
1/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Parallel Data Lab Research Overview

Garth A. Gibson
http://www.cs.cmu.edu/Web/Groups/PDL/

Reliable, Parallel Storage Subsystems
• configurable architectures; rapid prototyping

Discovering and Managing Storage Parallelism
• cost-benefit exploitation of application disclosure

Parallel Filesystems for Parallel Programs
• application “controls”: hints, cache directives, redundancy

New Interfaces for Network-Attached Disks
• scalable, secure, extensible storage systems

2/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Scotch Parallel Storage Testbeds

Scotch-1 decommisioned, Scotch-3 nets being debugged

Fast
SCSI

Fast
SCSI

Fast
SCSI

Fast
SCSI

Fast
SCSI

3000/500
Alpha

HP 2247

Fast
SCSI

Decstation
5000/200

IBM 0661

8-bit SCSI

Scotch-1 direct-attach testbed

Scotch-2 direct-attach testbed

RS6000
RS6000

RS6000
RS6000

HIPPI
Node ATM

Node

RS6000
RS6000

RS6000
RS6000

HIPPI
NodeHIPPI

NodeHIPPI
NodeHIPPI

Node

ATM
NodeATM

NodeATM
NodeATM

Node

Scotch-3

HIPPI Node Detail

DEC Alpha
3000/400

Nectar WCAB
HIPPI interface

NCR 6299
Disk Array

DEC Alpha
3000/400

NCR 6299
Disk Array

OC-3

ATM

OC-3

ATM

ATM Node Detail

HIPPI Switch

ATM Switch

HIPPI
Client

20 clients
HIPPI
ClientHIPPI

Client

network

DEC SW800

Paragon-64
C90, T3D

16b fast SCSI 16b fast SCSI

storage
150 Seagate
Hawk Drives

3/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Beyond RAID 1-6 Example: Parity Declustering

• Each parity block protects fewer than N data blocks

• Failure-induced workload balanced over all disks
1 20 0 1 2 3 4 5 6

S S S S S S S

3
S

C

G
declustering ratio

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio

0

400

800

1200

1600

2000

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio

0
40
80

120
160
200
240

90th Percentile
Average

= (G-1)/(C-1)

4/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Rapid Prototyping and Evaluation for RAID

RAIDFrame: separate policy from mechanism
• Express RAID functions as Directed Acyclic Graph
• Execute DAGs on engine unaware of RAID architecture
• Distributable, portable “RAID N reference model”

H

Rod Rop

Wnd Xor

Wnp
T

H

Rod

Wnd

Xor

Log

T

RAID Level 5
Small Write DAG

Parity Logging
Small Write DAG

0 2 4 6 8 10 12 14 16
Stripe Width (G)

0

200

400

600

800

Example Evaluation:
Parity Declustering

RAIDFrame
raidSim

5/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

RAIDFrame as Research

Automating error recovery
• DAG primitive handles individual error
• engine completes or cancels DAG and retries in new state

Automatic manipulation of DAGs

• code simple DAGs, merge and optimize automtically

WR

RD WR

RD

XOR

unsuccessful commit, roll back
retry using new method

WRRD

successful commit, roll forward
operation is complete

WR

RD WR

RD

XOR

WRRD

d0 d1 d2 d3 c d0 d1 d2 d3 c

6/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Work To Be Done

Extensible caching for RAIDframe

• event-driven, composable triggers; write-deferring policies

Populate RAIDframe libraries

• log-structured, parity-logging, virtual striping, ...

Distribute RAIDframe widely

• hiring support staff; documentation underway

Automatic manipulation of RAIDframe DAGs

• commit point insertion, static & dynamic optimization

7/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Overcoming Disclosure Bottleneck: Informed Filesystems

F1, F2, F3, F4, F5, ...

S1, S2, S3, S4, ...

B1, B2, B3, B4, ...

D1, D2, D3, D4, ...

D1

Application

Devices

• Expose concurrency

• overlap I/O and computation

• overlap I/O and think time

• overlap I/O and I/O !!!!

• I/O optimization
- seek scheduling
- batch processing

• Cache management

• balance buffers between
prefetch and demand

8/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Informed Prefetching Prototype Results

Annotated text search, 3D visualization, database join,
speech recognition, computational physics

DEC Alpha (150 MHz), OSF/1, 12 MB LRU cache

0 4 8 12 16
Disks (HP2247s)

0.2

0.4

0.6

0.8

1.0

Agrep XDS Postgres Sphinx Davidson

0 4 8 12 16
Disks (HP2247s)

0.2

0.4

0.6

0.8

1.0

Change in Elapsed Time Change in I/O Stall Time

9/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Informed Cache Approach

Estimate:
• benefit of giving a buffer to a consumer
• cost of taking a buffer from a supplier

Reallocate when benefit > cost

hinted sequence

cached blocks

LRU queue

Buffer Consumers

Buffer demand
benefit

Buffer Suppliers

Allocator

LRU cost

service
demand

miss

prefetch
benefit ejection cost

prefetched cached blocks

hinted sequence

demand miss

prefetch

LRU cache

hinted cache

blocks

10/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Informed Caching Prototype Results

Re-examine computational physics (Davidson)

• same DEC Alpha, one hp2247 disk

Adapts cache replacement policy to workload

4 8 12 16 20 24

Buffer cache size (MB)

0

50

100

150

200

250

300

350

400

No hints offered
Hints offered

Computational Physics

• Better cache effectiveness

• without hints, no benefit until
data set fits in cache

• with hints, MRU-like benefit

• Most effective where
 informed prefetching is
 least (limited bandwidth)on one disk

11/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Work To Be Done

Automatic extraction of disclosure

• context-dependent access pattern learning

• compiler extraction for out-of-core scientific codes

Non-homogeneous and network devices

• non-uniform prefetch depth to avoid hot spots

Integrate with VM management

• prepage predictably accessed memory objects

Integrate with parallel file system

• global management of server and client cache space

12/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Support for I/O-intensive Multicomputer Apps

Efficient, scalable file access in heterogenous multicomputers

Scotch PFS
G-Nectar

parallel
block server
(Zebra)

MVS
VAX
FFS

Application File Bandwidth

Application PerformanceSUN
NFS Auspex

NFS
AFS

Coda

MVS

MVS-
RAID

CM5-RAID

Intel Paragon
PFS

shared media

attached I/O

switched LAN

I/O fabric

Parallel Applications

13/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Scotch Parallel File System Approach

Resource management via informed prefetching and caching

Optimistic client caching (like entry consistency)

• filesystem synch piggybacked on application synch

PFS semantics in library - no central mechanism

Per-file redundancy for dynamic, configurable availability

Co-developing PFS API for Scalable I/O (with IBM, Intel)

client

server A

server Bkernel

SPFS

SPFS

client kernel

14/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Network Support for Parallel Flows

Switch-style scalable storage transfers in multiple streams

• but networks deal in individual connections

Network support for coordinated routing of multiple streams

• multi-path connections, source routing, load-sensitive

API for negotiating parallel flow service

• enable applications to adapt to bandwidth availability

Parallel client Parallel file server

Switched Networks

15/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Work To Be Done

Scotch parallel file system evaluation

• first prototype fighting ATM; second in design

• integrate coordinated routing for parallel flow

Integrate network, file system, programming tools

• parallel flow service, SPFS and PVM/Dome/Pyxis

Application evaluation

• computational physics (Hartree-fock)

• seismology (Dip Moveout)

• spatial, geographic databases (Census maps)

• distribution to Scalable I/O application groups

16/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Storage Architecture Trends

Growth in drive-embedded functionality
• disk scheduling, readahead/writebehind, RAID support

Migration to serial, many-ported drive interface
• faster drives, multi-drive bandwidth, drive-to-drive transfers

Data bytes travel over LANs to real consumer

Workstation a poor (costly) server

• designed around caching for
processor-local work

• network bandwidth limited to little
more than single disk bandwidth

• induces extra copying

17/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Network Attached Secure Disks

Raise drive functional interface to file system level
• < file, offset, length > for better readahead, remapping, ...

Integrate drive into LAN security protocol
• tamper-resistant encryption for authentication check
• user configurable encryption over net or on media

Attach drives directly to network

• fewer copies and appropriate bandwidth

• addressability for drive-to-drive transfer

 External filesystem personality

• “traffic cop” DMA management

18/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Work To Be Done

File system

• SPFS/SIO-API strawman; flexible access control; parent FS

Security

• lightweight protocol; infrequent server interaction; bootstrap

Networking

• SCSI-like local efficiency; wide-area access interoperability

Device architecture

• cost-effective drive microarchitecture; encryption interface

Embedded apps - decentralized video

• self-scheduled to deadlines; drive execution model

• target video service for information on demand apps

19/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Summary: Evolving Parallel Storage Requires ...

Rapid prototyping for RAID: RAIDframe
• flexible, architecture-rich, automated recovery

File system support for storage parallelism
• informed prefetching and caching

Parallel file systems for parallel applications
• highly available, highly scalable, global resource management

Network-Attached, Secure Disks (NASD)
• eliminate workstation as DMA device and raise interface level

Industrial interaction and support

• HP, Symbios, IBM, Seagate, DEC, DG, EMC, STK

20/20 G. Gibson, CMU

Carnegie
Mellon Parallel Data Laboratory

Points of Leverage

file system interface
SIO API effort

storage interface
NSIC NASD effort

parallel programming tools

distributed filesystems

network-attached disks

RAID subsystems

HSM systems

