Parallel Data Lab Research Overview

Garth A. Gibson, Carnegie Mellon Univ. http://www.pdl.cs.cmu.edu

Reliable, Parallel Storage Subsystems (RAID)

• configurable architectures; rapid prototyping; completed

Discovering/Managing Storage Parallelism (TIP)

• cost-benefit exploitation of application disclosure

Parallel Filesystems for Parallel Programs (LLAPI)

• application "controls": hints, cache directives, redundancy

New Interfaces for Network-Attached Disks (NASD)

• scalable, secure, extensible storage systems

Parallel Data Laboratory

Parallel Data Lab Organization

Carnegie Mellon

Parallel Data Laboratory

Relationship with DSSC

PDL work increasingly funded outside of DSSC

• almost all effort now in ARPA funded NASD project

PDC membership changed for NSIC NASD group

- NSIC NASD working group members bound by intellectual property sharing agreement
- PDC membership level 2 changed to accomodate PDL involvement in NSIC NASD
- DSSC membership rights inappropriate for NASD project

New view: PDL is independent partner of DSSC

• DSSC members need to actively seek PDC membership (ie. redirecting DSSC membership funds) if desired

Carnegie Mellon

Parallel Data Laboratory

Rapid Prototyping with RAIDFrame Simplifies Coding

RAID architecture as program

- separate policy & mechanism; RAID-unaware graph engine
- automate error recovery; retry uses different graph

unsuccessful commit, roll back retry using new method successful commit, roll forward operation is complete

Code/Docs released 9/96 - project complete

http://www.pdl.cs.cmu.edu/RAIDframe

Parallel Data Laboratory

Informed Filesystems: "Parallelizing" Application I/O

- Application discloses future accesses
- Exposes concurrency
 - overlap I/O and computation
 - overlap I/O and think time
 - overlap I/O and I/O !!!!
 - I/O optimization
 - seek scheduling
 - batch processing

Cache management

• balance buffers between prefetch and demand

Carnegie

Mellon

How does TIP work?

Estimate:

- *benefit* of giving a buffer to a *consumer*
- *cost* of taking a buffer from a *supplier*

Reallocate when *benefit > cost*

Parallel Data Laboratory

New TIP estimator for unbalanced disk loads

- unfortunate strided storage access; insufficient disks
- prefetch more deeply to avoid I/O stall provided savings per buffer per access is large enough

Compared to LRU-SP (Princeton/Washington)

- LRU-SP allocates buffers without regard to locality
- largest impact when multiple I/O-bound applications

Prefetching hides latency in remote filesystem

- remote access has more overhead, congestion = delay
- informed prefetching effective given efficient networking
- three organizations: TIP in client only, TIP in server only, TIP in both (for smart use of distributed buffering)
- prototypes built for first two organizations

Parallel Data Laboratory

Carnegie

Melldn

Support for I/O-intensive Multicomputer Apps

Efficient, scalable file access in heterogenous multicomputers

Carnegie **Parallel Data Laboratory**

Mellon

SIO Parallel File System Low Level API

 Scatter/Gather **HL-API** • Asynch • Collective Transfer LL-API • Copy-on-write NASD Client cache control • Hints to/from storage

MPL = Message Passing Library DSM = Distributed Shared Memory

Network Attached Secure Disks - next talk

Attach drives to network

- fewer copies, more bandwidth
- "huge" addressability

Port filesystems to NASD

• "traffic cop" DMA management

Raise drive functional interface to file system level

• < file, offset, length > for better readahead, remapping, ...

Integrate drive into LAN security protocol

• message digest or encryption for authentication check

Parallel Data Laboratory

Parallel Data Laboratory

Summary: Evolving Parallel Storage Requires ...

Rapid prototyping for RAID: RAIDframe

• flexible, architecture-rich, automated recovery

File system support for storage parallelism (TIP)

• informed prefetching and caching

Parallel file systems for parallel applications (LLAPI)

• highly available, highly scalable, global resource management

Network-Attached, Secure Disks (NASD)

• eliminate workstation as DMA device and raise interface level

Industrial interaction and support

• HP, Symbios, IBM, Seagate, Quantum, DG, Compaq, STK

Parallel Data Laboratory