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Reliable, Parallel Storage Subsystems
• configurable architectures; rapid prototyping

Discovering and Managing Storage Parallelism
• cost-benefit exploitation of application disclosure

Parallel Filesystems for Parallel Programs
• application “controls”: hints, cache directives, redundancy

New Interfaces for Network-Attached Disks
• scalable, secure, extensible storage systems



2/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Scotch Parallel Storage Testbeds

Scotch-1 decommisioned, Scotch-3 nets being debugged
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Beyond RAID 1-6 Example: Parity Declustering

• Each parity block protects fewer than N data  blocks

• Failure-induced workload balanced over all disks
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Rapid Prototyping and Evaluation for RAID

RAIDFrame: separate policy from mechanism
• Express RAID functions as Directed Acyclic Graph
• Execute DAGs on engine unaware of RAID architecture
• Distributable, portable “RAID N reference model”
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RAIDFrame as Research

Automating error recovery
• DAG primitive handles individual error
• engine completes or cancels DAG and retries in new state

Automatic manipulation of DAGs

• code simple DAGs, merge and optimize automtically
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Work To Be Done

Extensible caching for RAIDframe

• event-driven, composable triggers; write-deferring policies

Populate RAIDframe libraries

• log-structured, parity-logging, virtual striping, ...

Distribute RAIDframe widely

• hiring support staff; documentation underway

Automatic manipulation of RAIDframe DAGs

• commit point insertion, static & dynamic optimization
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Overcoming Disclosure Bottleneck: Informed Filesystems

F1, F2, F3, F4, F5, ...

S1, S2, S3, S4, ...

B1, B2, B3, B4, ...

D1, D2, D3, D4, ...

D1

Application

Devices

• Expose concurrency 

• overlap I/O and computation

• overlap I/O and think time

• overlap I/O and I/O !!!!

• I/O optimization
- seek scheduling
- batch processing

• Cache management

• balance buffers between 
prefetch and demand
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Informed Prefetching Prototype Results

Annotated text search, 3D visualization, database join, 
speech recognition, computational physics

DEC Alpha (150 MHz), OSF/1, 12 MB LRU cache
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Informed Cache Approach

Estimate:
• benefit of giving a buffer to a consumer
• cost of taking a buffer from a supplier 

Reallocate when benefit > cost
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Informed Caching Prototype Results

Re-examine computational physics (Davidson)

• same DEC Alpha, one hp2247 disk

Adapts cache replacement policy to workload
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• Better cache effectiveness

• without hints, no benefit until 
data set fits in cache

• with hints, MRU-like benefit

•  Most effective where 
 informed prefetching is 
 least (limited bandwidth)on one disk
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Work To Be Done

Automatic extraction of disclosure

• context-dependent access pattern learning

• compiler extraction for out-of-core scientific codes

Non-homogeneous and network devices

• non-uniform prefetch depth to avoid hot spots

Integrate with VM management 

• prepage predictably accessed memory objects

Integrate with parallel file system 

• global management of server and client cache space
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Support for I/O-intensive Multicomputer Apps

Efficient, scalable file access in heterogenous multicomputers
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Scotch Parallel File System Approach

Resource management via informed prefetching and caching

Optimistic client caching (like entry consistency)

• filesystem synch piggybacked on application synch

PFS semantics in library - no central mechanism

Per-file redundancy for dynamic, configurable availability

Co-developing PFS API for Scalable I/O (with IBM, Intel)

client

server A

server Bkernel

SPFS

SPFS

client kernel
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Network Support for Parallel Flows

Switch-style scalable storage transfers in multiple streams

• but networks deal in individual connections

Network support for coordinated routing of multiple streams

• multi-path connections, source routing, load-sensitive

API for negotiating parallel flow service

• enable applications to adapt to bandwidth availability

Parallel client Parallel file server

Switched Networks
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Work To Be Done

Scotch parallel file system evaluation

• first prototype fighting ATM; second in design

• integrate coordinated routing for parallel flow

Integrate network, file system, programming tools

• parallel flow service, SPFS and PVM/Dome/Pyxis

Application evaluation

• computational physics (Hartree-fock)

• seismology (Dip Moveout)

• spatial, geographic databases (Census maps)

• distribution to Scalable I/O application groups
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Storage Architecture Trends

Growth in drive-embedded functionality
• disk scheduling, readahead/writebehind, RAID support

Migration to serial, many-ported drive interface
• faster drives, multi-drive bandwidth, drive-to-drive transfers

Data bytes travel over LANs to real consumer

Workstation a poor (costly) server

• designed around caching for 
processor-local work

• network bandwidth limited to little 
more than single disk bandwidth

• induces extra copying
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Network Attached Secure Disks

Raise drive functional interface to file system level
• < file, offset, length > for better readahead, remapping, ...

Integrate drive into LAN security protocol
• tamper-resistant encryption for authentication check
• user configurable encryption over net or on media

Attach drives directly to network

• fewer copies and appropriate bandwidth 

• addressability for drive-to-drive transfer

 External filesystem personality

• “traffic cop” DMA management
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Work To Be Done

File system

• SPFS/SIO-API strawman; flexible access control; parent FS

Security

• lightweight protocol; infrequent server interaction; bootstrap

Networking

• SCSI-like local efficiency; wide-area access interoperability

Device architecture

• cost-effective drive microarchitecture; encryption interface

Embedded apps - decentralized video

• self-scheduled to deadlines; drive execution model

• target video service for information on demand apps
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Summary: Evolving Parallel Storage Requires ...

Rapid prototyping for RAID: RAIDframe
• flexible, architecture-rich, automated recovery

File system support for storage parallelism
• informed prefetching and caching

Parallel file systems for parallel applications
• highly available, highly scalable, global resource management

Network-Attached, Secure Disks (NASD)
• eliminate workstation as DMA device and raise interface level

Industrial interaction and support

• HP, Symbios, IBM, Seagate, DEC, DG, EMC, STK
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Points of Leverage 

file system interface
SIO API effort

storage interface
NSIC NASD effort

parallel programming tools

distributed filesystems

network-attached disks

RAID subsystems

HSM systems


