache-coherence).

Because of these advantages, it is important to find low-

overhead techniques for improving the precision of DADPM

frameworks.

B. Butterfly Analysis

We first present the thread execution model common to

DADPM frameworks before discussing Butterfly Analysis.

Thread Execution Model. Butterfly Analysis builds its

thread execution model on the insight that modern multicore

systems have only a finite amount of buffering. Taking

into account the store buffer, reorder buffer, and maximum

memory access latency, the authors observed that if two

instructions on distinct threads are separated by “enough”

instructions (on the order of 1000-10,000s of instructions

or more), the earlier instruction must have retired, and any

related store must have drained, before the later instruction

was ever issued.

Butterfly Analysis leverages this insight by dividing exe-

cution into epochs. Epoch boundaries can be implemented in

software via a token ring and using the processor’s (memory)

fence operation. Epochs are sized to account for the reorder

buffer, store buffer, maximum memory access latency, and

the time to circulate the token among all the threads.

By construction, instructions in non-adjacent epochs, i.e.,

epochs that do not share a boundary, are ordered; this follows

from how epoch boundaries are defined. Because epoch

sizing takes into account all sources of buffering in the

pipeline and memory system, every instruction in the earlier

1Program safety is ensured by syncing up the program and lifeguard
(only) at safety critical points, e.g., at system calls for TAINTCHECK.
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Figure 3: Butterfly Analysis’ thread execution model.

epoch must have been issued, retired, and all related stores

must have drained before any instruction in a later, non-

adjacent epoch could be issued. In Figure 3, epochs l − 1
and l + 1 are non-adjacent.

However, adjacent epochs, i.e., epochs that share an

epoch boundary, are not guaranteed to be ordered and in

fact instructions can execute concurrently. This leads to a

bounded three epoch sliding window of concurrency, shown

in Figure 3. In Butterfly Analysis, an epoch-thread pair (l, t)
defines a block. With respect to thread t in Figure 3 (each

column is a thread), if instructions in the body (block (l, t))
are currently executing, then because a given thread can

assume sequential semantics for its own instructions, we

can assume that instructions in the head (block (l − 1, t))
have already executed and instructions in the tail (block

(l+1, t)) have not yet executed. Other threads’ blocks within

the sliding window are concurrent with the body and labeled

the wings.

Incorporating Concurrency in Dataflow Analysis. In ad-

dition to the standard dataflow primitives of IN, OUT, GEN

and KILL, Butterfly Analysis introduces two new dataflow

primitives: SIDE-OUT and SIDE-IN. SIDE-OUT captures the

effects of concurrency a block exposes to other concurrent

threads (i.e., the effect of the butterfly’s body on its wings).

In contrast, SIDE-IN captures the effects of concurrency

other threads expose to a concurrent block (i.e., the effect

of the butterfly’s wings on its body).

Lifeguards as two pass algorithms. Lifeguards are imple-

mented as two pass algorithms for processing an epoch.

An invariant is maintained that when processing epoch l,
the strongly ordered state (SOS) has been computed, which

summarizes all instructions up through epoch l−2. The local
strongly ordered state (LSOS) at a thread t represents the

SOS augmented with the effects of the head (block (l−1, t)).
Lifeguard metadata and checks can be influenced by local

state and/or events in the wings. In the first pass, dataflow

analysis is performed independently in parallel at each thread

using locally available state (i.e., ignoring the wings for that

thread). Next, the lifeguard threads compute the meet of all

the summaries produced in the wings. In a second pass, the

dataflow analysis is repeated incorporating state from the

wings, performing the lifeguard-specific checks. Finally, the
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threads collectively compute a summary of the entire epoch’s

activity, and update the SOS. The lifeguard writer specifies

(only) the events the analysis will track, the meet operation,

the metadata format, and the checking algorithm; these are

plugged into the two pass framework and applied for every

epoch during execution of the monitored program.

C. Chrysalis Analysis

Chrysalis Analysis [12] is a generalization of Butterfly

Analysis designed to improve Butterfly Analysis’ precision.

While Butterfly Analysis avoids the overhead of tracking

detailed inter-thread data-dependence traffic, it also fails to

track semantically meaningful high-level synchronization-

based happens-before arcs. We showed that incorporating

high-level happens-before arcs based on synchronization

(e.g., from an unlock to the next subsequent lock of the

same lock variable) can vastly improve the precision of

Butterfly Analysis, but at the cost of a more complicated

thread execution model. Lifeguards are again implemented

as two pass algorithms, as in Butterfly Analysis.

While Chrysalis Analysis greatly improves on the preci-

sion of Butterfly Analysis, both suffer from one key draw-

back: Of the potential errors both analyses report, neither

can distinguish a true error that must have occurred on the

monitored execution from a potential error that may have

occurred.

D. Related Work

Traditional static analysis is also impacted by forms

of uncertainty, but for entirely different reasons than in

DADPM. For static analysis, run-time data values (e.g., the

values of pointers) and control flow are often unknown at

compile time. For this reason, previous work on pointer

alias analysis [18, 19] and shape analysis [13, 14, 15] has

explicitly distinguished must vs. may states, and abstract

interpretation techniques [13, 14, 15, 16] have explicitly

tracked uncertain or unknown states. In contrast, since

DADPM is dynamic analysis, there is no uncertainty about

run-time values or control flow: that information is explicitly

captured in the execution logs that feed DADPM’s analysis.

The uncertainty in DADPM arises instead from the fact that

the interleaving of events across parallel threads is unknown

within DADPM’s window of uncertainty, and this directly

impacts how the lifeguard’s metadata is to be updated and

checked. As we will see later in Sections V and VI, because

the uncertainty in DADPM arises from a fundamentally

different source than in static analysis, it also affects the

analysis differently.

III. OVERVIEW OF UNCERTAINTY

Incorporating uncertainty into dataflow analysis-based dy-

namic parallel monitoring requires two key changes: (i) a

new state must be introduced to capture uncertainty, and

(ii) all the dataflow equations must be updated: we are
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Figure 4: Examples of uncertainty within Butterfly Analysis.

combining must analysis for precise states with may analysis

for the uncertain state.

We motivate the incorporation of uncertainty using

TAINTCHECK, as it is one of the most difficult life-

guards to adapt to DADPM, and the work necessary to

adapt TAINTCHECK easily generalizes to other lifeguards

that require both dataflow and propagation such as MEM-

CHECK [2, 20]. Tracking uncertainty within TAINTCHECK

requires that the equations for when an address is tainted

must now separate true taint from potentially tainted; poten-

tially tainted addresses will be considered uncertain. We

motivate our framework by examining different scenarios

where uncertainty arises.

A. Uncertainty Examples

Consider Figure 4(a), depicting Threads 0 and 2 racing

on pointer p: Thread 0 executes an instruction that taints

p whereas Thread 2 executes an instruction that untaints p.

Thread 1 is dereferencing p. Note that the uncertainty does

not arise merely because threads 0 and 2 are racing while

writing values to p; it arises because they are concurrent and

the writes lead to conflicting metadata states. We will call

this a metadata race.

Figure 4(b) illustrates how uncertainty can arise even

without a metadata race. In the figure, the LSOS at Thread 1

indicates that p is untainted, whereas Thread 0 in epoch 3
taints p. Based on the thread execution model, we know that

instructions that are represented by the LSOS have already

committed and thereby cannot have been issued concurrently

with instructions in epoch 3. However, Thread 1 is not sure

whether the taint(p) by Thread 0 occurs before or after

its dereference of p, and hence whether (if before) or not

(if after) p is tainted. Thus, despite the untaint and taint

events being ordered, it is still the case that Thread 1 is

uncertain of the metadata value for p.

B. Impact of Uncertainty on the DADPM Framework

While Sections V and VI describe how uncertainty is

incorporated into DADPM in detail, we now present a
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qualitative discussion of the major changes. One funda-

mental difference is that while prior DADPM frameworks

(i.e., without uncertainty tracking) model a single precise

state (i.e., the “Provably Safe” case in Figure 2(a)), our

enhanced DADPM framework (that tracks uncertainty) mod-

els multiple precise states (i.e., the “Provably Safe” and

“True Errors” cases in Figure 2(b)). This difference causes

fundamental changes in both the analysis equations and

the correctness proofs (shown later in Sections V and VI).

For example, the equations corresponding to the “Provably

Safe” vs. “Potential Errors” cases in prior DADPM frame-

works [11, 12] were asymmetric, because only the former

was precisely tracked (and all other possibilities fell into

the latter bucket). In addition, proofs of correctness in prior

DADPM frameworks [11, 12] needed to show only that the

“Provably Safe” case never contained false negatives.

In contrast, the enhanced DADPM framework has two

major challenges. First, with three metadata states (includ-

ing two precise “must” states), ensuring mutual exclusivity

requires greater care and increased metadata versioning.

Second, the inclusion of a more general meet function,

which can meet contradictory precise states (between pre-

decessors or the wings) into an uncertain state, complicates

the new formulas for SIDE-IN, SIDE-OUT, SOS and LSOS.

Combined, our formulas, invariants and correctness proofs

are more complicated in order to deliver higher precision.

IV. LEVERAGING UNCERTAINTY

The benefits of explicitly tracking uncertainty are not

limited to distinguishing between true and potential errors.

This approach also provides opportunities for lifeguard in-

novation; we describe one such application here.

By enabling the lifeguard to dynamically distinguish

between true errors and cases where insufficient informa-

tion exists to make a precise judgment, it can attempt to

dynamically increase the information available and improve

precision. For example, if a fast but conservative analysis

pass leads to an uncertain result, that pass can be rerun

using a slower but more precise approach. Depending on

their frequency, these dynamic adaptations may provide an

opportunity to improve both precision and performance.

The dynamic adaptations are an independent contribution

to uncertainty and could also be implemented on top of any

DADPM framework; pairing with uncertainty allows us to

enable the adaptations only when precision improvements

are possible.

Dynamically Resizing Epochs. Recall from Section II that

epoch size is bounded from below but not from above;

epochs need to be large enough to account for buffering

in the system (e.g., reorder buffer, store buffer, maximum

memory access latency), but no upper bound is specified.

Our prior work [11] showed that larger epoch sizes cor-

responded to better performance but worse precision than

smaller epoch sizes; dynamically adapting epoch sizes offers

the chance to achieve precision equivalent to smaller epochs

with performance similar to larger epochs.

A potential barrier to dynamically resizing epochs is the

lag between when the epoch boundaries are emitted into

the application’s instruction stream and when the lifeguard

encounters uncertainty; by the time uncertainty is discov-

ered and desires smaller epochs, it is too late to change

the epoch size. However, inserting epoch boundaries is

relatively inexpensive, so we propose to “oversample” the

epoch boundaries, and ignore the ones that are not needed.

Correctness of the Butterfly model is maintained as long

as all lifeguard threads skip the same boundaries. Dynamic

epoch resizing may be enabled, then, by generating small

epochs on the application side and coalescing those small

epochs into larger ones on the lifeguard side. When a

lifeguard thread encounters a potential error that requires

more information to resolve, it must coordinate a rollback

to the smaller epochs (whose boundaries are already cor-

rectly in the log) and restart analysis from there. As our

experiments in Section VII show, only a small rollback is

typically required–in fact, for most tested configurations, we

can support rollback with minimal overhead (no new state

checkpointing).

V. REACHING DEFINITIONS

Butterfly Analysis [11] is an DADPM framework: it is

formulated as an adaptation of (traditionally static) dataflow

analysis to a dynamic parallel monitoring setting. As such,

the addition of an uncertain state to Butterfly Analysis

involves modifying the dataflow equations. We will begin

with calculating reaching definitions, a canonical dataflow

analysis, and show how to add an uncertain state to the

metadata lattice. It would be more natural to use constant

propagation as our model rather than reaching definitions;

uncertainty would be equivalent to an instruction yielding

Not-A-Constant (NAC) in constant propagation. We instead

use reaching definitions to ease comparison to the original.

A. First Pass Equations

We represent the (fully precise) dataflow primitives

GEN and KILL as G and K, respectively, and uncertainty

(“maybe”) as M. We assume, for notational simplicity, an

instruction exists with uncertain effects on definition d; d
may or may not be generated.

Instruction-Level. If thread t in epoch l executes instruc-

tion i which {generates, kills, marks as uncertain} d, then d
is in in Gl,t,i, Kl,t,i or Ml,t,i (respectively).

Block-level. Let Gl,t,(i,j) be the set of definitions generated

which are not subsequently killed or marked uncertain,

restricted to consecutive instructions (l, t, i) through (l, t, j).

Gl,t,(i,i) = Gl,t,i Kl,t,(i,i) = Kl,t,i Ml,t,(i,i) = Ml,t,i

Gl,t,(i,j) = Gl,t,j

⋃
(Gl,t,(i,j−1) − (Kl,t,j ∪Ml,t,j)).

Kl,t,(i,j) = Kl,t,j

⋃
(Kl,t,(i,j−1) − (Gl,t,j ∪Ml,t,j)).

Ml,t,(i,j) = Ml,t,j

⋃
(Ml,t,(i,j−1) − (Kl,t,j ∪ Gl,t,j)).
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Recall that a block in Butterfly Analysis represents a

sequence of consecutive instructions belonging to epoch

l and thread t, represented as block (l, t). We represent

generation/kill/marking uncertain across a block (l, t) which

contains n + 1 instructions as:

Gl,t = Gl,t,(0,n) Kl,t = Kl,t,(0,n) Ml,t = Ml,t,(0,n)

B. Between Passes: Side-Out and Side-In

Computing SIDE-OUT is more complex than in prior

work, beyond just needing sets for G (GSO), K (KSO), and

M (MSO). For example, a block (l, t) which both generates

and kills definition d creates uncertainty for other blocks

that have (l, t) in their wings, thus d ∈ MSOl,t. For clarity,

we calculate intermediate sets ALLM
, ALLGand ALLKfirst—

these resemble GSO from original Butterfly Analysis—

before calculating MSO, GSO and KSO as refinements.

ALL
G
l,t =

⋃
i Gl,t,i ALLK

l,t =
⋃

i Kl,t,i ALLM
l,t =

⋃
i Ml,t,i

GSOl,t = ALL
G
l,t − (ALLK

l,t ∪ ALLM
l,t )

KSOl,t = ALLK
l,t − (ALL

G
l,t ∪ ALLM

l,t )
MSOl,t = ALLM

l,t ∪ (ALL
G
l,t ∩ ALLK

l,t)

Similarly, the three SIDE-IN sets (GSI, KSI, MSI) add com-

plexity. For example, if a block (l, t) sees d ∈ GSOl,t′ and

d ∈ KSOl,t′′ (for distinct threads t, t′, t′′), we must take the

meet and place d ∈ MSIl,t. We use WINGM
, WINGGand

WINGKas intermediate steps in the SIDE-IN calculations:

WING
G
l,t =

⋃
{t′ �=t}

⋃
{l′|l−1≤l′≤l+1}

GSOl′,t′

WINGK
l,t =

⋃
{t′ �=t}

⋃
{l′|l−1≤l′≤l+1}

KSOl′,t′

WINGM
l,t =

⋃
{t′ �=t}

⋃
{l′|l−1≤l′≤l+1}

MSOl′,t′

GSIl,t = WING
G
l,t − (WINGK

l,t ∪ WINGM
l,t )

KSIl,t = WINGK
l,t − (WING

G
l,t ∪ WINGM

l,t )
MSIl,t = WINGM

l,t ∪ (WING
G
l,t ∩ WINGK

l,t)

C. Incorporating Uncertainty Into State

Summarizing an epoch. We begin with the must-kill and

must-generate equations to summarize an epoch, as both

generate and kill are now precise states.2 The prior epoch

is included to account for potential interference between

instructions in adjacent epochs. We use standard composition

of transfer functions (e.g., G(l−1,l),t = Gl,t

⋃
(Gl−1,t−(Kl,t∪

Ml,t)) and symmetrically for M(l−1,l),t and K(l−1,l),t):

Kl =
⋃
t

(
Kl,t −

( ⋃
t′ �=t

[G(l−1,l),t′ ∪M(l−1,l),t′ ]
))

Gl =
⋃
t

(
Gl,t −

( ⋃
t′ �=t

[K(l−1,l),t′ ∪M(l−1,l),t′ ]
))

2If instead we wanted to represent may-kill and may-generate, we would
use

S
t Kl,t and

S
t Gl,t, respectively. Butterfly Analysis previously used

may-generate and must-kill in epoch summaries.

Intuitively, a definition d is killed in an epoch if at least

one subblock (l, t) kills d and for all concurrent subblocks

in epochs [l − 1, l], none have a net effect of definitely

generating or possibly generating d. Gl and Kl are symmetric

because we are looking to achieve equivalent precision for

these two sets.

To accurately capture the uncertainty within an epoch,

we need to account for separate sources of uncertainty.

First, the difference between may-kill and must-kill (equiv-

alently, may-generate and must-generate) captures the fact

that orderings may exist in which two different outcomes

are possible when examining all instructions in an epoch. We

also capture any “organic” uncertainty (e.g., the last check

of d in block (l, t) returns uncertain).

Ml = (
[
t

Ml,t) ∪
` [
{t,t′|t�=t′}

` ˆ
Kl,t ∩ (G(l−1,l),t′ ∪M(l−1,l),t′)

˜

∪
ˆ
Gl,t ∩ (K(l−1,l),t′ ∪M(l−1,l),t′)

˜ ´´

Invariants for epoch summaries. As in Butterfly Analysis,

define a valid ordering of a set of instructions as any

total ordering of the instructions that respects the partial

order defined by the Butterfly Analysis thread execution

model. The following invariants and proofs are made more

challenging by the uncertainty extensions.

Lemma 1. If d ∈ Gl then for all valid orderings O of
instructions in epochs [l − 1, l], d ∈ G(O).

Proof: If d ∈ Gl, then there exists thread t such that d ∈
Gl,t −

(⋃
t′ �=t[K(l−1,l),t′ ∪ M(l−1,l),t′ ]

)
. Let (l, t, i) be the

last instruction in block (l, t) to generate d. Consider any

valid ordering O of instructions in epochs [l − 1, l], and let

O′ be the suffix of O beginning with (l, t, i). It can only

be followed by later instructions in block (l, t) or by other

threads’ instructions in epochs [l − 1, l].
Since d /∈

(⋃
t′ �=t[K(l−1,l),t′ ∪ M(l−1,l),t′ ]

)
∀t′ �= t, then

any kill or uncertain by a thread t′ must be followed in the

same thread by a subsequent gen that is the final “operation”

on d, as d /∈ K(l−1,l),t′ and d /∈ M(l−1,l),t′ . Thus, any kill

or uncertain after instruction (l, t, i) is itself followed by a

gen, so d ∈ G(O′) and d ∈ G(O).

Lemma 2. If d ∈ Kl then for all valid orderings O of
instructions in epochs [l − 1, l], d ∈ K(O).

Proof: By symmetry to Lemma 1.

Lemma 3. If any of the following conditions holds:
(1) ∃ valid ordering O of instructions in epoch l such that

d ∈ M(O) OR

(2) ∃ a valid ordering O of instructions in epochs [l − 1, l]
and ∃ thread t such that d ∈ Gl,t and d /∈ G(O) OR

(3) ∃ a valid ordering O of instructions in epochs [l − 1, l]
and ∃ thread t such that d ∈ Kl,t and d /∈ K(O)

then d ∈ Ml.

Proof by cases:
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Case 1: If ∃ valid ordering O of instructions in epoch

l such that d ∈ M(O), then there must exist t such that

d ∈ Ml,t. This implies d ∈ ⋃
t Ml,t which implies d ∈ Ml.

Case 2: Assume ∃ valid ordering O of instructions in

epochs [l − 1, l] such that d /∈ G(O) and ∃t such that d ∈
Gl,t. Let (l, t, i) be the last instruction in (l, t) to generate

d. Consider the suffix O′ of O beginning with (l, t, i). It

must end with d ∈ M(O′) or d ∈ K(O′). (This follows

by d /∈ G(O); if d ∈ G(O′) then d ∈ G(O) and since the

first instruction in O′ generates d, something later in O′

must reverse that effect.) So there must be at least one other

thread that either considers d in the uncertain state or kills

d and does not later generate d. Consider the last such (kill

or “uncertain”) operation in O′. Let the thread performing

the operation be t′. Then d ∈ K(l−1,l),t′ ∪ M(l−1,l),t′ and

d ∈ Gl,t so d ∈ Gl,t ∩ (K(l−1,l),t′ ∪ M(l−1,l),t′), and thus

d ∈ Ml.

Case 3: Follows by symmetry with case 2.

SOS Equations. There will now be three types of SOS.

The equations that follow hold for l ≥ 2; for l = 0 or l = 1,

they are all identically empty.

SOSG
l = Gl−2 ∪ (SOSG

l−1 − (Kl−2 ∪Ml−2))
SOSK

l = Kl−2 ∪ (SOSK
l−1 − (Gl−2 ∪Ml−2))

SOSM
l = Ml−2 ∪ (SOSM

l−1 − (Gl−2 ∪ Kl−2))

SOS Invariants. We sketch the proofs for each SOS

invariant (full proofs appear in [17]).

Lemma 4. If d ∈ SOSGl then ∀ valid orderings O of
instructions in epochs [0, l − 2], d ∈ G(O).

Proof sketch (by induction): We sketch the inductive step.

There are two cases following from d ∈ SOSG
l , either (1)

d ∈ Gl−2 or (2) d ∈ SOSG
l−1 − (Kl−2 ∪Ml−2).

Case 1: If d ∈ Gl−2 then ∃t such that d ∈ Gl−2,t and

∀t′ �= t, d /∈ K(l−3,l−2),t′∧d /∈ M(l−3,l−2),t′ . Let (l−2, t, i)
be the last instruction in (l − 2, t) to generate d. Consider

any arbitrary valid ordering O, and let O′ be the suffix of

O beginning with instruction (l− 2, t, i). All instructions in

O′ must be from epochs [l − 3, l − 2] (as instructions in

l′ < l − 3 executed strictly before any instruction in epoch

l − 2). Let O′
t′ be the restriction of O′ to any t′ �= t. It

follows from d /∈ M(l−3,l−2),t′ ∧ d /∈ K(l−3,l−2),t′ that for

any t′ �= t that d /∈ M(O′
t′)∧d /∈ K(O′

t′). In addition, since

d ∈ Gl−2,t and (l−2, t, i) is the last gen of d in the block, no

later instruction in (l− 2, t) kills d or marks d as uncertain.

Combining all these interleavings will not change the final

status of d; thus, d ∈ G(O′) and therefore d ∈ G(O).
Case 2: If d ∈ SOSG

l−1 − (Kl−2 ∪ Ml−2) then in

particular d ∈ SOSG
l−1 and d /∈ Kl−2 ∪Ml−2. Consider any

arbitrary valid ordering O of instructions in epochs [0, l−2].
Let O[0,l−3] be O restricted to instructions in epochs [0, l−3].
By the inductive hypothesis, d ∈ G(O[0,l−3]). There must

exist instruction (l′, t, i) in O[0,l−3] which is the last generate

of d. Let O′ be the suffix of O beginning with instruction

(l′, t, i). We need to show that d ∈ G(O′), which implies

that d ∈ G(O).
Let O′

[0,l−3] be the restriction of O′ to instructions in [0, l−
3]. Then, d ∈ G(O′

[0,l−3]); this follows from the inductive

hypothesis, as d ∈ G(O[0,l−3]) and O′
[0,l−3] is simply the

suffix of O[0,l−3] beginning with instruction (l′, t, i). Our

proof now proceeds by contradiction. We will consider if

d /∈ G(O′) and obtain a contradiction.

Let O′
l−2 be the restriction of O′ to instructions in epoch

l−2. If d /∈ G(O′), then the instructions in O′
l−2 either killed

d or marked d as uncertain (by our previous observation; no

instructions in [0, l − 3] which occurred after (l′, t, i) could

have done so). If d ∈ K(O′
l−2) then there must exist t′ such

that d ∈ Kl−2,t′ . By our construction, d is in the may-kill

set for epoch l − 2. In particular, definitions in the may-kill

set either belong to Kl−2 or Ml−2, as shown earlier. This

contradicts d /∈ Kl−2 ∪Ml−2.

Similarly, if d ∈ M(O′
l−2) then ∃t′ such that d ∈ Ml−2,t′

which implies d ∈ Ml−2, which contradicts d /∈ Ml−2.

Thus, d ∈ G(O′), and d ∈ G(O).

Lemma 5. If d ∈ SOSKl then ∀ valid orderings O of
instructions in epochs [0, l − 2], d ∈ K(O).

Proof: By symmetry to Lemma 4.

Lemma 6. If one of the following is true:
(1) ∃ valid ordering O of instructions in epochs [0, l − 2]

such that d ∈ M(O) OR

(2) ∃ valid ordering O of instructions in epochs [0, l − 2]
such that d /∈ G(O) and ∃ thread t such that d ∈ Gl−2,t

OR

(3) ∃ valid ordering O of instructions in epochs [0, l − 2]
such that d /∈ K(O) and ∃ thread t such that d ∈ Kl−2,t

OR

(4) (Propagation) ∃ l′ < l − 2 such that cases (1), (2), or
(3) applies to instructions in epochs [0, l′] and ∀l′′ such
that l − 2 ≥ l′′ > l′, d /∈ (Gl′′ ∪ Kl′′)

then d ∈ SOSM
l .

Proof sketch (by cases, using induction): We consider each

case in turn.

Case 1: We sketch the inductive step. Let (l′, t, i) be the

last instruction in O such that d ∈ Ml′,t,i. There are two

cases, where (a) l′ = l − 2 or (b) l′ ≤ l − 3.

(a): l′ = l−2. Then d ∈ Ml−2,t which implies d ∈ Ml−2,

so d ∈ SOSM
l .

(b): l′ ≤ l − 3: Let O[0,l−3] be the restriction of O to

epochs [0, l−3]. Then d ∈ M(O[0,l−3]) and by the inductive

hypothesis, d ∈ SOSM
l−1. We first consider if l′ < l − 3:

then, no instruction in epoch l − 2 can generate or kill d,

else it would come after (l′, t, i) in O implying d /∈ M(O)
(a contradiction), so d /∈ Kl−2 ∪ Gl−2 and thus d ∈ SOSM

l .

We next consider l′ = l − 3: Let O[l−3,l−2] be O restricted

to epochs [l− 3, l− 2], which includes (l′, t, i)–still the last

instruction such that d ∈ Ml′,t,i. Since the relative ordering
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of instructions is preserved, d ∈ M(O[l−3,l−2]). By the

contrapositives of Lemmas 1 and 2, d /∈ Kl−2 ∧ d /∈ Gl−2,

therefore d ∈ SOSM
l .

Case 2: We sketch the inductive step. The proof is a

straightforward extension of the proof of Lemma 3, case (2).

Here, the valid ordering O spans epochs [0, l−2], but we can

still examine the suffix beginning with the last generate of d
at instruction (l − 2, t, i). Such an instruction is guaranteed

to exist because d ∈ Gl−2,t. The only instructions that can

follow (l− 2, t, i) in O are again limited to those in epochs

l−3 or l−2. Let O′ be the suffix of O beginning immediately

after instruction (l − 2, t, i). By the argument in Lemma 3,

case (2), d ∈ Ml−2 which implies d ∈ SOSM
l .

Case 3: Follows by symmetry from Case 2.

Case 4: Suppose any of cases (1), (2) or (3) apply to

instructions in epochs [0, l′]. Then, as we have shown in each

of the three prior cases, d ∈ SOSM
l′+2. Applying the fact that

d /∈ Gl′+1 ∪ Kl′+1, d ∈ SOSM
l′+2 − (Gl′+1 ∪ Kl′+1) which

implies d ∈ SOSM
l′+3; this holds through d ∈ SOSM

l−1 −
(Gl−2 ∪ Kl−2), which shows that d ∈ SOSM

l .

Calculating local state. In calculating the LSOS, we

consider the must-kill and must-gen versus may-kill and

may-gen summaries for the head. We must take into account

interference of other threads in epoch l − 2 when applying

summaries from the head (l − 1, t) to the LSOS for block

(l, t).3

The must-{kill,gen} formulas for block (l, t)’s head are:

G∗
l−1,t = Gl−1,t −

⋃
t′ �=t(Kl−2,t′ ∪Ml−2,t′)

K∗
l−1,t = Kl−1,t −

⋃
t′ �=t(Gl−2,t′ ∪Ml−2,t′)

Lemma 7. If d ∈ G∗
l−1,t then ∀ valid orderings O of

instructions in epoch l − 2 and block (l − 1, t), d ∈ G(O).

Proof: If d ∈ G∗
l−1,t then d ∈ Gl−1,t, so ∃ instruction

(l − 1, t, i) in block (l − 1, t) which generates d and is not

followed by a kill or an operation that marks d as uncertain.

Consider the instructions in epoch l − 2. Instructions in

block (l − 2, t) happen before (l − 1, t) (applying intra-

thread dependences). This leaves the instructions which are

concurrent with those in (l − 1, t) (in the range we are

considering), which consists of instructions in subblocks

(l − 2, t′) ∀t′ �= t. But ∀t′ �= t, d /∈ Kl−2,t′ ∪ Ml−2,t′ .

So for any subblock (l − 2, t′), it either also generates d
or else does nothing to d. Thus, all valid orderings O of

instructions in l−2 with instructions in block (l−1, t) have

d ∈ G(O).

Lemma 8. If d ∈ K∗
l−1,t then ∀ valid orderings O of

instructions in epoch l − 2 and block (l − 1, t), d ∈ K(O).

Proof: By symmetry with Lemma 7.

In representing what the head (l−1, t) marks as uncertain,

we include everything (l−1, t) marked as uncertain as well

3Kl−1,t (Gl−1,t) is the may-kill (may-gen) set for block (l, t)’s head.

as anything the head may-but-not-must have {gen, kill}.

M∗
l−1,t =Ml−1,t

[`
Gl−1,t ∩ (

[
t′ �=t

Kl−2,t′ ∪Ml−2,t′)
´

[`
Kl−1,t ∩ (

[
t′ �=t

Gl−2,t′ ∪Ml−2,t′)
´

The proof of Lemma 9 is omitted but strongly resembles

Lemma 3.

Lemma 9. If any of the following conditions holds:
(1) d ∈ Ml−1,t OR

(2) ∃ a valid ordering O of instructions in epoch l− 2 and
block (l − 1, t) such that d /∈ G(O) and d ∈ Gl,t OR

(3) ∃ a valid ordering O of instructions in epoch l− 2 and
block (l − 1, t) such that d /∈ K(O) and d ∈ Kl,t

then d ∈ M∗
l−1,t.

Note that G∗
l,t ⊆ Gl,t and K∗

l,t ⊆ Kl,t, while M∗
l,t ⊇ Ml,t.

Anything from the head (l − 1, t) that marks something as

generate (killed) must not have been concurrent with another

thread t′ that either killed or marked uncertain (generated

or marked uncertain) in epoch l − 2, so the precise sets get

smaller. When we observe such potentially concurrent and

interfering events, we add them to M∗, so the uncertain set

grows. We can express the LSOS equations, which strongly

resemble SOS equations:

LSOSG
l,t = G∗

l−1,t ∪ (SOSG
l − (K∗

l−1,t ∪M∗
l−1,t))

LSOSK
l,t = K∗

l−1,t ∪ (SOSK
l − (G∗

l−1,t ∪M∗
l−1,t))

LSOSM
l,t = M∗

l−1,t ∪ (SOSM
l − (K∗

l−1,t ∪ G∗
l−1,t))

LSOS Invariants. We present invariants for the LSOS to-

gether with their proofs.

Lemma 10. If d ∈ LSOSGl,t then ∀ valid orderings O of
instructions in epochs [0, l−2] and block (l−1, t), d ∈ G(O).

Proof: If d ∈ LSOSG
l,t, then d ∈ G∗

l−1,t or d ∈ SOSG
l −

(K∗
l−1,t ∪ M∗

l−1,t). If d ∈ G∗
l−1,t, then d ∈ Gl−1,t and for

all threads t′ �= t, d /∈ ⋃
t′ �=t(Kl−2,t′ ∪Ml−2,t′). Within any

ordering O, instructions from the head can only interleave

with instructions in epoch l−2, and the net effect of blocks

in l − 2 is neither to generate d nor mark d uncertain, so

d ∈ G(O) ∀O.

If d ∈ SOSG
l − (K∗

l−1,t ∪M∗
l−1,t), then d must have been

generated in epoch l−2 or earlier. We know that d /∈ Ml−1,t,

or we would have d ∈ M∗
l−1,t (contradiction). If d ∈ Kl−1,t,

then d is either in K∗
l−1,t or in M∗

l−1,t (contradiction). So

the head cannot have killed or marked d as uncertain. Thus,

interleaving the instructions in the head with any ordering

of [0, l − 2] must still generate d.

Lemma 11. If d ∈ LSOSKl,t then ∀ valid orderings O of
instructions in epochs [0, l−2] and block (l−1, t), d ∈ K(O).

Proof: By symmetry to Lemma 10.

Lemma 12. If one of the following is true:
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(1) ∃ valid ordering O of instructions in epochs [0, l − 2]
and block (l − 1, t) such that d ∈ M(O) OR

(2) ∃ valid ordering O of instructions in epochs [0, l − 2]
and block (l − 1, t) such that d /∈ G(O) and d ∈ Gl−1,t

OR

(3) ∃ valid ordering O of instructions in epochs [0, l − 2]
and block (l− 1, t) such that d /∈ K(O) and d ∈ Kl−1,t

OR

(4) (Propagation) One of the four conditions in Lemma 6
holds and d /∈ (K∗

l−1,t ∪ G∗
l−1,t).

then d ∈ LSOSM
l,t .

Proof (by cases): We will proceed by cases.

Case 1: Proceed as in Case 1 of Lemma 6. Consider

the valid ordering O, and let (l′, t, i) be the last instruction

which marks d as uncertain in O. The cases break down

where l′ = l−1 and thus this instruction is in (l−1, t) imply-

ing that d ∈ Ml−1,t and thus d ∈ M∗
l−1,t ⇒ d ∈ LSOSM

l,t .

Otherwise, l′ ≤ l − 2; we can apply Case 1 of Lemma 6

to show that d ∈ SOSM
l . Finally, if all valid orderings O

of instructions in epoch l − 2 and block (l − 1, t) were to

show that d was generated (or killed) we’d always have a

suffix that generated (or killed) d, contradicting the existence

of an ordering where d ∈ M(O). Therefore, we can apply

the contrapositives of Lemmas 8 and 7 to yield that d /∈
K∗

l−1,t∪G∗
l−1,t, showing that d ∈ (SOSM

l −(K∗
l−1,t∪G∗

l−1,t))
and therefore d ∈ LSOSM

l,t .

Case 2: By the contrapositive of Lemma 7, d /∈ G∗
l−1,t

(else all suffixes O′ of O would show d ∈ G(O′)
which would imply d ∈ G(O) – contradiction). However,

d ∈ Gl−1,t. Therefore, d ∈ Gl−1,t − G∗
l−1,t = Gl−1,t ∩

(
⋃

t′ �=t Kl−2,t′ ∪Ml−2,t′)), which implies that d ∈ M∗
l−1,t

and therefore that d ∈ LSOSM
l,t .

Case 3: By symmetry with Case 2.

Case 4: As Lemma 6 holds, then d ∈ SOSM
l . Further-

more, d /∈ (K∗
l−1,t∪G∗

l−1,t). If d ∈ SOSM
l −(K∗

l−1,t∪G∗
l−1,t)

then d ∈ LSOSM
l,t .

VI. TAINTCHECK

In this section we present TAINTCHECK with uncertainty,

building on Section V. TAINTCHECK is a “worst case”

lifeguard for our framework, requiring not only dataflow but

also inheritance. Further, our extensions are straightforward

to adapt to other lifeguards requiring inheritance such as

MEMCHECK [2, 20].

A. First Pass: Instruction-level Transfer Functions

Let Tl,t,i represent the instruction-level transfer function

that TAINTCHECK generates during its first pass over in-

struction (l, t, i):4

4For ease of comparison with prior work, we maintain ⊥ as the symbol
for taint, even though uncertain(?) is the new bottom in our metadata
lattice. We do, however, deviate from the instruction-level transfer function
notation used by the original Butterfly Analysis work, which reused Gl,t,i.

Algorithm 1 TAINTCHECK transfer(s1, s2)

Input: s1, s2 ∈ {taint, untaint, uncertain}
if s1 == taint or s2 == taint then

return taint
else if s1 == uncertain or s2 == uncertain then

return uncertain
else

return untaint

Algorithm 2 TAINTCHECK meet(s1, s2)

Input: s1, s2 ∈ {taint, untaint, uncertain}
if s1 == taint and s2 == taint then

return taint
else if s1 == untaint and s2 == untaint then

return untaint
else

return uncertain

Tl,t,i =

8>>>>><
>>>>>:

(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← �) if (l, t, i) ≡ untaint(x)

(xl,t,i ←?) if (l, t, i) ≡ uncertain(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

For a unary instruction x := unop(a), x inherits (meta-
data) from a, and likewise for a binary instruction x :=
binop(a, b), x inherits (metadata) from a and b. We use

the set S = {taint,untaint, uncertain,{a},{a, b} | a, b
mem locations} to represent the set of all possible right-

hand values in our mapping. We will also utilize the function

loc(l, t, i) that returns an instruction’s destination x.

Calculating Side-Out and Side-In. At the end of the first

pass, blocks in the wings will exchange the TRANSFER-

SIDE-OUT (tso) and create the TRANSFER-SIDE-IN (tsi).

The equations for a block (l, t) are:5 tsol,t =
⋃

i Tl,t,i and

tsil,t =
⋃

l−1≤l′≤l+1

⋃
t′ �=t tsol′,t′ .

B. Resolving Transfer Functions to Metadata

After the first pass in TAINTCHECK6, the tsol,t and tsil,t

are available, but they are in the form of instruction-level

transfer functions instead of metadata values. In order to

perform checks (the purpose of the second pass), we require

the metadata values associated with each destination address.

To convert between transfer functions and metadata values

in TAINTCHECK, we utilize a resolve algorithm (Algo-

rithm 3). resolve considers possible paths of inheritance

where metadata can flow between source and destination,

and returns one of three possible return values: taint,

untaint or uncertain. To maintain our guarantees that both

taint and untaint are fully precise states, we will show that

resolve returns taint (respectively, untaint) only when it

5tso and tsi for TAINTCHECK are identical to GSO and GSI in prior
work [11] when uncertainty is removed.

6Specifically, after the first pass over epoch l + 1, the tsol+1,t are
available to compute tsil,t.
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Algorithm 3 TAINTCHECK resolve(s, (l, t, i), T )

Input: s ∈ S, (l, t, i):instruction, T :wing transfer functions
if s == taint, untaint or uncertain then

return s
else if s == {a} for memory location a then

a_stateLSOS = metadata state of a in LSOS
a_stateWING = do_resolve(a, t, (l, t, i), T, (l, t, i))
return meet(a_stateLSOS, a_stateWING)

else if s == {a, b} for memory locations a, b then
Compute {a, b}_stateWING, {a, b}_stateLSOS as above
a_statemeet = meet(a_stateLSOS, a_stateWING)
b_statemeet = meet(b_stateLSOS, b_stateWING)
return transfer(a_statemeet, b_statemeet)

is the only possible metadata value the destination could

inherit.

Challenge: Meet Function �= Transfer Function. resolve
uses two subroutines: transfer (Algorithm 1) and meet

(Algorithm 2). The transfer function is applied when eval-

uating a statement of the form x = m1 +m2. TAINTCHECK

defines a destination address x to be tainted if either of its

sources m1 or m2 is tainted, and untainted only if both

sources m1 and m2 are untainted. In contrast, the meet

operation is used when it is unclear which metadata status

a thread will read. For example, we always must consider

whether a thread will read its own local value (reflecting

LSOS metadata status), or a value from the wings (reflecting

a need to resolve the wings). If there are different values

in the wings, the meet function conservatively calculates

the “worst” of what the thread sees. Thus, unlike in the

original Butterfly Analysis, the two functions are not iden-

tical: transfer returns taint if at least one of its inputs is

tainted, while meet returns taint only if both its inputs

are tainted.

Resolve Algorithm Incorporates Uncertainty. resolve

takes as input a tuple (s, (l, t, i)) and a set T of transfer

functions in the wings, and returns the taint status of m
at instruction (l, t, i), where m = loc(l, t, i) and Tl,t,i =
(m ← s). It recursively evaluates transfer functions in the

wings, subject to termination conditions, in a depth-first

search fashion. resolve((s, (l, t, i), T ) is called initially,

and do_resolve(s, tid, (l, t, i), T, H) is called recursively

until exhaustion.7 Algorithm 4 contains a pseudocode im-

plemention of do_resolve.

We define a proper predecessor of xl,t,i ← s to be

any yl′,t′,i′ ← s′ such that loc(l′, t′, i′) ∈ s, s ∈ S and

where (l′, t′, i′) executing before (l, t, i) does not violate

any valid ordering rules of the prior instructions in H .8

We denote the set of proper predecessors for xl,t,i ← s
where loc(l, t, i) = m by P (m, (l, t, i), T, H). For brevity

7In practice, our implementation sets thresholds for how long exploration
of potential predecessors will continue, and explicitly tracks any early
returns from exploration in a separate state called heuristic.

8Valid ordering rules preclude an instruction repeating itself.

Algorithm 4 TAINTCHECK do_resolve(m, tid, (l, t, i), T, H)

Input: m: current destination, tid: original thread, (l, t, i):
current instruction, T : wing transfer functions, H: history of
already explored instructions
if m ==taint, untaint or uncertain then

return m
num_taint = num_untaint = num_uncertain = 0
//recursively evaluate proper predecessors of m
for all (y(l′,t′,i′) ← sj) ∈ P (m, (l, t, i), T, H) do

if sj == taint or sj == untaint or sj == uncertain
then

return sj

else if sj == a for memory location a then
a_stateLSOS = metadata state of a in LSOS
a_stateWING = do_resolve(a, tid, (l′, t′, i′), T, (l, t, i) ::
H)
resolve_state = meet(a_stateLSOS, a_stateWING)
(counter of {num_taint, num_untaint, num_uncertain}
that matches resolve_state)++

else if sj = {a, b} for memory locations a, b then
Compute {a, b}_stateWING, {a, b}_stateLSOS as above
a_statemeet = meet(a_stateLSOS, a_stateWING)
b_statemeet = meet(b_stateLSOS, a_stateWING)
resolve_state = transfer(a_statemeet, b_statemeet)
(counter of {num_taint, num_untaint, num_uncertain}
that matches resolve_state)++

//all proper predecessors have recursively been explored
if num_uncertain > 0 or (num_taint >
0 and num_untaint > 0) then

return uncertain
else if num_taint > 0 then

return taint
else

return untaint

within resolve, loc(yi) will refer to the destination of the

instruction associated with yi.

Note the cascading roles of meet and transfer; metadata

state between the wings and the LSOS is subject to a meet

operation. When a memory location has two parents, their

metadata status is subject to a transfer function. Finally,

keeping separate counters for the number of times taint,

untaint and uncertain are encountered (which could also

be boolean values) allows a final meet calculation of all the

metadata values possible via the wings.

C. Second Pass: Performing Checks

The resolve function enables us to move from trans-

fer functions for individual instructions to metadata for

locations. This enables us to express TAINTCHECK as

an extension of reaching definitions. The second pass of

TAINTCHECK performs checks and resolves the transfer

function Tl,t,i = m ← s to a metadata value for destination

address m. Let:

Gl,t,i =

{
m resolve(s, (l, t, i), tsil,t) ← taint

∅ otherwise
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Kl,t,i =

{
m resolve(s, (l, t, i), tsil,t) ← untaint

∅ otherwise

Ml,t,i =

{
m resolve(s, (l, t, i), tsil,t) ← uncertain

∅ otherwise

The block equations for Gl,t, Kl,t and Ml,t follow im-

mediately once we have defined Gl,t,i, Kl,t,i and Ml,t,i,

respectively. The motivation for allowing an instruction

which might “mark d uncertain” is now clear – our resolve

function can return uncertain.
To convert GSI, KSI or MSI to state, we first define, for

s ∈ {⊥,�, ?}:

ALL
s
l,t =

˘
m|∃i s.t. Tl,t,i = (m← p)

∧resolve(p, (l, t, i), tsil,t)← s
¯

ALL
G
l,t = ALL

⊥
l,t ALL

K
l,t = ALL

�
l,t ALL

M
l,t = ALL

?
l,t

Then the equations for GSOl,t, KSOl,t and MSOl,t immedi-

ately follow, as do those for WING
G
l,t, WINGK

l,t and WINGM
l,t

and thus those for GSIl,t, KSIl,t and MSIl,t. We now have

all the necessary building blocks to calculate the epoch

summaries Gl, Kl and Ml. The SOS and LSOS equations

all immediately follow, as do their proofs (indeed, all earlier

proofs follow as well).

Lemma 13. If resolve(s, (l, t, i), tsil,t) returns untaint

for location m = loc(l, t, i) at instruction (l, t, i), then
under all valid orderings of the first l + 1 epochs, m is
untainted at instruction (l, t, i).

Proof sketch: We show the full proof for s = {a}. (All

cases appear in [17].)
resolve has two components. First, resolve looks up

the metadata state of a in the LSOS. If a is tainted or

uncertain, resolve cannot return untaint. Therefore, the

LSOS must have a as untainted. We can apply Lemma 11

so that every valid ordering of instructions in epochs [0, l−2]
and block (l − 1, t) must have a untainted.

If no instruction modifies a, then the claim is shown.

Otherwise, we observe that resolve explores all proper

predecessors (and thus all valid interleavings) of instructions

in the wings, so it will not miss an ordering of instructions in

the wings that could potentially lead to a being tainted or

uncertain. Finally, we observe that the meet function can

never return untaint if it observes a potential interleaving

that leads to either uncertain or taint. If all instructions

which happen before and which occur concurrent with

(l, t, i) untaint a, then a is untainted under all valid

orderings, and m can only inherit untaint from a.

Lemma 14. If resolve(s, (l, t, i), tsil,t) returns taint for
location m = loc(l, t, i) at instruction (l, t, i), then under
all valid orderings of the first l + 1 epochs, m is tainted

at instruction (l, t, i).

Proof sketch: As in Lemma 13, we show the full proof for

s = {a}. (All cases appear in [17].) Lemma 10 guarantees

that every valid ordering of instructions in epochs [0, l − 2]
and block (l−1, t) must have m tainted. As in Lemma 13,

resolve explores all proper predecessors, and will not

miss an ordering of instructions in the wings that could

potentially lead to a being untainted or uncertain. Once

more, the meet function cannot return taint if it observes

a potential interleavings of instructions in the wings that

leads to untaint or uncertain. The proof when s = {a}
completes in the same manner as Lemma 13.

Theorem 15. Any error detected by the original
TAINTCHECK on a valid execution ordering for a given
machine (obeying intra-thread dependences and supporting
cache coherence) will also be flagged by butterfly analysis
with uncertainty extensions as either tainted or uncertain.
Furthermore, any failed check of a tainted address is
an error the original TAINTCHECK would discover under
all valid execution orderings for a given machine. Thus,
any potential false positives derive from failed checks of
uncertain.

Proof: First, if there exists a valid execution with a failed

check of taint, then there exists a valid ordering of the first

l+1 epochs such that m is tainted at instruction (l, t, i), and

by the contrapositive of Lemma 13, resolve will not return

untaint for m at (l, t, i). So, m will either be tainted or

marked uncertain. The second statement follows directly

from Lemma 14. If everything marked as taint is a true

error, and nothing marked by untaint is ever an error,

then all false positives must flow from a failed check of

uncertain.

VII. EXPERIMENTAL SETUP

We now present the experimental evaluation of a prototype

TAINTCHECK Butterfly Analysis tool which incorporates

uncertainty. Like Butterfly and Chrysalis Analyses, the anal-

ysis is general purpose and can be implemented using a

variety of dynamic analysis frameworks, including those

based on binary instrumentation [21, 22, 23]. We present

results for a word-granularity Butterfly Analysis implemen-

tation of TAINTCHECK that incorporates uncertainty, as

described in Section VI. In addition to implementing and

testing uncertainty, we also executed experiments to measure

the benefits of dynamic epoch resizing as described in

Section IV.

We synthetically tainted 15% (expected) of the bench-

marks’ input data at random (using a fixed seed to ensure

reproducibility); successive runs for the same benchmark

with different epoch size parameters experienced the same

input data being tainted. Taint injection occurred once, at the

beginning of the parallel phase; taint propagation continued

until program termination.

All experiments were run on the Intel OpenCirrus cluster

(opencirrus.intel-research.net/). Each experiment was run

inside an identically configured virtual machine hosted on
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Table II: Benchmark Parameters

Benchmark Inputs

BARNES 2048 bodies

FFT m = 20 (220 sized matrix)

OCEAN Grid size: 258 × 258
LU Matrix size: 1024 × 1024

an 8-core (2 quadcore Xeon E5440 processors) machine

with 8GB of available RAM; to manage resource contention,

each machine only ran one experiment at a time. We used

a trace-based approach to gather performance and preci-

sion measurements for different effective epoch sizes while

controlling for the underlying interleaving; the lifeguards

under test consumed the traces natively. Using LBA [7],

which is implemented on top of Simics [24], we gathered

traces of thread execution which included heartbeats sized

at 1K instructions/thread.9 Each trace was gathered with the

benchmark running with four threads. For compatibility with

LBA, a 32-bit Linux OS was used with kernel 2.6.20-16-

server. Any epoch elision was performed as a pre-processing

step before the experiments were timed. Table II describes

the Splash-2.0 [25] benchmarks used.

A. Dynamic Epoch Resizing

Performance and precision measurements were taken for

several configurations. First, performance and precision re-

sults were gathered using an epoch size of 1K instruc-

tions/thread (labeled SMALL). Using the same traces, we

then gathered results for LARGE (16K instructions/thread)

effective epoch sizes by only respecting every 16th epoch

boundary.10 Any large epochs that experienced a failed check

due to uncertainty were recorded. Finally, we tested three

dynamic epoch resizing schemes to evaluate the limits of

performance and precision that could be gained if a perfect

oracle informed the lifeguard whether to skip or respect an

epoch boundary, telling it to respect the underlying small

epoch boundaries any time the corresponding larger epoch

boundary had previously incurred a failed check due to

uncertainty.

The three different dynamic adaptations tested are shown

in Figure 5. In a large run, we assume epoch divisions

that correspond with Figure 5(a). Suppose a thread ob-

serves a failed check of UNCERTAIN in epoch l. Un-

der the first scheme, DYNAMIC[l−1,l+1]emits the smaller

epochs corresponding to larger epochs [l − 1, l + 1], as

shown in Figure 5(b). In a real system, DYNAMIC[l−1,l+1]

would incur the cost of rollback of the second pass of

epoch l − 1 as well as undoing an SOS update. Two

more practical versions of dynamic epoch resizing were

9For n threads, we inserted heartbeats after the LBA simulator observed
n × 1024 instructions executed globally.

10To reduce complexity in handling edge cases in the prototype, small
epoch boundaries were always used when threads are exiting.
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Figure 5: Dynamic epoch resizing

also tested: DYNAMIC[l,l+1](Figure 5(c)), which emits the

smaller epochs corresponding to larger epochs [l, l +1], and

DYNAMICl (Figure 5(d)), which emits the smaller epochs

corresponding only to large epoch l.

B. Types of Uncertainty

Our experiments will track two types of uncertainty:

heuristic and uncertain. heuristic is a specific type

of uncertainty that occurs because we intentionally cut off

the recursive exploration of resolve when reaching either

a threshold for exploring potential parents in the wings (in

our experiments, we set the threshold at 512 parents) or a

threshold for the maximum number of parents tracked via

registers. uncertain is a catch-all that captures every other

type of uncertainty in the system.

VIII. EVALUATION

We now evaluate the precision and performance of the

dynamic epoch resizing scheme.

A. Precision

Table III displays the precision results for the five different

configurations tested for each benchmark. We observe that

for three benchmarks, FFT, LU and OCEAN, the SMALL con-

figuration and the three DYNAMIC configurations experience

the same precision. In fact, the DYNAMIC configurations for

FFT and LU experience the same identically zero potential

errors as the SMALL configuration. For one benchmark,

BARNES, the SMALL configuration has better precision than

the three DYNAMIC configurations, but all are markedly bet-

ter than the LARGE configuration. The LARGE configuration

experiences failed checks of UNCERTAIN and HEURISTIC

for all the benchmarks tested.

One of the goals of this work was to eliminate false

positives; we see a 0 in the column titled Failed Taint for

277



Table III: Precision results for all tested configurations.

Failed Failed Failed
Benchmark Epoch Size Taint Uncertain Heuristic

FFT-20 SMALL 0 0 0
DYNAMIC[l−1,l+1] 0 0 0

DYNAMIC[l,l+1] 0 0 0

DYNAMICl 0 0 0
LARGE 0 3 3

LU-1K SMALL 0 0 0
DYNAMIC[l−1,l+1] 0 0 0

DYNAMIC[l,l+1] 0 0 0

DYNAMICl 0 0 0
LARGE 0 3 3

OCEAN-258 SMALL 0 2 0
DYNAMIC[l−1,l+1] 0 2 0

DYNAMIC[l,l+1] 0 2 0

DYNAMICl 0 2 0
LARGE 0 38 6

BARNES-2K SMALL 0 0 0
DYNAMIC[l−1,l+1] 0 12 0

DYNAMIC[l,l+1] 0 12 0

DYNAMICl 0 12 0
LARGE 0 66 16

all experiments, indicating that no code checks failed due

to a false check of TAINT. This improves upon previous

work [11, 12] which observed potential errors that it could

not disambiguate from true errors; for each row in Table III,

the value of Failed Taint in Butterfly Analysis is the sum

of the Failed Uncertain, Failed Heuristic and Failed Taint
values.

B. Performance

Figure 6(a) shows the performance of the parallel por-

tion of execution, normalized to the SMALL configuration

of each benchmark. Results shown are averaged over ten

timing runs, with error bars indicating the 95% confi-

dence interval. In most cases, the DYNAMIC and LARGE

runs are outperforming the SMALL runs, even if the

margin is small. In the best case, OCEAN, we see that

DYNAMIC[l−1,l+1] DYNAMIC[l,l+1] and DYNAMICl run 8–

9% faster than SMALL. No dynamic scheme consistently out-

performs the others; rather, each has at least one benchmark

where it performs the best. Thus, considering both precision

and performance, either DYNAMIC[l,l+1] or DYNAMICl is a

competitive choice that achieves good results with minimal

rollback cost.

While these experiments show that the DYNAMIC schemes

achieve roughly the precision of the SMALL epochs for

only the cost of the LARGE epochs, the overall performance

savings was much less than expected, primarily because

LARGE epochs were only modestly faster than SMALL

epochs. Because prior work (using a different lifeguard) had

reported a significant performance gain from using large

epochs instead of small epochs [11], we were surprised by

this result.

0

0.2

0.4

0.6

0.8

1

sm
al

l
dy

na
m

ic
3

dy
na

m
ic

2
dy

na
m

ic
1

la
rg

e

sm
al

l
dy

na
m

ic
3

dy
na

m
ic

2
dy

na
m

ic
1

la
rg

e

sm
al

l
dy

na
m

ic
3

dy
na

m
ic

2
dy

na
m

ic
1

la
rg

e

sm
al

l
dy

na
m

ic
3

dy
na

m
ic

2
dy

na
m

ic
1

la
rg

e

FFT_20 LU_1K OCEAN_258 BARNES_2K

Ex
ec

ut
io

n 
Ti

m
e 

N
or

m
al

ize
d 

to
 S

m
al

l C
on

fig
ur

at
io

n 

(a) Average execution time, with 95% confidence intervals
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(b) Execution subdivided into rollback, passes and boundary phases

Figure 6: Average execution time (restricted to parallel execution),
(a) with 95% confidence intervals and (b) subdivided into phases.

To explore why larger epoch sizes were not having

the expected speedup for the TAINTCHECK lifeguard we

studied, we measured the time each thread spent doing

BOUNDARY calculations during the parallel phase. Examples

of boundary calculations include calculating the update to

the global state, applying a pending global state update and

calculating a thread-local LSOS. In general, any computation

triggered by observing a heartbeat and which is not part

of a linear pass (e.g., the first pass or second pass) is

considered a boundary calculation. Time spent in the parallel

phase but not in the boundary is represented by PASSES.

Finally, we estimate the cost of rolling back computation to

perform dynamic epoch resizing in ROLLBACK. We calculate

ROLLBACK by dividing the average total running time of

each configuration by the number of epochs that experience

uncertainty. In the case of DYNAMIC[l−1,l+1] that estimate

is multiplied by two to cover the cost of rolling back not

only the epoch that encounters uncertainty, but the prior

epoch as well. Both DYNAMIC[l,l+1] and DYNAMICl only

need to rollback the exact large epoch which experiences

the uncertainty. Figure 6(b) illustrates the breakdown of the

parallel phase into BOUNDARY, PASSES and ROLLBACK. It

is clear that LARGE as well as DYNAMIC configurations

spend 29–54% less in parallel time boundary calculations

(compared to SMALL configurations). Our main expected

source of performance gain from larger epoch sizes was a

reduction of time spent in boundary calculations, so this goal

was achieved as well.

While the overall boundary time is reduced for larger

effective epoch sizes, the BOUNDARY time itself is a not
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a large fraction (from 13–30%) of parallel execution, which

helps explain why the relatively large reduction in BOUND-

ARY calculations does not result in a larger improvement of

parallel performance for large epoch sizes. Incorporating dy-

namic adaptations to uncertainty into Butterfly (respectively,

Chrysalis) Analysis was not expected to reduce the time

spent in passes; each instruction still needed to be analyzed.

One likely explanation is that a larger epoch size corresponds

to more elements in the wings, which may be slowing down

the first and second passes in LARGE configurations relative

to SMALL configurations.

IX. CONCLUSION

Dataflow Analysis-based Dynamic Parallel Monitoring

(DADPM) is the only current approach to monitoring par-

allel programs that offers all of the following advantages:

loosely-coupled parallel lifeguards, weak memory consis-

tency support, software-only, and general purpose. In this

paper, we improved upon DADPM by adding support for

explicitly tracking and dynamically reducing uncertainty, in

order to greatly reduce its false positives. These extensions

and their proofs of soundness required significant and subtle

changes to prior DADPM approaches. We showed how to

enhance the popular TAINTCHECK lifeguard, a particularly

challenging lifeguard, with our uncertainty extensions, and

used it to evaluate the effectiveness of dynamically adapting

the epoch size in response to uncertainty. Our experiments

showed that, without adding any checkpointing overhead,

we could obtain the best of small and large epoch sizes: the

high precision of small epochs and the low cost of large

epochs.
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