
 http://www.pdl.cs.cmu.edu 1/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Filesystems for
Network-Attached Secure Disks (NASD)

Garth Gibson

D. Nagle, K. Amiri, H. Gobioff, E. Riedel, J. Zelenka

Computer Science and Computer Engineering, CMU

DARPA/ITO Quorum/Scalable Systems

 http://www.pdl.cs.cmu.edu 2/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

What functions should storage offer?
Taxonomy for Network-Attached Storage (NAS)

Server-Attached, Server-Integrated Disk (SAD, SID)
• (specialized) workstation running file server code

Networked SCSI (NetSCSI)
• minimal differences from SCSI; manager inspects requests

Network-Attached Secure Disk (NASD)
• new (SCSI-4) interface enables direct, preauthorized access

Contrasting extremes: NetSCSI vs. NASD
• both scale bandwidth with large, striped accesses
• what impact on workloads of current LAN file servers?

 http://www.pdl.cs.cmu.edu 3/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Problems with current Server-Attached Disk (SAD)

Store-and-forward data copying thru server machine
• translate & forward request (1,2), store & forward data (3,4)

Limited bandwidth, slots in low-cost server machine

Disk
Controller

Distributed File System Code

Network Protocol

Network Device
Driver

Local Filesystem

Disk Driver

Network
Interface

System
Memory

Client Network

(Packetized) SCSI Network

1

1

4

2

3

4

23

Server Workstation

 http://www.pdl.cs.cmu.edu 4/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Networked SCSI (NetSCSI)

Minimize change in drive HW, SW, IF: RAID-II
• server translates (2) and forwards (3) request (1)
• drive delivers data directly to client (4)
• drive status to server (5), server status to client (6)

Scalable bandwidth through network striping

1

2

3

4 6

5

Net

SCSI

Controller Net

Network
Protocol

File
Manager

Client Network

3

Net

SCSI

Controller

 http://www.pdl.cs.cmu.edu 5/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Network-Attached Secure Disk (NASD)

Avoid file manager unless policy decision needed
• access control once (1,2) for all accesses (3,4) to drive object
• spread access computation over all drives under manager

Scalable BW, off-load manager, fewer messages

File Manager

Network Protocol

Network

Access Control,
Namespace, and

Consistency Net

NASD

Controller

3 4

3,4
Client Network

Net

NASD

Controller

3 4
1 2 (capability)

 http://www.pdl.cs.cmu.edu 6/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Impact of NASD vs. NetSCSI on current file systems

Analytic & trace-driven agree; talk presents analytic

Analyze FS traces; instrument SAD server, count instrs

Model change in operation counts and costs at manager

For SAD, use numbers as measured

For NetSCSI, data transfer is off-loaded

• manager does work of 1-byte access per request

• attribute/directory assumed no less work

For NASD, off-load file write and file/attr/dir read

• updates to attributes/directory are no less server work

• manager must do new “authorization” work when file
opened (synthesized as first touch after long inactive)

 http://www.pdl.cs.cmu.edu 7/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NFS on network-attached storage projections

Berkeley NFS traces [Dahlin94] (230 clients, 6.6M reqs)

Directory/attributes dominate SAD manager work

NetSCSI, therefore, little benefit for manager load

NASD off-loads over 90% of manager load

NFS
Operation

Count in
top 2% by
work
(thousd)

SAD NetSCSI NASD

Cycles
(billions) %of SAD

Cycles
(billions) %of SAD

Cycles
(billions) %of SAD

Attr Read 792.7 26.4 11.8% 26.4 11.8% 0.0 0.0%
Attr Write 10.0 0.6 0.3% 0.6 0.3% 0.6 0.3%
Block Read 803.2 70.4 31.6% 26.8 12.0% 0.0 0.0%
Block Write 228.4 43.2 19.4% 7.6 3.4% 0.0 0.0%
Dir Read 1577.2 79.1 35.5% 79.1 35.5% 0.0 0.0%
Dir RW 28.7 2.3 1.0% 2.3 1.0% 2.3 1.0%
Delete Write 7.0 0.9 0.4% 0.9 0.4% 0.9 0.4%
Open 95.2 0.0 0.0% 0.0 0.0% 12.2 5.5%
Total 3542.4 223.1 100.0% 143.9 64.5% 16.1 7.2%

 http://www.pdl.cs.cmu.edu 8/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

AFS on network-attached storage projections

CMU AFS traces (60-250 clients, 1.6 M reqs)

Data transfer dominates SAD

NetSCSI is able to reduce manager load by 30%

NASD is able to reduce manager load by 65%

AFS
Operation

Count in
top 5% by
work
(thousand)

 SAD NetSCSI NASD

Cycles
(billions) %of SAD

Cycles
(billions) %of SAD

Cycles
(billions) %of SAD

FetchStatus 770.5 98.6 37.9% 98.6 37.9% 0.0 0.0%
BulkStatus 91.3 36.6 14.1% 36.6 14.1% 0.0 0.0%
StoreStatus 16.2 3.1 1.2% 3.1 1.2% 3.1 1.2%
FetchData 193.7 83.7 32.1% 24.8 9.5% 0.0 0.0%
StoreData 23.1 15.1 5.8% 3.0 1.1% 3.0 1.1%
CreateFile 12.1 3.7 1.4% 3.7 1.4% 3.7 1.4%
Rename 6.4 1.8 0.7% 1.8 0.7% 1.8 0.7%
RemoveFile 14.6 4.8 1.9% 4.8 1.9% 4.8 1.9%
Others 57.3 13.0 5.0% 13.0 5.0% 13.0 5.0%
Open 480.8 0.0 0.0% 0.0 0.0% 61.5 23.6%
Total 1665.9 260.5 100.0% 189.4 72.7% 90.9 34.9%

 http://www.pdl.cs.cmu.edu 9/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

 CMU’s Functional Definition of NASD

• Direct client/drive transfer in networked environment

• Asynchronous filesystem oversight of rights, semantics

• Cryptographic capabilities ensure command integrity

• Self-management by more abstraction, independence

• Extensible features for application, not just client OS

Access
Control

Read/Write
Read/Write

Switch

(Cluster) Client

NASD

NASD

NASDManager

 http://www.pdl.cs.cmu.edu 10/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD Interface Design: Storage Objects

Layout is best (actually) done below SCSI-4
• real-time support possible; accurate geometry
• simplifies, strengthens transparent performance optimization

Direct access means file layout known to client or drive
• don’t trust client, so drive has map of stored object
• rejected temporary map (DVD), more drive self-knowledge

Drive serves storage objects on behalf of manager

Objects have attributes
• Inodes: (name), size, protection, type, timestamps, layout
• what attributes should NASD objects support?

 http://www.pdl.cs.cmu.edu 11/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD Interface Design: Storage Objects Con’t

Synchronous metadata updates must be done in drive
• logical and physical sizes
• modify timestamps: honest and user resettable

Object layout guidance from higher level
• sequential within object requests contiguous (can preallocate)
• related objects can be clustered with “nearby to” attribute

Capacity increasing optimizations exposed to manager
• honest capacity-consummed attribute

Attributes are extensions of object name
• give higher level (filesystem) uninterpreted attribute
• big enough to contain another object name (soft link)

 http://www.pdl.cs.cmu.edu 12/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD Sharing: Multiple File Managers

Split capacity among different managers: partions
• managers can use attributes differently; no need to integrate
• boundary should be soft: resize partition should be fast
• flush partition enables fast acquiese
• partition key hierarchy: (partition key, working keys)

Operation Arguments Description
createpartition partition create a new partition (zero-sized)

removepartition partition remove a partition

resizepartition partition, new size set a partition’s size

flushpartition partition commit any cached writes for a partition
to stable store

setpartitionkey partition, key name,
key value

set “master” key for a partition

 http://www.pdl.cs.cmu.edu 13/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD Interface Design: Well-known Objects

SCSI mode sense/select replacement
• published format and interpretation

Per-drive and per-partition separated

Partition table of contents (mini-disk directory)

Assist simple boot code with easily found “first object”
• replace with uninterpreted fields in partition control object?

Name Description
Drive Control basic control information for drive: clock, physical parameters, exten-

sions supported, bytes allocated

Partition Control basic control information for partition: current size, byte usage, number
of object supported, number of objects allocated

Partition Contents read-only list of identifiers of NASD objects allocated in the partition

First Object ordinary, read/writable NASD object which is always created with
length 0 when a partition is initialized

 http://www.pdl.cs.cmu.edu 14/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Adapting Filesystems to NASD

Reorganize decomposition of function (aka port)

Primitives become drive responsibility
• data transfer, synchronous/automatic metadata updates

Policy remains manager responsibility
• namespace definition/navigation
• access control policy
• client cache managment
• multi-access atomicity

Managers retain control through capabilities
• exploiting attributes for naming and revocation
• restricting client operations to protect “set attribute”

 http://www.pdl.cs.cmu.edu 15/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Mapping Filesystem to NASD Objects

Objects: attributes, access control, clustering

Simple model
• each file and directory bound to separate NASD object
• file attributes inherit object attributes (times, logical size)

Multiple objects per file?
• internal structure: database pages, mpeg group-of-pictures
• NASD striping, redundancy

Multiple files/directories per object?
• probable contiguity, prefetching; shared metadata overhead
• capabilities can be restricted to object region

NFS, AFS simple model; Striped NFS multiple per file

 http://www.pdl.cs.cmu.edu 16/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NFS NASD Prototype

Files, directories, links are all separate NASD objects

Unix attributes are stored in fs-specific field

Partition is a filesystem; partition root is filesystem root

NFS handle is well-known convolution of
NASD identifier and drive identifier

Server only entity to directly reads/write directories
• No client changes directory contents or directory attributes
• Directory objects cached in manager

No write caching (asynchronous writeback)
• stick to NFS semantics for comparison fairness and simplicity

Mount list (drives, partitions) only manager local state

 http://www.pdl.cs.cmu.edu 17/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Directory Format

page page page page

header

slot 0

slot 1

slot 2

slot 3

slot 4

slot 127

NASD ID

name

flags

name length

Directories divided into
blocksized pages

slots hold entries

entries with long names
span multiple slots

 http://www.pdl.cs.cmu.edu 18/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD NFS Performance

Drive, manager implemented in Digital UNIX kernel

Communication via DCE RPC
• pipes for bulk transfer, application marshalling & crypto (off)

Andrew Benchmark
• phase 1 create directories
• phase 2 copy files
• phase 3 recursive directory stat
• phase 4 scan each file (grep)
• phase 5 compilation

One NFS server/file manager with multiple disks

Each NASD a separate filesystem (no sharing)

No READDIRPLUS for NASD

 http://www.pdl.cs.cmu.edu 19/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

NASD NFS Performance

Andrew Benchmark (run seconds for each phase)

Read and write bandwidth (KB/s)

phase 1 phase 2 phase 3 phase 4 phase 5

1x1 SAD 1.0 3.3 2.3 2.7 19.3

1x1 NASD 0.5 3.3 4.2 5.5 18.8

5x5 SAD 1.9 10.9 4.2 3.7 22.7

5x5 NASD 0.5 3.8 5.3 5.8 18.7

8k read 8k write 64k read 64k write

1x1 SAD 2261.8 2601.3 6392.3 825.38

1x1 NASD 4099.9 5253.8 4399.2 3506.7

5x5 SAD 1851.0 1750.0 5140.6 726.0

5x5 NASD 4084.1 4952.1 4236.0 3764.4

 http://www.pdl.cs.cmu.edu 20/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

AFS NASD Prototype

AFS built on UNIX FS inode interface
• UFS inode interface replaced with NASD object interface

Base design similar to NFS except
• directory objects read, parsed, cached at clients
• AFS cache coherence protocol independent (almost) on NASD
• AFS quota enforced by capability escrow (using write range)

Operation disposition
• to drive: FetchStatus, BulkStatus, FetchData (w/cap),

 StoreData (w/cap)
• Read w/o cap: GetCap (callback, attributes),

 (GetAttr from drive), FetchData
• Write w/o cap: GetWCap (break callbacks, short lifetime),

 StoreData,
 ReturnCap (signals early re-enable of callbacks)

 http://www.pdl.cs.cmu.edu 21/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Cheops: Striping storage middleware

Transparent, scalable bandwidth, RAID, optimistic
client synchronization (fs-specific attributes)

Storage management architecture parallels
file management architecture (uses capabilities)

NASD NASD NASD NASD

Cheops
Clerk

File system

Client app

Cheops
managers NASD interface

Cheops
Clerk

File system

Client appDirectory
service lookup

cheops object
read/write/getattr/setattr

lookup,
translate
capabilities

cheops object, capability

 http://www.pdl.cs.cmu.edu 22/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

SIO Parallel File System Low Level API

Parallel Application Code

I/O
Support
Library

I/O

Library 2
Support

Parallel File System

Storage

MPL
or
DSM

MPL = Message Passing Library
DSM = Distributed Shared Memory

• Scatter/Gather

• Asynch

• Collective Transfer

• Copy-on-write

• Client cache control

• Hints to/from storage

HL-API

LL-API

NASD

 http://www.pdl.cs.cmu.edu 23/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

SIO PFS on Cheops on NASD

Client asking for service pays for it (synchronizer)
• striping, RAID, consistent caches, collective operations

Entirely user level, incl. messaging, for low latency

Impl exploits local FS (AFS) for file-level semantics

application

SIOFS library

Cheops clerk

KERNEL

USERVirtualized
Network

Interface

Client

Name
Service

Cheops
Managers

Naming,
authorization

Capability
translation,
lookup

NASD NASD

Kernel not invoked in read/write
operations (common path)

 http://www.pdl.cs.cmu.edu 24/24 G. Gibson, December 9, 1997

Parallel Data Laboratory NSIC/NASD Workshop
Carnegie
Mellon

Recap: NASD Filesystems are Policy Servers

Direct transfer for wire-once, scalable bandwidth
• NetSCSI for large object bandwidth
• NASD for object bandwidth and server offloading

NASD filesystems serve policy (async oversight)
• namespace, access control, consistency, atomicity
• capabilities encode policy, metadata; crypto integrity
• capabilities cause drive to understand variable length object

Storage management middleware
• clients pay for requested synchronizing semantics
• striping, RAID, incremental capacity, migration
• optimistic synchronization using fs-specific attributes

