
Informed Prefetching and Caching

Russel Hugo Patterson III

December 1997
CMU-CS-97-204

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree Doctor of Philosphy

in Electrical and Computer Engineering

Thesis Committee:
Garth A. Gibson, Chair
Mahadev Satyanrayanan

Daniel P. Siewiorek
F. Roy Carlson, Quantum Corporation

© 1997 by Russel Hugo Patterson III

This research was supported in part by Advanced Research Projects Agency contracts DABT63-93-
C-0054 and N00174-96-0002, in part by the Data Storage Systems Center under National Science
Foundation grant number ECD-8907068, in part by an IBM Graduate Fellowship, and in part by
generous contributions from the member companies of the Parallel Data Consortium: Hewlett-
Packard Laboratories, Symbios Logic, Data General, Compaq, IBM Corporation, Seagate Technol-
ogy, EMC Corporation, Storage Technology Corporation, and Digital Equipment Corporation. The
views and conclusions contained in this document are my own and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any supporting organization or the
U.S. Government.

Keywords: prefetching, caching, file systems, resource management, cache management,
TIP, I/O, cost-benefit analysis, economic markets, disk arrays, RAID

For Lee Ann

v

g pro-

 serial

 disk

tion, I

ment to

tion-

ically

ching

s. My

d time

e the

 in the

igital

rmed

tional

cogni-

 stor-

rmed

verage

med,
Abstract

Disk arrays provide the raw storage throughput needed to balance rapidly increasin

cessor performance. Unfortunately, many important, I/O-intensive applications have

I/O workloads that do not benefit from array parallelism. The performance of a single

remains a bottleneck on overall performance for these applications. In this disserta

present aggressive, proactive mechanisms that tailor file-system resource manage

the needs of I/O-intensive applications. In particular, I will show how to use applica

disclosed access patterns (hints) to expose and exploit I/O parallelism, and to dynam

allocate file buffers among three competing demands: prefetching hinted blocks, ca

hinted blocks for reuse, and caching recently used data for unhinted accesse

approach estimates the impact of alternative buffer allocations on application elapse

and applies run-time cost-benefit analysis to allocate buffers where they will hav

greatest impact. I implemented TIP, an informed prefetching and caching manager,

Digital UNIX operating system and measured its performance on a 175 MHz D

Alpha workstation equipped with up to 10 disks running a range of applications. Info

prefetching on a ten-disk array reduces the wall-clock elapsed time of computa

physics, text search, scientific visualization, relational database queries, speech re

tion, and object linking by 10-84% with an average of 63%. On a single disk, where

age parallelism is unavailable and avoiding disk accesses is most beneficial, info

caching reduces the elapsed time of these same applications by up to 36% with an a

of 13% compared to informed prefetching alone. Moreover, applied to multiprogram

I/O-intensive workloads, TIP increases overall throughput.

vi

vii

 and

ystems

ment is

grate-

anage-

tions,

em. He

d the

 Lab,

ther an

b. For

 him.

 the

ime I

help-

 Carl-

 at

iorek

 short
Acknowledgments

First, I would like to thank my advisor, Garth Gibson, for all the help, guidance,

advice he has given me. He has spent many long hours teaching me how to do s

research. Throughout, he has been a tireless advocate of excellence, and this docu

much better for it. He has also provided a huge amount of support. I am particularly

ful for the way he anticipated my needs as I started work on cost-benefit resource m

ment and ensured that all the other components, including benchmark applica

programming assistance, and a hardware platform, were in place when I needed th

let me focus on what I could do best and, by providing what I could not, guarantee

success of the project. Beyond that specific support, in founding the Parallel Data

Garth has created a wonderful environment for systems research, and pulled toge

impressive group of staff and students. I feel lucky to have been a member of the La

all of this, and for being such a good sport when I couldn’t resist teasing him, I thank

I would like to thank Satya for his help and advice throughout. Recently, I had

opportunity to review some notes of our early meetings. I now realize that at the t

only understood a fraction of our discussions. Still, some if it sank in. I thank him for

ing me understand the key problem and develop a solution to it.

Thanks are also due to the other members of my thesis committee. I thank Rick

son for his patience as I finished up. I look forward to continuing to work with him

Quantum as I make the transition to the real world. I am very grateful to Dan Siew

who gallantly joined the committee at the last minute and read the dissertation on

notice.

viii

port

orin.

when

and

e the

 many

s skill.

d sec-

epless

 door.

esign

would

d with

s the

syn-

ep

 work

 the

ld not

 many

r Stout,

how it

 later

 even

helped

, she
I’d also like to thank the many faculty that provided early guidance and sup

including Dave Lambeth, Stan Charap, Onat Menzilcioglu, H.T. Kung, and Sandro F

They all patiently endured many long meetings with me and helped me find my way

I was a newcomer to the field of I/O systems research.

I am particularly indebted to Jim Zelenka for his tireless efforts debugging

improving the raw TIP code I threw over the wall to him during the crush to produc

SOSP paper. He has an uncanny ability to track down kernel bugs which I gave him

opportunities to exercise. I am fortunate to have both benefited and learned from thi

I am also deeply grateful to Danner Stodolsky who helped optimize both the first an

ond TIP prototypes, annotated Sphinx and Gnuld to give hints, and spent many a sle

night running experiments and helping in other ways to get the SOSP paper out the

Both Danner and Jim helped with many constructive conversations about the TIP d

and implementation. Many thanks to them both.

A number of other students also helped me in my research along the way and I

like to thank each of them. Eka Ginting annotated Postgres to give hints and helpe

other aspects of the SOSP paper. Mark Holland set me up with RAIDSim which wa

foundation of the simulation environment for TIPTOE. And, Jiawen Su investigated a

chronous name resolution in TIP and ported the first TIP prototype to Digital UNIX.

I would like particularly to thank Andrew Tomkins for taking up the problem of de

prefetching and becoming such an energetic collaborator on the TIP project. His

developing TIPTOE extended TIP in a significant and exciting way. Without him,

OSDI and Sigmetrics papers would never have existed, and the TIP project wou

have been nearly as complete.

Writing a dissertation requires more than just research, and I am grateful to the

folks who helped me keep my senses of perspective and humor over the years. Pete

besides answering my endless computer questions, provided a fine example of

should be done. He also taught me how to drink coffee in large quantities. In the

years, David Steere and Brian Noble were always ready with a humorous diversion

when the slogging seemed slow and endless. Thanks too to Patty Mackiewicz who

with many practical problems and always looked out for me. But, more importantly

found a way to make me smile even in the face of adversity.

ix

many

 eased

hool

 us ever

 made

red and

th. Lee

gine. I

isser-
None of this would have been possible without my parents. I thank them for the

years of love and support that first prepared me to undertake this work and then so

my way during the long travail.

Finally, I would like to thank Lee Ann who first encouraged me to go back to sc

and pursue an advanced degree. That pursuit turned into a task larger than either of

imagined and demanded sacrifices neither of us anticipated. Lee Ann generously

those sacrifices and supported me throughout. When times were good, she chee

shared in my joy. When times were tough, she cheered me up and gave me streng

Ann has been there for me in these and many other ways I’m sure I cannot even ima

am deeply and forever grateful. As a small sign of my appreciation, I dedicate this d

tation to you.

Hugo Patterson
Pittsburgh, Pennsylvania

December, 1997

x

xi

 .

 .

. xix

.

. 7
. . . . 9
. . 12
. . . 13
 . . 16
 . . 21
. . 24
 . . 26
 . . 27
. . . 31
. . . 34

 . 37
. . . 38
. . . 41
. . . 44
. . 45
 . . 45
 . . 46
 . . 47
. . . 47
. . . 48
 . . . 49
. . . 51
 . . 52
. . 53
. . 54
Table of Contents

List of Figures . xv

List of Tables .xvii

List of Equations .

1 Introduction . 1

2 Asynchrony + Throughput = Low Latency .
2.1 Disk drive performance characteristics.
2.2 ASAP: the four virtues for I/O workloads .

2.2.1 Avoiding accesses avoids latency .
2.2.2 Increasing sequentiality increases channel utilization
2.2.3 Asynchrony masks latency .
2.2.4 Parallelizing I/O workloads increases array utilization
2.2.5 ASAP summary .

2.3 Disclosure hints for aggressive prefetching and I/O parallelism
2.4 Related work .
2.5 Conclusions.

3 Disclosing I/O Requests in Hints .
3.1 Hints that disclose.
3.2 The hint interface .
3.3 Annotation techniques .

3.3.1 In-line hinting.
3.3.2 Loop duplication .
3.3.3 Loop splitting. .

3.4 Annotating applications to give hints .
3.4.1 Agrep .
3.4.2 Gnuld .
3.4.3 Postgres .
3.4.4 Davidson .
3.4.5 XDataSlice .

3.4.5.1 XDataSlice organization .
3.4.5.2 Extending HDF to disclose hints to TIP .

xii

. . . 55
. . . 57

61
 . . 62
 . . . 63
 . . 64
. . 65
. . . 65
 . . 67
. . . 67
 . . 70
 . . 71
 . . 74
. . 75
. . 76
. . 78
 . . 80
 . . 80
 . . 84
. . . 85
. . 86
. . 88
. . . 91

3
. . . 93
. . 96
 . 100
 . 101
. 103
 . 107
 . . 108
 . 110
. . 112
. . 113
. . 113
 . 115
 . 117
. . 119
. 119
. . 121

123
 . . 124
. . 125
. . 126
3.4.6 Sphinx .
3.5 Conclusion .

4 Cost-Benefit Analysis for Informed Resource Management
4.1 A framework for I/O management by cost-benefit analysis.

4.1.1 Independent estimates .
4.1.2 A common currency for comparing estimates. .
4.1.3 An allocation algorithm .
4.1.4 Assembling the components .

4.2 Cost-benefit analysis for informed prefetching and caching
4.2.1 System model & assumptions .
4.2.2 The cost of shrinking the LRU cache .
4.2.3 The benefit of prefetching .
4.2.4 The cost of ejecting a hinted block .
4.2.5 The benefit of informed clustering .
4.2.6 Global buffer value and the min-max buffer .
4.2.7 An example: emulating MRU replacement .

4.3 Implementation of cost-benefit I/O management .
4.3.1 The LRU estimator .
4.3.2 The prefetching estimator .
4.3.3 The hinted cache estimator .
4.3.4 Implementation of informed clustering .
4.3.5 Identifying the min-max buffer .

4.4 Conclusion .

5 Implementation of Informed Prefetching and Caching . 9
5.1 Overview.
5.2 Implementation of cost-benefit buffer allocation .

5.2.1 Informed prefetching .
5.2.2 Informed clustering .
5.2.3 Allocating the min-max buffer.
5.2.4 Estimator functions .
5.2.5 The nexus data structure .
5.2.6 The LRU estimator .
5.2.7 The hinted cache estimator .

5.3 Other implementation challenges .
5.3.1 Hint management and the caching horizon .
5.3.2 Using integer arithmetic to compute cost and benefit estimates
5.3.3 Managing mapped pages with the LRU annex .
5.3.4 The orphan estimator .
5.3.5 Disk driver support for prefetching .

5.4 Conclusion .

6 TIP Performance Evaluation .
6.1 Experimental testbed. .
6.2 Measuring cost-benefit model parameters .
6.3 Single application performance .

xiii

. 127
 . 133
. . 139
. . 143
. . 144
 . . 147
 . 156
. . 160
. . 171
 . . 177
 . 177
. . 178
. . 187
. . 188

93
. . 194
. . 195
. 197
 . 199
. . 201
. . 204
. . 204
. . 208
. 211
. . 212
. 212
. . 212
r213

. . 214
 . 215
 . 216
 . . 217
 . 218
. . 218

. . 2

 . 2
6.3.1 MCHF Davidson algorithm .
6.3.2 XDataSlice .
6.3.3 Sphinx .
6.3.4 Agrep .
6.3.5 Gnuld .
6.3.6 Postgres .
6.3.7 The impact on disk service time .

6.4 Multiple-process results .
6.5 Lessons from prefetching and caching experiments.
6.6 System overhead .

6.6.1 Tracing infrastructure. .
6.6.2 CPU overhead .
6.6.3 Memory overhead .

6.7 Conclusion .

7 Generalizing the Results and Future Work. 1
7.1 The impact of the no-congestion assumption .

7.1.1 The ideal model .
7.1.2 Experiments with a synthetic application .
7.1.3 Analysis .

7.2 Tightening the bound on prefetch depth .
7.3 Comparison with other systems .

7.3.1 Prefetching and caching for a single process.
7.3.2 Allocating resources among multiple processes
7.3.3 Applying TIPTOE to arrays that hide data layout

7.4 Future work.
7.4.1 Implementation optimizations .
7.4.2 Cluster-sensitive caching .
7.4.3 Protecting the unhinted cache from hinted blocks: the post-hint estimato
7.4.4 Generalized estimators.
7.4.5 The hint interface .
7.4.6 Automatic hint generation .
7.4.7 Disk subsystem enhancements. .
7.4.8 A disk array for everyone .

7.5 Conclusion .

8 Conclusion . 21

Bibliography .27

xiv

xv

. 8
 9
. . . 28
 . . 43
 . . 48
 . . 49
. . . 50
. . . . 66
 . . . 68
 . . . 72
 . . 73
 74
 . . . 76
 79
. . . 81
. . . 87
 . 90
 . . 94
. . . 97
 98
. . . 99
104
. . 105
 . . 107
. . 109
. . 110
. . . 127
 . . 128
. . . 132
. . . 134
. . . 135
 . . 136
. . 138
List of Figures

2.1. Processor and disk performance trends .
2.2. Elapsed time vs. array size. .
2.3. Gains from prefetching .
3.1. Structure definitions for the disclosure hint interface .
3.2. In-line hints in Agrep. .
3.3. Loop duplication in Gnuld. .
3.4. Loop splitting in Postgres .
4.1. Informed cache manager schematic.
4.2. Components of system execution .
4.3. Worst case stall time and the prefetch horizon .
4.4. Average stall time when prefetching in parallel .
4.5. Predicted and measured per-access stall time .
4.6. Local value estimates. .
4.7. MRU behavior of the informed cache manager on repeated access sequences.
4.8. Piecewise estimation of H(n) .
4.9. Local value estimates in the implementation.
4.10. Algorithm for identifying the min-max buffer. .
5.1. The TIP informed cache manager in the Digital Unix operating system
5.2. Local value estimates in the implementation.
5.3. The hinted access sequence .
5.4. Schematic of cost-benefit buffer allocator.
5.5. Algorithm for identifying the min-max buffer (reprise) .
5.6. Procedural flow for page allocation.
5.7. Estimator operations .
5.8. TIP data structure overview.
5.9. Data structures for the LRU estimator .
6.1. Davidson access pattern.
6.2. Davidson performance. .
6.3. Davidson performance vs. cache size .
6.4. XDataSlice access pattern .
6.5. Close-up of XDataSlice’s accesses to a small range of its dataset
6.6. XDataSlice performance .
6.7. XDataSlice disk load distribution for a range of accesses on a four-disk array .

xvi

. . . 140
 . . 141
. . . 143
 . . 144
. . . 146
 . . 147
 . . . 149
 . . . 149
. . . 150
. . . 150
. . 162
 . 162
 . 162
. . 163
. . 163
. . 163
 . 195
 . . 198
. . 200
 . 206
. . 207
. . 225
6.8. Sphinx access pattern.
6.9. Sphinx performance. .
6.10. Agrep access pattern .
6.11. Agrep performance .
6.12. Gnuld access pattern .
6.13. Gnuld performance .
6.14. Postgres, 20% match, access pattern .
6.15. Postgres, 80% match, access pattern .
6.16. Postgres, 20% match, performance .
6.17. Postgres, 80% match, performance .
6.18. Elapsed time for both Gnuld and Agrep to complete .
6.19. Elapsed time for Gnuld when run with Agrep. .
6.20. Elapsed time for Agrep when run with Gnuld .
6.21. Elapsed time for both applications to compete .
6.22. Elapsed time for one of a pair of applications .
6.23. Elapsed time for the other of a pair of applications.
7.1. Average stall time when prefetching in parallel .
7.2. Measured per-access stall and stall predicted by the ideal model
7.3. Stall time when disk contention and disk scheduling are eliminated as factors .
7.4. The lost opportunity of not prefetching during idleness on a small array
7.5. The wasted effort of prefetching too aggressively on a large array.
8.1. Elapsed time vs. array size with and without TIP .

xvii

 . . . 16
 . . 42
. . . 58
 . . . 59
. . . 69
 . . 95
 . . 129
 . . 129
 . . 137
. . 137
. . 142
 . . 142
 . . 145
 . . 145
 . . 148
 . . 148
. . . 151
 . . 151
. . . 152
 . . 152
. . 157
. . 164
. . 164
 . . 164
 . 166
 . 166
 . 167
 . 167

. . 168

 . 168
 . . 172
List of Tables

2.1. Comparison of caching performance in 1985 and 1991
3.1. Ioctl calls in the disclosure hint interface .
3.2. Summary of benchmark workloads and hints .
3.3. Hints issued by the benchmarks. .
4.1. Performance model symbol definitions .
5.1. Ioctl calls in the disclosure hint interface .
6.1. Davidson elapsed time .
6.2. Davidson prefetching and caching performance .
6.3. XDataSlice elapsed time .
6.4. XDataSlice prefetching and caching performance .
6.5. Sphinx execution time .
6.6. Sphinx prefetching and caching performance .
6.7. Agrep elapsed time .
6.8. Agrep prefetching and caching performance. .
6.9. Gnuld elapsed time .
6.10. Gnuld prefetching and caching performance. .
6.11. Postgres, 20% match, elapsed time .
6.12. Postgres, 20% match, prefetching and caching performance
6.13. Postgres, 80% match, elapsed time .
6.14. Postgres, 80% match, prefetching and caching performance
6.15. Summary of disk performance for the benchmarks running on a single disk . .
6.16. Elapsed time for both Gnuld and Agrep to complete .
6.17. Elapsed time for both Sphinx and Davidson to complete
6.18. Elapsed time for both XDataSlice and Postgres, 80% match, to complete
6.19. Gnuld prefetching and caching performance when run with Agrep
6.20. Agrep prefetching and caching performance when run with Gnuld
6.21. Sphinx prefetching and caching performance when run with Davidson
6.22. Davidson prefetching and caching performance when run with Sphinx
6.23. XDataSlice prefetching and caching performance when run with Postgres, 80%

match.
6.24. Postgres, 80% match, prefetching and caching performance when run with

XDataSlice .
6.25. Performance summary for all the benchmarks .

xviii

. . 175
. . 179
 . . 181
 . . 183
 . . 184
. . 185
. . 186
6.26. Performance summary for the multiprogramming experiments
6.27. CPU profile by benchmark .
6.28. Filesystem CPU overhead summary .
6.29. TIP CPU overhead .
6.30. TIP CPU overhead summary .
6.31. CPU overhead of the other part of the filesystem .
6.32. Summary of the CPU overhead of the other part of the filesystem.

xix
List of Equations

4.1 . 68
4.2 . 69
4.3 . 70
4.4 . 70
4.5 . 70
4.6 . 70
4.7 . 71
4.8 . 71
4.9 . 71
4.10 . 72
4.11 . 72
4.12 . 72
4.13 . 73
4.14 . 74
4.15 . 75
4.16 . 75
4.17 . 75
4.18 . 76
4.19 . 82
4.20 . 83
4.21 . 83
4.22 . 83
4.23 . 84
4.24 . 85
4.25 . 85
4.26 . 85
4.27 . 85
4.28 . 86
4.29 . 86
4.30 . 86
4.31 . 86
5.1 . 115
5.2 . 116

xx
5.3 . 116
7.1 . 195
7.2 . 196
7.3 . 196
7.4 . 196
7.5 . 196
7.6 . 209
7.7 . 209
7.8 . 210
7.9 . 210

1

”

nsive

l engi-

cuits,

 more

essed

in this

verage

t they

 purely

 com-

rson88,

t that

ta they

ists on

f both
Chapter 1

Introduction

“It is a poor craftsman who blames his tools.
— unknown master

Magnetic disk drives are marvels of modern engineering. Into one small, inexpe

package they pull together technologies from magnetics, aerodynamics, mechanica

neering, coding theory, material science, chemistry, manufacturing, integrated cir

signal processing, control theory, electrical engineering, thermodynamics, and many

to store over a billion bits in a square inch of disk surface, any of which may be acc

in about 10 milliseconds. Disk drives are such effective data-storage devices that,

data-hungry world, the aggregate disk-storage capacity shipped is growing at an a

rate of 99% per year [IDC96]. And yet, disks are often the target of complaints tha

are too slow and that too much time is wasted waiting for them.

Although disks are fast by a human time scale, they are mechanical devices and

electronic processors can perform millions of operations in the time it takes them to

plete a single access. Nevertheless, when organized into arrays [Salem86, Patte

Gibson92a], disks can overwhelm any processor with data. So, the problem is no

disks are inadequate to the task of supplying processors with data or storing the da

produce. The problem is that all too many processors are running software that ins

issuing a request and then waiting idly while a disk services it. This is a poor use o

2 CHAPTER 1

 and so

 need

iating

 could

us-I/O

s pro-

ge of

rches-

mmer

. In a

y par-

y, no

ses far

refetch

ache

 ran-

en quite

ledge

ggres-

, pro-

 that

er and

chro-

ut how

figura-

erfor-

e next

nage-
processor and disks; besides idling the processor, it idles all but one disk in an array

fails to take advantage of disk-array parallelism.

The solution is not to replace disks, it is to be smarter in using them. Workloads

to exploit array parallelism for storage throughput and mask access latency by init

reads in advance and completing writes in the background. Master programmers

largely achieve these goals through careful use of existing batch and asynchrono

interfaces. But, not all authors of important applications are also masters of system

gramming. In this dissertation, I show how operating systems can take full advanta

secondary storage technology and free programmers from the burden of carefully o

trating their disk accesses to achieve good performance.

Researchers have already shown that write buffering, which requires no progra

intervention, can mask write latency and accumulate multiple writes for parallelism

similar manner, aggressive parallel prefetching could mask latency and exploit arra

allelism for reads if only the operating system knew what to prefetch. Unfortunatel

known technique can predict, without assistance from the application, enough acces

enough in advance to guide such aggressive prefetching. Further, attempts to p

aggressively without reliable information can waste large amounts of disk and c

resources and they risk hurting, not helping, performance. However, no matter how

dom and unpredictable accesses may appear to the operating system, they are oft

predictable within the application.

I propose that applications take advantage of this predictability to disclose know

of future file reads in hints to the operating system which then uses them to guide a

sive parallel prefetching. In the short term, and for the purposes of this dissertation

grammers must annotate applications to give hints by hand. However, I will argue

such annotation is preferable to explicit programmer I/O management for both mast

naive programmers. First, it is easier than adding either explicit parallelism or asyn

nous accesses. Second, it only requires programmers to disclose information abo

their applications behave and does not require programmers to posses intimate con

tion and performance details of the system running the application to obtain good p

mance. Third, because these system-specific details vary from one system to th

whereas application behavior does not, hints are more portable than explicit I/O ma

INTRODUCTION 3

hints

d other

eed,

ations

limi-

m I/O

hieve a

ilable.

:

pen-

ess effi-

tency.

t give

cesses

tions

system

cache

peting

 hints

ding to

n-time

ces the
ment. And fourth, explicit I/O ties down memory and disk resources whereas

enhance global resource management. In the long term, I believe that compilers an

automatic tools will be able to generate hints without programmer intervention. Ind

researchers have already demonstrated that this is possible for some applic

[Mowry96].

With enough hints and a large enough array, parallel prefetching can virtually e

nate application stalls for access completion. But, hints enable other operating syste

optimizations that can reduce the size and therefore cost of the array needed to ac

given level of performance, or can improve performance when an array is not ava

Specifically, informed by hints, an operating system can deliver four primary benefits

1. informed caching to hold on to useful blocks and outperform LRU caching inde

dent of prefetching;

2. informed clustering of multiple accesses into one larger access;

3. informed disk management that better schedules accesses to increase acc

ciency; and, of course,

4. informed prefetching to parallelize the read request stream and mask access la

At the same time, not all accesses may be hinted. Some applications may no

hints about all of their reads, and some may not give any hints at all. These ac

depend on traditional LRU caching for performance. In fact, all of the above optimiza

require cache buffers either to initiate disk accesses or to hold on to cached data. A

that takes advantage of hints for all of these optimizations while preserving an LRU

for unhinted accesses needs a mechanism for allocating buffers among these com

demands for all of the processes running on the system.

It is my thesis that many important, I/O-bound applications can provide accurate

about their future accesses, that operating system prefetching and caching accor

these hints can substantially reduce application wall-clock elapsed time, and that ru

cost-benefit analysis can be the basis of effective resource management that balan

use of cache buffers for all of these competing demands.

4 CHAPTER 1

oving

m to

alance

ering,

ations

nsive

ture

ng sys-

s for

es to

idson

ker,

ational

enefit

ost of

 com-

ble at a

 cache

tes its

e esti-

man-

sses

 band-

by as
To support these claims, I first survey in Chapter 2 the many approaches to impr

I/O performance. I find that asynchrony to mask latency coupled with parallelis

exploit disk array throughput can provide the scalable I/O performance needed to b

rapidly increasing processor performance. I go on to argue that, for software engine

application portability, and global resource management reasons, annotating applic

to give hints is a good way to add asynchrony and parallelism to serial, I/O-inte

applications.

In Chapter 3, I argue for a specific kind of hints that disclose knowledge of fu

requests and contrast such hints with ones that give advice about what the operati

tem should do. After defining a disclosure hint interface, I develop three technique

annotating applications to give hints. I go on to show how to apply these techniqu

annotate a broad suite of six important I/O-intensive applications that includes: Dav

computational physics, XDataSlice 3D scientific visualization, Gnuld object code lin

Sphinx speech recognition, Agrep text search, and two queries to the Postgres rel

database. This chapter proves the first claim of my thesis.

In Chapter 4, I develop a framework for resource management based on cost-b

analysis that includes three key components: locally-computable estimates of the c

ejecting a block from the cache and the benefit of using a buffer to initiate an I/O; a

mon currency for the expression of these estimates that ensures they are compara

global level; and an allocation algorithm that uses the estimates for prefetching and

management. In a nutshell, the algorithm ejects the lowest-cost block and realloca

buffer to fetch a block from disk when the estimated benefit of the fetch exceeds th

mated cost of the ejection.

In Chapter 5, I describe my implementation, called TIP, of cost-benefit resource

agement. In Chapter 6, I evaluate TIP performance and find that:

1. informed prefetching from an array can virtually eliminate stalls for hinted acce

and reduce application elapsed time by as much as 84%;

2. informed caching, clustering, and disk management are most beneficial when

width is limited, for example on a single disk, and can reduce elapsed time

much as 36% compared to prefetching alone; and,

INTRODUCTION 5

plica-

tching

results

-bene-

 I also

 dis-

ation

 com-

ture,

ation;

enefit

ework

that a

ager

otated
3. the combination increases throughput for both single and multiprogrammed ap

tions across array sizes.

The results show that TIP can use run-time cost-benefit analysis to manage prefe

and caching according to hints and substantially reduce elapsed time. Thus, the

prove the second and third claims of my thesis.

In Chapter 7, I explore TIP performance in greater depth and argue that the cost

fit resource management framework is robust to changes in system parameters.

point to opportunities to extend the framework and other areas for future work.

Together, these chapters present the following five primary contributions of this

sertation:

1. the identification of disclosure hints as a mechanism for communicating applic

knowledge about future requests to a lower level of software, and especially for

municating knowledge of future file accesses to the operating system;

2. three techniques for annotating applications with disclosure hints about their fu

and a demonstration of their use to annotate six important, I/O-intensive applic

3. a framework for resource management based on run-time application of cost-b

analysis;

4. estimates expressed in the common currency required by the cost-benefit fram

for the benefits of prefetching and clustering, and the costs of ejecting a block

hint indicates will be reused or that resides in the LRU queue; and,

5. an implementation, TIP, of the cost-benefit framework in a file buffer cache man

and a demonstration that this system reduces elapsed time for all six of the ann

applications.

6 CHAPTER 1

7

archy

n disks

 disks

or can

rfor-

 us

ance

that

erfor-

e?

ter is

 are

raries,

n disk-

ders of

lution

expen-

on88,

alable
Chapter 2

Asynchrony + Throughput = Low Latency

Because economic forces mandate a position for disk drives in the memory hier

of modern computer systems, the long mechanical access latencies for data stored o

are a drag on the performance of I/O-intensive applications. Even high-performance

have access latencies of 10 milliseconds or more. In that time, a modern process

execute millions of instructions. And, as shown in Figure 2.1, the trend is for this pe

mance disparity to grow, not shrink. The key implication, as Amdahl’s Law tells

[Amdahl67], is that reductions in elapsed time due to increasing processor perform

will ultimately be limited by the ever-larger portion of an application’s elapsed time

will be spent waiting for disk accesses to complete. How can secondary storage p

mance be increased so that it doesn’t become the bottleneck on overall performanc

Unfortunately, replacing disk drives in the storage hierarchy with something fas

not economically viable. Although disks are substantially slower than DRAM, they

also much cheaper. And, they are much faster than optical disk jukeboxes or tape lib

although more expensive. Because the cost and performance differences betwee

drive storage and its neighbors above and below in the hierarchy are measured in or

magnitude, the disk’s position in the hierarchy is secure.

The growing performance disparity between processors and disks requires a so

to secondary storage performance that can scale with time. Redundant Arrays of In

sive Disks (RAID) were proposed to be just such a scalable solution [Patters

Gibson92a]. Because arrays of any size could be built, disk arrays do provide a sc

8 CHAPTER 2

 2.2,

ingle-

 serial

ently,

izing

disk-

 arrays

ads be

tion, I

m can

pter, I

ble, is

 fact

t a
ccesses
th CPU
ance o
rowing

een disk
r chunks
amount of raw secondary-storage throughput. Unfortunately, as shown in Figure

many applications do not take advantage of that potential throughput. Just as s

threaded programs cannot exploit the computing power of a parallel processor, so

I/O workloads cannot in general exploit the I/O throughput of a disk array. Consequ

disk arrays will not be a complete solution until mechanisms are found for parallel

serial I/O workloads to exploit array parallelism.

Parallelism is just one workload characteristic that affects the performance of

based secondary storage. For the purposes of this dissertation, I observe that disk

provide adequate, scalable performance, and ask the question: how can I/O worklo

improved to take full advantage of the hardware that already exists? In this disserta

argue that applications can disclose their future accesses in hints that the file syste

use for informed prefetching, caching, clustering, and disk management. In this cha

explore the many possible alternative solutions and argue that my solution, if feasi

preferred to all others. In the remaining chapters, I will show that my solution is in

both feasible and effective.

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
year

20

40

60

80

re
la

tiv
e

pe
rf

or
m

an
ce CPU

transfer rate
access rate

Figure 2.1. Processor and disk performance trends. Although disk data transfer rates are increasing a
dramatic 40% per year, mechanical constraints have limited the growth in the number of random a
per second a disk can perform to about 8% per year [Grochowski96]. Neither is enough to keep up wi
performance which is increasing at about 58% per year [Hennessy96]. Setting the relative performf
each to 1.0 in 1989, this graph shows how the difference in performance growth rates leads to a g
disparity between processor and disk performance. There is also a growing performance gap betw
transfer rates and disk access rates which makes it increasingly advantageous to transfer ever-large
of data and to minimize seeks.

ASYNCHRONY + THROUGHPUT = LOW LATENCY 9

ance

 that

n sur-

tential

cond-

sible,

tching

ssive

plica-

ntages

erial.

 swings

of con-

ectors

n o
ational
ition,

scribed in
an take

 a 20%
 cannot
I start this chapter with a review of disk hardware and the very particular perform

characteristics of disks and disk arrays. I identify the ASAP virtues of disk workloads

increase performance: avoidance, sequentiality, asynchrony, and parallelism. I the

vey existing techniques for enhancing each of the ASAP virtues and evaluate the po

for further enhancements that could lead to a long-term scalable improvement in se

ary storage performance. I find that although increases in all four virtues are pos

asynchronous accesses coupled with parallelism in the form of aggressive prefe

offers the greatest opportunity to increase performance. Unfortunately, aggre

prefetching requires knowledge of what to prefetch. This fact leads me to propose ap

tion hints as a solution. I conclude this chapter with a discussion of the many adva

of this approach and a review of related work.

2.1 Disk drive performance characteristics

Disk drives consist of a stack of flat disks or platters coated with magnetic mat

Each side of each disk has a dedicated read/write head mounted on an arm that

back and forth over the surface to position the head on any one of the thousands

centric tracks of data. Each track is divided into a number, perhaps 50 to 100, of s

Figure 2.2. Elapsed time vs. array size. This graph shows elapsed time on multi-disk arrays as a fractiof
elapsed time on a single disk for a suite of I/O-intensive applications that includes: Davidson comput
physics, XDataSlice 3-D scientific visualization, Gnuld object code linker, Sphinx speech recogn
Agrep text search, and two queries to the Postgres relational database. These benchmarks are de
detail in Chapter 3. Davidson reads a 16-MByte dataset sequentially so sequential readahead c
advantage of the array for parallel transfer. But, none of the other applications obtains more than
reduction in elapsed time from even a ten-disk array because their workloads are not parallel and so
exploit array parallelism.

1 2 3 4 5 6 7 8 9 10
number of disks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

re
la

tiv
e

el
ap

se
d

tim
e

Davidson
XDataSlice
Gnuld
Sphinx
Agrep
Postgres (20% match)
Postgres (80% match)

10 CHAPTER 2

f data

 often

6 sec-

e head

ll sur-

itioned

n LP

centric

d track

 delay),

it takes

 disks

ec (half

0.06

r one in

 favor

secutive

om or

l trans-

nitude

sition-

ent as

 are a

, are

 per

ed by

year
which each typically store 512 bytes of data. The sectors define the smallest unit o

that may be read or written. The file system running in the computer hosting the disk

organizes these sectors into larger units called blocks which typically contain 8 or 1

tors each.

In most drives, there is one data channel that can read or write data via only on

at a time. Thenth track on each surface are together called a cylinder. The arms for a

faces move as a unit under the control of a single actuator so that all heads are pos

in the same cylinder. The configuration is very much like an audio turntable and a

record except that there are several platters in a disk drive and disk tracks are con

rings instead of a continuous spiral.

The time to access data is the sum of the time to move the head to the desire

(the seek time), the time for the requested data to rotate under the head (rotational

and the time to read the requested data off the disk which is the same as the time

for all the data to pass under the head (the transfer time). High-performance 3.5”

today have an average seek time of 8.0 msec, an average rotational delay of 4.1 ms

of a full rotation at 7200 rpm), and a transfer time for an 8 KByte block of 0.1 to

msec depending on whether the data is stored on the inner track, the outer track, o

between.

The most important consequence of disk geometry is a large performance bias in

of sequential over random accesses. Sequential accesses stream data from con

sectors on the disk surface and maximize utilization of the disk’s data channel. Rand

non-sequential accesses suffer seek and rotational delays during which the channe

fers no useful data. Sequential access of 8 KByte blocks is about an order of mag

faster than random access. The difference is greater for smaller blocks. Thus, repo

ing delays, which reduce channel utilization, should be kept as short and as infrequ

possible.

The bias in favor of sequential access is increasing. Channel data rates, which

function of the rotational speed of the disk and the linear bit density within a track

limited only by the speed of the channel electronics which is increasing about 40%

year [Grochowski96]. In contrast, accesses per second, which are largely determin

mechanical constraints, are increasing at a rate of only about 8% per

ASYNCHRONY + THROUGHPUT = LOW LATENCY 11

 rela-

 increas-

ce with

ntial.

, has

rrays,

units,

 phys-

ks are

 unit in

tripe.

 many

teris-

array

arter

 of its

ed in

he old

d the

rites,

e old

ss the

 each

e are

-write

ntial

 con-

ssfully

s in
[Grochowski96]. Figure 2.1 shows the impact of these different growth rates on the

tive performance of sequential vs. random accesses. Even sequential access is not

ing as fast as processor performance, but for actual disk performance to keep pa

even the increase in channel rates, workloads will have to become ever more seque

The advent of redundant disk arrays (RAID) [Patterson88, Gibson92a, RAB96]

added a new dimension to I/O subsystem performance, namely parallelism. In disk a

data is striped across the disks in the array by first grouping disk blocks into stripe

which are typically about 64 KBytes in size, and then assigning these stripe units to

ical disks in a round-robin fashion. The stripes assigned in one round over the dis

together called a stripe. Redundancy is most often achieved by reserving one stripe

each stripe to store the bit-by-bit XOR or parity of the other stripe units in the same s

When a stripe unit is lost, its data is the XOR of the remaining stripe units. There are

subtle variations on this theme that have different reliability and performance charac

tics. In general, however, taking maximal advantage of the multiple disks in an

requires that all disks be utilized simultaneously. To first approximation, if only a qu

of the disks are utilized at a time then the subsystem is delivering only a quarter

potential bandwidth.

One special optimization results from the way redundant information is maintain

most arrays. To update the parity when new data is written to a single stripe unit, t

data must be read, XOR’d with the new data, the result XOR’d with the old parity, an

resulting new parity written. Thus, a single write turns into two reads and two w

albeit on two different disks. However, if an entire stripe is written at once, then th

data and parity need not be read; it is sufficient to compute the all new parity acro

new data. Instead of four operations per stripe unit, this only requires one write of

data stripe unit plus a write of the parity stripe unit. Most often, blocks across a strip

sequentially numbered, so writes that span a full stripe take advantage of this large

optimization. Thus, the advent of RAID increases the desirability of large seque

writes which can span an entire stripe.

Array utilization is as workload-dependent as channel utilization. Workloads that

sist of large requests for a substantial fraction of a full stripe across the array succe

utilize most of the available bandwidth with parallel transfer of data from multiple disk

12 CHAPTER 2

ad. On

ts can

endent

a large

rray.

t trans-

2.2, is

never

h work-

cess is

amic

s tech-

 perfor-

main

terest-

ed to

, file

 them-

. Nev-

ly four

: avoid

d access

sesses

k per-

 trans-

quest-
the array. Scientific applications processing large datasets often have such a worklo

the other hand, workloads that consist of multiple, independent, concurrent reques

also achieve high array utilization. Because data is striped across the array, indep

accesses are likely to be randomly distributed over the disks in the array, and so

number of outstanding requests is likely to utilize a large number of disks in an a

Transaction processing systems that are concurrently processing many independen

actions often have such a concurrent workload. The problem, as shown in Figure

that many I/O-intensive applications are written as single-threaded programs that

have more than one modest-sized request outstanding at the I/O subsystem. Suc

loads rarely utilize more than one disk at a time.

As an aside, it is interesting to note that this same bias in favor of sequential ac

beginning to appear at the next higher level of the memory hierarchy as well. Dyn

RAM access latencies have been decreasing only slowly. Meanwhile, new acces

niques such as burst transfers and RAMbus have substantially increased sequential

mance. Furthermore, memory interleaving emphasizes parallel transfer from

memory devices just as disk arrays do from secondary storage devices. It will be in

ing to see how many of the techniques for improving disk performance will be appli

primary storage.

2.2 ASAP: the four virtues for I/O workloads

Many system components from the application down through software libraries

systems, device interfaces, and the firmware in array controllers and storage devices

selves affect the disk operations performed and therefore the performance obtained

ertheless, the performance characteristics of disk drives dictate that there are on

fundamental ways to change workloads to improve secondary storage performance

disk accesses, increase access sequentiality, perform accesses asynchronously, an

more disks in parallel. The more a workload applies these strategies the more it pos

the four ASAP virtues for I/O workloads.

1. Avoidance. Data needs satisfied without a disk accesses are unaffected by dis

formance. As a secondary effect, reducing the number of accesses required to

fer a given amount of data reduces both host and drive CPU overheads for re

ASYNCHRONY + THROUGHPUT = LOW LATENCY 13

 are a

 best

nel is

 the

tances

n to

 com-

iple

cture

disk

92]

ge of

 as a

ds. In

ed with

grams

substan-

ar data

llar69,

 many

multiple

sses and
processing which may itself reduce application elapsed time. File buffer caches

common mechanism for avoiding accesses.

2. Sequentiality. Sequential accesses maximize disk data channel utilization. Next

is to minimize seek and rotational delays and therefore the time that data chan

not utilized. For example, the Berkeley Fast File System (FFS) stores files from

same directory in the same group of neighboring cylinders to reduce seek dis

[McKusick84].

3. Asynchrony. Asynchronous accesses mask disk latency by allowing computatio

continue while disk operations complete. Buffered writes and readahead are

mon examples of such asynchronous accesses.

4. Parallelism. Taking advantage of multiple disks through parallel transfer or mult

concurrent requests is a relatively recent innovation. Beyond disk-array archite

itself, relatively little effort has been devoted to increasing the parallelism of

workloads. An exception is the Log-Structured File System (LFS) [Rosenblum

which organizes multiple small writes into large writes that can take advanta

parallel transfer. One goal of this dissertation is to explore informed prefetching

technique for taking advantage of array parallelism for reads.

Although these are the only virtues, there are many ways to add them to workloa

the next four subsections, I survey some of the mechanisms that have been propos

an eye towards identifying the best opportunities for further improvement.

2.2.1 Avoiding accesses avoids latency

Access avoidance can start with the applications themselves. Restructuring pro

and reorganizing file data so that data accessed together are stored together can

tially reduce the number of accesses. Techniques such as blocking and tiling regul

structures have been developed to store data for more efficient access [McKe

Wolfe96].

When applications do need to read data, the system can have an impact on how

accesses it takes to satisfy those requests. Organizing the data on the disk so that

small accesses may be replaced with fewer, larger accesses both avoids some acce

14 CHAPTER 2

ber of

 access

plish-

er of

pplica-

. Simi-

 can

stantial

s. For

 writes

se the

AID 5

ies to

e direc-

data for

lity.

ome

s occur

 to a

when

 full-

er of

ived,

s will

 which

anager

 effec-

 cache

le, his-
increases sequentiality (which will be discussed more below). Even if the same num

bytes is transferred in the two cases, reducing the number of accesses reduces CPU

overhead and request-processing delays at the drive. A simple technique for accom

ing this is to group file data into larger blocks [McKusick84] which reduces the numb

accesses when application data requests have high spacial locality, that is, when a

tions are likely to access data logically near data recently accessed in the same file

larly, reading multiple blocks in a single cluster or extent [Peacock88, McVoy91]

reduce the number of accesses.

Another approach is to focus on avoiding metadata accesses which can be a sub

portion of the total workload, especially when there are accesses to many small file

example, the Log-Structured File System (LFS) avoids some synchronous metadata

by appending new data followed by the updated metadata [Rosenblum92]. Becau

appends are sequential, LFS also enables more clustered writes and even the R

large-write optimization. Greg Ganger has shown how to embed inodes in director

avoid some metadata accesses and how to co-locate multiple small files in the sam

tory with their metadata so that a single access can read all the metadata and user

multiple files [Ganger97]. Again, these techniques also increase workload sequentia

On the write side, buffering written data and delaying the write to disk can avoid s

write accesses because data may be over-written or deleted before the disk write

[Baker91, Kistler93]. This is particularly useful when an application is appending data

file with small writes. Because file systems usually write entire blocks as a unit even

only a few bytes are dirty, coalescing multiple, small, application writes into a single

block disk write can decrease the number of bytes written as well as the numb

accesses. Buffering writes is also useful for avoiding writes altogether for short-l

temporary files that are soon deleted. But, the primary benefit of buffering writes, a

be discussed shortly, is that it adds asynchrony to write accesses.

The most common and direct mechanism for avoiding disk accesses is caching

holds data in memory for fast access if needed in the future. When a cache m

chooses to continue holding some block in preference to another that it ejects, it is

tively predicting that the held block will be accessed before the ejected one. Thus,

management is a game of predicting the future. Most current systems use a simp

ASYNCHRONY + THROUGHPUT = LOW LATENCY 15

(LRU)

 been

 work-

locks

than the

Used

cache

fit from

o iden-

apply

 traces

ecto-

le, an

 is no

C lan-

e reac-

uld be

 gen-

ough it

 or

They

 pro-

 parti-

ts for

ed in

quests,

ade so

eared
tory-based mechanism for choosing what to cache called the Least-Recently-Used

algorithm [Mattson70]. When a buffer is needed, LRU ejects the block that has not

accessed for the longest time. This heuristic has proven quite effective for general

loads which often have high temporal locality, that is, for which recently accessed b

tend to be reaccessed again soon.

There are access patterns, such as repeated sequential access to a file larger

cache, for which LRU fails to cache any blocks. In contrast, the Most-Recently-

(MRU) algorithm, which ejects the block just accessed, takes full advantage of the

for repeated accesses. Other workloads only access data once and would not bene

caching no matter which algorithm is used. Some researchers have explored ways t

tify different sets of blocks that will be accessed with different patterns and then to

the appropriate algorithm to each set. For example, Kim Korner proposed analyzing

of file activity to correlate programs with their access patterns to files in particular dir

ries or to files whose names end with a particular extension [Korner90]. For examp

assembler typically reads a file in the ‘/tmp’ directory and then deletes it, so there

point in caching any blocks that it reads from that directory. On the other hand, the

guage preprocessor reads files ending in ‘.h’ sequentially, and these files tend to b

cessed by the C preprocessor when the next file is compiled, so these files sho

cached with the MRU algorithm. Korner’s approach was to analyze traces off-line to

erate access pattern rules which are then given as hints to a remote file server, alth

is not hard to imagine using such hints in the local cache as well.

More recently, Pei Caoet al. proposed that applications generate their own hints

advice about which caching policies to apply to which blocks [Cao94, Cao94a].

showed how to apply the LRU algorithm at a global level to allocate buffers among

cesses while allowing each process to specify caching polices for the blocks in its

tion. In subsequent work, she and collaborators proposed using application hin

prefetching as well [Cao95, Cao96]. This work is closely related to the work describ

this dissertation and is discussed in more detail in Section 2.4.

Caches are crucial to the performance of modern systems. Hints about future re

whether inferred or explicit, can make them even more effective. Could caches be m

effective that they could permanently relieve the I/O bottleneck? At one time, it app

16 CHAPTER 2

 data

tween

o that

 read.

m file

 of an

’t cache

 or only

se data

in miss

f some

urther-

e, opti-

ncies.

age for

annel

loser

s, and

n
icted
he 1991
e varied
t in the
 a large
that by increasing cache size, caches could virtually eliminate slow synchronous

reads [Ousterhout89]. But, for caches to compensate for the growing disparity be

processor and disk performance, their miss ratios will have to drop proportionately s

an ever-smaller proportion of data accesses actually suffer the full latency of a disk

Is such improvement likely?

Table 2.1 compares the performance predicted for a variety of operating syste

cache sizes in 1985 [Ousterhout85] with that observed in 1991[Baker91] by a group at

Berkeley. The first observation, based on the 1985 data, is that increasing the size

already large cache does not reduce the miss ratio much. Some data sets just don

well, either because they are too large or because they are accessed infrequently,

once. In fact, the situation gets worse through time as the 1991 data shows. Becau

sets are growing, it is necessary to increase the size of the cache just to mainta

ratios. This is common experience for anyone who has upgraded to a new version o

software package; there is an ever-increasing amount of data to be processed. F

more, so much data is accessed infrequently, or even only once, that even a larg

mally-managed cache would not completely compensate for high disk-access late

Essentially, caches would have to become comparable in size to secondary stor

them to eliminate I/O performance as a bottleneck.

2.2.2 Increasing sequentiality increases channel utilization

A fully sequential workload optimizes disk performance because it has 100% ch

utilization (the channel is transferring data for 100% of the disk service time). The c

workloads can come to this ideal, the less time they will waste on positioning delay

the greater the disk performance they will achieve.

Table 2.1. Comparison of caching performance in 1985 and 1991. The numbers in this table are draw
from [Ousterhout85] and [Baker91]. The 1985 tracing study of the UNIX 4.2 BSD file system pred
cache performance for a range of cache sizes assuming a 30 second flush back policy for writes. T
study measured cache performance on a number of workstations running Sprite. The cache siz
dynamically, but averaged 7 MBytes. The diminishing returns from increasing cache size are eviden
1985 results. Also striking is the difference between the predicted and measured performance of
cache.

1985 BSD study 1991 study

cache size 390 KB 1 MB 2 MB 4 MB 8 MB 16 MB 7 MB

miss ratio 49.2% 36.6% 31.2% 28.0% 26.2% 25.0% 41.4%

ASYNCHRONY + THROUGHPUT = LOW LATENCY 17

t, file

nd up

uests

apply

e largely

equent

hedule

written

tion. I

 logi-

ficult

 size

which

length

If less

locks

d space

 FFS

hen

lution

 util-

pace

tation.

blocks

rites,

he next

ervice

rform

ses are
There are only two basic techniques for increasing workload sequentiality. Firs

blocks may be allocated to physical disk blocks in such a way that file accesses e

being sequential on the disk. Alternatively, taking block allocation as a given, req

may be re-ordered to maximize sequentiality. In practice, there are four ways to

these basic techniques: storing data so that both the write and subsequent reads ar

sequential; profiling data usage patterns and then moving the data so that subs

accesses have higher sequentiality; taking allocation as a given, but trying to sc

accesses to maximize sequentiality; and, two-stage techniques in which, data is

with high sequentiality now, and later asynchronously moved to a permanent loca

will discuss these approaches in turn.

Because many applications access files sequentially, a common policy is to write

cally contiguous blocks sequentially on disk. Achieving such sequentiality can be dif

in practice because storage is continually allocated and de-allocated in varying

chunks which eventually fragments available storage into short sequential runs

make allocating new, long sequential runs impossible. To put a lower bound on the

of an individual sequential run, many systems allocate space in fixed sized blocks.

than a whole block is needed, the unused portion of the block is left empty. Larger b

ensure greater sequentiality (less external fragmentation) at the cost of more waste

(internal fragmentation). Smaller blocks make the opposite trade-off. The Berkeley

tried to have the best of both worlds by subdividing whole file blocks into fragments w

needed to recapture lost space [McKusick84]. An alternative is the dynamic so

adopted by Microsoft for its MS-DOS file system: periodically run a defragmentation

ity that moves blocks around to form new, long sequential runs of free s

[Microsoft93].

Larger blocks increase sequentiality for reasons beyond a reduction in fragmen

At first glance, it may appear that sequential accesses to a large number of small

and to a small number of large blocks would have the same sequentiality. But, for w

the smallest delay between requests can cause the disk to miss the beginning of t

sector which adds the latency of a full rotation of the disk, perhaps 10 msec, to the s

time for the request. Reads do not suffer this problem on modern disks which pe

sequential readahead into buffers internal to the drive. However, when other acces

18 CHAPTER 2

e unit

leaved

d by the

es and

se the

e also

ctory in

quenti-

ng files

SI disk

locks

ssigns

s they

quen-

imen-

ssigns

to be

cating

nsion

cks are

tency

ises

e disk

s its

w inter-

oper-
interleaved with either reads or writes, larger blocks and clusters of blocks cause th

of interleaving to be larger, which reduces the number of seeks among the inter

access streams, and thereby increases the sequentiality of the workload experience

disk. Consequently, mechanisms such as LFS and Ganger’s embedded inod

grouped files which facilitate larger and clustered accesses also serve to increa

sequentiality of disk accesses.

Files are often accessed sequentiality, but multiple files in the same directory ar

often accessed together. When space is available, FFS stores files in the same dire

the same disk neighborhood known as a cylinder group. This does not guarantee se

ality, but it does decrease seek distances when multiple files are accessed. Groupi

goes further by tying to achieve true sequentiality for multiple small files.

The file system does not have a monopoly on allocating storage space. The SC

interface provides a layer of abstraction that the disk can exploit to reassign logical b

to any physical block it chooses. One approach is to use a greedy algorithm that a

the free block with lowest access latency given the current head position to blocks a

are written [Ruemmler91]. Unfortunately, this approach can leave the data in non-se

tial locations which can reduce physical sequentiality for reads.

The Logical Disk interface extends SCSI’s linear block address space to a two-d

sional space of a meta-list of lists of blocks [de Jonge93]. When the file system a

blocks to the same list, it effectively is giving the disk a hint that the blocks are likely

accessed sequentially. When it puts lists near each other in the meta-list, it is indi

that accesses to the two lists may be correlated in time. Effectively, this two-dime

structure abstracts the two-dimensional access performance of disks: sequential blo

accessed most quickly; after that, blocks located near each other will have lower la

than blocks further apart.

Recent work on Network-Attached Secure Disks (NASD) [Gibson97a] further ra

the interface so that disks export objects, not just a space of blocks. This provides th

with even more information than the two-dimensional block lists: the disk manage

own metadata, and knows what blocks are unused and may be reallocated. This ne

face should enable new allocation optimizations at the drive level without requiring

ating system changes.

ASYNCHRONY + THROUGHPUT = LOW LATENCY 19

ilities

n after-

e pro-

 later

s. LFS

ntial

ocation

ented

latency

s to

ce the

r sub-

ates

array,

ltiple

r just

pdates

es to

ation.

on the

blocks,

mple,

 highly

k sub-

can

duce

e posi-

ld and

n91,
Block allocation is not necessarily static. I already mentioned defragmentation ut

that move blocks around to increase sequentiality. But such defraggers are almost a

thought. Some researchers have explicitly regarded block allocation as a two-stag

cess: allocate short-term storage for high sequentiality and low latency now, and

move the data to free space and/or minimize latency for anticipated future acces

could be viewed as falling in this category with the log providing low-latency, seque

writes in the short term, and the segment cleaner performing the second-stage reall

to a long-term home. There are many other examples, although most are implem

below the file system in the storage subsystem and are aimed at avoiding the high

parity-update reads and writes. Examples include HP Autoraid which initially write

mirrored storage and later migrates data in large chunks to a RAID 5 arrays to redu

space overhead of redundancy information and provide higher, parallel bandwidth fo

sequent reads [Wilkes96]. Parity-logging is a technique for initially logging parity upd

with sequential writes and later truncating the log, applying the updates to a RAID 5

but taking advantage of multiple writes to the same region of the array to avoid mu

overwrites, to coalesce neighboring writes to achieve the large-write optimization, o

to increase the locality and therefore decrease the latency of more isolated u

[Stodolsky93]. Other researchers have looked at dynamically building new strip

avoid parity updates [Mogi94].

Most of the foregoing techniques use static policies to govern storage realloc

Autoraid goes a step further and allocates mirrored or RAID 5 storage depending

rate of updates to the blocks. But, there are a number of techniques for reallocating

not according to static policies, but according to dynamic usage patterns. For exa

systems can take advantage of the fact that the distribution of accesses tends to be

skewed to a small portion of the data stored on a disk. By profiling data accesses, dis

systems [Vongsathorn90, Akyürek93, Akyürek93a] or file systems [Staelin90]

migrate or replicate [Akyürek92] the most active blocks to the center of the disk to re

seek distances.

The second approach to increasing sequentiality is to reorder accesses to reduc

tioning delays. Scheduling requests to minimize average access time is itself an o

well-developed field of study [Denning67, Geist87, Seltzer90, Jacobso

20 CHAPTER 2

ltiple

tle that

k out-

er the

ve the

asyn-

s data

ands of

s only

ne solu-

block.

estion

uestion

ing I/O

 disk

ugh to

asing

truc-

rites

mplies

d. And,

ld have

s men-

ot be

ta out

 mech-

that can
Worthington94]. But such scheduling techniques are only applicable if there are mu

requests to schedule. If there is only one request outstanding at the drive, there is lit

can be done to reduce the service time for that request. Effectively, the more wor

standing at a disk, the greater the opportunity for efficient scheduling and the high

effective sequentiality or locality of the resulting workload for the disk arm.

How, then, can the system generate more outstanding requests and so impro

scheduling opportunities? On the write side, multiple requests may be buffered for

chronous writes which may be scheduled in any order. FFS does this when it buffer

for up to 30 seconds as described above. Some have advocated buffering thous

writes [Seltzer90]. The problem comes on the read side. Because many application

issue one read request at a time, there is often no opportunity to schedule reads. O

tion is issuing prefetches of additional blocks along with the read of the requested

In this way, asynchrony may be used to increase workload sequentiality. The qu

becomes, how to generate these asynchronous requests. I will shortly address this q

when I take up the general discussion of asynchrony as a mechanism for increas

performance.

Increasing workload sequentiality increases disk channel utilization and therefore

performance. It can even increase array utilization if accesses are sequential eno

take advantage of parallel transfer from the many disks in an array. But, can incre

sequentiality provide the parallelism needed to relieve the I/O bottleneck? The Log-S

tured File System could, with an appropriately sized write buffer, make nearly all w

sequential. But, reads and writes don’t necessarily occur in the same order which i

that data would have to be reallocated between the write and the subsequent rea

when the same data is read in a different order on different occasions, the data wou

to be reallocated between reads. Sometimes, as in the case of application launche

tioned above, it is possible to do this reorganization. But, in general, there may n

enough time to reallocate the data even if it were known in what order to lay the da

on disk. It is not possible to make all accesses, both reads and writes, sequential. A

anism is needed to convert serial, non-sequential accesses into parallel accesses

take advantage of array parallelism.

ASYNCHRONY + THROUGHPUT = LOW LATENCY 21

it for

y.

ork-

 pro-

is that

 lost in

 can

protect

own by

cted

plest

 Large

ore

ot all

ata, it is

equen-

hen the

e next

ore

at have

ithin a

ing

s. For

proba-

93,

hat

m also
2.2.3 Asynchrony masks latency

Asynchrony can mask long disk latencies. If an application doesn’t have to wa

disk accesses to complete then it doesn’t matter that the accesses have high latenc

Buffered write-behind is an effective means for adding asynchrony to the write w

load. Written data are temporarily stored in main memory, the application continues

cessing, and data are flushed to disk in the background. A pitfall of this approach

the data are not in persistent storage when the application continues and so may be

the event of a failure. But, battery-backed RAM or uninterruptable power supplies

protect from data loss due to power failure, and write-protecting the data cache can

against software failures such as operating-system scribble bugs and crashes as sh

the Rio file system [Chen96]. For maximal security, the write buffer could be constru

with a solid-state disk made of flash memory.

Prefetching data into the cache is the read-equivalent of write buffering. In its sim

form, file-system prefetching is based on the prevalence of sequential file access.

file blocks implicitly prefetch unrequested data in the latter portions of the block. M

explicitly, the file system can “readahead” sequential blocks of a file. But, because n

accesses are sequential, and because it can hurt performance to prefetch unused d

advantageous to scale the depth of prefetching according to the length of a run of s

tial accesses [Smith78, Smith85]. In practice, SunOS prefetches one block ahead w

last two blocks referenced were sequential, or for clustered I/Os, it prefetches th

cluster when the last cluster was read sequentially [McVoy91]. Digital UNIX takes a m

aggressive approach and prefetches ahead roughly the same number of blocks th

been read sequentially up to a maximum of 8 clusters of 8 blocks.

David Kotz has looked at detecting and prefetching for strided access patterns w

file [Kotz90, Kotz91, Kotz93]. This work primarily focussed on the parallel comput

domain, and there is more about it in the next section.

Many researchers have explored ways to discover access patterns among file

example Griffieon and Appleton observe the sequence of files opened and build a

bility graph that records how often file B is referenced soon after file A [Griffioen

Griffioen94, Griffioen95, Griffioen96]. Then, when A is referenced, if the likelihood t

B will be referenced is above a threshold, the system prefetches file B. The syste

22 CHAPTER 2

 thresh-

ce of

rams,

re the

es for

mpared

hen the

ential

ow the

e cur-

er fre-

uence

equence

Vitter

 in an

attern

mpres-

urrent

nspar-

that past

rawback

ccurate,

lty when

vative

perfor-

random

.

prefetches any other files that are accessed soon after A with a frequency above the

old. Using this technique, they were able to initiate prefetches for many files in advan

their use.

Duchamp and collaborators observe the sequence of files, including other prog

that a program accesses during the course of a single run [Tait91, Lei97]. They sto

pattern in an access tree. Over time, the system may build up multiple pattern tre

each program. When the program is later run again, its sequence of accesses is co

to the ones stored in the access trees for the program. If a matching tree is found, t

system prefetches the first block of later files in the tree. The system relies on sequ

readahead to prefetch the rest of the blocks in the file. The multiple access trees all

systems to distinguish different patterns of use for the same files and prefetch for th

rently occurring pattern.

Kroeger and Long have explored using data compression techniques to discov

quently occurring sequences of file references [Kroeger96]. When the current seq

matches one or more prior sequences, the system prefetches the next file in each s

whose frequency of occurrence is above a threshold.

The idea of using compression techniques for prefetching was first proposed by

and Krishnan [Vitter91]. They and Curewitz applied the approach to page references

object-oriented database [Curewitz93]. Palmer and Zdonik have also explored p

matching for database references [Palmer90, Palmer91]. But, instead of using co

sion algorithms, they use an associative memory to find close matches to the c

sequence of accesses.

All of these approaches to prefetching have the attractive advantage of being tra

ent to the user. The system simply observes accesses and, predicated on the idea

access patterns are being repeated, prefetches for the current access pattern. The d

of such transparent approaches is that because the predictions are not completely a

prefetches based on them cannot be too aggressive or else the performance pena

the predictions are incorrect will be too high. Consequently, most tend to be conser

and therefore can’t be scaled up to compensate for the growing processor-disk

mance disparity. Furthermore, many applications have access patterns that appear

or that touch data only once, and for which such heuristic techniques are ineffective

ASYNCHRONY + THROUGHPUT = LOW LATENCY 23

s can

n the

 issue

g asyn-

y will

compil-

f this

contin-

 is only

n to

n the

 while

w an

ation

e sub-

disk.

f it is

syn-

rites,

s pro-

time it

rrays

ultiple

peak-

h stor-

 read

pletes.

ith the
Instead of relying on the file system to guess what to prefetch, programmer

explicitly prefetch data with asynchronous I/O calls. In doing so, programmers take o

responsibility of determining how far in advance to issue requests and how many to

at a time. And, they must manage the requests and the buffers they use. Thus, usin

chronous I/O can require substantial programmer effort.

Intermediate between these two, applications can give hints about blocks the

access in the future [Gibson92, Patterson94, Patterson95, Cao96]. In some cases,

ers can generate such hints automatically [Mowry96]. This approach is the focus o

dissertation and will be discussed in some depth shortly.

Can asynchrony continue to mask disk latency even as processor performance

ues to increase? For it to do so, three issues must be addressed. First, asynchrony

effective if backed by sufficient throughput. Buffering writes only frees an applicatio

continue as long as there are free buffers. An application that fills buffers faster tha

storage subsystem can empty them will eventually run out of empty buffers and stall

dirty data are flushed to disk. Similarly, asynchronous reads and prefetching allo

application to read data without stalling only if disk reads complete before the applic

requests the data. If the application consumes data more quickly than the storag

system can deliver it, the application will eventually stall while data are fetched from

Thus, asynchrony decouples application elapsed time from disk latency, but only i

paired with sufficient throughput to satisfy application demands. Or, conversely, a

chrony leverages throughput to mask latency.

The second issue for scaling asynchrony is the number of staging buffers. For w

there must be enough to hold the written data while they are being flushed to disk. A

cessor performance increases, processors will be able to write more data in the

takes a disk write to complete, and therefore more buffers will be needed. If disk a

are used to provide the necessary storage throughput, then, conceptually, the m

disks in the array can be used to empty the multiple buffers concurrently. Roughly s

ing, there need to be enough buffers to keep enough disks utilized to provide enoug

age throughput to balance application throughput. A similar argument applies to

buffers: there must be enough of them to satisfy data demands while a fetch com

Thus, the number of buffers scales with the size of array needed and therefore w

24 CHAPTER 2

ord the

 a bar-

 these

ere is

 asyn-

mplete

a disk

k their

cessar-

scal-

r and

could

essor.

y they

of hurt-

lution

urate.

predic-

g sec-

ovide

ble if

 there-

m the

essing

. But,
size of the performance gap between processors and disks. A system that can aff

disks should be able to afford the much less expensive buffers, so buffer cost is not

rier to scaling asynchrony.

The third issue in scaling asynchrony is determining what data should be put in

staging buffers. The writes themselves dictate what to put in the write buffers, but, th

no equivalent oracle for reads. As I/O latencies grow in terms of processor cycles,

chronous fetches and prefetches must begin ever farther in advance if they are to co

in time. When the processing time between requests is less than the latency of

access, reads must be initiated several requests in advance to completely mas

latency. If all accesses are initiated multiple accesses in advance, then there are ne

ily multiple outstanding fetches. Scaling asynchrony for writes is a simple matter of

ing the write buffer size. Scaling asynchrony for reads implies scaling the numbe

timing of the asynchronous fetches.

Scaling the number of asynchronous reads is not trivial. For asynchronous I/O, it

mean additional programmer effort to retune the application for each new faster proc

For heuristic prefetching, the farther in advance predictions are made, the more likel

are to be inaccurate. As ever-greater resources are devoted to prefetching, the risk

ing, not helping performance increases. For prefetching to be the long-term so

sought, prefetching will have to become much more aggressive and more acc

Prefetching has the needed scalable potential, but it requires much more accurate

tions of future accesses.

2.2.4 Parallelizing I/O workloads increases array utilization

Organizing disks into arrays is a fundamentally scalable approach to increasin

ondary-storage throughput. By scaling up array size, arrays can, in principle, pr

whatever throughput is required. The problem is that this throughput is only availa

the workload itself has sufficient parallelism to utilize the multiple disks.

As mentioned above, scientific workloads that request large chunks of data, and

fore have highly sequential workloads, can take advantage of parallel transfer fro

array. At the other extreme, highly concurrent workloads such as transaction proc

can take advantage of arrays for concurrent servicing of multiple small requests

ASYNCHRONY + THROUGHPUT = LOW LATENCY 25

urrent

nsist

rray at

r these

e I/O

d par-

nous

us I/O

he data

plied to

. For

port

 would

el file

tt95,

buted

istrib-

is one

 every

rocess-

lelized

ultiple

h at the

ns that

ds on

e issue

unning
many I/O-intensive applications neither make large requests, nor are highly conc

and therefore cannot fully utilize disk-array parallelism. Instead, their workloads co

of a serial stream of moderately-sized requests that only utilize a single disk in an a

a time. The array’s potential throughput remains untapped and the access latency fo

individual disk accesses dominates I/O service time. For such workloads, it is as if th

subsystem had only a single disk.

The techniques for scaling asynchrony are also effective for generating workloa

allelism. Larger numbers of write-behind buffers increase the parallelism of asynchro

writes. Both aggressive prefetching and larger numbers of concurrent asynchrono

requests increase workload parallelism. But, as larger arrays are needed to supply t

needs of a single processor, these techniques must be ever more aggressively ap

maintain array utilization.

Batch or vector requests provide explicit parallelism with a single system call

example, Cray’s UNICOS operating system supports alistio system call that initiates

a list of distinct I/O requests [Cray93]. But, many applications are not written to sup

batch or vector processing. For these applications, taking advantage of these calls

require many of the same code modifications needed to support asynchronous I/O.

There is a substantial push in the parallel computing community to support parall

systems and I/O [Dibble88, Cao93, del Rosario94, Kotz94, Krieger94, Corbe

Corbett96, Haskin96]. There has also been some effort in this direction in the distri

domain [Cabrera91, Hartman93, Lee96, Gibson97, Thekkath97]. But, parallel and d

uted computing is not the focus of this dissertation. Certainly, using parallel threads

approach to generating parallel I/O. But, the issue here is generating parallel I/O for

processor because a single processor, even if in a parallel computer, is capable of p

ing data faster than a single disk can deliver it. Some applications are easily paral

and can be split into more threads than there are processors. Multiprogramming m

such threads on a single processor can generate needed I/O parallelism, althoug

cost of overhead to switch among the threads. However, there are many applicatio

are not easily parallelized. Such applications would like to exploit all available threa

different processors to maximize processor performance. For these applications th

again becomes one of how can I/O parallelism be generated for a single thread r

26 CHAPTER 2

cus of

tion in

 who

tz90,

s pat-

. He

puta-

lelism

fetching

d I/O

arallel

es, the

ess of

 per-

lution

red

neral

le for

reads

fetch-

ked by
alone on a processor. Thus, although parallel and distributed computing is not the fo

this dissertation, the arguments and techniques developed here also have applica

that domain.

Prefetching has been studied specifically in the parallel domain by David Kotz

was perhaps the first to emphasize its importance for increasing I/O parallelism [Ko

Kotz91, Kotz93]. He explored techniques for detecting sequential and strided acces

terns and prefetching in parallel for them with the goal of increasing array utilization

was able to demonstrate significant reductions in elapsed time for the parallel com

tions he studied. These parallel computations already had some intrinsic I/O paral

because each disk had an independent processor associated with it, but the pre

helped overlap I/O with computation at each node and more significantly, it allowe

to continue even when the processor was stalled at a synchronization point for the p

computation. However, as was the case for the single-processor prefetching studi

lack of certain knowledge about what data will be accessed limited the aggressiven

the prefetching and therefore the performance gains possible.

2.2.5 ASAP summary

Summarizing this survey of techniques for generating workloads that improve the

formance of disk-based secondary storage, we have that:

1. avoidance, although capable of delivering substantial gains, is not a scalable so

to the I/O bottleneck;

2. sequentiality maximizes the utilization of individual disks, and through buffe

writes and LFS, it scales to multiple disks for writes, but because there is no ge

mechanism for converting random reads into sequential ones, it does not sca

reads;

3. asynchrony for writes is scalable through write buffering, whereas scaling for

depends on scaling either the number of outstanding asynchronous I/Os or pre

ing aggressiveness, but for both reads and writes, asynchrony must be bac

scalable throughput and buffer sizes; and,

ASYNCHRONY + THROUGHPUT = LOW LATENCY 27

plic-

ly be

nnot

rallel.

ity is

reads.

ide the

g-term

eliev-

xploit

ost

 num-

ases the

re the

reasing

ewer

ximiz-

rite-

e gen-

maxi-

est use

 write

lica-

nique
4. parallelism that can exploit disk arrays is possible for some applications with ex

itly parallel I/O requests, but for serial workloads, scalable parallelism can on

achieved by scaling the number of asynchronous requests.

Techniques already exist for eliminating the I/O bottleneck for writes. Writes ca

be completely eliminated, but buffering can make them both asynchronous and pa

Asynchrony eliminates write latency, and parallelism provides throughput. Scalabil

achieved by scaling the size of the write buffer and the disk array.

On the other hand, no existing techniques scalably relieve the I/O bottleneck for

This survey made it clear that avoidance, sequentiality, and asynchrony cannot prov

necessary throughput. Parallelism, which can, must be a part of any scalable, lon

solution. Disk arrays already provide hardware parallelism. The challenge, then, in r

ing the I/O bottleneck for reads is adding parallelism to the read workload that can e

array parallelism.

Parallelism, whether achieved explicitly or implicitly through prefetching, is the m

important factor in improving I/O performance. But, because avoidance reduces the

ber of requests that secondary storage must service and because sequentiality incre

throughput of individual disks, both can reduce the degree of parallelism and therefo

cost of secondary storage needed to balance a given processor. Equivalently, by inc

the utilization of individual disk read/write channels, fewer channels, and therefore f

disks, are needed to provide a given level of throughput. Thus, there is benefit in ma

ing all ASAP workload virtues.

Unfortunately, it is not always possible to maximize all four at once. Caching, w

behind, prefetching, asynchronous I/O, batch requests, multiprogramming, and, mor

erally, virtual memory all require memory resources. A comprehensive approach to

mizing I/O performance should balance these competing demands to make the b

not just of the disk resource, but the memory resource as well.

2.3 Disclosure hints for aggressive prefetching and I/O parallelism

Aggressive prefetching could provide the necessary parallelism for reads just as

buffering does for writes. Parallel prefetches could fill prefetch buffers and allow app

tions to continue computing without stall. Prefetching is usually thought of as a tech

28 CHAPTER 2

ping,

perfor-

way to

 does

ppli-

 is diffi-

gful,

n it.

is dis-

e sys-

ncrease

f a
 reduce

rformed
of the
for overlapping I/O and computation. Prefetching can certainly achieve such overlap

but, as Figure 2.3 shows, prefetching in parallel can provide much greater, scalable

mance gains than simple overlapping alone. Prefetching is better thought of as a

add parallelism to a serial read workload.

The main barrier to using prefetching for read parallelism is that the file system

not know what to prefetch. The problem is that, from the file system’s perspective, a

cation accesses can seem random and unpredictable so guessing what to prefetch

cult or impossible. And yet, programmers wrote applications to perform meanin

purposeful tasks. Reads are predictable, just not to the file system.

I propose using this predictability to inform the file system of future demands o

Specifically, I propose that applications disclose their future accesses in hints. In th

sertation, I show, first, that applications can give such hints and, second, how the fil

tem can use these hints to:

1. improve cache performance to avoid accesses;

2. cluster multiple accesses into one and better schedule other accesses to i

sequentiality;

Figure 2.3. Gains from prefetching. The traditional goal of file prefetching is to overlap the latency o
disk access with computation. Figure (a) shows that overlapping disk accesses with computation can
elapsed time by at most 50%. Much larger gains are possible when multiple prefetches are pe
concurrently on a disk array. Such parallel prefetching can in principle eliminate all but the latency
first access.

CPU
I/O

gain ≤ 50%

no
overlap

maximal
overlap

(a) Serial prefetching to overlap I/O and CPU

parallel
prefetching

(b) Parallel prefetching to increase I/O throughput

CPU

concurrent I/O

ASYNCHRONY + THROUGHPUT = LOW LATENCY 29

es; and

uld be

odify

multi-

ssuing

ee rea-

ram

 paral-

 par-

-order

plex

rther-

ment to

Finally,

generate

e order

re is

r resort

 Pro-

at they

nt for

piler

ason-

nerate

mer

roces-
3. aggressively prefetch needed data to asynchronize file reads from disk access

4. to parallelize the read workload to exploit storage parallelism.

But, perhaps this approach is misguided and knowledge of future accesses co

better exploited at user level to achieve these optimizations. Programmers could m

their code to issue multi-block sequential reads, multi-block batch or vector reads,

ple concurrent asynchronous I/O requests, or to spawn multiple concurrent read-i

threads. Indeed, some applications already do this. However, there are at least thr

sons why the hint approach is superior.

First, modifying programs for explicit parallel I/O is challenging. Breaking a prog

into multiple threads which can generate independent I/O requests is equivalent to

lelizing the application which is known to be hard except in a few select, intrinsically

allel cases. Asynchronous I/O requires code nimble enough to handle the out-of

completion of any of the multiple outstanding requests which is certainly more com

than a programming model which only allows synchronous reads of a byte range. Fu

more, both asynchronous I/O and batch accesses require user-level buffer manage

reserve space for the read data and recycle the space when done with the data.

unless accesses are already sequential, using knowledge of future accesses to

sequential ones, if it is even possible, at least requires resorting accesses into som

other than the natural, logical one that is used by the existing code.

In fairness, application hints too require some modifications to program. But, the

no need to parallelize the program, handle out-of-order requests, manage buffers, o

requests into a possibly unintuitive order dictated by the location of data on disk.

grammers can continue to use the same serial, synchronous programming model th

are used to. In Chapter 3, I show that three straight-forward techniques are sufficie

annotating a broad range of applications to give hints. It is already possible for a com

to generate some hints without programmer intervention [Mowry96] and there is a re

able expectation that compiler and other techniques will eventually be able to ge

hints for a broader range of applications automatically.

The second, more significant, problem with explicit parallelism is that the program

must scale the parallelism when the application is ported to a new system. Faster p

30 CHAPTER 2

ther in

nsuffi-

 con-

apts

much

ts are

t pro-

tc., that

ey cer-

ting

arly as

rating

ropriate

m con-

 Chap-

eters

pplica-

arallel-

ems,

 how

ement.

width

 file

s than

ther

cation

rough-

 disk is
sors require more I/O parallelism to balance performance and I/Os need to start fur

advance. The programmer is faced with three choices: not adapt and suffer from i

cient parallelism or wasteful use of cache buffers; manually retune for every system

figuration at potentially huge programming cost; or, write code that automatically ad

to each system. But, implementing such automatic adaptation can be difficult. How

further in advance should I/Os be initiated, how many more outstanding reques

needed? Few systems provide meaningful information to user-level programs abou

cessor performance, disk performance, array size, memory size, network speed, e

could help determine answers to these questions. And, even if some systems do, th

tainly don’t provide it in a consistent manner which itself adds to the difficulty of por

such an application.

In contrast, once an application is annotated to give as many hints as it can as e

possible, there is no need to further modify or tune the application. It is up to the ope

system and especially the file system to initiate I/Os and manage the cache as app

for that system. The operating system may have to be tuned for the particular syste

figuration, but it makes sense to localize such machine-dependent function there. In

ters 4 and 5 of this dissertation, I will show how to use a handful of key system param

to tune file-system I/O and cache management to the particular system. Once the a

tion discloses its knowledge, the system can take advantage of them to scale I/O p

ism to take full advantage of that system’s I/O and buffer resources.

Finally, and most significantly, even if an application could be ported to new syst

explicit parallel I/O usurps operating system control of global resources by dictating

many and when buffers should be used for I/O and thereby cripples resource manag

Highly parallel I/O can consume large amounts of memory and storage band

resources. Taking buffers for I/O shrinks the pool available for virtual memory and

caching, so applications risk losing more to increases in paging and cache misse

they gain from I/O parallelism. And, they may unfairly hurt the performance of o

applications sharing the machine.

Resource allocations should be dynamic, varying in response to changing appli

needs and system conditions. When applications are sharing the processor, their th

put drops and I/O parallelism and prefetching can be scaled back. When access to a

ASYNCHRONY + THROUGHPUT = LOW LATENCY 31

euing

, cache

asks of

ility it

.

e the

ead, by

ource

 cache.

ther

perfor-

nalysis

e cost

crease

el of

at a glo-

mmon

 used.

mmon

ing to

orithm

 esti-

 per-

rpa-

oses

ssibly

event.
highly contested, caching for that disk becomes more important both to avoid qu

delays and to reduce the load on the disk. When data is read once and not reused

buffers can be freed for other uses. Global resource allocation is one of the central t

an operating system and explicit parallelism denies the operating system the flexib

needs to balance competing resource demands and optimize global resource usage

Disclosure hints empower instead of cripple global resource allocation. Becaus

operating system is free to ignore hints, they impose no demands on resources. Inst

providing the system with information about the future, hints enable proactive res

management that anticipates demands. Blocks that will be reused can be held in the

Missing blocks can be prefetched.

In Chapter 4, I show how to combine the new information provided by hints with o

information about historical resource usage to manage resources and improve I/O

mance. I develop a framework for resource management based on cost-benefit a

that includes three key components. First, it uses locally-computable estimates of th

(increase in I/O service time) of ejecting a block from the cache and the benefit (de

in I/O service time) of using a buffer to initiate an I/O that are derived from a mod

system performance. Second, to ensure that these local estimates are comparable

bal level, the framework requires that all estimates be expressed in terms of a co

currency that relates the change in I/O service time to the amount of buffer resource

Finally, the framework’s allocation algorithm uses the estimates expressed in the co

currency to balance the use of buffers for prefetching, clustering, caching accord

hints, and caching in the LRU queue for unhinted accesses. In a nutshell, the alg

ejects the block that will cost least to use its buffer to fetch a block from disk if the

mated benefit of the fetch exceeds the estimated cost of the ejection.

2.4 Related work

Hints are a well established, broadly applicable technique for improving system

formance. Lampson reports their use in operating systems (Alto, Pilot), networking (A

net, Ethernet), and language implementation (Smalltalk) [Lampson83]. Terry prop

their use for distributed systems [Terry87]. Broadly, these examples consult a po

out-of-date cache as a hint to short-circuit some expensive computation or blocking

32 CHAPTER 2

dvance

 form

hese

atically

i79,

ons of

ach-

om-

arallel

abase

nager

llocate

 mar-

m an

man-

nowl-

oes not

 alloca-

evel-

he cost

ffer for

 traces

that a

bution

ic, he

race he

to use

ons. It
An alternate class of hints are those that express one system component’s a

knowledge of its impact on another. Perhaps the most familiar of these occurs in the

of policy advice from an application to the virtual-memory or file-cache modules. In t

hints, the application recommends a resource management policy that has been st

or dynamically determined to improve performance for this application [Trived

Sun88, Cao94, Cao94a].

In some cases this policy advice can be generated automatically from observati

file system activity. I already mentioned Korner’s work on automatically generating c

ing hints at the client for a remote file server [Korner90]. An example from parallel c

puting is Madhyastha’s work on automatically classifying access patterns to set p

file system policies [Madhyastha97].

In large integrated applications, detailed knowledge may be available. The dat

community has long taken advantage of this for buffer management. The buffer ma

can use the access plan for a query to help determine the number of buffers to a

[Sacco82, Chou85, Cornell89, Ng91, Chen93]. Ng, Faloutsos and Sellis’s work on

ginal gains considered the question of how much benefit a query would derive fro

additional buffer. Their work stimulated the development of my approach to cache

agement. It also stimulated Chen and Roussopoulos in their work to supplement k

edge of the access plan with the history of past access patterns when the plan d

contain sufficient detail.

The use of estimates of the cost of an operation have long been used to develop

tion policies. For example, in his study of sequential prefetching [Smith78], Smith d

oped estimates of the cost of prefetching a block, the cost of a demand miss, and t

of the loss of cache effectiveness due to the early ejection of a block to reuse a bu

prefetching. Then, based on the distribution of sequential run lengths measured in

of system activity, he determined the number of blocks ahead to prefetch given

sequential run already has a certain length. Although his estimates of both the distri

of run lengths and the cost of dedicating cache buffers for prefetching were stat

observed that there was some variation in the actual values over the course of the t

studied. In this dissertation, I do not study heuristic readahead, but I do show how

dynamic estimates of costs and benefits to guide prefetching and caching decisi

ASYNCHRONY + THROUGHPUT = LOW LATENCY 33

ential

loiting

 run-

O sub-

ample,

essing

el I/O

 coordi-

s might

en into

e of the

tterns it

 over

 dis-

t may

rder

ccessed

stem

 and

ry on

file

 own

s, they

-level

pli-

ts to

psu-
would be interesting to incorporate estimates of the benefit of heuristic, sequ

prefetching into the TIP system described here.

Researchers have considered a variety of rich languages for expressing and exp

disclosure. One example is collective I/O [Kotz94] in which collections of processes

ning on a parallel machine describe their related accesses so that the underlying I/

system can optimize across the accesses. This is particularly useful when, for ex

each processor is performing strided access to a matrix, but collectively they are acc

the matrix in its entirety.

Another example in the parallel domain is the use of templates to specify parall

access patterns [Parsons97]. In this approach, users specify how the system should

nate the file accesses of multiple parallel processes. For example, the processe

share a common file pointer so that accesses are serialized, or the file might be brok

distinct segments for each process. Many different patterns are possible, but the us

template to specify them means that the system can be aware of what access pa

will be asked to support.

Another example is Dynamic Sets [Steere97] in which users specify a set of files

which they will iterate performing some operation. The specification of a set of files

closes likely access to all files in the set. A call to iterate on the next file in the se

return any file in the set. This gives the underlying system the flexibility to re-o

accesses for maximum performance. For example, already cached files can be a

first while prefetching proceeds for other files. Or, in the context of a distributed sy

such as the world-wide-web, the system can initiate fetches for multiple objects

deliver objects to the user in the order in which they are received.

Another example interface is an object-oriented file system implemented as libra

top of the UNIX file system called ELFS [Grimshaw91]. ELFS has knowledge of

structure (e.g. 2-D matrix) and high-level file operations (e.g. FFT) that it uses for its

prefetching and caching operations. When users request these high-level operation

in effect disclose to ELFS a large quantity of work. Although ELFS emphasizes user

control over file activity, it could use its knowledge to give hints to the file system. Ap

cations could further help ELFS performance by disclosing their knowledge in hin

ELFS which could translate them into hints for the underlying file system. ELFS enca

34 CHAPTER 2

ple-

g. In

fetch-

om-

o on to

appli-

 hints

 they

r both

ao

 use of

com-

features

uffer

go-

anager

cally-

y com-

fetch-

perfor-

ge is a

alable

ithout

disk

ady par-

oncur-
lates a lot of knowledge of file activity in a library, and as such it could be a good com

ment to an informed prefetching and caching system.

Relatively little work has been done on the combination of caching and prefetchin

one notable exception, however, Cao, Felton, Karlin and Li derive an aggressive pre

ing policy with excellent competitive performance characteristics in the context of c

plete knowledge of future accesses on a single disk [Cao95]. These same authors g

show how to integrate prefetching according to hints into their system that exploits

cation-supplied cache management advice [Cao96] which I mentioned earlier. The

they use for prefetching are very similar to the disclosure hints I advocate, although

supplement them with caching advice hints whereas I rely on the one type of hint fo

caching and prefetching. But, a greater distinction between the two efforts is that Cet

al. studied prefetching and caching on a single disk, whereas my emphasis is on the

prefetching to add parallelism to an otherwise serial workload. Recent joint work

pared the two approaches and found that an adaptive approach that incorporated

of each worked best across array sizes [Kimbrel96]. A further distinction is the b

allocation algorithms. Caoet al. propose a two-level approach that uses the LRU al

rithm to allocate buffers among processes and uses a local, application-controlled m

for each process’ buffers. My proposal is for a single unified manager that uses lo

generated cost and benefit estimates to find the best global allocation. A recent stud

pared and contrasted these two approaches [Tomkins97]. I will discuss both the pre

ing and buffer allocation comparison studies in more depth in Chapter 7.

2.5 Conclusions

The starting point for this chapter was the observation that because processor

mance is increasing so much more rapidly than disk performance, secondary stora

worsening bottleneck on overall system performance. Disk arrays, which provide sc

throughput and can balance processor performance, are only a partial solution: w

parallel workloads that exploit array parallelism, the latency of individual single-

accesses dominates storage subsystem performance. Some I/O workloads are alre

allel, but many fall between the extremes of large sequential accesses and highly-c

ASYNCHRONY + THROUGHPUT = LOW LATENCY 35

-sized

 bal-

rays of

 and

 maxi-

d the

rease

tency

lism

n both

ests or

vicing

d ulti-

vide

 buff-

ritten to

tching.

ristic

mpty

, dis-

antage

ints

a disk

 Finally,

s and
rent small ones. These workloads typically consist of a serial stream of modest

requests that run little faster on an array than they do on a single disk.

A sufficiently parallel workload running on a large enough disk array is enough to

ance any processor. But, even though disk prices have been dropping rapidly, ar

disks can still be expensive. Maximizing single-disk utilization minimizes array size

cost. Thus, the broad question is not just how to exploit disk arrays, but how best to

mize the performance of disk-based secondary storage.

After reviewing the performance characteristics of disk-based storage, I identifie

ASAP workload virtues for high performance: avoid accesses when possible; inc

sequentiality to minimize seeks and maximize read/write channel utilization; mask la

with asynchrony; and maximize throughput with parallelism. Of these, only paralle

can scale with processor performance. However, avoidance and sequentiality ca

reduce the size of the array needed by respectively reducing the number of requ

increasing the throughput of individual disks.

Servicing a request asynchronously can mask latency for that request. But, ser

multiple requests asynchronously provides parallelism and therefore throughput an

mately low latency for lots of requests. Asynchrony coupled with throughput can pro

the I/O throughput needed to balance increasing processor performance.

Generating multiple asynchronous writes is easy: accumulate the data in multiple

ers. Asynchronous reads are not as easy to generate. Unless programs are rew

issue explicit asynchronous I/Os, the only source of asynchronous reads is prefe

The challenge in initiating multiple prefetches is determining what to prefetch. Heu

techniques cannot predict what data will be needed reliably enough to fill the many e

prefetch buffers.

My thesis is that many I/O-intensive applications can predict their own accesses

close this knowledge in hints to the file system, and that the file system can take adv

of these hints to improve I/O performance through all four ASAP optimizations. H

expose concurrency that aggressive, asynchronous prefetching can exploit with

array. Further, hints reveal data reuse that can guide cache replacement decisions.

hints provide opportunities to cluster multiple requests into fewer larger disk accesse

to better schedule the disk arm to minimize seeks.

36 CHAPTER 2

etch-

quire

ints is

ses to

ipates

tion, I

e this

nt for

abil-

rage.

 espe-

e data

lways

equest

e only

 paral-

source

lism.

r utili-
Unfortunately, these many potential optimizations are potential competitors. Pref

ing, caching, clustering, and queuing requests early to improve scheduling all re

cache buffers. The challenge in implementing a system that exploits application h

determining how to allocate the limited supply of cache buffers to these alternative u

maximize performance. Hints enable proactive resource management that antic

future demands instead of simply responding to current demands. In this disserta

will show how to balance buffer usage for prefetching versus caching and integrat

proactive management with traditional LRU (least-recently-used) cache manageme

unhinted accesses.

Although I will not demonstrate it in this thesis, I believe this approach has applic

ity in the broader context of I/O that includes network transmission and tertiary sto

New technologies can generally increase throughput, but often fail to reduce latency

cially for small requests whose service time is dominated by factors other than simpl

transmission. Avoiding accesses to the next lower level in the memory hierarchy a

improves performance. Clustering smaller requests into larger ones reduces per-r

overhead in distributed and local systems alike. Accessing remote data or a tape driv

increases latency and makes latency-masking asynchrony more important. Finally,

lelism increases performance whenever issuing individual requests leaves some re

idle. In a distributed system, multiple servers may provide an opportunity for paralle

But, even parallelism in the form request pipelining can increase network and serve

zation and therefore performance.

37

d

trategy

sk that

ystem

 soft-

vocate

tions

d pro-

duced

s can

hort

ower-

n 3.4

cludes

nition,

al data

e bytes

re, in

exposing
Chapter 3

Disclosing I/O Requests in Hints

This chapter presentsdisclosure hints, the key to my approach for reducing rea

latency and relieving the I/O bottleneck. The aggressive, proactive management s

described in this dissertation depends on a reliable picture of future demands. I a

applications be modified to disclose their future accesses in hints and provide the s

with the knowledge it needs. But, not all hints are created equal, especially from a

ware engineering perspective. This chapter describes the disclosure hints that I ad

and explains why disclosures are preferable to advice hints.

Hints may be a wonderful concept in theory, but to be useful in practice, applica

must be able to generate disclosure hints. In the long term, I hope that compilers an

filers may generate reliable hints automatically. Indeed, recent work has already pro

promising results. For example, Todd Mowry led a group that showed how compiler

apply memory prefetching techniques in the I/O domain [Mowry96]. But, in the s

term, manual techniques for annotating applications to give hints remain the most p

ful. Section 3.3 identifies three techniques for manual hint annotation. Then, Sectio

shows how to apply these techniques to annotate a broad suite of applications that in

text search, 3D scientific visualization, relational database queries, speech recog

object code linkers, and computational physics. Using these techniques, the relation

base discloses half of the bytes it reads, speech recognition discloses 90% of th

read, and the other four applications disclose over 99% of bytes read. Furthermo

most cases, the hints disclose hundreds to thousands of accesses at once thereby

38 CHAPTER 3

 much

ts

, a dis-

imes

nt off-

t to the

vising

g pol-

 and

sure is

 how

re hints

daries

f the

 envi-

efetch

stem to

policy

ilable,

ange.

 would

mmer

te all

 stor-

a pro-
I/O concurrency and, as we will see in later chapters, enabling the system to add

needed read parallelism to these application’s workloads.

3.1 Hints that disclose

I advocate a form of hints based on advance knowledge calleddisclosure

[Patterson93]. An applicationdiscloses its future resource requirements when its hin

describe its future requests in terms of the existing request interface. For example

closing hint might indicate that a particular file is going to be read sequentially four t

in succession. Or, at a more detailed level, it might disclose a list of specific segme

sets and lengths that will be read with an implied seek from the end of one segmen

beginning offset of the next segment.

Disclosure hints stand in contrast to hints which give advice. For example, an ad

hint might specify that the named file should be prefetched and cached with a cachin

icy whose name is “MRU.” Advice exploits a programmer’s knowledge of application

system implementations to recommend how resources should be managed. Disclo

simply a programmer revealing knowledge of the application’s behavior, revealing

the application will use the interface that the system already exports.

Disclosure has three advantages over advice. Together, they show that disclosu

are a mechanism for passing portable optimization information across module boun

without violating modularity. First, because it expresses information independent o

system implementation, disclosure remains correct when the application’s execution

ronment, system implementation or hardware platform changes. Hints are not pr

commands so they can and should be given as early as possible; it is up to the sy

take full advantage of them. Even though the appropriate prefetching and caching

might depend on the number of disks in a disk array, the amount of buffer cache ava

or the existence of a large amount of non-volatile RAM, the hints do not need to ch

In contrast, to give the best possible prefetching and caching advice, a programmer

have to be sensitive to such variations in system configurations. But, even if a progra

could anticipate all possible configurations today, it would be impossible to anticipa

future configurations. Suppose, for example, that micro-mechanical or holographic

age devices with new and unknown characteristics come into existence. How can

DISCLOSING I/O REQUESTS IN HINTS 39

n will

y and

an the

or a

ed to

 given

eful to

reveal

ile to

sses

stem

s? Sim-

closure

lloca-

les of

r uses

riptors,

es not

mod-

dvan-

 it has

ay be

n uses

s must
writer to
grammer today give advice on their use? Disclosure hints reveal what an applicatio

do and therefore don’t depend on system configuration or implementation1. As such, dis-

closure is a mechanism for portable I/O optimizations, portable across platforms toda

portable through time to tomorrow’s platforms.

Second, because disclosure provides the evidence for a policy decision, rather th

policy decision itself, it is more robust. Specifically, if the system cannot easily hon

particular piece of advice, there is more information in disclosure that can be us

choose a partial measure. For example, if there is too little free memory to cache a

file, advice to cache the file does not help the system decide whether it is more us

cache the beginning, the end, or recently used portions of the file. Disclosures

which portions of the file will be accessed next and therefore which blocks of the f

cache.

Such robustness is particularly important for global optimizations. If two proce

advise the system to cache their file, but they don’t both fit, which should the sy

cache? Should it cache all of one and none of the other? Parts of each? Which part

ple advice provides inadequate information to answer these questions, whereas dis

arms the system with the facts that, as we will see, allow it to make an appropriate a

tion.

The third advantage is that disclosure conforms to software engineering princip

modularity because it is expressed in terms of the interface that the application late

to issue its accesses; disclosure hints are expressed in terms of file names, file desc

and byte ranges, rather than inodes, cache buffers, or file blocks. Disclosure do

require knowledge of another module’s implementation, it simply requires that one

ule disclose what invocations of the other module it will make.

Disclosure’s respect of modularity is in a sense a general statement of the first a

tage: that disclosure is portable from one system implementation to another. But,

more profound ramifications as well. In particular, it means that disclosure hints m

passed through multiple layers of software. Suppose, for example, that an applicatio

1 Of course, if the application’s behavior is dependent on system configuration, then the hint
also be dependent on configuration. However, such dependencies must be known to the application
be included in the code and so in principle this knowledge may be used to give appropriate hints.

40 CHAPTER 3

give

rstand

o the

ese

osure

ation

 this

ficulty

eded

at can-

 useful

 and

tation

s have

table

enta-

ne an

oving

havior.

n92],

]. Cer-

e will-

tion

focus

ge of

n the

 code.

 func-
a math library for complex out-of-core matrix manipulations. For the application to

advice to the system about how to support these operations, it would need to unde

how the library was implemented. An alternative is for the application to disclose t

library what library calls the application will make and for the library to translate th

calls into file access hints which it then discloses to the system. In this way, discl

hints may be passed through layers of software, transmitting optimization inform

down through all layers, without violating the modularity of these layers. Admittedly,

is easier for some layers to implement than others. Caches, in particular, have dif

predicting far in advance which accesses will hit and which miss. Further work is ne

both on predicting cache misses and on support in the hint interface for modules th

not predict requests with total accuracy. Nevertheless, disclosure hints are already a

mechanism for passing optimization information through multiple layers of software

in Section 3.4.5, I will give an example of an application that does just that.

Modularity often stands in opposition to performance because it hides implemen

details which are important for performance. In response to this problem, researcher

been exploring ways for a user to influence the underlying implementation. A no

example is Gregor Kiczales and his work on metaobject protocols and open implem

tions [Kiczales92] which allow users to influence implementation choices and so tu

implementation to support particular applications.

In the operating systems research community, efforts have been focussed on m

functionality out of the kernel and into user space where the user can customize be

Examples of this include external pagers [Harty92], scheduler activations [Anderso

and, in the extreme case, micro-kernels themselves [Accetta86, Rozier88, Engler95

tainly, this approach can lead to dramatic performance gains for applications that ar

ing to rewrite significant chunks of the operating system. But, many applica

programmers don’t wish to become systems programmers. They would prefer to

their efforts on their own algorithms. Because disclosure hints only require knowled

what the application itself does, they do not require new, specialized knowledge o

part of the programmer and so are an attractive alternative to reimplementing system

A deeper problem is that when multiple applications reimplement the same system

tion, global knowledge is lost along with the opportunity for global optimizations.

DISCLOSING I/O REQUESTS IN HINTS 41

ation

te the

g sys-

d opti-

ement,

e tech-

niques

 phys-

 rec-

 major

sfully

e bur-

ance

 an

plica-

e, the

k else-

. The

w hints

ed, for

trided

t indi-

d such

tions

ssible to

sible to
Disclosure hints offer an alternative to these efforts. I acknowledge that applic

information is helpful, even necessary, for good performance, but also apprecia

advantages of keeping resource allocation and system-specific tuning in the operatin

tem. Ideally, applications and the system would cooperate in managing resources an

mizing performance. Disclosure hints are portable, enable global resource manag

and do not violate modularity.

The remainder of this chapter details the disclosure hint interface, describes thre

niques for annotating applications to give hints, and shows how to apply these tech

to annotate a broad range of six applications that includes: Davidson computational

ics, XDataSlice 3D scientific visualization, Gnuld object code linker, Sphinx speech

ognition, Agrep text search, and two queries to the Postgres relational database. A

thrust of the remainder of this dissertation will be showing that a system can succes

optimize its behavior based on disclosure information. It is not necessary to move th

den of writing operating systems on application writers to obtain significant perform

gains.

3.2 The hint interface

My dual goals in designing the hint interface for TIP, my implementation of

informed prefetching and caching system, were simplicity and support for the test ap

tions. Only three pieces of information are needed to describe UNIX reads: the fil

byte offset to start the read, and the number of contiguous bytes read before a see

where. Disclosure hints reveal this same information in advance of the actual read

order hints are given indicates the order accesses are anticipated. Conceptually, ne

are added to the end of a list. I could have explored richer interfaces that support

example, insertion of new hints at arbitrary locations, compact representations of s

accesses, concurrent hint streams with unknown interleaving, probabilistic hints tha

cate data might be accessed, etc. But, the suite of applications studied did not nee

embellishments, so I left them out.

The programming model for giving hints includes only three rules. First, applica

should issue hints as early as possible so that the system has as much time as po

take advantage of them. Second, applications should issue as many hints as pos

42 CHAPTER 3

d

e hints

as too

ts. If a

le: file

e the

d

s

l the

t know

f the

stem
lves on
this was

me
 and the
via
iven in
es
expose as much I/O concurrency as possible.2 Not all of the concurrency may be neede

today, but maximizing the exposure of concurrency ensures the effectiveness of th

in the future. And third, to guarantee that the system does not discount their hints

inaccurate, applications should perform all accesses for which they have issued hin

hint turns out to have been incorrect, the application should issue aTIPIO_CANCEL hint as

described below.

In the TIP system, hints are passed to the file system via an I/O-control (ioctl) system

call. Table 3.1 summarizes the supported calls. There are two ways to specify the fi

descriptor or file name. If the file is already open, then the open file descriptor can b

target of theioctl call as in theTIPIO_FD_SEG hint. Alternatively, the file can be specifie

by name, in which case the target of theioctl call is a pseudo-device named “/dev/tip” a

in theTIPIO_SEG hint.

Hints specify contiguous file segments with an <offset, length> couple (not al

bytes need be requested in a single read call). To reduce what the application mus

before hinting, a length of 0 indicates the file will be read from the offset to the end o

2 At the limit, hint storage itself could become a problem if too many hints are given. The sy
could limit the number of outstanding hints, but a better solution might be to store the hints themse
disk. None of the benchmark applications ever had more than 16,000 hints outstanding at a time, so
not a problem.

Table 3.1. Ioctl calls in the disclosure hint interface. Disclosure hints describe future requests in the sa
terms as the existing file interface. Thus, they must specify the file, the starting offset of the access,
length of the sequential access before aseek to a new offset. This information is relayed to the file system
ioctl system calls using one of the hints specified in this table. Hints specifying a file by name are g
ioctl calls to the /dev/tip pseudo-device, whereasioctls giving hints about open files can target those fil
directly. The structures which are the parameters for some of the hints are defined in Figure 3.1.

hint target parameter description

TIPIO_SEG /dev/tip tipio_segbuf_t *
batch of <offset, length> seg-
ments for a named file

TIPIO_FD_SEG open file descriptor tipio_fd_segbuf_t *
batch of <offset, length> seg-
ments for an open file

TIPIO_MFD_SEG /dev/tip tipio_mfd_segbuf_t *
batch of <fd, offset, length> seg-
ments for multiple open files

TIPIO_CANCEL
/dev/tip or
open file descriptor

null
cancels segment at head of hint
list; used when a hint turns out to
be erroneous

DISCLOSING I/O REQUESTS IN HINTS 43

 file.

y

nes the

ven

 that

rthand

, the
array.

g
 may be
file. Thus, a hint with offset=0 and length=0 indicates a sequential read of the whole3

To reduce system call overhead, a singleioctl call may deliver an ordered list of man

such couples; the ordering in the list indicates the order of accesses. Figure 3.1 defi

structures which are the parameters to theioctl that pass in these couples.4

Finally, theTIPIO_CANCEL hint lets applications cancel hints. Some applications, e

when trying to be precise, occasionally give incorrect hints. Specifically, applications

3 For historical reasons, the interface includes TIPIO_SEQ and TIPIO_FD_SEQ hints as sho
for this special case of whole-file sequential read.

4 The implemented interface differs from this in several minor cosmetic ways. For example
tipio_fd_segbuf_t structure actually contains an array of segments instead of a pointer to a separate

/* contiguous file segment */
typedef struct tipio_seg {

int offset;
int length;

} tipio_seg_t ;

/* batch of segments in a named file */
typedef struct tipio_segbuf {

char *path; /* file name */
int nsegs; /* number of segments */
tipio_seg_t*seg; /* array of segments */

} tipio_segbuf_t ;

/* batch of segments in an open file */
typedef struct tipio_fd_segbuf {

int nsegs; /* number of segments */
tipio_seg_t*seg; /* array of segments */

} tipio_fd_segbuf_t ;

/* segment in a specified open file */
typedef struct tipio_mfd_seg {

int fd; /* open file descriptor */
off_t offset;
off_t length;

} tipio_mfd_seg_t ;

/* batch of segments in multiple open files */
typedef struct tipio_mfd_segbuf {

int nsegs;
tipio_mfd_seg_t *seg; /* array of segments */

} tipio_mfd_segbuf_t ;

Figure 3.1. Structure definitions for the disclosure hint interface. These structures specify the startin
offset and length of sequential accesses to files. To reduce system call overhead, batches of hints
given in one call.

44 CHAPTER 3

antici-

r which

 hinted

epth in

s can

Such

s to the

nknown

t be cer-

curred

hat to

o the

lerate

rate

ll be

erminis-

ains a

lyzer,

ts. In

pplica-

ere

ation

e early

it may
maintain an internal cache sometimes fail to predict an internal cache hit and an

pated access never occurs. The current TIP implementation tolerates accesses fo

no hint was ever given, but expects that all hinted accesses eventually occur in the

order. Because TIP matches accesses to hints and may only prefetch to a limited d

the hint sequence, inaccurate hints risk halting prefetching. To avoid this, application

cancel their erroneous hints as they discover them.

Ideally, the system would be resilient to minor inaccuracies in the hint stream.

resilience would require matching an arbitrary subsequence of the actual accesse

hinted sequence, possibly with reordering. Because the entire access sequence is u

ahead of time, when an access doesn’t match the hint sequence, the system canno

tain whether the hints were inaccurate or whether the hinted access simply hadn’t oc

yet. Such uncertainty complicates the system’s task of deciding whether and w

prefetch. A further complication is that resilience could add undesirable ambiguity t

programming model if programmers became uncertain whether the system would to

their slightly inaccurate hints or not. Different system implementations might tole

varying levels of inaccuracy. How can programmers know whether their hints wi

accurate enough? The exacting requirements of the current system are at least det

tic. For all these reasons, adding resilience to inaccurate hints is difficult and rem

topic for further research.

3.3 Annotation techniques

In the future, hints may be generated automatically by a compiler, run-time ana

or other means, but for this work, applications were annotated by hand to give hin

this section, I describe the three techniques used to annotate the six benchmark a

tions.

The hinting techniques range in complexity from the in-line insertion of hints wh

knowledge of future accesses becomes available to loop splitting in which applic

code is restructured to get around data dependencies that would otherwise mak

hints hard to generate. Loop duplication is intermediate between these two in that

require noticeable amounts of new code, but leaves the original code largely intact.

DISCLOSING I/O REQUESTS IN HINTS 45

w to

certain

le.

n are

idual

 actual

itional

n they

ts are

ttern.

t does

subse-

ns sig-

later

ay be

 loops

 loop

nding

Post-

on as

sclose

s-
After describing the three hint techniques in abstract terms, I will go on show ho

apply these techniques to annotate the benchmark applications.

3.3.1 In-line hinting

In some applications, specific access patterns are known to the programmer at

points in the code.In-line hints simply disclose this information as it becomes availab

Such hints require little or no special work to generate and consequently they ofte

added very easily to a program.

In their simplest form, a separate in-line hint may be given in advance of indiv

read calls. Of course, for such hints to be useful they must be given well before the

access; hints given immediately before the corresponding read provide no add

information. It is always best to give hints as early as possible.

In-line hints that disclose multiple accesses expose I/O concurrency even whe

are not given far enough in advance to overlap much computation with I/O. Such hin

possible, for example, when a program loop reads from a file with a predictable pa

Before entering the loop, an in-line hint could disclose the access pattern. Such a hin

not give much advance warning for the first access, but it may allow the second and

quent accesses to be prefetched in parallel. Moreover, if the body of the loop contai

nificant computation, such a hint does give significant advance notice for the

accesses.

Even when it is not possible to anticipate all of the accesses within a loop, it m

possible for an in-line hint to disclose accesses one iteration in advance. When

enclose multiple accesses or significant computation, hints in-lined in the body of the

can still expose I/O concurrency or at least give sufficient advance warning of impe

accesses to overlap computation with the I/O.

Agrep and Davidson are good examples of applications that give in-line hints.

gres also gives in-line hints for some of its accesses.

3.3.2 Loop duplication

Within some program loops, in-line hints may only be possible in the same iterati

the actual access. This often results in hints that give little advance warning and di

little concurrency.Loop duplication is a technique for lifting these hints out of the enclo

46 CHAPTER 3

 more

 new

 of the

those

As the

esses in

sons.

ificant

, there

s to

stantial

in the

oop,

ults to

empo-

loop

rs, for

 a sec-

pendent

 read is

s, for

he sec-

econd,
ing loop so that multiples of them may be given far in advance thereby giving much

advance warning and disclosing substantial I/O concurrency.

In loop duplication, the control structures of the enclosing loop are duplicated in a

shadow loop placed before the original one. The shadow loop does not perform any

file accesses of the original. Instead, the body of the shadow loop includes only

operations necessary to determine what the accesses of the original loop will be.

accesses are determined, hints can disclose them. Using this technique, all the acc

some loops may be disclosed before the start of the loop.

Gnuld uses this technique to generate some of its hints.

3.3.3 Loop splitting

Loop duplication as described above is sometimes unsatisfactory for two rea

First, it may lead to unacceptable overhead if the shadow loop must duplicate a sign

amount of computation. Second, it may not be effective when, as described below

are data-dependent reads within the loop body. The solution is to useloop splitting to

avoid duplicating work and separate data-dependent accesses.

Like loop duplication, loop splitting duplicates the original loop’s control structure

create a second loop. But, if determining what data will be accessed requires a sub

amount of computation, loop splitting temporarily stores partial results generated

first or top half of the split loop. After issuing hints based on the results of the first l

the second or bottom half of the split loop takes advantage of the stored partial res

avoid the overhead of recomputing them and computes the final result. The use of t

rary storage for partial results and the modification of the original loop distinguish

splitting from loop duplication.

Sometimes a read depends on other data read within the loop body. This occu

example, when an initial read of a header determines the offset of data accessed in

ond read. Splitting the loop body between the two accesses separates such data-de

accesses from their dependencies and solves the problem that a hint for the second

only possible after the first read completes. The first loop performs all the initial read

example of the headers, and stores the offsets for all of the data-dependent reads. T

ond loop refers to the stored offsets, skips the initial reads and only performs the s

DISCLOSING I/O REQUESTS IN HINTS 47

s of the

ther in

ncur-

.

dies in

e ben-

ing

peci-

ially. In

s for a

grep

such as

ds of

cases,

ot just

h the

ws, an

ead.

tives
data-dependent reads. But, before the second loop begins, hints disclose the offset

data-dependent reads in the second loop. Not only are these hints given much fur

advance, but, more importantly, they are given all at once thereby exposing I/O co

rency.

Postgres, Gnuld, and XDataSlice all take advantage of loop splitting to give hints

3.4 Annotating applications to give hints

In this section, I describe the six applications that have served both as case stu

annotating applications with hints and as benchmarks for evaluating the performanc

efits of informed prefetching and caching based on these hints.

3.4.1 Agrep

Agrep, version 2.04, a variant of the standard UNIXGreputility, was written by Wu

and Manber at the University of Arizona [Wu92]. It is a fast full-text pattern match

program that allows matching errors. Invoked in its simplest form, it opens the files s

fied on its command line one at a time, in argument order, and reads each sequent

our benchmark, Agrep searches 1349 kernel source files occupying 2922 disk block

simple string that does not occur in any of the files.

Because the arguments to Agrep completely determine the files it will access, A

can issue hints for all accesses upon invocation. When searching data collections

software source files or mail messages, hints from Agrep frequently specify hundre

files too small to benefit from history-based, sequential readahead. In such

informed prefetching has the advantage of being able to prefetch across files and n

within a single file.

Annotating Agrep is easy. Before searching any files, the program loops throug

argument list and checks that each argument is a valid file name. As Figure 3.2 sho

in-line hint inserted within this loop discloses the names of all the files Agrep will r

Adding this call requires about ten lines of code, most of which are ‘#include’ direc

or variable declarations.

48 CHAPTER 3

sup-

nuld

input

In the

bol and

 loop

ad of

ossible

cond-

 though

 tables

cond-

able,

symbol

ortu-

s. Loop

here

ied.

and
 hint that
and a
3.4.2 Gnuld

Gnuld version 2.5.2 is the Free Software Foundation’s object code linker which

ports ECOFF, the default object file format under Digital UNIX. In the benchmark, G

links the 562 object files that make up a Digital UNIX kernel. Gnuld passes over the

object files several times in the course of producing the output linked executable.

first pass, Gnuld reads each file’s primary header, a secondary header, and its sym

string tables. Hints for the primary header reads are easily given by duplicating the

that opens input files5. Thus, Gnuld gives hints across files just as Agrep does. The re

the secondary header depends on data in the primary header. It would have been p

to apply loop splitting to disclose these reads, but usually neither the primary nor se

ary headers are large, so they tend to be co-located in the same block. Thus, even

Gnuld doesn’t hint them, the secondary-header reads usually hit in the cache.

The secondary headers provide the location and size of the symbol and string

for that file. To give hints for the table reads, the loop is split after the read of the se

ary header.

After verifying that it has all the data needed to produce a fully linked execut

Gnuld makes a second pass over the object files to read and process debugging

information. This involves up to nine small, non-sequential reads from each file. F

nately, the previously read symbol tables determine the addresses of these accesse

duplication is used to generate hints for this second pass.

During the second pass, Gnuld constructs up to five shuffle lists which specify w

in the executable file object-file debugging information should be shuffled or cop

5 Thanks to Daniel Stodolsky who annotated Gnuld to give hints.

foreach arg_string on command line {
if arg_string names a file {

add arg_string to list of files to search;
hint (arg_string , offset =0, length =0);

}
}

Figure 3.2. In-line hints in Agrep. Before searching for a string in any file, Agrep loops over its comm
line arguments and adds those that are files to a list of files to search. It is a simple matter to insert a
the file will be searched. An offset of 0 indicates that the file will be searched from the beginning
length of 0 indicates that it will be searched sequentially till the end of the file.

in
-li

ne
hi

nt

DISCLOSING I/O REQUESTS IN HINTS 49

d thus

wn in

uffle

ented

nch-

 unin-

nd is

 outer

. One

 outer

ere is

sses to

ocality,

s a
tput file.
is map

ation in
control
oses the
When the second pass completes, Gnuld finalizes the link order of the input files, an

the organization of non-debugging ECOFF segments in the executable file. As sho

Figure 3.3, loop duplication again serves to exploit this order information and the sh

lists to give hints for the final passes.

3.4.3 Postgres

Postgres version 4.2 [Stonebraker86, Stonebraker90] is an extensible, object-ori

relational database system from the University of California at Berkeley. In our be

mark, Postgres executes a join of two relations. The outer relation contains 20,000

dexed tuples (3.2 MByte) while the inner relation has 200,000 tuples (32 MByte) a

indexed (5 MByte). The benchmark suite includes two cases. In the first, 20% of the

relation tuples find a match in the inner relation. In the second, 80% find a match

output tuple is written sequentially for every tuple match.

To perform the join, Postgres reads the outer relation sequentially. For each

tuple, Postgres checks the inner relation’s index for a matching inner tuple and, if th

one, reads that tuple from the inner relation. From the perspective of storage, acce

the inner relation are random, defeating sequential readahead, and have poor l

foreach ECOFF segment {
foreach input_file {

consult load map;
hint(input_file , offset , size);

}
}

foreach ECOFF segment {
foreach input_file {

consult load map;
seek to offset in input_file ;
read size bytes from input_file ;
patch addresses;
seek & write to output_file;

}
}

Figure 3.3. Loop duplication in Gnuld. In the course of building an executable file, Gnuld construct
map that indicates what data from each input file belongs where in each ECOFF segment of the ou
When the time comes to build the output file, Gnuld loops over the different segments and consults th
to read in the relevant data from each input file which it patches and writes to the appropriate destin
the output file. In the pseudocode above, this code in labeled as the ‘original loop.’ To give hints, the
structures of this loop are duplicated in a shadow loop which consults the same load map and discl
many reads that the original loop will perform.





sh
ad

ow
lo

op







or
ig

in
al

lo
op

50 CHAPTER 3

y of a

shown

 for the

(dis-

ted)

s not
dex is
 split into
cturing.
ng the
to be a
the dis-
 B-tree
ve fairly
mpact on

the
 one-

se I/O
relation
f all the
defeating caching. Thus, most of these inner-relation accesses incur the full latenc

disk read.

The inner-relation accesses depend on the result of the index lookup. Thus, as

in Figure 3.4, loop splitting is used to separate the accesses and generate hints

inner-relation reads6. In the top half of the split loop, Postgres reads the outer relation

closing its sequential access), looks up each outer-relation tuple in the index (unhin7,

6 Thanks to Eka Ginting who annotated Postgres to give hints.

7 It would have been possible to further split the loop to give hints for the index, but this wa
done for two reasons. First, the structure of the code makes splitting the index lookup difficult. The in
a B-tree, so to give hints for all accesses, each descent to a deeper level of the tree would have to be
its own loop. The code treats the index lookup as a single step so this would require significant restru
An application written from scratch could accommodate this, but a programmer might resist modifyi
existing code. I didn’t want the benchmark applications to be overly-tuned, but instead wanted them
reasonable representation of what a programmer might actually do. The goal is to discover how well
closure approach works without resorting to heroic efforts. The second reason is that the index’s
structure and relatively small size compared to the inner relation mean that the index accesses ha
good locality and cache reasonably well. Thus, hints for these accesses would not have as great an i
elapsed time as hints for the inner-relation tuples.

foreach tuple in outer relation {
look for match in index;
if there’s a match {

seek & read match from inner_relation;
}

}

foreach tuple in outer_relation {
look for match in index of inner_relation;
if there’s a match {

store offset of match in temp_array;
}

}
hint (inner_relation , offsets in temp_array, block_size);
foreach tuple in outer_relation {

if there’s a match in temp_array {
seek & read match from inner_relation;

}
}

Figure 3.4. Loop splitting in Postgres. In the original loop, read from the inner relation depends on
index lookup in the top half of the loop. Without loop splitting, hints for these reads could only be given
at-time after the index lookup. Such hints would neither give much advance warning nor expo
concurrency. Splitting the loop after the index lookup separates the lookup from the dependent inner-
read. The top loop performs all the index lookups in one pass. Then, a hint discloses the offsets o
inner-relation blocks that will be read in the bottom loop.





or
ig

in
al

lo
op





to
p

of
sp

lit
 lo

op





bo
tto

m
 o

f
sp

lit
 lo

op

DISCLOSING I/O REQUESTS IN HINTS 51

. Post-

e 80%-

kup and

ostgres

rrently

 could

lation

cache

there is

hinted,

d the

ing the

ics

 for

of

nvector

e size

 be

irs by

 com-

disk

e algo-

old. In
and stores the offsets of blocks containing matching inner-relation tuples in an array

gres then discloses these offsets to TIP, 4000 in 20%-match case and 16000 in th

case. In the second pass, Postgres rereads the outer relation but skips the index loo

instead directly reads the inner-relation tuple whose address is stored in the array. P

does not give hints for the second read of the outer relation because TIP does not cu

support hints for multiple streams of accesses with unknown interleaving. Postgres

observe how the inner-relation access are interleaved with the matching outer-re

tuples, but we did not go to the extra effort that this would have required.

As a complication, Postgres maintains its own internal cache of 100 blocks. This

significantly speeds index lookups because the index is organized as a B-tree and

high locality for accesses to the nodes near the root of the tree. Even though the

inner-relation accesses have very poor locality, a few of them hit in this cache an

hinted access never occurs. To confirm to the TIP system that Postgres is consum

data it hints and is not a rogue application, Postgres issues aTIPIO_CANCEL hint for these

blocks.

3.4.4 Davidson

The Multi-Configuration Hartree-Fock (MCHF) is a suite of computational-phys

programs which were obtained from Vanderbilt University where they are used

atomic-physics calculations. TheDavidson algorithm [Stathopoulos94] is an element

the suite that computes, by successive refinement, the extreme eigenvalue-eige

pairs of a large, sparse, real, symmetric matrix stored on disk. In the benchmark, th

of this matrix is 2089 8-KByte blocks or 16.3 MBytes. In practice, the matrix may

many times this size.

The Davidson algorithm iteratively improves its estimate of the extreme eigenpa

computing the extreme eigenpairs of a much smaller, derived matrix. Each iteration

putes a new derived matrix by a matrix-vector multiplication involving the large, on-

matrix. Thus, the algorithm repeatedly accesses the same large file sequentially. Th

rithm terminates when the errors of its eigenpair estimates are within some thresh

our benchmark, this requires 60 iterations through the matrix.

52 CHAPTER 3

 the

n. The

ncon-

nter

m-

-color

taset.

ations,

n our

ossible

d the

xpen-

igher

-disk

tions.

clos-

ortu-

 how

 with-

amic
Annotating this code with in-line hints was straightforward8. One hint placed above

the loop hints the first whole-file, sequential read of the matrix. A second hint within

loop discloses, at the start of each iteration, the read anticipated in the next iteratio

first sixty of Davidson’s hints are accurate. When the algorithm terminates, one, u

sumed hint is left outstanding.

3.4.5 XDataSlice

XDataSlice (XDS) is a data visualization package developed by the National Ce

for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Cha

paign [NCSA89]. Among other features, XDS lets scientists select and view a false

representation of an arbitrary planar slice through their 3-dimensional scientific da

The datasets may originate from a broad range of applications such as airflow simul

pollution modeling, or magnetic resonance imaging, and tend to be very large. I

benchmark, XDS retrieves 25 random slices from a dataset of 5123 32-bit floating-point

numbers which is a total of 512 MBytes in size.

It is often assumed that because disks are so slow, good performance is only p

when data resides in main memory. Thus, many applications, including XDS, rea

entire dataset into memory before beginning computation. Because memory is still e

sive, the amount available often constrains scientists who would like to work with h

resolution and therefore larger datasets. Informed prefetching invalidates the slow

assumption and makes out-of-core computing practical, even for interactive applica

To demonstrate this, I first added an out-of-core capability to XDS. I next added dis

ing hints for TIP to exploit.

The selection of XDS as an example application for informed prefetching was f

itous because XDS has an internally layered structure. In adding hints to XDS, I show

to use layered disclosure to pass optimization information through layers of software

out violating the integrity of module interfaces.

I describe first the structure of XDS and then go on to describe how I added dyn

data loading and then disclosing hints to it.

8 Thanks to Daniel Stodolsky who annotated Davidson with hints.

DISCLOSING I/O REQUESTS IN HINTS 53

hical

 HDF

itself

rage

entific

HDF

rary

er logi-

pace

scien-

olding

abels for

s if it

inter-

read the

e pix-

pplied

w.

andard

data

ring a

 This

nder a

eping

rices

e sci-

 and
3.4.5.1XDataSlice organization
XDS reads data from files stored in a self-describing format called the Hierarc

Data Format (HDF). NCSA has developed a library of routines to simplify access to

files and to enforce the HDF standard format. XDS binds this HDF library between

and the file system. The HDF library is itself composed of two layers: low-level sto

management in theH layer and scientific dataset object management in theDFSD layer.

A single HDF file may contain many data objects such as raster images, raw sci

data, or the format specifier for numerical data. But, to the low-level H layer of the

library, all are just arrays of bytes with a name. The high-level DFSD layer of the lib

refers to these elemental data objects by name and may request the H layer to deliv

cal byte ranges from within individual objects. It is up to the H layer to allocate file s

and keep track of the location and size of the various data objects.

The DFSD layer groups a number of elemental data objects together to form a

tific data set. These objects include one holding the raw scientific data and others h

dataset metadata such as the dimensions of the data, the data type, and units and l

the axes. Applications built on top of the DFSD layer refer to the scientific data set a

were one complex data object with many typed data fields.

The original XDataSlice code, operating above the HDF library, uses the DFSD

face first to determine dataset size so it can allocate adequate memory, and then to

entire dataset into memory. To render a slice of the dataset, XDS loops through all th

els in the slice mapping each to a data element stored in memory. False color is a

based on a data element’s value and the resulting bitmap is displayed in an X windo

I extended this basic package to load data dynamically from large datasets. St

3-D HDF data objects are written to disk in row-major order. Several full rows of

from even a large dataset fit in each 8-KByte file block. Consequently, when rende

slice, all file blocks containing rows that intersect the slice must be read from disk.

has the disadvantage of requiring that the entire data object be read from disk to re

slice that cuts across all rows. To make loading arbitrary slices efficient, and in ke

with state-of-the-art tiling techniques [Wolfe96], I reorganized the object into submat

as shown in Figure 3.5 and extended the DFSD layer to export a blocked view of th

entific data object. I then modified XDS to first determine which blocks are needed

54 CHAPTER 3

 usual

e its

cy, the

tually

o issue

list of

ven

ntific

er H

overs”

larity

nfor-

g an

lan-

set
ows one
or order,
cks are
then load only these blocks into memory before rendering the requested slice in the

way. All of these changes add useful functionality and are independent of TIP.

3.4.5.2 Extending HDF to disclose hints to TIP
For this new version of XDataSlice to take advantage of TIP, it must disclos

expected accesses. Because the primary benefit of TIP is exposing I/O concurren

source of hints should be at a level aware of a large volume of work before it is ac

requested. There are a number of possibilities, but a simple and natural choice is t

hints within the DFSD layer of the library because XDS hands this layer a complete

the needed blocks. This list is an excellent hint for TIP.

Unfortunately, the DFSD layer cannot directly pass the list of blocks on to TIP. E

after the DFSD layer translates block coordinates into logical offsets within the scie

data object, it does not know the offsets within the enclosing file. It relies on the low

layer for addressing and accessing files. The DFSD layer could “peek beneath the c

of the H layer to compute the offsets itself, but this would violate the design’s modu

and could break when the H layer is independently modified at some later time.

A much better solution is to incorporate a path for the disclosure of optimization i

mation into the interface to the H layer of the library. I have done this by addin

Hhint() routine to the library. It accepts hints from higher layers of the library in the

guage used by the rest of H layer: offsets and lengths within data objects.Hhint maps data

Z
Y

X

Figure 3.5. Blocked dataset storage layout. To facilitate the retrieval of arbitrary slices of data, the data
is partitioned into submatrices each stored in its own file system block. The shaded cube above sh
such block and its share of a slice through the dataset. The blocks themselves are stored in row-maj
Z-axis first. Thus, sequential disk access favors slices in the Y-Z plane. To compensate, the blo
asymmetrical, so that rendering slices in the X-Y plane requires fewer total blocks.

DISCLOSING I/O REQUESTS IN HINTS 55

t

objects

t dis-

 dis-

ing

-

y the

these

 and

nslate

e coor-

 array to

d iter-

ntly.

-rec-

es an

beam

higher

nguage

 end

 words

 of it

two

nized
object offsets to file offsets and issues aTIPIO_SEG hint. Such disclosure is consisten

with the module interfaces already in place; the DFSD layer issues hints about data

and theHhint routine translates these data-object hints into file-access hints which i

closes directly to TIP. The modularity of the HDF library is not a barrier to hints that

close.

The Hhint routine provides the DFSD layer with a modular mechanism for issu

hints, but the DFSD layer still needs to find a way to callHhint to issue hints. We accom

plish this through loop splitting.

The DFSD layer receives a list of the coordinates of the submatrices required b

XDataSlice application to render a slice. The original, unhinting code loops over

coordinates translating each to an offset within the data object and then callingHseek fol-

lowed by Hread to retrieve the needed block. Inserting anHhint call within this loop

would not provide much advance warning. An alternative is to duplicate the loop

translate the coordinates and issue hints. The unchanged, original loop would re-tra

the coordinates and perform the seek and read. To save the cost of re-translating th

dinates, I take advantage of the fact that the translated coordinates are passed in an

Hhint . I use this same array to store the translated coordinates from the first loop an

ate over these in a second loop. Thus, the original loop is split to deliver hints efficie

3.4.6 Sphinx

Sphinx [Lee90] is a high-quality, speaker-independent, continuous-voice, speech

ognition system developed at Carnegie Mellon. In the benchmark, Sphinx recogniz

18-second recording commonly used in Sphinx regression testing.

Sphinx represents acoustics with Hidden Markov Models and uses a Viterbi

search to prune unpromising word combinations from these models. To achieve

accuracy, Sphinx uses a language model to effect a second level of pruning. The la

model is a table of the conditional probability of word-pairs and word-triples. At the

of each 10 msec acoustical frame, the second-level pruner is presented with the

likely to have ended in that frame. For each of these potential words, the probability

being recognized is conditioned by the probability of it occurring in a triple with the

most recently recognized words, or occurring in a pair with the most recently recog

56 CHAPTER 3

rther

ructure,

only

ndred

es, vir-

x was

ded

MByte

ll be

ure 3.6

. The

uring

 popu-

ulted, of

ce on

ted it

ks
lose a
ring the
bout 15
word when there is no entry in the language model for the current triple. To fu

improve accuracy, Sphinx makes three similar passes through the search data st

each time restricting the language model based on the results of the previous pass.

Sphinx, like XDS, was originally an in-core only system. Because it was comm

used with a dictionary containing 60,000 words, the language model was several hu

megabytes in size. With the addition of its internal caches and search data structur

tual-memory paging occurs even on a machine with 512-MBytes of memory. Sphin

modified to fetch the language model’s word-pairs and word-triples from disk as nee9.

This enables Sphinx to run on a 128-MByte test machine 90% as fast as on a 512-

machine.

Sphinx was also modified to disclose the word-pairs and word-triples that wi

needed to evaluate each of the potential words offered at the end of each frame. Fig

shows the distribution of the number of blocks hinted by each of Sphinx’s 873 hints

hints for the initialization-phase reads disclose a high degree of concurrency. Hints d

the recognition phase are highly variable. Because the language model is sparsely

lated, at the end of each frame there are about 100 byte ranges that must be cons

which all but a few are in Sphinx’s internal cache. However, there is a high varian

9 Thanks to Daniel Stodolsky who modified Sphinx to operate out-of-core and then annota
with hints.

1 100 200 300 400 500 600 700 800
hint number

0

100

200

300

400

500

bl
oc

ks
 h

in
te

d

Figure 3.6. Sphinx: blocks hinted in each hint. This graph shows the distribution of the number of bloc
hinted by each of Sphinx’s 873 hints. The first approximately 120 hints are for initialization and disc
maximum of 2477 blocks. The rest disclose dynamic loads of language model data as needed du
course of recognizing the speech segment. The average hint during the recognition phase is for a
blocks, although many are for a lot more than that.

DISCLOSING I/O REQUESTS IN HINTS 57

e little

s can

emon-

ed to

ce to

sure

ngth as

isclo-

 hints:

s, I

pplica-

slated

esses?

ad traf-

 than

phinx.

es, no

een in

s cache

ance

n they

Fortu-

ll tend

 hinted
the number of pairs and triples consulted and fetched, so, although the hints provid

advance warning, they often expose I/O concurrency.

3.5 Conclusion

The first hurdle in making the case that application hints about future file read

compensate for the growing disparity between processor and disk performance is d

strating that important applications can in fact give hints. Without this, there is no ne

pursue this line of research any further.

In this chapter, I first argued for hints that disclose future accesses in preferen

hints that give advice about filesytem behavior. The distinguishing feature of disclo

hints is that they are expressed using the same terms of file, byte offset, and byte le

the existing file-system interface. I presented a prototype interface for delivering d

sure hints.

I then described three techniques for annotating applications to give disclosure

in-line hinting, loop duplication, and loop splitting. In six application case studie

described how to use the three techniques to annotate important, I/O-intensive a

tions to give hints. In one, XDataSlice, I showed how disclosure hints may be tran

by intermediate software layers to preserve modularity.

How successful were the annotations at disclosing these application’s read acc

Table 3.2 reports the I/O workloads of the benchmarks and the percentage of the re

fic disclosed in advance by hints. For four of the applications, hints disclose more

99% of the bytes read. Hints disclose 90% of the bytes read by a fifth application, S

Although hints disclose Postgres’ random, data-dependent inner-relation access

annotations disclose the large number of index accesses. However, as will be s

Chapter 6 which describes the performance of the benchmarks, these index accesse

well even without hints, and so, although incomplete, the hints yield huge perform

wins for the application.

Hints may disclose every access, but if they don’t also expose concurrency, the

don’t add the parallelism to the read workload needed to relieve the I/O bottleneck.

nately, even though the applications are drawn from a broad range of fields, they a

to give hints in bursts. Here, I define a burst as a sequence of hints given between

58 CHAPTER 3

 issuing

con-

 each

tions

e hun-

ite
e calls. If
e-block
ytes that
n the text
e hinted
are the
reads. In most cases, the applications perform all the reads hinted by a burst before

another burst of hints.10 Burst size is important because it is a rough measure of the

currency exposed by the hints. Table 3.3 reports details about the hints given by

application including burst sizes. As the table shows, five out of six of the applica

have average burst sizes in the thousands, and even minimum burst sizes in th

benchmark
read
calls

read
blocks

read bytes
write
calls

write
blocks

write
bytes

Agrep

total 4277 2928 18,091,527 0 0 0

% hinted 68% > 99% > 99%

inaccurate 0 0 0

Gnuld

total 13,037 20,091 60,158,290 2343 3418 8,824,188

% hinted 78% 86% > 99%

inaccurate 0 0 0

Postgres
(20%)

total 8678 8676 70,657,265 156 156 1,279,590

% hinted 51% 51% 51%

inaccurate 70 70 576716

Postgres
(80%)

total 31,245 31,243 255,526,130 539 539 4,417,126

% hinted 51% 51% 52%

inaccurate 242 242 1,982,464

Davidson

total 19,000 144,425 1,027,634,130 1474 1487 110,860

% hinted 99% > 99% > 99%

inaccurate 2089 17,113,088

XDataSlice

total 46,356 46,352 370,663,914 2 2 4081

% hinted 98% 98% > 99%

inaccurate 0 0 0

Sphinx

total 65,282 77,714 193,350,787 18 20 18,030

% hinted 96% 96% 90%

inaccurate 0 0 0

Table 3.2. Summary of benchmark workloads and hints. This table shows the number of read and wr
calls issued by each of the benchmarks as well as the number of blocks and bytes accessed by thes
one read requests the first half of a block and the next the rest of the block, it is counted as two on
reads for a total of two blocks. For the reads, it also shows the percentage of the calls, blocks, and b
had been hinted in advance. Three of the benchmarks issue some inaccurate hints as described i
which are recorded here. There is no number for the inaccurate Davidson read calls because th
blocks are simply abandoned at the end of the run; there is no hint cancellation call. In no case
inaccurate hints a sizable portion of the total.

DISCLOSING I/O REQUESTS IN HINTS 59

fore

he only

rency

ce disk

er con-

ed by

e even

s pos-

hints.

before
fore is
he hints
avidson
tween

 just 46
ractive

ft, it
isclosed.
ence of

ing hints
 of hint

ing at a
on, and
nuld and
ts. The
s expose
dreds11. This is a huge amount of potential concurrency; it will be quite some time be

the bandwidths of thousands of disks are needed to balance just one processor. T

exception is Sphinx, but, even there, most hints expose substantial concurrency.

The key point, as will be explored in depth in the next chapter, is that the concur

exposed by these hints is orders of magnitude more than is needed today to balan

and processor performance. Thus, these hints provide substantial potential for great

currency in the future. Further, in virtually every case the burst sizes are determin

dataset size. As dataset sizes grow over time, these applications will be able to giv

larger bursts of hints and expose more concurrency.

Overall, experience with these applications strongly suggests that, in general, it i

sible to annotate I/O-intensive applications with large numbers of useful disclosure

10 There are only two occasions when applications did not consume all outstanding hints
issuing more. Gnuld’s second ‘burst’ is built up gradually while it consumes its first burst and there
not technically a burst as defined above. But, the gradual disclosure actually improves the value of t
because they are all given over 500 accesses in advance in addition to exposing concurrency. D
always has a hint for the next iteration outstanding, so for most of its computation, it has hints for be
2089 and 4178 blocks outstanding at any time.

11 XDataSlice has one slice that just nicks the corner of the dataset and results in a burst of
blocks. But, these blocks represent all of the reads required to service the mouse click in this inte
application.

benchmark
hint
calls

total
segments

total
blocks

bursts of hints

number min. size max. size avg. size

Agrep 1349 1349 2922 1 2922 2922 2922

Gnuld 8322 8322 15,371 4 562 7402 3843

Postgres (20%) 2 4047 4455 2 409 4046 2228

Postgres (80%) 2 15,917 16,325 2 409 15,916 8163

Davidson 61 61 127,429 59 4178 6267 4213

XDataSlice 25 45,241 45,241 25 46 3448 1810

Sphinx 873 62,586 74,871 873 1 2477 86

Table 3.3. Hints issued by the benchmarks. This table characterizes each benchmark’s hints. On the le
shows the number of hint calls and how many sequential segments of how many blocks these calls d
With only one exception, the applications give hints in large bursts where a burst is defined as a sequ
disclosures unbroken by a read of a hinted block. Thus, bursts are peaks in the number of outstand
through time. The table presents burst information on the right. The benchmarks cover a broad range
characteristics. Davidson issues one hint for 2089 block matrix each iteration and has two outstand
time. Postgres gives two hints in two bursts, one for the sequential read of the 409 block outer relati
one with thousands of segments of one block each for the thousands of inner relation blocks read. G
Agrep issue large numbers of hints, but for very few blocks each and in only a small number of burs
typically huge average burst sizes and even minimum bursts sizes show that these application’s hint
large amounts of I/O concurrency.

60 CHAPTER 3

stem
On the strength of this conclusion, in the following chapters I will explore how a sy

can take advantage of these disclosure hints to relieve the I/O bottleneck.

61

ppli-

 is for

ically,

t-pro-

ntiality

com-

uld be

itiate

tches

 disk
Chapter 4

Cost-Benefit Analysis for Informed
Resource Management

In Chapter 3, I demonstrated that a broad collection of important, I/O-intensive a

cations can give hints that disclose most of their file reads in advance. The next step

the file system to take advantage of these hints to improve I/O performance. Specif

the file system could use the hints for

1. aggressive prefetching that adds latency-masking asynchrony and throughpu

viding parallelism to the read workload,

2. caching blocks for reuse to avoid disk accesses,

3. clustering multiple accesses into fewer larger accesses that increases seque

and reduces CPU overheads, and

4. disk scheduling that reduces seek distances and thus increases sequentiality.

If the system had an infinite supply of cache buffers it would be relatively easy to ac

plish all of these goals. As soon as hints arrived, blocks that were already cached co

locked down so they wouldn’t be ejected, and buffers could be allocated to in

prefetches for all missing blocks. The system could sort this large collection of prefe

to minimize seeks and cluster contiguous prefetches to create maximally-sized

accesses.

62 CHAPTER 4

 hints

ers for

d issue

rs are

ce. The

uffers.

t eject

hich

ts, but

ers for

ually

ild a

cost or

efit or

buffer

of pur-

roceed,

analy-

uld be

gh a

g each

 each

enefit

tion in

d time
Unfortunately, cache buffers are a limited resource. Given the large numbers of

that the benchmark applications issue, only the largest machines could allocate buff

all hinted blocks. These same applications, when processing larger datasets, coul

enough hints to exhaust any machine’s supply of buffers. Furthermore, cache buffe

not idle; unhinted accesses depend on them to cache data for improved performan

system has to make hard choices about how to allocate its limited pool of cache b

Should it prefetch or should it cache? If there is a cache miss, which block should i

to free a buffer? Should it be a hinted block or one for which there is no hint but w

was recently accessed? It would not be too hard to derive some benefit from hin

fully utilizing them requires a resource manager that balances the use of cache buff

all of these competing demands.

In this chapter, I develop a framework for resource management that contin

applies cost-benefit analysis to find the right balance. I go on to show how to bu

resource manager on top of this framework. In a nutshell, the idea is to estimate the

increase in I/O service time of ejecting a cached block to free a buffer and the ben

decrease in I/O service time of using a buffer to initiate a prefetch, and reallocate a

from caching to prefetching when the benefit exceeds the cost.

4.1 A framework for I/O management by cost-benefit analysis

In general, cost-benefit analysis quantifies and compares the costs and benefits

suing a course of action. If the benefits exceed the costs then it is advantageous to p

otherwise it isn’t. If there are several candidate courses of action, then cost-benefit

sis can determine which would provide the greatest net benefit and therefore wo

most advantageous to pursue.

Cost-benefit analysis could be applied to the buffer allocation problem throu

three-step process. First, compute the cost in increased elapsed time of ejectin

block. Second, compute the benefit in reduced elapsed time of allocating a buffer to

needed uncached block. Finally, pair the lowest-cost ejection with the greatest-b

allocation to arrive at the replacement decision that leads to the greatest net reduc

elapsed time. Effectively, this approach would perform gradient descent on elapse

as a function of the buffer allocations to the alternative uses.

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 63

 man-

out the

 the

r and vir-

is lim-

ally, it

o fetch

an I/O

er is to

s in I/O

e strat-

d the

 onto

 I/O

g each

ibe in

trate-

efit of

ate of

 cost

te for

RU

of how
Before describing, in the next subsections, the three key components of my I/O

agement framework based on this approach, I need to be a little more precise ab

scope of the cache manager’s control and the terms used in the framework.

Although the goal of this work is to minimize application wall-clock elapsed time,

cache manager does not control system components such as the process schedule

tual memory manager and so it cannot control elapsed time. The manager’s control

ited to the manipulation of cache buffers and the initiation of disk accesses. Specific

can make replacement decisions which eject cached blocks to reallocate buffers t

uncached blocks. These decisions largely determine the time it takes to service

request. Thus, a more precise statement of the problem facing the cache manag

make the replacement decisions and initiate the disk accesses that minimizeI/O service

time. Thus, in the resource management framework, costs and benefits are change

service time, not changes in application elapsed time.

4.1.1 Independent estimates

Prefetching, clustering prefetches, and servicing demand accesses are alternativ

egies for reducing I/O service time that require free buffers. And, the LRU queue an

caching hinted blocks are alternative strategies for determining which blocks to hold

to reduce I/O service time. The first component of my framework for cost-benefit

management is independent estimates of the impact on I/O service time of applyin

of these strategies.

The estimates are based on a model of system performance which I will descr

Section 4.2. In later sections, I will show how to derive the estimates for all of the s

gies mentioned above, but here I give a quick summary of some of them. The ben

allocating a buffer for prefetching is that it may mask disk latency. There is an estim

how much this latency masking will reduce I/O service time. On the other hand, the

of ejecting a hinted block is that it will have to be prefetched back. There is an estima

how much this will increase I/O service time. The cost of taking a buffer from the L

queue is a reduction in the hit ratio for unhinted accesses. There is an estimate

much this will increase the average I/O service time of these accesses.

64 CHAPTER 4

 all at

ules or

 cost-

to the

nefit

ory

dence

ts are

uction

ust all

.

ample,

esults

 LRU

n aver-

e in I/O

should

 Clearly,

s not

sage.

 instead

out the

or a lot

ing the

tric of
These independent value estimates avoid the need to consider all possibilities

once. Thus, compared to allocation strategies that consider full replacement sched

even just pairings of ejections and reallocations, they reduce the complexity of the

benefit analysis. Further, they ease the integration of new optimization strategies in

framework. For example, integrating virtual memory management into the cost-be

framework would only require a new estimate for the cost of ejecting a virtual mem

page; it would not require modifying the other estimates. Lastly, this same indepen

and extensibility enable modular implementation of system built on this framework.

4.1.2 A common currency for comparing estimates

In the cost-benefit framework, the independently determined costs and benefi

compared to determine which replacement, if any, would lead to the greatest net red

in I/O service time. For these comparisons to be meaningful, the value estimates m

be expressed in the same terms; there must be acommon currency for costs and benefits

Unfortunately, the estimates as described above are not directly comparable. For ex

the cost of ejecting a hinted block is the one-time increase in I/O service time that r

from prefetching that one block back, whereas the cost of taking a block from the

queue is an average increase in I/O service time for unhinted accesses. How can a

age change be compared to a one-time increase? As, another example, the increas

service time of prefetching back ejected blocks 1000 vs. 5000 accesses from now

be about the same. Does this mean there is no reason to eject one over the other?

I/O service time alone is an insufficient metric of comparison.

The missing factor is buffer usage. In optimizing buffer allocation, the real issue i

the absolute reduction in service time, but the reduction achieved per unit of buffer u

Ejecting the block to be reaccessed in 5000 accesses frees a buffer for nearly 5000

of only 1000 accesses. The increase in I/O service time for the two cases may be ab

same, but one frees a buffer that can be used elsewhere to reduce service time f

longer than the other does. This freed buffer is a benefit that offsets the cost of eject

block and should be taken into account when comparing value estimates. A me

change in service time per unit of buffer usage accomplishes this.

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 65

ffer

all it

i-

value

ducing

to the

te vs.

tween

benefit

ssed in

stem

 then

t the

place-

rithm

single

is also

 of its

atest

f hints

dresses

 Figure

e esti-
To arrive at a formal definition of the common currency, first define the unit of bu

usage, orbufferage, as the occupation of one buffer for one inter-access period and c

onebuffer-access. Then, define thecommon currency for the expression of all value est

mates as themagnitude of the change in I/O service time per buffer-access. With this com-

mon currency, the buffer allocator can meaningfully compare the independent

estimates.

Because this common currency relates resource usage to the system goal of re

service time, it eases extension of the manager. Adding support for remote files

manager would not require new analysis of the relative merits of caching for remo

local files to arrive at some calibration that would allow the manager to choose be

ejecting a local vs. a remote block. Instead, all that would be required are cost and

estimates of the change in I/O service time per buffer-access. Value estimates expre

the common currency are already calibrated. If prefetching from the remote file sy

would reduce service time more per buffer-access than prefetching locally would,

prefetching remotely would be the right course of action.

4.1.3 An allocation algorithm

The final component of the framework is an allocation algorithm that can accep

many cost and benefit estimates, compare them at a global level and, identify the re

ment that would produce the greatest net reduction in I/O service time. The algo

must resolve two issues. First is how to merge multiple estimates of the value of a

buffer. This can happen when, for example, a block is on the LRU queue and there

a hint that it will be reused. Then, there are both LRU and hinted cache estimates

value. The second issue is how to find efficiently the need for a buffer with the gre

benefit and the available buffer with lowest cost. Because there may be thousands o

and buffers, an exhaustive search could add substantial overhead. Section 4.2.6 ad

the first of these issues and Section 4.3.5 addresses the second.

4.1.4 Assembling the components

These three components are assembled to form the resource manager shown in

4.1. Each potential buffer consumer and supplier has anestimatorthat independently com-

putes the value of its use of a buffer. The buffer allocator continually compares thes

66 CHAPTER 4

r with

e, and

hing,

rs are

mpact

r and

umers

ate if

uffer-

 for
already
o these
ly least-
 LRU
formed
e buffer
eds the
mates and reallocates buffers from the supplier with lowest cost to the consume

greatest benefit when doing so would reduce I/O service time.

The primary buffer consumers are demand accesses that miss in the cach

prefetches of hinted blocks. Additionally, once a buffer has been allocated for prefetc

clustered prefetches (not shown) may ask for additional buffers. The buffer supplie

the traditional LRU cache, and the cache of hinted blocks.

Estimators for each buffer consumer and supplier independently determine the i

on I/O service time they anticipate if they respectively gain or lose a cache buffe

express this impact in terms of the common currency to the buffer allocator. Cons

compute the benefit or reduction in I/O service time per buffer-access they anticip

allocated a buffer. Suppliers compute the cost or increase in I/O service time per b

access they anticipate if asked to give up a buffer.

hinted sequence

Figure 4.1. Informed cache manager schematic. Independent estimators express different strategies
reducing I/O service time. Demand misses need a buffer immediately to minimize the stall that has
started. Informed prefetching would like a buffer to initiate a read and avoid disk latency. To respond t
buffer requests, the buffer allocator compares their estimated benefit to the cost of freeing the global
valuable buffer. To identify this buffer, the allocator consults the two types of buffer suppliers. The
queue uses the traditional rule that the least recently used block is least valuable. In contrast, in
caching identifies the block whose next hinted access is furthest in the future as least valuable. Th
allocator takes the least-valuable buffer to fulfill a buffer demand when the estimated benefit exce
estimated cost.

cached blocks

LRU queue

Buffer Consumers

Bufferdemand
benefit

Buffer Suppliers

Allocator

LRU cost

service
demand

miss

prefetch
benefit ejection cost

hinted sequence

prefetched blocks cached blocks hinted sequence

demand miss

prefetch

LRU cache

hinted cache

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 67

t econ-

e the

market

ng the

system

tic and

 cost-

 great-

 image

f I/O

g.

nage-

heo-

t and

imator.

least

scribe

time.

erned

s and

ited

 partic-

roces-

 With

ssume
From one perspective, this approach to resource management is like a marke

omy. Bidding to acquire cache buffers are the buffer consumers. Holding out ar

buffer suppliers. The buffer allocator makes the market and manages trades. In this

there is no inflation or price gouging because all transactions are conducted usi

gold-standard common currency that relates actual resource usage to the overall

goal of reducing I/O service time.

The market analogy does not go too far, though. Where markets tend to be chao

content to let any trade happen that is mutually beneficial, the buffer allocator in this

benefit approach maintains tight control to ensure that the consumer promising the

est benefit gets the buffer that can be sacrificed at lowest cost. For this reason, the

of this algorithm performing gradient descent on the dynamically changing surface o

service time as function of the buffers allocated to the different uses is more revealin

4.2 Cost-benefit analysis for informed prefetching and caching

The previous section motivated and gave an overview of cost-benefit I/O ma

ment, but it left out many details. In this section, I fill in those details from an ideal, t

retical perspective. First, I present the system model from which the various cos

benefit estimates are derived. I then go on to present the derivations for each est

Finally, I show how to compare the estimates at a global level to find the globally

valuable buffer and the globally most beneficial consumer. In the next section, I de

the adjustments to this ideal needed for a practical implementation.

4.2.1 System model & assumptions

The I/O manager’s goal is to deploy its limited resources to minimize I/O service

At its disposal are disk arms and file cache buffers. But, because I am primarily conc

with the exploitation of storage parallelism, I assume an adequate supply of disk arm

focus on the allocation of cache buffers. In Chapter 7, I will discuss the effect of lim

array size on the value estimates developed here.

For the purposes of the model, I make certain assumptions about the system. In

ular, I assume a modern operating system with a file buffer cache running on a unip

sor with sufficient memory to make available a substantial number of cache buffers.

respect to workload, consistent with my emphasis on read-intensive applications, I a

68 CHAPTER 4

le disk

rameters

ume

o disk

policies

 a sin-

,

ystem

r,

n

 deliv-

r

he

g”

ponent,
ks for
that all application I/O accesses request a single file block that can be read in a sing

access and that the requests are not too bursty. Further, I assume that system pa

such as disk access latency,Tdisk, are constants. Lastly, as mentioned above, I ass

enough disk parallelism for there never to be any congestion (that is, there is n

queueing). As we shall see, distressing as these assumptions may seem, the

derived from this simple system model behave well in a real system, even one with

gle congested disk.

The elapsed time,T, for an application is given by

(4.1)

whereNI/O is the number of I/O accesses,Tapp is the inter-access application CPU time1

and TI/O is the time it takes to service an I/O access. Figure 4.2 diagrams the s

model, and Table 4.1 gives the definitions for the model variables.

In the model, the I/O service time,TI/O, includes some system CPU time. In particula

an access that hits in the cache experiences timeThit to read the block from the cache. I

the case of a cache miss, the block needs to be fetched from disk before it may be

ered to the application. In addition to the latency of the fetch,Tdisk, these requests suffe

the computational overhead,Tdriver, of allocating a buffer, queuing the request at t

1 Note thatTapp ≡ TCPU in the terminology of the paper, “Informed Prefetching and Cachin
[Patterson95].

T NI O⁄ Tapp TI O⁄+() ,=

file

disk

VM, net, etc.

user

kernel

disk

TI/O

Tapp

Figure 4.2. Components of system execution. In our simplified system model, application elapsed time,T,
has two components, computation and I/O. The computational component,Tapp, consists of user-level
application execution plus time spent in kernel subsystems other than the file system. The I/O com
TI/O, consists of time spent in the file system, which includes time for reading blocks, allocating bloc
disk I/Os, servicing disk interrupts, and waiting for a physical disk I/O to complete.

application application

buffer
cachesystem

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 69

o ser-

d in
drive, and servicing the interrupt when the disk operation completes. The total time t

vice an I/O access that misses in the cache,Tmiss, is the sum of these times:

(4.2)

Table 4.1. Performance model symbol definitions. These symbols are listed in the order they are define
the text and will be used throughout this chapter.

symbol meaning

T total application elapsed time

NI/O total application I/O requests

Tapp average application CPU time between I/O requests

TI/O average I/O service time including file system CPU overhead

Thit time to service an I/O request that hits in the buffer cache

Tdriver
CPU time to allocate a cache buffer and perform a disk I/O including interrupt servicing
(does not include disk latency)

Tdisk latency of a disk access

Tmiss time to service an I/O request that misses in the buffer cache = Thit + Tdriver + Tdisk

n number of buffers in the LRU queue

H(n) hit ratio for the LRU queue as a function of queue size, n

TLRU time to service an unhinted request through the LRU cache

x prefetching depth, or number of accesses in advance that a prefetch is initiated

Tstall time the CPU goes idle waiting for an I/O to complete

Tpf(x) time to service a request for a prefetched block as a function of the prefetch depth, x

P(Tapp)
the prefetch horizon, or the minimum prefetching depth, as a function of Tapp, that elimi-
nates CPU stalls for I/O

∆Teject(x) change in service time that results from ejecting a hinted block as a function of the depth
at which it is prefetched back, x

y the number of accesses in advance that a hinted block is ejected

rd, rh the rate of respectively demand and hinted accesses

si, |si| segment i of the LRU queue, and the number of buffers in the segment

hi cache hits to buffers in LRU segment si

A number of unhinted accesses; the denominator when computing H(n)

fixed, system-wide, upper-bound prefetch horizonP̂

Tmiss Thit Tdriver Tdisk .+ +=

70 CHAPTER 4

 that

 from

cking a

ext sec-

iss is

e for a

ocat-

mand

cache-

policy

ically

r this

is one

m the

, and
In the terms of this model, deallocating an LRU cache buffer makes it more likely

an unhinted access misses in the cache and must pay a delay ofTmiss instead ofThit. Allo-

cating a buffer for prefetching can mask some disk latency. Ejecting a hinted block

the cache means an extra disk read will be needed to prefetch it back later. Piggyba

prefetch on another access can save CPU overhead and avoid disk latency. In the n

tions, I quantify these effects. But, first note that any delay in servicing a demand m

added directly to the I/O service time of the request, so there can be no better us

buffer than initiating a read to service the miss. Acknowledging this, the benefit of all

ing a buffer for a demand miss is taken to be infinite, and requests for buffers for de

accesses are not denied.

4.2.2 The cost of shrinking the LRU cache

Over time, the portion of demand accesses that hit in the cache is given by the

hit ratio,H(n), a function of the number of buffers in the cache,n. GivenH(n), the average

time to service a demand I/O request, denotedTLRU(n), is

(4.3)

Taking the least-recently-used buffer from a cache employing an LRU replacement

results in an increase in the average I/O service time of

(4.4)

(4.5)

BecauseH(n) varies as the I/O workload changes, the LRU cache estimator dynam

estimatesH(n) and the value of this expression as explained in Section 4.3.

Every access that the LRU cache is deprived of this buffer will, on average, suffe

additional I/O service time, so the bufferage freed for this increase in elapsed time

buffer-access. Thus, in terms of the common currency, the cost of taking a buffer fro

LRU queue is the magnitude of the change in I/O service time given by Equation 4.5

(4.6)

TLRU n() H n()Thit 1 H n()–()Tmiss .+=

∆TLRU n() TLRU n 1–() TLRU n()–=

H n() H n 1–()–() Tmiss Thit–()= ∆H n() Tmiss Thit–() .=

CostLRU

∆TLRU n()
bufferage

-----------------------------≡ ∆TLRU n() .=

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 71

 is

ua-

fit

ge

when

pplica-

us,

l com-

eads a

,

ning

o

, a

 and

of
d

4.2.3 The benefit of prefetching

Prefetching a block can mask some of the latency of a disk read,Tdisk. Thus, in gen-

eral, an application accessing such a prefetched block will stall for less than the fullTdisk.

Suppose the system usesx buffers to prefetchx accesses into the future. Then, stall time

a function ofx, Tstall(x). Substituting this reduced stall for the disk service time in Eq

tion (4.2), we find that the service time for a hinted read is also a function ofx,

(4.7)

Then, assuming that prefetches of blocks 1 tox-1 have already been initiated, the bene

of using an additional buffer to prefetchx instead ofx-1 accesses in advance is the chan

in service time,2

(4.8)

(4.9)

A key observation is that the application’s data consumption rate is finite. Even

all data are cached or when prefetching has completely masked disk access time, a

tion computation,Tapp, and the system overheads of servicing cache hits,Thit, and per-

forming disk accesses,Tdriver, limit the rate at which the application issues requests. Th

prefetches do not need to be started infinitely far in advance to be sure that they wil

plete before the application requests the prefetched data. Typically, the application r

block from the cache in timeThit, does some computation,Tapp, and pays an overhead

Tdriver, for future accesses currently being prefetched. Thus, even if all interve

accesses hit in the cache, the soonest one might expect a blockx accesses into the future t

be requested isx(Tapp + Thit + Tdriver). Under the assumption of no disk congestion

prefetch of thisxth future block would complete inTdisk time. Thus, the stall time when

requesting this block is at most

2 This formulation is slightly different from that presented in the paper, “Informed Prefetching
Caching” [Patterson95] in that it compares prefetchingx vs. x-1 accesses in advance instead ofx+1 vs.x.
This reformulation lets us ask: assuming blocks 1 …x-1 have been prefetched, what is the benefit
prefetching the next blockx accesses in advance. The change results in (x-1) appearing in equations instea
of (x+1), but has no other material effect.

Tpf x() Thit T+
driver

Tstall x() .+=

∆Tpf x() Tpf x() Tpf x 1–()–=

Tstall x() Tstall x 1–() .–=

72 CHAPTER 4

esses,

ess

ore

rmed

rmed

ever, it

ss and

ks the

ceeding

e stall

n
ion stall
o disk
(4.10)

Figure 4.3 shows this worst case stall time as a function ofx.

This stall-time expression allows us to define the distance, in terms of future acc

at which informed prefetching yields a zero stall time. I call this distance theprefetch

horizon, P(Tapp), recognizing that it is a function of a specific application’s inter-acc

CPU time.

(4.11)

When sufficient disk bandwidth is available, there is no benefit from prefetching m

deeply than the prefetch horizon. Thus, it is easy to bound the impact of info

prefetching on effective cache size; prefetching a stream of hints will not lead info

prefetching to acquire more thanP(Tapp) buffers.

Equation (4.10) is an upper bound on the stall time experienced by thexth future

access assuming that the intervening accesses are cache hits and do not stall. How

overestimates stall time in practice. In steady state, multiple prefetches are in progre

a stall for one access masks latency for another so that, on average, only one inx accesses

experiences the stall in Equation (4.10). Conceptually, a stall on the first block mas

stall for subsequent accesses which, by the assumption of no disk queues, are pro

without delay on other disk drives. Figure 4.4 diagrams this effect. Thus, the averag

per access as a function of the prefetch depth,P(Tapp) > x > 0, is

(4.12)

Tstall x() Tdisk x Tapp T+
hit

Tdriver+() .–≤

x

Tdisk Tdisk/(Tapp+Tdriver+Thit)
prefetch horizon = P(Tapp)

Figure 4.3. Worst case stall time and the prefetch horizon. Data consumption is limited by the time a
application spends acquiring and consuming each block. This graph shows the worst case applicat
time for a single prefetchx accesses in advance, assuming adequate I/O bandwidth, and therefore n
queues. There is no benefit from prefetching further ahead than the prefetch horizon.

stall
time

P Tapp()
Tdisk

Tapp T+
hit

Tdriver+()
--- .=

Tstall x()
Tdisk x Tapp Thit Tdriver+ +()–

x
--- .=

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 73

 predic-

stem.

or the

 the

d time.

til the

tching

s

fetches
letes at
nd three
atency o

ess. In
At x = 0, there is no prefetching, andTstall(0) = Tdisk. Similarly, forx ≥ P(Tapp), Tstall(x) =

0. Figure 4.5 shows that this estimate, although based on a simple model, is a good

tor of the actual stall time experienced by a synthetic application running on a real sy

We can now plug Equation (4.12) into Equation (4.9) and obtain an expression f

impact on I/O service time of acquiring one additional cache buffer to increase

prefetching depth,

(4.13)

The values are negative because the benefit of prefetching is a reduction in elapse

The benefit drops off roughly as the inverse square of the prefetching depth un

prefetch horizon is reached. Beyond that point, there is no benefit from deeper prefe

under the assumption of adequate disk bandwidth.

Figure 4.4. Average stall time when prefetching in parallel. This figure illustrates informed prefetching a
a pipeline. In this example, three buffers are used to prefetch three blocks concurrently andTapp is assumed
fixed. At time T=0, the application gives hints for all its accesses and then requests the first block. Pre
for the first three accesses are initiated immediately. The first access stalls until the prefetch comp
T=5, at which point the data is consumed and the prefetch of the fourth block begins. Accesses two a
proceed without stalls because the latency of prefetches for those accesses is overlapped with the lf
the first prefetch. But, the fourth access stalls forTstall = Tdisk - 3(Tapp+Thit+Tdriver). The next two accesses
don’t stall, but the seventh does. The application settles into a pattern of stalling every third acc
general, whenx prefetches occur in parallel, a stall occurs once everyx accesses.

access
number

time (1 time-step = Tapp + Thit + Tdriver)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 I
2 I - - - - C
3 I - - - - C
4 I - -
5 I - - - -
6 I - - - -
7 I - -
8 I - - - -
9 I - - - -
10 I - -

- - - - C

- - C
C

C
- - C

C
C

- - C

I : initiate prefetch - : prefetch in progress C : block arrives in cache : consume block : stall

∆Tpf x()

x 1= Tapp Thit Tdriver+ +()–

x P Tapp()≤
Tdisk–

x x 1–()

x P Tapp()> 0

.









≈

74 CHAPTER 4

 this

O ser-

terms

hing

 block

om

k will

k. If the

rk does
has 1
r 6,
t 2

ll time
s

Every access that this additional buffer is used for prefetching benefits from

reduction in the average I/O service time. Thus, Equation (4.13) is the change in I/

vice time per buffer-access, and the benefit of allocating a buffer for prefetching in

of the common currency is the magnitude of this change. Thus,

(4.14)

4.2.4 The cost of ejecting a hinted block

Although there is no benefit from prefetching beyond the prefetch horizon, cac

any block for reuse can avoid the cost of prefetching it back later. Thus, ejecting a

increases the service time for the eventual access of that block from a cache hit,Thit, to the

read of a prefetched block,Tpf. In determining the change in service time that results fr

ejecting a block, what matters, therefore, is not how far in the future the ejected bloc

be accessed, but the number of accesses in advance that it will be prefetched bac

0 4 8 12 16
prefetch depth

0

5

10

15

av
er

ag
e

st
al

l p
er

 a
cc

es
s

(m
se

c)

Average stall time vs. prefetch depth

measured
predicted

Figure 4.5. Predicted and measured per-access stall time. To verify the utility of Equation (4.12), I
measured the stall time of a synthetic microbenchmark as a function of prefetch depth. The benchma
2000 reads of random, unique 8 KByte blocks from a 320 MByte file striped over 10 disks. It
millisecond of computation between reads, soTapp = 1 msec, and, for the system described in Chapte
Thit+Tdriver = 569 µsec andTdisk = 15 msec. Overall, Equation (4.12) has a maximum error of abou
milliseconds, making it is a good predictor of actual stall time. The equation underestimates sta
because the underlying model neglects disk contention and variation inTdisk. Chapter 7 explores these issue
in greater depth.

Benefitpf

∆Tpf x()
bufferage
-------------------------≡ ∆Tpf x() .=

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 75

time

ch and a

 future

express

ervice

d in

ffer

 lent

al

hinted

ple-

e

 elimi-

ughput

current

rated in

rrent
block is prefetched backx accesses in advance, then the increase in I/O service

caused by the ejection and subsequent prefetch is the differences between a prefet

hit,

(4.15)

(4.16)

Although the stall time,Tstall(x), is zero whenx is greater than the prefetch horizon,Tdriver

represents the constant CPU overhead of ejecting a block no matter how far into the

the block will be accessed.

This increase in service time from ejecting a block,∆Teject(x), does not affect every

access; it is a one time cost borne by the next access to the ejected block. Thus, to

this cost in terms of the common currency, we must average this change in I/O s

over the accesses that a buffer is freed. If the hint indicates the block will be reay

accesses, and the prefetch happensx accesses in advance, then ejection frees one bu

for a total ofy−x buffer-accesses. Conceptually, if the block is ejected and its buffer

where it reduces average I/O service time, then it will havey−x accesses to accrue a tot

savings that exceeds the cost of ejecting the block. Thus, the cost of ejecting a

blocky accesses before its use is

(4.17)

whereTstall(x) is given by Equation (4.12). As we shall see in Section 4.3.3, the im

mentation simplifies this estimate further to eliminate the dependence on the variablx.

4.2.5 The benefit of informed clustering

Clustering multiple contiguous accesses into one large sequential access both

nates the CPU overhead of performing multiple accesses and maximizes disk thro

for those accesses. Hints provide the opportunity to piggyback future accesses on

ones to take advantage of spacial locality even when the accesses are widely sepa

time. What is the benefit of allocating a buffer to cluster a future prefetch with a cu

access?

∆Teject x() Tpf x() Thit–=

Tdriver Tstall x() .+=

Costeject

∆Teject x()
bufferage

Tdriver Tstall x()+

y x–
-- ,=≡

76 CHAPTER 4

 cost,

 on

n clus-

 later

y the

eciding

same

ormed

ost of

 which

se esti-

mpari-

 I/O
d misses
 are the
refetch
If the decision to fetch or prefetch a block has already been made, then the

Tdriver, of performing a disk read will be incurred. Any blocks that could piggyback

this read avoid most of the disk related CPU costs. If there are hinted blocks that ca

ter with the first block, and they are not prefetched now in such a cluster, their

prefetch will incur the full CPU overhead of performing a disk access and possibl

cost of any unmasked disk latency. These are exactly the costs considered when d

whether to eject a hinted block. Furthermore, clustering allocates a buffer for the

number of accesses that ejecting the block would free one. Thus, the benefit of inf

clustering a prefetch of a blocky accesses before it is accessed is the same as the c

ejecting the same hinted block,

(4.18)

4.2.6 Global buffer value and the min-max buffer

Figure 4.6 summarizes the value estimates in Equations (4.5), (4.14), and (4.17)

the various estimators use to determine the local value of a buffer. Even though the

mates are expressed in terms of the common currency, they are not yet ready for co

Benefitclpf Costeject

Tdriver Tstall x()+

y x–
-- .= =

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

Figure 4.6. Local value estimates.Shown above are the locally estimated magnitudes of the change in
service time per buffer-access for the buffer consumers and suppliers of Figure 4.1. Because deman
must be satisfied immediately, they are treated as having infinite value. The remaining three formulas
absolute values of Equations (4.5), (4.14), and (4.17), for the LRU cache, hinted cache, and p
estimates, respectively.

Tdriver Tstall x()+

y x–
--

∆H n() Tmiss Thit–()

x 0= Tapp Thit Tdriver+ +

x P Tapp()≤
Tdisk

x x 1–()

x P Tapp()> 0

∞

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 77

 local

d,

nately,

sis

ystem

much

hus, it

ity.

buffer

ting a

ion in

h,

ious

hich

 be on

s to the

hint.

k will

ses

parate

k now

buffer

alone

le, the

ed hints

 back

 based
son at a global level because the unit of bufferage, a buffer-access, only has

meaning. For example, when considering ejecting a blocky accesses before it is neede

accesses were counted within the single hint sequence, not at a global level. Fortu

multiplying hint estimates by the rate of the hinted accesses,rh, and the LRU estimate by

the rate of unhinted demand accesses,rd, normalizes the estimates to the same time ba

and gives the estimates global meaning. Intuitively, if 95% of all accesses in the s

are unhinted, the cost to overall performance of reducing the LRU cache hit ratio is

greater than it would be if only 5% of the accesses depended on the LRU cache. T

makes sense to scale the estimates in proportion to their share of total system activ

The buffer allocator uses the normalized estimates to decide when to take a

from a supplier and use it to service a request for a buffer. For example, dealloca

buffer from the LRU cache and using it to prefetch a block would cause a net reduct

aggregate I/O service time ifrh⋅Benefitpf > rd⋅CostLRU. For the greatest reduction, thoug

the globally least-valuable buffer should be allocated. Unfortunately, it is not obv

which is the least-valuable buffer. If there are multiple hints for the same block, w

should be used to value that block’s buffer? If a hint refers to a block that happens to

the LRU list, which value estimate should be used?

To answer these questions, start by considering a single hint sequence that refer

same block twice. If the block is ejected, it will have to be fetched back for the first

Ejected or not, prefetched back in time or not, after the first hinted access the bloc

certainly be in the cache. The first access paysTdriver and stalls and subsequent acces

find the block in the cache (unless the block is ejected again, which would be a se

decision). Thus, the increase in service time that would result from ejecting the bloc

is determined by the first access. Furthermore, ejecting one block only frees one

and it only frees it until the first access takes the buffer back. Therefore, the first hint

determines the ejection cost for the block, and the ejection cost is not, for examp

sum of the cost estimates based on the two hints. Indeed, even if there are a hundr

for the block, the cost of ejecting the block is determined by the cost of prefetching it

in for the first hint. Note that the first hint leads to the greatest of the cost estimates

on any of the hints.

78 CHAPTER 4

s that

er pro-

r and

by the

e access

ed cost

ost to

, costs

is the

differ-

imal

seems

as we

uted to

le.

, we

uence.

es, the

ed, it

emand

d

 than

U list
This analysis extends directly to multiple hint sequences from multiple processe

refer to the same block. One of the processes will request the block first and the oth

cesses will find the block in the cache. Again, ejecting a block only frees one buffe

only needs to be fetched back once. The cost of ejecting the block is determined

next access to the block. Because, at a global level, cost estimates are scaled by th

rate to the hint sequence, the anticipated first access leads to the greatest normaliz

estimate.

In general, ejecting a block frees only one buffer and incurs at most one fetch c

bring back in. These observations apply no matter what estimators are used. Thus

aren’t additive nor are the freed resources. The cost of ejecting a particular block

maximum of the various independent normalized cost estimates determined by the

ent estimators.

The globally least-valuable buffer is the one whose maximum valuation is min

over all buffers. Hence, the replacement policy chooses thismin-max buffer for ejection if

the benefit exceeds the maximum estimated cost. Although this replacement policy

to require every estimator to compute cost estimates for every buffer, in practice,

shall see in Section 4.3.5, only a small number of cost estimates need to be comp

identify the min-max buffer and the overhead of this replacement policy is reasonab

4.2.7 An example: emulating MRU replacement

As an aid to understanding how informed caching ‘discovers’ good caching policy

show how it exhibits MRU (most-recently-used) behavior for a repeated access seq

Figure 4.7 illustrates an example.

At the start of the first iteration through a sequence that repeats every N access

cache manager prefetches out to the prefetch horizon. After the first block is consum

becomes a candidate for replacement either for further prefetching or to service d

misses. However, if the hit-ratio function,H(n), indicates that the least-recently-use

blocks in the LRU queue don’t get many hits, then these blocks will be less valuable

the hinted block just consumed. Prefetching continues, replacing blocks from the LR

and leaving the hinted blocks in the cache after consumption.

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 79

or the

it-ratio

tually,

-con-

ng the

h the

hing,

to the

anager

 LRU

cally

locks

eeded.

 where

es the

cient to
r is the
 the next
h the
As this process continues, more and more blocks are devoted to caching f

repeated sequence and the number of LRU buffers shrinks. For most common h

functions, the fewer the buffers in the LRU cache, the more valuable they are. Even

the cost of taking another LRU buffer exceeds the cost of ejecting the most-recently

sumed hinted block. At the next prefetch, this MRU block is ejected because, amo

cached blocks with outstanding hints, its next use is furthest in the future.

At this point, a wave of prefetching, consumption, and ejecting moves throug

remaining blocks of the first iteration. Because the prefetch horizon limits prefetc

there are never more than the prefetch horizon,P(Tapp), buffers in this wave. There is no

risk that the cache manager will cannibalize the cached blocks to prefetch further in

future. Thus, the MRU behavior of the cache manager is assured. The cache m

effectively balances the use of buffers for prefetching, caching hinted blocks, and

caching.

The informed cache manager discovers MRU caching without being specifi

coded to implement this policy. This behavior is a result of valuing hinted, cached b

and ejecting the block whose next access is furthest in the future when a buffer is n

These techniques will improve cache performance for arbitrary access sequences

blocks are reused with no particular pattern. All that is needed is a hint that disclos

access sequence.

• • •

pattern repeats

next use

prefetch
cached

Figure 4.7. MRU behavior of the informed cache manager on repeated access sequences. The number
of blocks allocated to caching for a repeated access pattern grows until the caching benefit is not suffi
hold an additional buffer for the N accesses before it is reused. At that point, the least-valuable buffe
one just consumed because its next access is furthest in the future. This buffer is recycled to prefetch
block within the prefetch horizon. A wave of prefetching, consumption, and recycling moves throug
accesses until it joins up with the blocks still cached from the last iteration through the data.

most recently

consumed next consumed

MRU replacement

after N accesses

horizon
Pblocks

80 CHAPTER 4

IP,

ting

manage

imator

ks.

 their

 previ-

rhead

tation

rder-

ently,

 where

e of

er

d

ueue

it ratio

eter-

rs are

uld have

nspired

h of

e.

asy.

esses
4.3 Implementation of cost-benefit I/O management

My implementation of informed prefetching and caching, which is called T

replaces the unified buffer cache (UBC) in version 3.2c of the Digital UNIX opera

system. To service unhinted demand accesses, TIP creates an LRU estimator to

the LRU queue and estimate the value of its buffers. In addition, TIP creates an est

for every process that issues hints to manage its hint sequence and associated bloc

In the following sections, I describe how these implemented estimators arrive at

cost estimates and explain how they differ from the ideal estimates described in the

ous section. I conclude with the description of an algorithm with a reasonable ove

that implements the min-max valuation of buffers. Chapter 5 describes the implemen

in more detail.

4.3.1 The LRU estimator

LRU block replacement is a stack algorithm [Mattson70], which means that the o

ing of blocks in the LRU queue is independent of the length of the queue. Consequ

cache hits occur at the same depth in the queue for all cache sizes. By observing

cache hits occur in a queue ofN buffers, it is possible to make a history-based estimat

H(n), the cache-hit ratio as a function of the number of buffers,n, in the cache for any

cache size less thanN, 0 <n < N. Specifically,H(n) is estimated by the sum of the numb

of hits with stack depths less then or equal ton divided by the total number of unhinte

accesses,A.

In TIP, the number of buffers in the LRU queue varies dynamically. When the q

is short, TIP needs to know whether a larger queue would have achieved a higher h

so that it can determine whether it would be beneficial to grow the LRU queue. To d

mineH(n) for caches larger than the current size, TIP uses ghost buffers. Ghost buffe

dataless buffer headers which serve as placeholders to record when an access wo

been a hit had there been more buffers in the cache. My use of ghost buffers was i

by work by Maria Ebling on caching in a distributed file system [Ebling94]. The lengt

the LRU queue, including ghosts, is limited to the total number of buffers in the cach

Unfortunately, efficiently determining where in an LRU queue hits occur is not e

After every cache miss, the buffer is released to the tail of the queue. If all acc

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 81

cesses

uffer to

 to the

he hits

le, con-

e first

 200th

nce of

to run

n tra-

 this

but by

ows a

s the

unt for
 buffers
buffer is
nt
missed, the position of a buffer in the queue would be equal to the number of ac

since the buffer was last referenced because every access would release a new b

the tail of the queue. However, when a hit occurs, the accessed buffer is promoted

tail of the queue. The position of a buffer in the queue depends on how many cac

there have been between the buffer in question and the tail of the queue. For examp

sider a buffer that is second from the tail of the queue. After 100 accesses to th

buffer, the buffer is still second from the tail. On the other hand, 100 accesses to the

position move the second buffer to position 102. Depending on the particular seque

hits and misses, the buffer could be anywhere in between.

The most obvious technique for determining the queue position of a cache hit is

down the queue and count the buffers from the tail to the hit buffer. This could mea

versing a linked list of hundreds or thousands of buffers on every cache hit. Utilizing

approach would add substantial CPU overhead to the system.

To reduce overhead, hit counts are recorded not by individual queue depths,

disjoint intervals of queue depths, called segments. Shown in Figure 4.8, this all

piecewise estimation ofH(n). Such averaging of hits over a segment of the queue ha

advantage of smoothing over little spikes and plateaus in the functionH(n).

n

hit
ratio

cache
bufferss1

h2/A

h4/A

{ { { {

h1/A

s2 s3 s4

tracked
buffers

ghost
buffers

LRU list

head of real
LRU list

Figure 4.8. Piecewise estimation ofH(n). The LRU list is broken into segments,s1, s2, s3, … Each buffer is
tagged to indicate which segment it is in. The removal of the buffer on a cache hit lowers the buffer co
its segment below the target count. When a buffer is released to the tail of the LRU queue, the other
overflow from one segment to the next until an under-full segment stops the cascade. The tag on a
updated when the buffer overflows from one segment to the next. When there is a cache hit in segmei, the
segment hit count,hi, is incremented. That segment’s contribution to the hit ratio is thenhi/A, whereA is the
total number of unhinted accesses. See Section 5.2.6 for more detail.

h3/A slope is
marginal hit ratio,
H’(n)

82 CHAPTER 4

te of

,

the

lope is

ent.

 from

bered

h seg-

retely,

eue to

U

at it

lation

f

t num-

ing the
The cost of losing an LRU buffer given in Equation (4.5) requires an estima

∆H(n)=H(n)-H(n-1). Because the piecewise estimate ofH(n) is linear within any segment

∆H(n) is equal to the slope ofH(n) within a segment and is the same for all buffers in

segment if we ignore the discontinuity at the boundary between segments. This s

the increase inH(n) over the segment divided by the number of buffers in the segm

Thus,

(4.19)

wheren falls within segmentsi, hi is the number of hits in segmentsi, A is the total number

of unhinted accesses, and |si| represents the number of buffers in segmentsi. In TIP, |si| =

100.

In a running system, file deletions and other events may remove many buffers

some segments. The question arises: should buffers be shifted back from higher-num

segments to fill the vacancies in the lower-numbered segments? The issue is whic

ment should get credit if there is a subsequent hit on one of the shifted buffers. Conc

suppose bufferb is in segments3 when 20 blocks cached in segments2 are deleted andb

could be shifted back intos2. Should an access tob be scored a hit ins2 or s3? The key

observation is that if there had not at one time been enough buffers in the LRU qu

fill segmentss1 ands2 and pushb into segments3, then the block inb would have been

ejected,b recycled and the access tob would have been a miss instead of a hit. The LR

estimator asks the question: What would be my hit ratio if I hadn buffers. Shiftingb back

to segments2 and scoring the hit there would mislead the estimator into believing th

needed fewer buffers than it did to get a hit tob. Leavingb in segments3, records the fact

that enough buffers to pushb into segments3 were needed to get a hit tob. Thus, TIP does

not shift buffers back.

One consequence of not shifting buffers is that there is not always a direct corre

between the number of buffers currently in the LRU queue,n, and the segment number o

the buffer at the head of the LRU queue. I just argued that, in fact, it is the segmen

ber of a buffer and not the number of buffers that is the key parameter when estimat

∆H n()
hi A⁄()

si
-----------------≈

hi

A si
-----------=

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 83

ost of

y

t ratio

e of

ueue

er, if

f hits

al esti-

, the

long

ould

mator

efit of

-

larger

mall,

es the

 the
cost of losing the buffer at the head of the LRU queue. Thus, properly speaking, c

losing a buffer is a function of the segment number,i, and

(4.20)

should replace∆H(n) in the expression for the cost of losing an LRU buffer.

A final complexity arises because, in general,H(n) may not be similar to the smoothl

increasing function suggested by Figure 4.8. There is often a large jump in the hi

when the entire working set of an application fits into the buffer cache. The valu

∆H(si) would be high for the segment that captures the working set. A large LRU q

would successfully defend its buffers and continue caching the working set. Howev

the LRU queue is initially not large enough to hold the working set as the number o

mount and it becomes clear that there is a working set to cache, then a strictly loc

mate of∆H(si) would fail to see the benefit of growing the LRU cache. Consequently

LRU queue could fail to grow and might remain at its small initial size no matter how

the working set continued to exist. The end result is that TIP’s buffer allocations w

depend on initial conditions. To avoid this undesirable dependence, TIP’s LRU esti

uses a simple mechanism to avoid being stuck in a local minima that ignores the ben

a much larger cache:∆H(si) is modified to be in the LRU value esti

mate. That is, the value of the marginal hit ratio is rounded up to the value of any

marginal hit ratio occurring deeper in the LRU stack. If the LRU cache is currently s

but a larger cache would achieve a much higher hit ratio, this mechanism encourag

cache to grow.

Applying these modifications to Equation (4.6) yields the following expression for

cost of losing an LRU buffer when the head of the LRU list is in segmentsi:

(4.21)

(4.22)

∆H si()
hi

A si
-----------=

maxj i≥ ∆H sj(){ }

CostLRU ∆TLRU i() maxj i≥ ∆H sj(){ } Tmiss Thit–()≈≈

maxj i≥
hj

A sj

 
 
 

Tmiss Thit–() .≈

84 CHAPTER 4

efetch

s can

ppli-

s of

inates

ess

 which

ead

ns of

her

,

puta-

nable

ee, the

On

tive to

ene-

,

 for

.6
4.3.2 The prefetching estimator

Equations (4.11) and (4.13) give precise expressions for, respectively, the pr

horizon and for the benefit of prefetching. In practice, variations in model parameter

lead to either over- or underestimation of the actual stall. Specifically, variations in a

cation execution time,Tapp, can speed or slow the rate of data requests. Also, run

cached blocks larger than the prefetch horizon can suspend prefetching which elim

the CPU overhead of prefetching,Tdriver, from the equations and reduces the interacc

period. On the other hand, blocks may need to be prefetched for other applications

may add additionalTdriver overhead to the interaccess period. To eliminate the overh

of measuringTapp and increase tolerance to bursts of application requests and ru

cached blocks, TIP assumesTapp = 0 and discounts the overhead of prefetching ot

blocks,Tdriver, to arrive at a static, system-wide upper-bound on the prefetch horizon

(4.23)

This is an upper-bound prefetch horizon for an application that does negligible com

tion, has most of its data cached, but an infinitely large array at it disposal. It is reaso

for TIP to be generous when deciding how deep to prefetch because, as we will s

system parameters ofTdisk andThit for the TIP testbed lead to a modest value of .

future systems with different values for these parameters, there may be more incen

tighten these estimates. Section 7.2 explores this issue in more depth.

Finally, the assumption of negligible application CPU time leads to a very small b

fit of Thit for allocating the first buffer for prefetching,x=1 in Equation (4.5). In contrast

the much larger benefit of adding a second buffer isTdisk/2. Recognizing that multiple

buffers will be used for prefetching, I define a benefit for allocating the first buffer

prefetching that leads to a smooth benefit function.

Together, these implementation considerations lead to this variant of Equation 4

P̂
Tdisk

Thit
------------- .=

P̂

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 85

 terms

l

 of

deter-

ld be

ence

bstan-

ed

rizon,

etch

sis-

ate of

ed to
(4.24)

4.3.3 The hinted cache estimator

Equation (4.17) in Section 4.2.4 expresses the cost of ejecting a hinted block in

of y, the number of accesses till the hinted read, andx, how far in advance the block wil

be prefetched back and is repeated here for easy reference:

(4.25)

The dependence onx poses two difficulties. First, it ties the estimate of the cost

ejecting a block to an estimate of when the block will be prefetched back. A precise

mination would require knowledge of other costs and benefits that the prefetch wou

bidding against for a buffer. Even if this could be done, it would destroy the independ

of the estimators. To maintain estimator independence and eliminate the possibly su

tial overhead of determiningx, I simplify the expression for the cost of ejecting a hint

block by assuming that the prefetch back will occur at the (upper-bound) prefetch ho

. The stall for such a prefetch is zero, so, for , we have,

(4.26)

If the block is already within the prefetch horizon, , I assume that the pref

will occur at the next access, that is (y-1) accesses in advance. Then, to maintain con

tency between this estimate of when the block will be prefetched back and the estim

the stall that will result on the prefetch, I apply the assumptions of Section 4.3.2 us

compute , and setTapp = 0 and neglectTdriver in the expression for the stall:

(4.27)

Thus, for 1< y ≤ , we have,

Benefitpf ∆Tpf x()=

x 1= Tdisk

x P̂≤
Tdisk

x x 1–()

x P̂> 0

.









≈

Costeject

∆Teject x y,()
bufferage

Tdriver Tstall x()+

y x–
-- .=≡

P̂ y P̂>

Costeject

Tdriver

y P̂–
----------------- .=

y P̂≤

P̂

Tstall x()
Tdisk xThit–

x
--------------------------------≈

Tdisk

x
------------- Thit .–=

P̂

86 CHAPTER 4

 after

on the

l. To

 choose

tch of

ting the

 equa-

inted

 bid-

 disk.

e
e impact
(4.28)

Unfortunately, using this equation could lead to prefetching a block back shortly

ejecting it. Even though the expression assumes that the prefetch back will occur

next access, ejecting a block only to prefetch it back immediately would be wastefu

avoid this thrashing, there should be hysteresis in the valuations; that is, we need

, or, substituting, (4.29)

(4.30)

Unfortunately, this inequality does not hold for all possible values ofTdriver, Tdisk, and

Thit. To guarantee robustness for all values of these parameters greater than zero, I

to addThit to ∆Teject(y) for 1< y < .3 Assembling the pieces, we have,

(4.31)

4.3.4 Implementation of informed clustering

In Section 4.2.5, I argued that the benefit of informed clustering, where the prefe

one block is piggybacked on the prefetch of another, is the same as the cost of ejec

block if it were already cached. In keeping with this argument, TIP uses the same

tions to implement both the benefit of informed clustering and the cost of ejecting a h

block, namely Equation (4.31).

The informed clustering estimator is not like the others in that it is not constantly

ding for a buffer. It can only use a buffer when another prefetch is about to be sent to

3 It turns out that this inequality does hold within the prefetch horizon where it is applied. ThThit
term could be included and hysteresis would be preserved. I do not expect this to have a measurabl
because, in practice, blocks within the prefetch horizon are valuable and are rarely, if ever, ejected.

∆Teject y() Tdriver

Tdisk

y 1–
------------- Thit .–+=

∆Teject y() ∆Tpf y 1–()>

Tdriver

Tdisk

y 1–
------------- Thit–+

Tdisk

y 1–() y 2–()
--------------------------------- .>

P̂

Costeject

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
-------------+

y P̂>
Tdriver

y P̂–

.











≈

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 87

d the

uffer,

e clus-

 block

tches

orting

k to

these

stan-

r allo-

uffers

benefit

 and

lue
-compute
At that time, a check for hints for contiguous blocks is made, and if any are found, an

benefit of the clustered prefetch exceeds the value of the globally least-valuable b

then the buffer is allocated and a cluster built. This special allocation path may caus

tering to be allocated a buffer before a regular, higher-benefit prefetch of some other

within the prefetch horizon. Strictly speaking, buffers should be allocated to prefe

and clusters in order of greatest benefit. But, doing so in this case while still supp

clustering could require initiating multiple different prefetches and then going bac

build clusters around these multiple prefetches. It might even require intermingling

two activities. Certainly, a system could be built to support this, but it would add sub

tial complexity. Instead, I choose to rely on the fact that clustered prefetches neve

cate more than 7 blocks at a time and so are unlikely to deplete the supply of b

available for regular prefetching.

Figure 4.9 summarizes the equations used to estimate buffer values in TIP. The

of informed clustering is not shown because it is not constantly bidding for buffers

because it is the same as for the hinted cache.

Figure 4.9. Local value estimates in the implementation. Shown above are the local estimates of the va
per buffer-access for the buffer consumers and suppliers of Figure 4.1. These estimates are easy-to
approximations of the exact estimates of Figure 4.6.

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

∞

x 0= Tdisk

x P̂≤
Tdisk

x x 1–()

x P̂> 0

maxj i≥
hj

A sj

 
 
 

Tmiss Thit–()

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
-------------+

y P̂>
Tdriver

y P̂–

88 CHAPTER 4

n the

eded

r and

e of all

of cal-

racti-

uted to

esses,

with-

list in

stima-

s that

te data

ini-

 it is a

 such

ement

e, as a

uation

at val-

mong

tima-

ax

 find

ally

nimal
4.3.5 Identifying the min-max buffer

Section 4.2.6 identified the min-max buffer as being the globally least valuable i

cache and therefore the buffer that should next be replaced when a new buffer is ne4.

Unfortunately, as presented there, it appears that identifying the min-max buffe

therefore making a replacement decision requires all estimators to estimate the valu

cached blocks and then sorting these blocks by value. This would entail thousands

culations for every block allocation which would add far too much overhead to be p

cal. In this section, I show how only a small number of cost estimates need be comp

identify the min-max buffer. Indeed, when few data blocks are shared among proc

each replacement decision requires as few as one cost-estimate calculation.

The first observation is that individual estimators can easily rank blocks by value

out calculating actual value estimates. The LRU estimator ranks blocks on the LRU

the order they appear on the list and blocks not on the list have zero value. A hint e

tor ranks blocks in order of their next appearance in the hint sequence and block

don’t appear in the sequence have zero value. Thus, an estimator with appropria

structures can quickly identify blocks of no value to it as well as the block with the m

mal positive value without making any cost calculations.

If no estimator values a particular block, then the block has no global value, and

candidate for immediate replacement; it is the min-max buffer. If there are multiple

blocks, then the algorithm can choose randomly from among them. Such replac

decisions require no cost calculations.

In the more interesting case, every block is valued by some estimator. Suppos

restricted case, every block is valued by exactly one estimator. Then, the max val

across estimators for a particular block is the value assigned by the one estimator th

ues it. Effectively, we can ignore the zero-value estimates of the other estimators. A

the blocks that an estimator values, one will have the minimal valuation for that es

tor.5 Clearly, the block with the globally minimal of the max valuations (the min-m

block) will be one of these blocks that is minimally valued by an estimator. Then, to

the min-max block, it is sufficient for each estimator to compute the value of its minim

4 Recall that the min-max buffer is the one whose maximal valuation by any estimator is mi
among all of the buffers.

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 89

lued

stimate

rove-

ary to

nt to an

d, or an

mpute

 mini-

ement

y be a

uaran-

tor’s

ators

sider

-max

 the

e lazy

mator

these

ck was

ers the

values

le, the
ick one

 set of
e way,
valued block and then, at a global level, to determine which of these minimally va

blocks is least valuable.

In the above case, it appears that each estimator needs to compute one value e

(for its minimally valued block) per replacement decision. This is already a great imp

ment over computing value estimates for all blocks. In fact, it is not even necess

make this many calculations. Value estimates only change when some state releva

estimator changes such as a block it values is ejected, a block it desires is prefetche

application consumes a hinted block. Therefore, the only estimator that needs to co

a new value estimate from one replacement decision to the next is the one whose

mally valued block was ejected. Thus, only one cost calculation is needed per replac

decision for this restricted case.

In general, multiple estimators may value the same block. For example, there ma

hint for a block that also happens to be on the LRU queue. In this case, there is no g

tee that the min-max block will be minimally valued by some estimator; each estima

minimally valued block may be highly valued by some other estimator and all estim

may value some block less than they value the min-max block. Thus, if we only con

for replacement blocks that are minimally valued, we may not even consider the min

block for replacement. How, then, can we find the min-max block without computing

max valuation for all blocks?

The solution is to assume that only one estimator values any block and then us

evaluation to catch violations to this assumption. Here’s how this works. Each esti

computes the value of its minimally valued block and the globally least valuable of

is selected as the candidate for replacement. Thenceforth, the estimator whose blo

selected acts as if the block had been ejected from the cache; it no longer consid

block when choosing its minimally valued block; the estimator ceasestracking the block6.

Before the block is actually ejected, a check is made to see if any other estimator

5 In practice, an estimator may compute the same valuation for multiple blocks. For examp
LRU estimator computes the same value for all blocks within a queue segment. Nevertheless, it can p
it thinks is least valuable: the one at the head the LRU list. In principle, it doesn’t matter which of a
equivalently valued blocks is replaced. For the allocation algorithm to work, all that is needed is som
even random selection, to pick one block from the set of equivalently valued blocks.

6 The notion of tracking is further clarified below.

90 CHAPTER 4

aluing

 to

ighly,

rther-

estima-

uable

 that

eration

 for the

peat-

ued

e
 global
 block
ecision.
the block more highly. If one does, the candidate block is saved from ejection, the v

estimator beginstracking the block if it isn’t already doing so, and the algorithm loops

pick a new candidate for replacement. If no other estimator values the block more h

then this valuation is the maximal valuation for that block across all estimators. Fu

more, because this maximal valuation is less than at least some valuation by some

tor for every other block in the cache, this candidate block is the globally least val

according to the min-max valuation of blocks and it should be ejected. Finally, note

because each iteration that picks a new candidate eliminates one block from consid

by one estimator, forward progress is guaranteed. Figure 4.10 presents pseudocode

algorithm.

Observe that it is the mechanism of tracking that prevents an estimator from re

edly picking the same block for replacement. When identifying its minimally val

start:
/* all estimators have already computed the cost of their */
/* minimally valued tracked block and these costs have */
/* been normalized for global comparison */
estimator with lowest global cost {

names its least valuable block;
ceases tracking the named block;
computes value of new least valuable block it is tracking;
submits new value for normalization for global comparison;

}
/* check that no estimator values named block more highly */
foreach estimator {

query to see if estimator values named block more highly;
if yes {

/* block is saved from replacement */
valuing estimator {

begins tracking saved block;
if saved block is now its least valuable {

computes value of new least valuable block;
submits new value for normalization for

global comparison;
}

}
goto start;

}
}

Figure 4.10. Algorithm for identifying the min-max buffer. The algorithm optimistically assumes that th
globally least-valuable buffer, the min-max buffer, is the one valued least by the estimator with lowest
cost. Before reallocating the buffer, the algorithm checks that, in fact, no other estimator values the
more highly. In most cases, this approach requires just one or a few cost calculations per allocation d

COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 91

each

timator

cause

n to

-max

tant

among

ed by

.

ugh

com-

hould

or the

le-of-

s that

g one

sis. If

ffer to

 and

 com-

1) the

g or

m the

nt, they

timator
block, an estimator only chooses from among the blocks it is tracking. Effectively,

estimator only sees the subset of all cached blocks that it is tracking. Once an es

picks a buffer for replacement, the buffer disappears from its view of the cache. Be

the algorithm just described for identifying the min-max block uses lazy evaluatio

check estimators before ejecting a block, the algorithm correctly identifies the min

buffer no matter which estimator is initially tracking the buffer. However, it is impor

that some estimator be tracking every buffer. Because estimators only choose from

buffers they are tracking when nominating buffers for replacement, a buffer untrack

any estimator will never be picked for replacement and will stay in the cache forever

4.4 Conclusion

Disclosure hints provide a great opportunity for optimizing I/O performance thro

informed prefetching, clustering, and caching. Unfortunately, these optimizations

pete with each other as well as traditional LRU caching for cache buffers. How s

buffers be allocated to take maximum advantage of hints while preserving buffers f

LRU queue? In this chapter, I present my solution to this problem.

In approaching the problem, I wanted to find a reasoned solution and to avoid ru

thumb approaches that require fiddling with tunable parameters. The key insight wa

because buffer managers most commonly reallocate blocks one-at-a-time, ejectin

block to load another, they present a splendid opportunity to apply cost-benefit analy

estimates for both the cost of ejecting a block and the benefit of giving the freed bu

another block could be found, then it would be clear which block, if any, to eject

which block should replace it.

My framework for resource management by cost-benefit analysis has three key

ponents. First, a collection of independent estimators dynamically estimate either (

benefit (reduction in application I/O service time) of allocating a buffer for prefetchin

a demand access, or (2) the cost (increase in I/O service time) of taking a buffer fro

LRU queue or the cache of hinted blocks. Because the estimators are independe

are relatively simple and the system is extensible because the addition of a new es

does not require changes in the existing ones.

92 CHAPTER 4

n terms

rency

e time.

e time

g for

able

ds the

ltiple

ed by

ation

efit of

 esti-

Fortu-

wed

s that

of this

y one

 it to

build-

 LRU

tation.

func-

lution I

ions.

 gradi-

 com-
For these estimates to be comparable at a global level they must be expressed i

of a common currency, the second component of the framework. This common cur

relates usage of the cache buffer resource to the system goal of reducing I/O servic

Expressed in terms of this common currency, estimates indicate how much servic

will change per unit of resource freed or consumed, or, colloquially, how much ban

the buck.

The third and final component is an algorithm that finds the globally least valu

buffer and reallocates it for the greatest benefit when the estimated benefit excee

anticipated cost. The first issue is determining at a theoretical level that when mu

estimators value the same buffer, the buffer’s global value is the maximum assign

any estimator. Thus the globally least valuable buffer is the one whose maximal valu

is minimal across all buffers. Even with independent estimates of the cost or ben

ejecting or gaining an individual buffer, this global valuation could require that value

mates be computed for all of the many hundreds or thousands of cache buffers.

nately, individual estimators can rank buffers without computing their value. I sho

how to construct an algorithm that takes advantage of this fact, optimistically assume

only one estimator values any buffer, and uses lazy evaluation to catch violations

assumption. In the common case, this algorithm requires only one cost calculation b

estimator per buffer allocation event.

With this framework, I developed an analytical performance model and used

derive estimates in terms of the common currency for the benefit of prefetching and

ing clusters of prefetches, and for the cost of ejecting a hinted block or shrinking the

cache. I then showed how to adapt the analytical estimates for use in an implemen

In particular, I showed how to dynamically estimate the hit ratio for LRU queue as a

tion of queue size.

This cost-benefit approach to resource management provides the reasoned so

sought. Analytical performance models provide the basis for buffer allocation decis

The cache manager dynamically applies the models to reallocate buffers to perform

ent descent on I/O service time as a function of the allocation of buffers among the

peting demands.

93

aral-

edul-

retical

xploit

nted

around

eds. I

 Dig-

 the

ides

IX

r the

ystem

 file

hich

ks the
Chapter 5

Implementation of Informed Prefetching
and Caching

Application disclosures of future file reads provide opportunities for: aggressive p

lel prefetching; clustering of multiple prefetches into fewer, larger accesses; disk sch

ing of multiple prefetches; and caching data for reuse. Chapter 4 provided the theo

and practical framework for a system that applies run-time cost-benefit analysis to e

all of these opportunities while preserving buffers in the LRU queue for unhi

accesses. In this chapter, I show what is needed to implement a working system

this framework and I describe how my implementation, called TIP, meets these ne

will also share some of the particular problems faced in implementing TIP inside the

ital UNIX operating system. I start with a brief overview of how TIP fits in the rest of

kernel and the functionality it must provide before going on to consider how it prov

that functionality.

5.1 Overview

TIP replaces the Unified Buffer Cache (UBC) in version 3.2c of the Digital UN

(DU) kernel as shown in Figure 5.1. TIP provides conventional file caching service fo

several file systems that DU supports including UFS, a variant of the Fast File S

(FFS) [McKusick84] and the Network File System (NFS) [Sandberg85]. Application

requests first pass through the Virtual File System (VFS) [Sandberg85, Kleiman86] w

forwards them to the target file system (UFS, NFS, or some other). The target as

94 CHAPTER 5

he file

g-

ecify

 the

stem

l file

hich

 File
Virtual
e if the
s an I/O
e file
ext for
cache if it has the referenced block. If not, the cache allocates a new buffer which t

system fills with the requested block.

The cache is organized byvnode (the structure in VFS which describes a file) and lo

ical offset within the file. Thus, when checking the cache for a block, file systems sp

the vnode and offset of the block in question. To find blocks quickly, both TIP and

original UBC use a conventional hash table much like the one in the BSD 4.3 file sy

[Leffler89]. But, the cache in that system was organized by disk block, not logica

block. This logical-block organization has certain implications for access clustering w

will be discussed in Section 5.2.2.

user

kernel

hinted

unhinted
reads

reads

start
prefetch

build
cluster

integrate
hints

/dev/tip

TIPNFS
other

FS

VFS

UFS

disk

hint

prefetcher

clustering

manager

hint
matching

I/O
initiation

server?

Figure 5.1. The TIP informed cache manager in the Digital UNIX operating system. When applications
don’t hint, TIP provides conventional caching service for the various file systems, including the UNIX
System (UFS) and the Network File System (NFS). Application requests for data first go through the
File System (VFS) layer which forwards them to the appropriate file system which checks TIP to se
requested data is cached. If not, a buffer is allocated for the missing block and the file system initiate
to load the block into the buffer. Application hints for open files are delivered via VFS in ioctls on th
descriptor. Hints for unopened files are delivered in ioctls to the TIP pseudo-device (/dev/tip). See t
further details.

read

application application

demand
access lru

cache

hinted
cache

hints abouthints about
open files named filescalls

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 95

pti-

ccess.

which

 given

eudo-

rds to

ints. In

ring

 allows

e read

relevant

sitive

ult if

as no

 layer.

ipated

ing hint

me
 and the
via
iven in
es
To conventional caching functionality, TIP adds the exploitation of hints for I/O o

mizations. These hints disclose the file and byte range that future file reads will a

Table 5.1 summarizes the hint interface; see Chapter 3 for full details. The order in

hints are given indicates the order of the hinted accesses. Hints for named files are

to a pseudo-device, /dev/tip. VFS forwards hints on open file descriptors to the ps

device. The device stores both types of hints in kernel data structures which it forwa

the TIP hint manager.

A hook in the VFS layer lets the hint manager match read requests against the h

this way, TIP knows how the application is progressing through its hints. Monito

reads is better done in the VFS layer than from within the cache manager because it

matching of exact byte ranges; the cache only sees requests for whole blocks. If th

matches a hint, then the read takes a special hinted-read path to and through the

file system. This special path serves two purposes. First, it allows TIP to make a po

hand-off of the hinted data to the application. Without this, a data race could res

matching a hint in the VFS layer lead the cache manger to eject data it thought w

longer needed before the application had a chance to read the data from the UFS

The second purpose of the hinted-read path is that it can be optimized for the antic

request. For example, cache lookup operations can be avoided because the match

Table 5.1. Ioctl calls in the disclosure hint interface. Disclosure hints describe future requests in the sa
terms as the existing file interface. Thus, they must specify the file, the starting offset of the access,
length of the sequential access before aseek to a new offset. This information is relayed to the file system
ioctl system calls using one of the hints specified in this table. Hints specifying a file by name are g
ioctl calls to the /dev/tip pseudo-device, whereasioctls giving hints about open files can target those fil
directly.

hint target description

TIPIO_SEG /dev/tip
batch of <offset, length> seg-
ments for a named file

TIPIO_FD_SEG open file descriptor
batch of <offset, length> seg-
ments for an open file

TIPIO_MFD_SEG /dev/tip
batch of <fd, offset, length> seg-
ments for multiple open files

TIPIO_CANCEL
/dev/tip or
open file descriptor

cancels segment at head of hint
list; used when a hint turns out to
be erroneous

96 CHAPTER 5

other

 also

n to

ection

s to the

s as

to the

ack to

pport

 other

hould

sys-

n esti-

ality.

IP sets

ber of

jects

che and

ts for

rs for

mand

com-

bene-

ee Sec-
already points directly to the requested block. How a hint points to a block and

aspects of hint management will be described in more detail in Section 5.3.1.

In addition to providing a hinted-read path, file systems that support TIP must

provide a routine for TIP to call when it wants to prefetch a block. TIP’s decisio

prefetch is governed by its cost-benefit buffer management which is described in S

5.2. But, in the DU kernel structure, the cache manager does not have direct acces

disk. Instead, TIP calls a file-system-specific routine which performs such function

mapping the logical file block to a physical disk block and building a request to send

disk device driver. Before actually queuing a request at the disk, this routine calls b

TIP to give it the opportunity to build a cluster prefetch. I have only added such su

for TIP to the UFS file system, but other researchers are working to add support to

file systems including NFS [Rochberg97].

As a last note on the relationship between TIP and the rest of the system, I s

point out that the original UBC shares memory pages with the Virtual Memory (VM)

tem, and the partition between the two varies dynamically. TIP does not yet have a

mator for value of VM page usage and so it is not yet able to duplicate this function

Developing such an estimator is an interesting area for future research. For now, T

a static partition of pages between the cache and VM and thus manages a fixed num

cache pages or buffers. Nevertheless, this unification of virtual memory and file ob

means that memory objects backed by files, such as mapped files, reside in the ca

not virtual memory. TIP must manage such objects even if it does not accept hin

them. This issue is discussed further in Section 5.3.3.

5.2 Implementation of cost-benefit buffer allocation

The cost-benefit buffer allocator, as described in Chapter 4, relies on estimato

help when making allocation decisions. Buffer consumers (prefetches and de

accesses) estimate the benefit in terms of the common currency1 that they would derive

from a buffer. Meanwhile, buffer caches, which could supply a buffer, estimate the

mon-currency cost of giving up the least valuable of their tracked buffers. When the

1 The common currency is defined to be the change in I/O service time per buffer-access. S
tion 4.1.2 for details.

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 97

ives it

sed to

w TIP

n the

e equa-

ry ref-

atches

le

etch-

ccess,

this

lue
nd first
) is the
fit exceeds the cost, the allocator takes a buffer from the lowest-cost estimator and g

to the greatest-benefit consumer.

For review, Figure 5.2 presents the equations developed in Chapter 4 that are u

estimate costs and benefits in the TIP implementation. In this section, I describe ho

applies these equations.

Both the benefit of prefetching and the cost of ejecting a hinted block depend o

number of accesses until the block is accessed. Thus, the first step in applying thes

tions is converting the hints to a sequence of accesses. For simplicity, TIP treats eve

erence to an 8 KByte file block as one access as shown in Figure 5.3. When TIP m

an application read to a hint, it stores the index of the last access read in the variabcon-

Index which stands for consumption index. Then, when computing the benefit of pref

ing a block for a given access or the cost of ejecting a block referenced by a given a

the value of, respectively,x or y needed for the equations is the difference between

conIndex and the index of the access in the sequence.

Figure 5.2. Local value estimates in the implementation. Shown above are the local estimates of the va
per buffer-access for the buffer consumers and suppliers that were developed in Chapter 4 a
summarized in Figure 4.9. Recall that the benefit of adding a block to a cluster prefetch (not shown
same as the cost of ejecting a block from the hinted cache.

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

∞

x 0= Tdisk

x P̂≤
Tdisk

x x 1–()

x P̂> 0

maxj i≥
hj

A sj

 
 
 

Tmiss Thit–()

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
-------------+

y P̂>
Tdriver

y P̂–

98 CHAPTER 5

eing

, the

is its

ue esti-

s. Thus,

cesses

d of

esses it

by the

ks it is

hich is

d by

ection

t, the

own in

and one

rs for

are
lication
dicate
hints do
uence by
nce. This
The next step for a hint estimator is to declare the benefit it would derive from b

given one buffer and the cost it would suffer from giving up one buffer. To do this

estimator must determine which block it would most like to prefetch and which block

least-valuable. Because the hinted access sequence is central to computing val

mates, the hint estimators are organized around accesses and not blocks or buffer

as will be described more later, the hint estimator maintains an ordered list of the ac

for which it would like to prefetch a block and not a list of missing blocks. Also, instea

tracking blocks in buffers, it tracks accesses. Thus, the estimator keeps a list of acc

is tracking. Its least-valuable tracked buffer is the one caching the block referred to

tracked access that is furthest in the future.

For its part, the LRU estimator uses the LRU queue as an ordered list of the bloc

tracking. Its least valuable tracked buffer is the one that was least recently used w

the one at the head of the LRU list. The cost of giving up that buffer is determine

which segment of the queue that buffer is in as described in the last chapter in S

4.3.1.

To match the estimator with greatest benefit with the estimator with lowest cos

global allocator separately ranks consumer and supplier estimators by value as sh

Figure 5.4. There is one estimator for each process that issues a sequence of hints

for the LRU queue. Note that hint estimators may be both a consumer of buffe

file=cat
<0, 256>

index=1
vnode=A
block=0

index=2
vnode=B
block=0

index=3
vnode=B
block=1

index=4
vnode=A
block=0

index=5
vnode=A
block=1

index=6
vnode=C
block=16

index=19
vnode=C
block=29

• • •

file=dog
<45, 8192>

file=cat
<512, 10318>

file=cow
<132075, 107419>

Figure 5.3. The hinted access sequence. TIP hint ejection-cost and prefetching-benefit estimates
parameterized by the number of single-block accesses until a hinted block is referenced. But, app
hints specify a file and an <offset, length> couple for a byte range within the file; they do not in
whether the application will read the byte range in one large access or multiple small ones. Thus, the
not directly correspond to a sequence of block accesses. TIP expands the hints to an access seq
counting every reference to a block as an access. The index of an access is its position in this seque
figure gives an example of how TIP expands a hint sequence into a hinted access sequence.

hint

hinted
access

sequence

sequence

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 99

main-

 cost.

eeds a

formed
 a
ould

t o
prefetching and a supplier of buffers from its cache of hinted blocks. The estimators

tain lists as needed to generate their estimates.

The prefetcher, invoked by callingTipPrefetch, callsTipPageAlloc to bid the greatest

benefit for a buffer.TipPageAlloc first callsTipLvbPick to find the globally least valuable

buffer (the min-max buffer) and then reallocates the buffer if the bid exceeds the

Other consumers only want buffers occasionally and they also callTipPageAlloc to bid for

a buffer. For example, UFS does this when there is a demand miss for which it n

hint
index
504

hint
index
503

hint
index
487

hint
index
4809

hint
index
4403

hint
index
3657

hint
index
2145

prefetch

estimator C

list

hint
index
4387

hint
index
4388

hint
index
4389

hint
index

22

hint
index

23

hint
index

24

hint
index
423

hint
index
424

demand miss

TipKluster

TipPrefetch

TipPageAlloc(bid)

hint
index
2340

hint
index
3656

TipLvbPick(bid)

• • •

• • •

• • •

lru
seg

9

lru
seg

9

lru
seg
10

• • •

• • •

• • •

• • •

Figure 5.4. Schematic of cost-benefit buffer allocator.A procedure calledTipPageAlloc serves as the
mediator between buffer consumers and suppliers. When a demand miss, informed clustering or in
prefetching need a buffer, they callTipPageAlloc with a bid expressing the benefit they would derive from
buffer. TipPrefetch bids for the estimator ranked with the greatest benefit in a list of estimators that w
like a buffer for prefetching.TipLvbPick picks a buffer from the estimator ranked least-valuable in a lisf
the estimators that can supply buffers if the bid exceeds the cost. See text for further details.

conIndex=4333

prefetch

estimator A

list

conIndex=417

prefetch

estimator B

list

conIndex=2

tracking

estimator B

list

conIndex=2

tracking

estimator C

list

conIndex=4333

tracking

LRU estimator

list

tracking

estimator A

list

conIndex=417

y=3655

y=476

segment=10

y=87

x=20

x=5

x=54

100 CHAPTER 5

back

tching

. Sec-

nti-

ction

finding

ferent

 nexus

fit of

 com-

s on

e ben-

sing

 of the

inted

IP runs

ause

ed to

ead of

t con-

buff-
nefit of
is as an

cesses
buffer.2 And, the cluster prefetcher does this when a disk read on which it can piggy

prefetches is about to be queued at the disk.

In Section 5.2.1, I describe the prefetcher and what is needed to generate prefe

benefit estimates. Section 5.2.2 identifies the requirements for clustered prefetching

tion 5.2.3 reviews the algorithm for identifying the min-max buffer. Section 5.2.4 ide

fies the functions estimators must provide to support the allocation algorithm. Se

5.2.5 describes the nexus data structure which ties estimators to buffers to make

value estimates for blocks efficient. Finally, Sections 5.2.6 and 5.2.7 describe the dif

strategies that the LRU and hinted cache estimators use to take advantage of the

data structure and provide the functions needed by the allocation algorithm.

5.2.1 Informed prefetching

The prefetching module ranks hint estimators according to the normalized bene

prefetching the first missing block in their hinted access sequence. The benefits are

puted using the prefetch value estimate in Figure 5.2. This benefit estimate dependx,

the number of accesses until the missing block will be accessed. Thus, computing th

efit of prefetching for a hint estimator requires knowledge of which is the next mis

block in the sequence, the block’s location or index in the sequence, and the index

hinted block last consumed by the application.

To make this information easily available, the hints are expanded into the h

access sequence which is stored as a linked list associated with the estimator. T

down the list to find the first missing block. It stops at the prefetch horizon bec

beyond that point, the benefit estimate is zero, and no buffer would be allocat

prefetch a missing block even if one were found. TIP removes accesses from the h

the list as it checks them to avoid rechecking them in the future.3 The difference between

the index of the hinted access to this first missing block and the application’s curren

sumption index,conIndex, determines the parameterx in the benefit calculation.

2 UFS also callsTipPageAlloc to obtain buffers for sequential readahead. These are allocated
ers with the same priority as demand misses. It would be useful to develop an estimator for the be
heuristic prefetching, but this dissertation focuses on prefetching according to hints and so leaves th
area for future research.

3 Should a cached or prefetched block within the prefetch horizon be ejected, the hinted ac
that reference it could be reinserted at the head of the list.

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 101

rs to

e a

 queu-

 a new

nking

n

 move

hinted

es not

owever,

ble for

e. In

ever an

ng the

ess that

ss and

ploits

at

 clusters

agine

But, in

esses
sses are
TheTipPrefetch routine uses the greatest normalized benefit among the estimato

bid for a buffer. If it obtains one, it calls the file-system-specific routine to initiat

prefetch of the first missing block in the estimator’s hinted access sequence. Before

ing the prefetch at the disk, the file-system-specific routine callsTipKluster to try and

build a cluster prefetch as described in the next section. The estimator computes

prefetching benefit for the next missing block. The benefit is normalized and the ra

of the estimators adjusted.TipPrefetch continues bidding for buffers until it fails to obtai

one or no estimator has a positive prefetching benefit.

When a process performs a hinted read, all accesses in its hinted sequence

closer. This could change the benefit of prefetching for the processor. Thus, after a

read, the prefetching benefit estimate for the process is updated and TIP callsTipPrefetch

to see if the system should prefetch some more blocks. The prefetching benefit do

change for the other processes, so their benefit does not need to be recomputed. H

after an application consumes some hinted blocks, new buffers may become availa

prefetching. Or, the completion of writes of dirty buffers may make buffers availabl

either case, the prefetcher gets another chance to bid for a buffer. In general, when

event occurs that may change either the benefit of prefetching or the cost of ejecti

globally least valuable buffer, the affected estimates are updated and a call toTipPrefetch

is made to see if the prefetcher’s bid for a buffer might now be successful.

5.2.2 Informed clustering

Clustering assembles separate, contiguous disk accesses into a single larger acc

increases disk workload sequentiality and that decreases the number of disk acce

therefore the CPU overhead of performing disk accesses. Informed clustering ex

hints to build clusters.

TIP builds clusters opportunistically on disk accesses4 that are about to be queued

the drive. (Once a request has been queued at the disk, it cannot be changed, so

built around a request need to be built before the request is queued.) One could im

scanning the entire hint sequence to determine the optimal clustering of requests.

4 TIP only builds informed clusters on other prefetches. In my benchmark suite, hinted acc
tend to be disjoint from unhinted accesses, so informed clustering opportunities on unhinted acce
extremely limited or nil. DU with or without TIP builds clusters for heuristic sequential readahead.

102 CHAPTER 5

es to

ids for

lock

r the

heck if

d bid

trying

cedure

nded

eter-

in the

ing the

 disk

 iter-

is the

iven in

d to a

ve to

re log-

s it

ically

has its
to cache
t hinted
ing the
ll as the
 keep
tructure,
 mem-
keeping with the cost-benefit approach of one-at-a-time buffer allocation that tri

approximate gradient descent on I/O service time, TIP does not do this. Instead, it b

buffers to add to a cluster one-at-a-time.

At its core, the procedure for building a cluster is as follows. Starting from a b

about to be read from disk, work first to extend the request to include blocks afte

requested one. If the next contiguous block is not already present in the cache, c

there are any hints for it. If so, compute the cluster prefetch benefit for the block an

for a buffer. If one is obtained, add the block and buffer to the cluster and continue

to extend the cluster by one more block. Otherwise, give up, and repeat the pro

going in the reverse direction from the original block. When the cluster can’t be exte

any further in that direction either, queue the cluster request at the disk.

The key operations in this algorithm are determining if a disk block is cached, d

mining if there are any hints for an uncached disk block, and determining where

hinted access sequence these hints fall so that a benefit can be computed for add

block to the cluster.

Unfortunately, because the file cache is organized by logical file block and not by

block, the only way to determine if a particular disk block is already in the cache is to

ate over every block in the cache, mapping each to its disk block and checking if it

desired block. Searching every cached block is bad enough, but hints are also g

terms of file byte range, not disk blocks, so either hints would all have to be mappe

disk block and then indexed by disk block, or else hints, like cache buffers, would ha

be searched exhaustively to see if any referred to the contiguous disk block.5

To get around this problem, TIP takes advantage of the fact that UFS tries to sto

ically contiguous file blocks in physically contiguous disk locations. This policy make

likely that the blocks that are physically contiguous to a particular access are also log

5 I could have reorganized the whole cache around disk blocks, but a file-block organization
own advantages. For example, the file-block organization makes it easy to use the same structure
blocks from file systems such as NFS which don’t store their data on the local disk. It also means tha
blocks can be found in the cache without first mapping the hints to disk blocks. Furthermore, chang
cache to a disk-block organization would have necessitated changes in all of the file systems as we
virtual memory system which all assume a file-block organization. In implementing TIP, I wanted to
changes as localized as possible. I could have added a disk-block structure on top of the file-block s
but in addition to necessitating the mapping of all hints to disk blocks, it would have added CPU and
ory overheads to maintain the duplicate structures. I did not seriously consider this option.

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 103

locks

ically

n the

ocks

ache,

 In pro-

tes a

hinted

of the

ontigu-

ched,

esses

 the

it

 func-

-

 the

 is a

alua-

 that

ffer.

 though
there is
e units
contiguous to it. In the UNIX file system, the disk addresses of neighboring logical b

are stored in neighboring elements of an array [Leffler89], so the number of phys

contiguous blocks before and after an initial block can be quickly determined whe

initial block is mapped to disk. TIP limits its attempts to build clusters to those bl

which are both logically and physically contiguous.6

It is easy to check if these logically contiguous blocks are already present in the c

but this does not address the issue of finding hints for the ones that are uncached.

viding this functionality, TIP optimizes for speed at the cost of memory. TIP alloca

ghost buffer, like those used in the LRU queue and described in Section 4.3.1, for

but uncached blocks. To this ghost buffer, TIP appends a list of all appearances

block in any hinted access sequence. When TIP does the cache lookup to see if a c

ous block is cached, it finds the ghost buffer, which tells it the block is not already ca

and it has a list of all hints for the block. TIP then loops through this list of hinted acc

and calls theestBid function of each access’s estimator to obtain a bid for inclusion of

block in the cluster. TIP then callsTipPageAlloc with the maximum of these bids and, if

gets a buffer, adds the block to the cluster. Shortly, there will be more on estimator

tions and the nexus data structure that links hinted accesses to buffers.

5.2.3 Allocating the min-max buffer

The prefetcher, cluster prefetcher, and demand accesses callTipPageAlloc7 with a bid

to obtain a buffer. This routine finds the min-max buffer8, determines if the cost of eject

ing it is less than the bid, and if it is, reallocates the buffer. The algorithm for finding

min-max buffer was first described in Section 4.3.5. For convenience, Figure 5.5

reprise of the pseudocode for the algorithm. The crux of the algorithm is the lazy ev

tion of the global value of a buffer. As described in Chapter 4, it is this lazy evaluation

allows the independent estimators to estimate the cost of only their least valuable bu

6 TIP assumes that blocks at sequential disk addresses are stored contiguously on disk, even
this is not always true for SCSI disks. Actually, because the data is usually stored on a disk array,
known to be a break in sequentiality at stripe-unit boundaries. TIP tries to build up clusters to full strip
which are 64 KBytes or 8 blocks in size and does not build clusters that span multiple stripe units.

7 The fact that in Digital UNIX all buffers are one page in size leads to this choice of name.

8 This is the globally least-valuable buffer.

104 CHAPTER 5

le to

f

at is

ll the

ffer, it

esti-

le. The
globally
es the
inating
 makes
In TIP, the estimators cooperate with a global ‘least-valuable buffer’ (LVB) modu

implement the lazy-evaluation algorithm.TipPageAlloc takes care of the mechanics o

reallocating a buffer from one block to another, but relies onTipLvbPick to identify the

min-max buffer. Figure 5.6 shows the procedural flow fromTipPageAlloc to TipLvbPick

and the procedural interactions between the estimators and the LVB module.

The LVB module maintains the list of estimators that could supply a buffer th

sorted by normalized ejection cost shown in Figure 5.4.TipLvbPick takes advantage of the

list to quickly find the estimator whose least valuable block is least valuable among a

estimators. Whenever an estimator computes a new value for its least-valuable bu

callsTipLvbUpdate to have the new value normalized for global comparison and the

mator’s position in the list adjusted if necessary.

start:
/* all estimators have already computed the cost of their */
/* minimally valued tracked block and these costs have */
/* been normalized for global comparison */
estimator with lowest global cost {

names its least valuable block;
ceases tracking the named block;
computes value of new least valuable block it is tracking;
submits new value for normalization for global comparison;

}
/* check that no estimator values named block more highly */
foreach estimator {

query to see if estimator values named block more highly;
if yes {

/* block is saved from replacement */
valuing estimator {

begins tracking saved block;
if saved block is now its least valuable {

computes value of new least valuable block;
submits new value for normalization for

global comparison;
}

}
goto start;

}
}

Figure 5.5. Algorithm for identifying the min-max buffer (reprise). This algorithm lazily evaluates the
global value of a buffer. Estimators nominate their least valuable buffer as the globally least valuab
least valuable of the nominations becomes the candidate. To verify that the candidate is indeed the
least valuable, each estimator is given the opportunity to save the buffer from replacement if it valu
buffer highly. If one saves the buffer, the process repeats. The mechanism of tracking and only nom
blocks that the estimator is tracking guarantees that cycles do not occur and that the algorithm

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 105

e up

place-

 to

ators

sti-

he
nd
block.
The LVB module requires estimators to provide two functions. First,TipLvbPick calls

theestPick function of the least valuable estimator when it wants the estimator to giv

its least-valuable block. Then, to see if any estimator wants to save the block from re

ment,TipLvbQuery calls theestQuery function of every estimator that values the block

see if the estimator would like to save the block from replacement. Commonly, estim

also support anestUpdate function for internal use that updates the estimator’s local e

TipLvbPick()

estPick()

for lowest-cost
estimator

estUpdate()

TipLvbQuery()

estQuery()

TipLvbUpdate()

identify lowest-cost
tracked block;
cease tracking of block

identify new lowest-cost
tracked block;
compute its cost

for each interested
estimator

compute cost for block;
start tracking block if
cost is great enough

notify allocator
of new cost

is cost to this estimator
great enough to save
block from replacement

is there an estimator
that can save this block

while bid is greater than lowest-cost,
pick pages from lowest-cost estimator

TipLvbUpdate()
notify allocator
of new cost

pick block for
replacement

update
cost for
estimator

1 2

1 2

1 2

keep trying if for a demand access

allocate a page
from the buffer pool

Figure 5.6. Procedural flow for page allocation. After checking for free pages and whether the cac
should grow,TipPageAlloc callsTipLvbPick to ask the lowest-cost estimator to pick blocks for ejection a
query other estimators to verify that the picked block is indeed the globally least-valuable, min-max
The estimators callTipLvbUpdate to declare the cost of giving up of their new least-valuable buffer.

if newly-tracked block
is estimator’s least valuable

until min-max block is found

check free list
for a page

take page from VM
if cache is below
target size

1 2 3

or there are no available pages

TipPageAlloc()

106 CHAPTER 5

ast

p the

, esti-

every

iffer-

i-

ueried

lock it

value of

ed to

s the

, TIP

ed to

ators.

tor

 block

 a single

every

r

tioned

 save a

ator

uffer so
mate of ejecting its least-valuable buffer and therefore callsTipLvbUpdate to update its

global value.

In implementing itsestPick function, an estimator must be able to identify its le

valuable tracked block. It must also be able to stop tracking the block when it gives u

block. To update their value estimate for their new least valuable buffer after a pick

mators must also be able to identify the next to least valuable buffer, and ultimately

tracked buffer in turn. The LRU and hint estimators implement these operations d

ently, as will be described in Sections 5.2.6 and 5.2.7.

At a global level, implementingTipLvbQuery requires a method of finding every est

mator that values a particular block. And, whenTipLvbQuery calls anestQuery function,

the called estimator needs to be able to estimate the value of the block it is being q

about. TIP accomplishes this by asking every estimator to attach a marker to every b

values. In the marker, estimators can store some data that helps them estimate the

the block. Then, by calling the appropriate estQuery function for every marker attach

a block, TipLvbQuery can be certain that it has queried every estimator that value

block.

Hint estimators value blocks they have hints for. As was the case with clustering

is faced with a need for finding all hints for a block. The list of hinted accesses attach

every buffer to generate cluster bids also serves as the list of markers for hint estim

WhenTipLvbQuery calls theestQuery function for an access on the list, the hint estima

has only to look at the index of the access to compute its estimate of the value of the

for that access. Note that because a single hinted access sequence may reference

block multiple times, and that because hint estimators add a marker to the list for

access to the block in the hinted sequence,TipLvbQuery may query the same estimato

multiple times about the same block, once for each access to the block. As men

above, estimators track accesses, not blocks or buffers. If an estimator does not

block based on an access in the distant future,TipLvbQuery will give it another chance to

save it based on another access in the same sequence that is imminent.

The LRU estimator values buffers in its LRU queue. Conceptually, the LRU estim

adds a marker to each buffer in its queue and stores the segment number for the b

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 107

 will

at esti-

e 5.7

estima-

ter

ng its

lock.

ghly

n esti-

turns

port a

ise

e. The

es of

nt esti-

at is
it can easily compute its value. The actual implementation differs from this slightly as

be discussed in Section 5.2.6.

5.2.4 Estimator functions

Scattered through the previous sections, are references to various functions th

mators must implement to support the prefetching and allocation algorithms. Figur

tabulates these and a few additional functions. These are the functions that a new

tor would have to support to be integrated into the TIP buffer allocation system.

TipLvbBid calls theestBid function to obtain bids for caching a block. The clus

prefetcher callsTipLvbBid to determine the benefit of adding a block to a cluster.TipLvb-

Pick callsestPick when is wants the least-valuable estimator to name and stop tracki

least-valuable block. This pick starts the process of identifying the min-max b

TipLvbQuery callsestQuery to see if any estimator values an already cached block hi

enough to save it from ejection and start tracking it.TipLvbPick uses the query operation

for the lazy evaluation of buffer value. The cluster prefetcher also uses it to cause a

mator to start tracking a clustered block if the bid for a buffer for clustered prefetch

out to be successful.

In addition to these functions which were mentioned earlier, estimators must sup

few other functions. In particular,estInval is needed in case a file is deleted or otherw

becomes unavailable which causes blocks for the file to be removed from the cach

estCreate andestDestroy functions are needed to create and destroy particular instanc

an estimator. The LRU estimator is created at boot time and never destroyed, but hi

mators are created and destroyed for processes as needed.

Figure 5.7. Estimator operations. These are the six functions common to all estimators plus one th
commonly implemented for internal estimator use. See the text for details.

name function

estBid generate bid to cache block; used to build clusters

estPick pick a block for ejection; stop tracking block

estQuery save & track block if valuable

estInval stop tracking block; used when files are deleted

estCreate create a new estimator

estDestroy deallocate estimator

(estUpdate) update cost estimate (optional; for internal use only)

108 CHAPTER 5

at the

y buff-

e main

gether

e esti-

many

 most

ces, not

inted

stering

 block

d like

ces by

 block

e ref-

ffers

ies an

 in the

n the

 esti-

ere is

ow the

here, it
 for the

uffer or
5.2.5 The nexus data structure

From the foregoing algorithm descriptions, you should be getting the sense th

routine work of the TIP system is bookkeeping. The cache manager consists of man

ers, estimators, hints, hinted accesses, and the LRU list of unhinted accesses. Th

challenge in generating estimates for cost-benefit buffer management is pulling to

the estimator, block, and reference by the estimator to the block needed to apply th

mation equations.

In implementing TIP, I optimized for speed and created lists to accelerate the

lookup operations. Because it is the reference linking an estimator to a block that is

often needed to compute value estimates, these lists are most often lists of referen

blocks or estimators. The prefetcher needs to find the next missing block in a h

sequence, so it has a list of the hinted accesses for each hint sequence. Clu

prefetches requires benefit estimates from all estimators that would like a particular

prefetched. Similarly, querying requires cost estimates from all estimators that woul

to keep a block cached. So, attached to each buffer is a list of markers or referen

estimators to the buffered block. Lastly, to ease picking the least valuable tracked

and finding the next least valuable tracked block, each estimator maintains a list of th

erences that are the basis of its value estimates for the blocks it is tracking.

In summary, estimators maintain multiple lists of references to blocks, and bu

maintain a list of estimator references to them. The TIP data structure that embod

estimator reference to a buffer and links the two together is called anexus. There is one

nexus for every hinted access. And, there would also be one nexus for every block

LRU list, but for historical reasons, in TIP, nexuses for the LRU list are embedded i

buffer header.9 Multiple nexuses may link one estimator to a single block because an

mator may have multiple hints for the same block. Conversely, from every block, th

a separate nexus that links it to each estimator reference to it. Figure 5.8 shows h

nexus data structure links estimators and data blocks.

9 There is also a memory advantage to having the LRU nexus embedded in the header. T
occupies 20 bytes whereas a nexus requires 64. Most of the savings come from not needing links
prefetching or hint lists of nexuses, nor for the buffer list of nexuses, nor from the nexus back to the b
the hint estimator.

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 109

dea of

blocks.

 blocks

e head-

ses to

fers,
links
d
a bloc

ferred
both
 to form
but for
There are many references to blocks that are not currently cached. The whole i

prefetching according to hints presumes that the hints may often refer to uncached

Furthermore, the LRU estimator needs to detect that there would have been hits to

had the LRU queue been longer. TIP maintains headers for these ghost buffers. Th

ers are included in the file-block hash list so the LRU estimator can detect acces

them and so that the cluster prefetcher can find hints for specific blocks quickly.

tipNex

tipNex

tipNex

tipNex

tipNextipNex

tipNex

tipNex

estimator estimator

Figure 5.8. TIP data structure overview. The key data structures in the TIP system are the cache buf
the estimators, and thetipNex nexus structures that link them together. Not shown in the figure are the
from every tipNex back to the corresponding estimator andtipBuf. There is one nexus for every hinte
access, and one nexus list for every hinted byte range. Thus, a hint estimator with multiple hints for k
may have multiple nexuses for the block. Every block that has a nexus has a correspondingtipBuf buffer
header whether there is physical buffer caching that block or not. If there is no physical buffer, it is re
to as a ghost buffer. ThetipBufs are organized into a hash table so that for any block, it is easy to find
the block, and any estimators that value the block. The nexuses are strung together in different ways
prefetching and tracking lists for hint estimators. The LRU list could also be composed of nexuses,
historical reasons, a virtual ‘nexus’ for the LRU estimator is embedded in thetipBuf structure. A flag
indicates whether this ‘nexus’ is part of the LRU list or not.

cache buffer

estimator

ghost buffertipNex

tipNex cache buffer

cache buffer

tipBuf

tipBuf

tipBuf

tipBuf

110 CHAPTER 5

d in the

on of

roken

 figure,

s to the

 of the

o.

to the

 equa-

 for

o
 that
nt
e
xt by

r is the
5.2.6 The LRU estimator

Because, as mentioned above, the nexuses for the LRU estimator are embedde

tipBuf buffer header structure, the LRU queue is a doubly-linked list oftipBuf structures

as shown in Figure 5.9. Recall from Section 4.3.1 that to arrive at an approximati

H(n), the hit ratio for the LRU queue as a function of cache size, the LRU queue is b

into segments and the number of hits in each segment is recorded. As shown in the

an array of segment descriptors keeps track of segment boundaries, counts the hit

different segments, and records the cost of shrinking the LRU queue when the head

queue is in that segment. An index in eachtipBuf records which segment it belongs t

This segment index is incremented when the buffer overflows from one segment

next.

To compute the cost estimate for each segment, the LRU estimator applies the

tion shown in Figure 5.2, using a moving average of the hit counts for the segmenthi

tipBuf
seg=0

tipBuf
seg=3
ghost

tipBuf
seg=0

tipBuf
seg=0

tipBuf
seg=1

tipBuf
seg=1

tipBuf
seg=2

tipBuf
seg=2

tipBuf
seg=2

tipBuf
seg=3

tipBuf
seg=3
ghostghostghost

targetSize targetSize targetSize targetSize

size size size size

hits hits hits hits

avg. hits avg. hits avg. hits avg. hits

cost cost cost cost

tipLruSegs
array of

Figure 5.9. Data structures for the LRU estimator. The LRU queue is made up of a doubly-linked ring f
tipBuf structures. EachtipBuf records which segment of the queue it is in as well as a status flag
indicates whether or not it is a ghost buffer. An array oftipLruSegs structures keeps track of per-segme
data. When there is a cache hit, the segment number in thetipBuf is used to increment the hit count for th
segment. When atipBuf is released to the tail of the queue, buffers overflow from one segment to the ne
shifting the segment pointers left so that no segment has more thantargetSize buffers in it. The estimator
periodically applies the LRU cost equation to each segment. The LRU estimator’s least valuable buffe
least-recently used non-ghost buffer in the queue which is pointed to bytipLruHead. The cost of losing it is
the cost for the segment containing it.

tipLruHead

tipLru

segment
descriptors

tipLruSegs[0] tipLruSegs[1] tipLruSegs[2] tipLruSegs[3]

ghost buffers

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 111

left

ffers

least-

inted

ent

 it,

just

track-

n the

 block.

rarely

ead to

 occa-

 even

 make

ething

e cost

ks or

ment.

ty and

elow.

the

t get

d that

uffer.
and the segment target size for |si|. It computes the costs for the segments from right to

so it can keep track of the maximum cost for higher numbered segments.

For the purposes of the lazy-evaluation algorithm, the LRU estimator’s tracked bu

are those on the non-ghost portion of the LRU queue. Thus, the LRU estimator’s

valuable buffer is the one at the head of the non-ghost portion of the list which is po

to by tipLruHead. The cost of losing the least-valuable buffer is the cost for the segm

containing it. WhenTipLvbPick calls the LRU estimator’sestPick function, it returns the

value of thetipLruHead pointer, but leaves the buffer in the list. Instead of removing

the estimator sets the buffer’s ghost flag and moves thetipLruHead pointer to the buffer’s

left neighbor in the queue.10 In this way the estimator ceases tracking of the block

picked and identifies its new least-valuable buffer.

When queried about a block, the LRU estimator only saves blocks it is already

ing; that is, it only saves non-ghost buffers. One could imagine saving any block o

queue that was in a segment whose cost of ejection was high enough to save the

But, I chose not to do this because, as explained below, doing so would only very

improve application performance, and because doing so would often add extra overh

the system.

Saving ghost buffers is unlikely to improve performance because there are few

sions in which saving such a buffer would lead to a cache hit. For the LRU queue to

consider saving a ghost buffer, it must first have picked the block for replacement to

it a ghost, something else must have saved the block from replacement, that som

else must no longer want it cached, the block must still be on the LRU queue, and th

of ejecting an LRU block must have grown relative to the cost of ejecting other bloc

the LRU estimator would not be able to save a block it previously picked for replace

The something else must be either a hint estimator, or the fact that the block was dir

could not be flushed. The dirty-block case, which is fairly common, is considered b

If a hint estimator saved it, but is now is willing to replace it, it is most likely that

hinted access occurred. It is unlikely that both the LRU queue’s ghost buffer did no

pushed off the end of the LRU queue while the hint estimator tracked the block an

10This ghost flag is used only by the LRU estimator to record that it is no longer tracking the b
True ghosts,tipBufs with no associated buffer, have a nil buffer pointer.

112 CHAPTER 5

g that

doing

 cache.

 blocks

s hint

d and

ment

t com-

t and

for

 valu-

 ghost

able

same

 entire

fore is

nt, it

ts adds

ence.

 Figure

 block

 the list

ther it

single

le times
the relative LRU cost of ejection grew in that same time period. But, even supposin

this unlikely chain of events occurred and the LRU estimator does save the block,

so only helps performance when there is an unhinted access that finds it there in the

But, at least for the benchmark applications under study here, accesses to particular

tend to be either all hinted or all unhinted. Just the fact that five of the six application

over 85% of the block accesses shows that there is little overlap between hinte

unhinted accesses.

Being unlikely to improve performance would not by itself be a persuasive argu

against saving ghost buffers, but saving them can also hurt performance. The mos

mon opportunity to save blocks is when the LRU picked a dirty block for replacemen

the write has completed. If the LRU saves the block, it will in all likelihood pick it

replacement almost immediately; the LRU already picked it once, so it cannot be too

able. Having the LRU save and repick a block would not be bad except that saving

buffers would make it more expensive for the LRU estimator to find its least-valu

buffer because it would destroy the invariant that all buffers to the left oftipLruHead are

real and all buffers to the right are ghosts. Specifically, if the saved block is in the

segment as the current head of the LRU list, the estimator may have to search the

segment to see if the saved block is to the right or left of the current head and there

or is not the new head of the list. Further, if the LRU picks the head for replaceme

may have to search through many buffers to find the new head. Thus, saving ghos

CPU overhead and seems, on balance, likely to hurt, not help performance.

5.2.7 The hinted cache estimator

The value of a hinted block is a function of its position in the hinted access sequ

The estimator expands hints into a hinted access sequence as described earlier in

5.3. As it expands hints, it builds a list of the sequence withtipNex data structures, mark-

ing each with the index of the access, and adding each to the list of nexuses for the

and to the list of accesses for the prefetcher. When the cluster prefetcher runs down

of nexuses for the block, it asks the estimator that put each nexus on the list whe

wants to save the block for that nexus. Thus, if a block appears multiple times in a

hinted access sequence, then the estimator for that sequence may be called multip

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 113

 nexus

xus to

 block

en the

ot of

y the

t is last

lue of

ick a

ccess

n these

f cost-

umber

 them.

me an

lack of

; the

ithout

 esti-

r; and

 for a

hich

t-ben-

 file to

n file
and asked if it wants to bid or save the block. But, each call will pass a pointer to the

that triggered the call. The estimator has only to look at the index stored in the ne

compute its value and decide what it would bid for the cluster prefetcher to fetch the

or whether it can save the block from replacement.

If the estimator does save the block, or if the prefetcher prefetches the block, th

estimator must start tracking the block. The hint estimator maintains a linked list, n

the blocks it is tracking, but of the accesses that it is tracking. The list is sorted b

index number of the access. Thus, the estimator’s least valuable block is the one tha

on its list of tracked nexuses. It is thus easy for the estimator both to compute the va

its least valuable block and to identify its next least-valuable block if it is asked to p

block for replacement. If the picked block appears at another position in its a

sequence, then the lazy evaluation will give it a chance to save the block based o

other hints.

5.3 Other implementation challenges

In the previous sections, I described the key aspects of the TIP implementation o

benefit buffer management. In the course of implementing the system, I ran into a n

of problems. In this section, I describe some of those problems and my solutions to

These problems include: the potential for the hint estimator data structures to consu

unbounded amount of memory when applications issue large numbers of hints; the

floating point arithmetic inside the kernel for the computation of value estimates

existence of mapped pages in Digital UNIX’s LRU queue which may be accessed w

the knowledge of the LRU estimator; the existence of buffers in the cache which no

mator wants to track, but which must be pickable to not be lost to the cache foreve

the potential for priority inversion in the disk queue if demand accesses must wait

large batch of prefetches to complete. I address each of these problems in turn.

5.3.1 Hint management and the caching horizon

When applications give hints, TIP immediately allocates kernel data structures w

store them in essentially the same format in which they are issued. Before TIP’s cos

efit allocator can take advantage of the hints, it must resolve the names of the hinted

obtain the vnode that describes the file if one is not readily available from the ope

114 CHAPTER 5

-block

o-

’s hash

ume a

hints at

em-

e full

st-bene-

 in the

eyond

solved.

cluster

essed,

e least

ost of

the cost

ot use

uld not

e any

uence at

alled

 the

ts out

emory.
ditional
urages
to store
ints that
 further
ed.
table, expand the hinted byte ranges into the hinted access sequence, allocate atipNex

structure for each access, and link the structure into the prefetching list and the per

list of nexuses. If there is not already atipBuf for each referenced block, then it must all

cate one, thereby creating a ghost buffer, so that it can add the block to the cache

table. This whole process is called hint resolution.

When a hint is fully resolved, the nexuses, ghost buffers, and vnodes may cons

substantial amount of memory. Because a process may issue large numbers of

once, resolving all hints immediately could consume an arbitrarily large amount of m

ory.11 Fortunately, it is not necessary to resolve an arbitrary number of hints to tak

advantage of all of the hints that have been issued because even if resolved, the co

fit allocator would not devote any resources to hints for accesses that are very far

future. The prefetcher only needs hints to be resolved out to the prefetch horizon. B

that, accesses which are candidates for informed caching or clustering need to be re

But, because the cost of ejecting a hinted block (which is the same as the benefit of

prefetching a block) decreases with the number of accesses until the block is acc

there is some number of accesses beyond which any block, if found, would be th

valuable in the cache and therefore the next to be replaced. Specifically, if the c

ejecting the block according to the index of the access in the sequence is less than

of ejecting the current least-valuable block, then the hinted cache estimator could n

that hinted access to save the block from replacement and the cluster prefetcher co

use it to add the block to a cluster. The cost-benefit allocator is not willing to devot

resources to that access or any access later in the sequence. The point in the seq

which the cost falls below the cost of ejecting the currently least-valuable block is c

thecaching horizon. Exactly where the caching horizon lies depends dynamically on

cost of ejecting the currently least-valuable block in the cache. TIP only resolves hin

to the caching horizon.

11Even without resolution, the hints themselves could consume an unbounded amount of m
The current TIP implementation puts a hard limit on the number of hints it stores and discards any ad
hints. None of the benchmark applications exceed this limit. But, dropping hints on the floor disco
applications from giving as many hints as possible as early as possible. A better solution would be
overflow hints on disk and bring them in as needed to be resolved. If an application issued so many h
there was no available disk storage, TIP could return an error code that informed the application that
hints will be dropped on the floor until the application consumes some of the hints it has already issu

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 115

ed. As

r those

nce and

as last

could

ral to

ly, use

t need

ust be

metic.

dvan-

e, not

 preci-

buffer

lying

ad of

esents,

s in a

 tech-
In general, there is a moving window of the hinted access sequence that is resolv

the application performs hinted accesses, TIP deallocates the nexus structures fo

accesses. Meanwhile, the application moves closer to later accesses in the seque

therefore pushes the caching horizon later in the sequence. TIP records which hint w

resolved so that it can quickly resume resolution.

5.3.2 Using integer arithmetic to compute cost and benefit estimates

The cost and benefit expressions in Figure 5.2 include division operations that

produce fractional, non-integer results. If implemented at user level, it would be natu

use floating point arithmetic to calculate the cost and benefit estimates. Unfortunate

of the floating point registers is disallowed in the kernel so that these registers do no

to be saved and restored on every system call and interrupt. Thus, integer math m

used to compute cost and benefit estimates.

TIP applies a few simple techniques to adapt the estimates to integer arith

Essentially, the approach is to use a loose form of fixed point arithmetic and take a

tage of the fact that the estimates will only be compared to each other so only relativ

absolute values are important. First, TIP expresses theThit, Tdriver, andTdisk parameters in

an integer number of microseconds instead of fractions of a second. Second, to gain

sion when dividing a time value by the potentially large number of accesses that a

may be tied up, the parameters are left-shifted by 10 which is equivalent to multip

them by 1024. Finally, when normalizing local estimates for global comparison, inste

multiplying estimates by the number of access per second that an estimator repr

TIP eliminates the division by time and simply multiplies by the number of accesse

time period. I now give example code fragments for the estimators to clarify these

niques.

When prefetching for a hint sequence, the benefit of prefetching a blockx accesses in

advance, but within the prefetch horizon, 0 <x ≤ , is, from Figure 5.2,

(5.1)

TIP implements this as

P̂

Benefitpf

Tdisk

x x 1–()
------------------- .=

116 CHAPTER 5

s time of

 com-

 seg-

e

d by

. It

nt and

r num-

 and

cribed

he
benefit = (Tdisk<<10)/((x*x)- x).

The disks used for the testbed described in the next chapter have an average acces

15 milliseconds, so expressed in microseconds the value ofTdisk is 15000.

The cost of ejecting a blocky accesses in advance of its use wheny is beyond the

prefetch horizon, , is

(5.2)

This is also the benefit of adding the block to a cluster prefetch. TIP implements the

putation as

cost = (Tdriver<<10)/(x-pfHorizon).

The disk driver overhead is on the order of hundreds of microseconds.

The cost of taking a block from the LRU estimator depends on the number of the

ment which currently holds the head of the LRU queue.

(5.3)

In this equation,hj is the number of hits in a segment,A is the total number of unhinted

accesses (which rely on the LRU queue), and |sj| is the target number of buffers for th

segment. In the global normalization step, this estimate would normally be multiplie

the number of accesses,A. TIP takes advantage of the division byA followed by multipli-

cation byA; it skips the division and multiplies LRU estimates by 1 to normalize them

computes the cost in two steps. First, it computes the marginal cost for each segme

then runs through the segments to determine the maximum of the costs for highe

bered segments. The code for computing the marginal cost for one segment is

segCost = (segHits * ((Tmiss - Thit)<<10))/ targetSize.

The value forsegHits is a moving average of the number of hits in 1024 accesses

therefore is a value between 0 and 1024. Computation of moving averages is des

below. The time for a cache hit,Thit, is on the order of hundreds of microseconds. T

y P̂>

Costeject

Tdriver

y P̂–
----------------- .=

CostLRU maxj i≥
hj

A sj

 
 
 

Tmiss Thit–() .=

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 117

-

num-

sses to

nts the

ators, it

tes the

 of hits

and

roblem

ory ref-

ed and

ped

ot a

thereby

 pages

fault are

ategy in

d the

 block

e seg-

of the

e esti-

inac-
time for a cache miss,Tmiss, is the sum ofThit, Tdriver, andTdisk and so the 15000 micro

second disk access time dominates its value.

As mentioned above, TIP normalizes value estimates by multiplying them by the

ber of accesses. Actually, it uses a weighted moving average of the number of acce

each estimator out of a total of 1024 accesses to the system as a whole. TIP cou

number of accesses to each estimator, and after a total of 1024 accesses to all estim

recomputes the moving averages:

new_average = (old_average + (3 * current_count)) / 4.

When TIP updates the averages and therefore the normalization factors, it also upda

cost estimates for the LRU segments and uses this same weighting for the number

to a segment in a given period.

5.3.3 Managing mapped pages with the LRU annex

In Digital UNIX, data blocks from mapped files are kept in the file buffer cache

are not moved to the virtual-memory system. These mapped files pose a special p

for the LRU estimator because accesses to mapped blocks are unobservable mem

erences. Thus, the LRU estimator cannot know when mapped blocks are referenc

therefore cannot include accesses to them in its estimation ofH(n). How can the LRU esti-

mator obtain an accurate estimate ofH(n) that includes mapped blocks? Because map

files are in regular use in Digital UNIX for such things as shared libraries, this is n

strictly academic question. Some answer is needed to build a working TIP system.

One approach is to bound the time since the last access by unmapping pages,

forcing page faults which go through the normal read code-path. Faults on cached

are then equivalent to cache hits and unmapped pages which have not caused a

known not to have been referenced since the page was unmapped. This was the str

the initial implementation. The first few segments of the LRU queue were designate

active region of the queue and contained both mapped and unmapped blocks. Any

found to be mapped as it overflowed from the last active segment to the first inactiv

ment was unmapped and reinserted at the tail of the LRU list. The inactive region

queue thus contained only unmapped blocks. Note that within the active region, th

mation ofH(n) is poor and that, furthermore, the active-page remappings in the first

118 CHAPTER 5

e LRU

an the

active

d page.

ping

he sys-

e

of the

 LRU

e tail

 leave

in the

ueue.

benefit

locks to

turb-

there

gment

e is one

ages.

m unob-

d limit

ne how

x into

tion of

ere a

there
tive segment drive up the number of hits in that segment. For these reasons, th

estimator has less reliable information to use to shrink the LRU queue any smaller th

active region plus the first inactive segment. Thus, it is desirable to have a small

region and achieve a tight bound on the time since the last reference to a mappe

Unfortunately, a small active region in the LRU queue results in the continual map

and unmapping of active pages which can add substantial CPU overhead and slow t

tem down.

For low overhead, but an accurate estimate ofH(n), the system needs to identify activ

mapped pages and avoid unmapping them too frequently while keeping the size

active region small. TIP achieves this with a separate queue of blocks called the

annex. When mapped blocks overflow from the active region, TIP moves them to th

of the annex list instead of the general LRU list. Reads that hit a block in the annex

the block in the annex. Periodically, the system examines a fraction of the blocks

annex, and if they are no longer mapped, it moves them back to the regular LRU q

Otherwise, it unmaps them and moves them back to the tail of the annex. The key

of the annex is that large numbers of regular file accesses do not cause mapped b

be unmapped at a high rate. The regular blocks move down the LRU list without dis

ing the mapped blocks in the annex.

In the default configuration, the file cache has a total of 1536 8 KByte buffers,

are 14 segments, the active region of the LRU queue consists of just the first se

whose target size is 236, and the other 13 segments have a target size of 100. Ther

additional segment that holds overflowtipBufs. The annex is limited in size to a maximum

of 500 blocks although it is typically about half that size.

The LRU annex is essentially a crude approach to managing virtual-memory p

VM pages are also mapped into a process’ address space making accesses to the

servable. The annex is crude in that it fixes the size of the active region, puts a har

on the size of the annex, and does not use any cost or benefit functions to determi

many buffers to leave in the annex. A better approach might be to split the anne

active and inactive regions and use cache hits that remap blocks in the inactive por

the annex as an indication of the amount of activity for the mapped pages. If there w

lot of hits, there would be benefit in saved overhead to growing the active region. If

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 119

were

LRU

s way,

 This

f VM

alysis

e.

s to

acked

ed, or

pecial

rack.

nt and

), held

cked by

cking

ation

timator.

t pick-

orphan

 FIFO

ill calls

gh to

irst, a

 low-

ses.
were not many hits there would be little additional overhead if the active region

shrunk. Furthermore, hits in the inactive region could be profiled just like the regular

queue to estimate the cost of shrinking the size of the annex’s inactive region. In thi

the cost-benefit buffer allocator could be used to size the annex dynamically.

approach could also be applied to the active and inactive regions of the queue o

pages. In this way, VM management could be integrated into TIP and cost-benefit an

could be used to manage VM pages and cache buffers as a single memory resourc

5.3.4 The orphan estimator

BecauseTipLvbPick obtains candidate replacement blocks by asking estimator

nominate one of their tracked blocks for replacement, any cached block that is not tr

by some estimator will never be replaced. Thus, whenever a buffer is not busy, wir

otherwise unavailable for replacement, at least one estimator must be tracking it. A s

orphan estimator tracks blocks that neither the LRU nor any hint estimator wants to t

Examples of such blocks include those that are dirty when chosen for replaceme

blocks tracked for a now aborted process. Whenever a previously busy (at the disk

(by a process), or wired block is released back to the cache and that page is not tra

any estimator, then the block is transferred to the orphan estimator which begins tra

the buffer. Similarly, at any other time, such as hint cancellation or process termin

when orphan blocks are created, the orphans are transferred to the orphan es

Through the orphan mechanism, TIP ensures that all replaceable blocks are in fac

able and therefore not lost to the system.

Orphan blocks have no estimated value. Thus, whenever a buffer is needed,

blocks are the first to be replaced. The orphan estimator maintains its tracking list in

order. Even when the orphan estimator picks a block for replacement, the system st

TipLvbQuery to make sure there is still no estimator that values the block highly enou

save it from replacement.

5.3.5 Disk driver support for prefetching

The TIP system has two device driver enhancements to support prefetching. F

striping driver makes possible I/O parallelism within a single file system. Second, a

priority prefetch queue limits how much prefetch accesses can delay demand acces

120 CHAPTER 5

isk to

exports

these

striper

hin the

isks, it

idual

e single

stripe-

anning

erience

plete.

 in the

 to the

e mean-

ng the

eues a

an two

 by the

 for

knowl-

also be

anner,

and all

block
it next ser-
rder and
ton94].
The striping pseudo-device makes multiple physical disks appear to be a single d

the rest of the system. The striper breaks the single linear block address space it

into stripe units of eight 8-KByte blocks or 128 512-byte sectors. It then assigns

stripe units in a round-robin fashion to the disks that make up the array. When the

receives an I/O request, it maps the request to the appropriate disk and blocks wit

disk and then forwards the request to the disk’s driver. If a request spans multiple d

is broken into multiple requests which are sent to the different disks. When the indiv

disk requests complete, the results are reassembled and returned as the results of th

request to the array. However, both TIP and the UFS file system are aware of the

unit size and do not issue requests that straddle multiple stripe units, so such sp

requests do not occur in normal operation.

Because TIP may queue many prefetches at a time, demand requests could exp

substantial delays if they were forced to wait for the prefetches ahead of them to com

To avoid this problem, the striper maintains a special prefetch queue for each disk

array. When the disk is idle, the striper issues up to two prefetch requests at a time

disk. When one completes, it issues another unless a demand request arrives in th

time. By having two requests outstanding at the disk, the disk can begin processi

second prefetch while the system services the interrupt for the first request and qu

new request at the disk. On the other hand, demand requests never find more th

requests queued in front of them at the disk. The striper sorts the prefetch requests

CSCAN12 scheduling discipline.

In the future, it would be beneficial if disks could support a lower-priority queue

prefetch requests. Then the system could let the disk take advantage of its intimate

edge of the data layout to schedule both demand and prefetch requests. It would

possible to abort servicing a prefetch request if a demand request arrived. In this m

demand requests would experience even lower delays behind prefetch requests

requests would receive more efficient service from the disk.

12 CSCAN stands for circular scan. CSCAN services requests in increasing order of disk
address. When there is no queued request for a block address greater than the block last accessed,
vices the request with the lowest block address. Thus, CSCAN scans the disk surface in increasing o
then seeks back to begin a new scan. Some researchers refer to this algorithm as CLOOK [Worthing

IMPLEMENTATION OF INFORMED PREFETCHING AND CACHING 121

g and

 must

before

vantage

t deci-

n by

blocks

rve as

e orga-

 buffer

ached

sy to

d.

 glo-

o be

ation

ors to

 and

ator,

in the

ompare

tima-

ing

ck,

luable

lobal

 anal-

lgo-
5.4 Conclusion

Taking advantage of application disclosure of future file accesses for prefetchin

caching is a bookkeeping challenge. To hold a block in the cache, a hint for the block

be found before the block is ejected. And, to prefetch a block, a hint must be found

the block is accessed. The main challenges in implementing a system that takes ad

of hints are performing these bookkeeping tasks efficiently and making replacemen

sions without slow searches through large data structures.

TIP’s nexus data structure provides the key bookkeeping support for allocatio

cost-benefit analysis. It ties both hints and the LRU queue to buffer headers for the

they reference. Ghost buffers, which have a buffer header but no data buffer, se

cache placeholders for referenced but uncached blocks. Real and ghost buffers ar

nized into a single hash table for quick access. And, the nexuses attached to each

header provide quick access to value estimates for the block whether it is currently c

or not. Thus, it is easy to check the value of a block before ejecting it, and it is ea

check whether a hint refers to real buffer or refers to a ghost that must be prefetche

The nexus makes it easy to find value estimates for a block, but identifying the

bally least-valuable block would still be costly if the global value of all blocks had t

determined before making a replacement decision. TIP’s algorithm for the lazy evalu

of global buffer value avoids this need. It relies on the independent value estimat

rank the blocks they are tracking by their own local estimate of value. Both the LRU

hint estimator can do this without computing any cost estimates. For the LRU estim

position in the LRU queue determines the value rank. For hint estimators, position

hinted access sequence determines value rank. The algorithm then only needs to c

globally the values of each estimator’s least-valuable block to determine which es

tor’s estPick function it should call to find a likely candidate for replacement. By call

the appropriate estimator’sestQuery function for each nexus linked to the candidate blo

the allocation algorithm ensures that the candidate block is indeed the least va

before replacing it. It is this combination of quick local value comparisons and few g

comparisons that makes the TIP implementation of buffer allocation by cost-benefit

ysis efficient. In the next chapter, I will quantify the computational overhead of the a

rithm.

122 CHAPTER 5

y to

 com-
In addition to being efficient, the two-tier allocation algorithm also makes it eas

add new value estimators to the system. Any buffer supplier that supports theestPick and

estQuery operations, and declares the value of its least valuable block in terms of the

mon currency by callingTipLvbUpdate could be integrated into the system.

123

 time

 per-

rmed

 up to

of the

 cach-

to shed

ortant

ossible.

world

hmark

e run-

t the

ify the
Chapter 6

TIP Performance Evaluation

The overall goal of informed prefetching and caching is to reduce the elapsed

required to run applications. Elapsed time is therefore the key metric of TIP system

formance. In this chapter, I present the results of experiments that show that info

prefetching and caching in TIP are remarkably effective, reducing elapsed time by

84%. Further, to better understand the contributions of the different components

system, these experiments explicitly isolate the effects of informed prefetching and

ing. Detailed measurements of many aspects of system behavior are presented

additional light on why TIP performs the way it does.

Because the benefit of prefetching and caching is workload-dependent, it is imp

to evaluate system performance under as broad a range of realistic workloads as p

To that end, the benchmark suite used in this evaluation is the collection of six real-

applications described in Chapter 3. I first consider the performance of each benc

running alone and then go on to consider performance when multiple applications ar

ning simultaneously.

Nothing is free, and this includes TIP. Achieving the results it does comes a

expense of some additional CPU and memory overheads. Detailed traces quant

CPU overheads. Simple calculations quantify the memory overhead.

124 CHAPTER 6

00/600

064)

ing up

DU)

rd DU

 whose

with a

te per-

h reads

e. The

ts, but

 The

bed in

e case

U per-

p to 8

Bytes,

quest

ificant

ficient,

fied to

ithin

stic. In

 blocks

ly, the

ential

equen-
6.1 Experimental testbed

The testbed used to run the experiments described in this chapter is a Digital 30

workstation (SPECint92=114; SPECfp92=162), containing a 175 MHz Alpha (21

processor, 128 MBytes of memory and two KZTSA fast SCSI-2 adapters each host

to five HP2247 1 GByte disks. This machine runs version 3.2c of the Digital UNIX (

operating system. For comparison purposes, I present results for both the standa

kernel and a kernel that has been modified to include the TIP buffer cache manager

implementation was described in Chapter 5.

The system’s 10 drives are bound into a disk array by a striping pseudo-device

stripe unit of 64 KBytes. This striper maps and forwards accesses to the appropria

disk device driver. Demand accesses are forwarded immediately, whereas prefetc

are forwarded whenever there are fewer than two outstanding requests at the driv

striper forwards two prefetch requests to reduce disk idle time between reques

doesn’t forward more to limit priority inversion of prefetch over demand requests.

striper sorts queued prefetch requests according to CSCAN. This striper is descri

more detail in Section 5.3.5.

The standard DU kernel has two features that make it a particularly strong bas

for comparison: request clustering and aggressive sequential readahead. When D

forms multi-block reads or writes to contiguous disk blocks, it coalesces or clusters u

contiguous disk accesses into one large request. Because the file block size is 8 K

this means that individual disk requests can range in size up to 64 KBytes. This re

clustering has the same performance advantages as informed clustering: a sign

reduction in the CPU overhead of performing disk accesses and an increase in ef

sequential disk accesses. The algorithm that checks blocks for contiguity was modi

make it aware of the 64 KByte disk-array stripe unit and ensure that all clusters fit w

a single stripe unit.

DU’s second notable feature is its very aggressive sequential readahead heuri

addition to prefetching data, the aggressive readahead serves to fetch clusters of

from the disk even when applications request only a single block at a time. Essential

file system initiates prefetches in proportion to the length of the current run of sequ

accesses up to a maximum of 8 clusters of 8 blocks each. Thus, if an application s

TIP PERFORMANCE EVALUATION 125

These

 reada-

e, this

e that

dule

nfor-

 for the

ance

 a factor

cache

pter 4:

a

rame-

thetic

e (512

losing

of the

unt of

-

che size

g the

 reads,
tially reads 4 blocks, then the system initiates readaheads for the next 4 blocks.

readaheads are queued as low-priority prefetch requests by the striper. This same

head algorithm is applied to unhinted accesses in the TIP system. As we will se

algorithm is very effective for large sequential accesses. However, we will also se

such aggressiveness can hurt performance when accesses are more random.

Another notable feature of DU is that it includes a unified buffer cache (UBC) mo

that dynamically trades memory between its file cache and virtual memory (VM). U

tunately, as mentioned in Section 5.1, because TIP does not yet have an estimator

value of VM pages, it cannot dynamically size the cache. For meaningful perform

comparisons between the DU and TIP systems, I needed to eliminate cache size as

differentiating the two systems. Therefore, as mentioned in Section 5.1, I fixed the

size of both systems at 12 MByte (1536 8 KByte buffers).

6.2 Measuring cost-benefit model parameters

TIP’s cost-benefit estimates depend on the model parameters defined in Cha

Thit, the time to read a block from the cache,Tdriver, the CPU overhead of performing

disk read, andTdisk, the average disk access time. To determine values for these pa

ters, I used a synthetic application to run a number of micro-benchmarks. The syn

application repeatedly reads a sequence of random, unique blocks from a large fil

MBytes). The application determines the block sequence and then gives a hint disc

the sequence for the first iteration. Hints for the next iteration are given at the start

current iteration. Between each block read, the application computes for an amo

time given by theTapp parameter.

To measureThit, I set the sequence length to 1000,Tapp to 0, and the number of itera

tions through the sequence to 10. Because the sequence length is less than the ca

of 1536 buffers, the cache can easily hold the entire sequence. After preloadin

sequence into the cache, I measure the time to required to perform the 10,000 block

all of which are cache hits. Because the stall time is zero,Thit is the elapsed time for the

run divided by the 10,000 accesses. Using this method, I determined thatThit = 203 micro-

seconds.

126 CHAPTER 6

gth of

or cach-

e total

t

kes

ariety

s for

mpute

tic).

I ran

mpar-

per-

s for

 deter-

 TIP

 hori-

 is

on a

ing,

s when

lapsed

ll time

ample

tween
To measureTdriver, I repeated the above experiments, except with a sequence len

2000. Because this sequence does not fit in the cache (and the hints are not used f

ing), there is a prefetch for every read. Thus, there is a total ofThit + Tdriver of CPU time

per read. In the experiments, the elapsed time less the time spent stalled for I/O is th

CPU time. From this measurement and the value ofThit found above, I determined tha

Tdriver = 366 microseconds.

Disk service time,Tdisk, depends heavily on the length of seek required, which ma

assigning a single value to this parameter difficult. From direct measurements on a v

of applications including this synthetic benchmark, I found that average service time

random accesses were about 15 milliseconds, so this is the value assigned toTdisk.

Based on these parameter values, at boot time, TIP applies Equation (4.23) to co

a system-wide, static, upper-bound prefetch horizon, , of 73 (using integer arithme

6.3 Single application performance

To explore the contributions of the various optimizations to overall performance,

each of the benchmark applications in four configurations. First, as a baseline for co

ison, I ran each application when it doesn’t give hints on the standard Digital UNIX o

ating system constrained to a fixed cache size. To evaluate how well TIP perform

non-hinters, I ran the unhinting applications on it (TIP, no hints). TIP applies DU’s clus-

tered readahead heuristic to unhinted accesses so the comparison to DU is fair. To

mine the effect of informed prefetching alone, I ran the hinting applications on a

system restricted to using the hints for prefetching and clustering within the prefetch

zon but not for informed caching (TIP, no caching). For these runs, the prefetch depth

statically set to the prefetch horizon, = 73. Finally, I ran the hinting applications

fully-functional TIP system which exploits the hints for informed prefetching, cluster

and caching. I measured elapsed time and stall time for each of these configuration

running with disk arrays of 1, 2, 3, 4, and 10 disks. A bar chart reports the average e

and stall time of five runs. A separate table presents the numbers for CPU and sta

along with the 95% confidence interval for the average as computed using the s

variance and the student-t distribution. The CPU time presented is the difference be

the measured elapsed and stall times.

P̂

P̂

TIP PERFORMANCE EVALUATION 127

hows

56.

bulate

ts on a

on the

e is not

plica-

e can

ching

ads a

resen-

ns and

rmance

nefits

d on

ally
es were
h shows
peated
To explore the effect of prefetch depth on application stall, a supporting graph s

stall for theTIP, no caching configuration when the prefetch depth varies from 0 to 2

Finally, to examine the effect of prefetching and caching on cache performance, I ta

cache performance for all four configurations. The numbers are taken from the resul

single disk, but because prefetching and caching decisions in TIP depend primarily

sequence of accesses and not on their timing, single-application cache performanc

sensitive to array size. Later, when I consider cache performance when multiple ap

tions are running, I will report numbers for multiple array sizes because array siz

affect the interleaving of accesses from the multiple applications and therefore ca

decisions.

6.3.1 MCHF Davidson algorithm

The Davidson algorithm benchmark, described in Section 3.4.4, repeatedly re

16.3 MByte dataset sequentially in its entirety 60 times. Figure 6.1 is a graphical rep

tation of its access pattern. Figure 6.2a presents the results for the four configuratio

Table 6.1 gives the corresponding numerical data. Table 6.2 shows the cache perfo

for the systems. The high-level results are that, with or without hints, Davidson be

significantly from the extra bandwidth of a second disk and becomes CPU-boun

0 20 40 60 80 100
application CPU time (seconds)

0

500

1000

1500

2000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

Figure 6.1. Davidson access pattern. For this figure, the several files Davidson accesses are logic
concatenated to map their block numbers to a global block number space. Davidson’s file access
traced and every access was mapped to the corresponding offset within the global space. This grap
the global offsets of Davidson’s accesses as a function of application CPU time. Davidson’s re
sequential accesses to the 2089-block matrix file are clearly visible.

128 CHAPTER 6

Digital

s seen

r,

the I/O

 stalls

with-

 of

stalls a

duced

h was

g per-

nal-
 the left,

not
’s

voiding
ng still
ows I/O
f is
larger arrays. Because the hints only disclose sequential access in one large file,

UNIX’s aggressive readahead is nearly as effective as informed prefetching alone a

by comparingTIP, no hints and no caching performance. Informed caching, howeve

increases the cache hit ratio which reduces the number of disk accesses. When

bandwidth of a single disk limits performance, fewer accesses translates into fewer

and faster elapsed time.

The first two bars in each quartet in the figure show that the performance of TIP

out hints is similar to that of the unmodified Digital UNIX kernel over the full range

array sizes. Nevertheless, there are minor differences. In particular, the TIP system

little less than the standard system but consumes a little more CPU time. The re

stalls are the result of TIP’s better paging performance due to the LRU annex whic

described in Section 5.3.3. From Table 6.2, which gives the prefetching and cachin

Figure 6.2. Davidson performance. This figure shows the performance of the Davidson computatio
physics benchmark which repeatedly reads a large file sequentially on a range of disk array sizes. On
(a) shows elapsed time broken into CPU time and I/O stall time for four configurations.Digital UNIX is an
unhinting Davidson running on the unmodified system.TIP, no hints is an unhinting Davidson running on
TIP. TIP, no caching is Davidson giving hints which are used only for informed prefetching and
informed caching. Finally,TIP uses Davidson’s hints for both prefetching and caching. Digital UNIX
aggressive readahead performs about the same as informed prefetching alone (TIP, no caching) for this
access pattern. With informed caching, TIP reduces elapsed time by more than 30% on one disk by a
high-latency disk accesses. On more disks, prefetching masks disk latency, but informed cachi
reduces elapsed time more than 10% by avoiding the overhead of going to disk. On the right, (b) sh
stall time as a function of prefetch depth for the TIP, no caching configuration. A prefetch depth o
more than adequate to obtain the full benefit of informed prefetching for theseTIP, no caching runs.

P̂

(a) total elapsed time

0 100 200
prefetch depth

0

50

100

150

200

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂

(b) I/O stall time vs. prefetch depth

1 2 3 4 10
number of disks

0

50

100

150

200

250

300

350

el
ap

se
d

tim
e

(s
ec

)

CPU

I/O stallDigital UNIX
TIP, no hints
TIP, no caching
TIP

TIP PERFORMANCE EVALUATION 129

y about

of the

y to be

t are
he 95%

or
ell the
 are the
cluded.

d
disk I/O
. Cache
 or
k was
ts is the

formed
formance for Davidson, the annex eliminates about 6100 page faults and reduces b

2200 the number of blocks read from disk. Without the annex, the sequential read

large matrix file runs the mapped pages through the LRU queue which causes man

unmapped and some to be flushed from the cache.

Table 6.1. Davidson elapsed time. This table presents the CPU and I/O stall times in seconds tha
graphed in Figure 6.2. They are averages over five runs. The numbers in parentheses give t
confidence intervals.

Table 6.2. Davidson prefetching and caching performance. This table shows the number of requests f
file blocks made of the buffer cache, the prefetching aimed at maximizing cache hits, and how w
combination of caching and prefetching did at servicing the requests. The numbers in parentheses
95% confidence interval for the measurements. Requests for empty buffers, e.g. for writes, are not in
Faults are blocks requested in response to a fault on a mapped block and are included in thetotal column.
Most faults are for shared library text pages.Prefetches includes heuristic readahead and informe
prefetching where applicable. Because the system clusters requests for multiple blocks into a single
access, the number of prefetch and miss I/Os is smaller than the number of blocks requested
performance is broken into three categories.Reuse hits are scored when a block services a second
subsequent request.Prefetch hits are requests that hit in the cache only because the requested bloc
prefetched. The difference between the number of blocks prefetched and the number of prefetch hi
number of blocks that were prefetched, but never accessed. Finally, the number ofmisses is the number of
blocks requested that weren’t in the cache. Disk reads for these blocks are clustered intomiss I/Os accesses.
For Davidson’s sequential accesses, prefetching is effective even without hints, but hint-based in
caching increases the number of reuse hits by a factor of 4.5. See the text for details.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
110.03 182.07 113.22 45.75 116.11 18.29 115.76 19.41 115.49 20.88

(0.66) (0.65) (0.41) (0.42) (0.35) (0.35) (0.16) (0.17) (0.23) (0.32)

TIP, no hints
116.95 165.01 120.11 30.46 120.53 11.46 119.84 10.86 125.63 12.23

(1.23) (1.19) (0.41) (0.39) (1.84) (0.73) (0.73) (0.40) (11.3) (1.09)

TIP, no caching
118.75 160.06 127.92 20.05 122.41 5.45 121.91 3.48 121.41 2.95

(7.03) (6.98) (6.89) (3.76) (1.23) (0.29) (1.49) (0.11) (0.58) (0.17)

TIP
110.14 68.43 111.46 10.32 111.59 3.94 112.57 2.88 112.28 2.29

(1.34) (1.61) (1.40) (1.87) (0.43) (0.13) (0.87) (0.13) (1.29) (0.09)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
153149 7248 126592 16597 25780 126039 1329 630

(0) (0) (6) (1) (0) (6) (6) (3)

TIP, no hints
147041 1140 124879 15980 21381 124847 812 195

(0) (0) (6) (1) (0) (6) (6) (3)

TIP, no caching
147042 1140 125676 15874 21373 125569 100 77

(0) (0) (0) (0) (0) (0) (0) (0)

TIP
147042 1140 50845 8937 96159 50782 100 77

(1) (0) (1072) (328) (1082) (1082) (0) (0)

130 CHAPTER 6

 the

ueue.

n use

 in the

the TIP

icy for

n see

l work-

stem

ion of

ses in

inted

nd the

rs the

o

either

eigh-

ing all

l reada-

of the

ng as

eada-

dwidth

 read

d no

s the

cache
The higher CPU time for TIP with no hints compared to DU is primarily a result of

overhead of estimating on an ongoing basis the cache hit rate profile of the LRU q

Giving hints to TIP adds some overhead for managing the hints. But, when TIP ca

the hints for informed caching to reduce the number of disk accesses, the reduction

CPU overhead of performing disk accesses more than offsets the CPU overhead of

system. I examine the CPU overhead of TIP in more detail in Section 6.6.2.

In the absence of hints, the TIP system uses DU’s aggressive readahead pol

heuristic prefetching. By comparing the second and third bars in the figure, we ca

that such readahead is nearly as effective as informed prefetching for this sequentia

load.

For a closer look at I/O stall time as a function of prefetch depth on the TIP sy

with different array sizes, consider Figure 6.2b which presents stall time as a funct

prefetch depth when TIP is configured to prefetch a fixed depth or number of acces

advance. In this configuration, when TIP initiates a prefetch, it tries to cluster other h

blocks up to a depth of 16 accesses beyond the prefetch horizon. It clusters beyo

prefetch horizon so that at a prefetch depth of 1, for example, the system still cluste

sequential accesses that DU would. TheTIP, no caching bars in Figure 6.2a correspond t

a prefetch depth of =73 in part (b) of the figure. At a prefetch depth of 0 there is n

heuristic nor informed prefetching, although when a block is missed and read in, its n

bors on the disk are read in as a cluster.

On a single disk, sequential readahead, no prefetching, and informed prefetch

perform equally well for Davidson’s sequential accesses because there is sequentia

head within the disk drive; the drive continues reading sequentially on the surface

disk after servicing a read request. The drive knows nothing of file structure, but as lo

the file is laid out sequentially and read sequentially as it is in this case, the drive’s r

head heuristic successfully anticipates the next request. On the single disk, the ban

off the media is the ultimate performance bottleneck. For sequentially laid-out and

data, the drive’s readahead is sufficient to fully utilize the bandwidth of the drive an

file-system prefetching can further improve performance.

On two disks, the second drives’ readahead further reduces stall only a little a

latency of initiating an access and transferring the data from the disk to the buffer

P̂

TIP PERFORMANCE EVALUATION 131

uential

p both

 from

early

 long

ossible

pter 4

ad, or

-only

pth of

n-zero

uch

 or

band-

imum

rying

 depth

in the

 occur

 is a

ship of

e 12

ache,

used.

dson’s

k, and

ost of

IX’s
starts to dominate performance in the absence of prefetching. In contrast, both seq

readahead and deep informed prefetching expose enough I/O concurrency to kee

drives busy, overlap the data transfer from one disk with computation on data read

the other and eliminate most of the I/O stall time. The bandwidth of two disks is n

enough to keep up with Davidson.

On three or more disks, there is ample I/O bandwidth to keep the CPU busy. As

as the prefetch depth is deep enough to take advantage of array parallelism, it is p

to virtually eliminate I/O stalls.

Even though the model developed for stall as a function of prefetch depth in Cha

does not include complexities such as clustering, the sequentiality of the I/O worklo

even array size, the basic notion of the prefetch horizon still holds for the prefetch

experiments shown in Figure 6.2b. was intended to be an upper-bound on the de

prefetching needed to eliminate stall on a large array. For Davidson, which has no

application CPU time,Tapp, and performs sequential accesses which complete in m

less time than random accesses (Tdisk < 15 msec), prefetching to a depth of 16 on three

more disks is enough to virtually eliminate stall. Smaller arrays don’t have enough

width to eliminate stall. Nevertheless, on these smaller arrays, stall reaches a min

within the prefetch horizon. As we will see, this same observation holds to va

degrees for all of the benchmarks; serves as an upper bound on the prefetch

needed to minimize stall for all array sizes. However, recent work has shown that,

presence of caching, there is benefit in taking advantage of disk idleness that may

when accessing cached data for deeper prefetching. In Chapter 7, I will explore why

reasonable upper bound for all array sizes and discuss in more depth the relation

these findings to the recent work on exploiting disk idleness.

As Table 6.2 shows, none of the systems without informed caching uses th

MBytes of cache buffers well. Because the 16.3 MByte matrix does not fit in the c

the LRU replacement algorithm ejects all of the blocks before any of them are re

Indeed, 18,780 of the 21,000 reuse hits that the LRU queue scores result from Davi

non-block-aligned accesses; Davidson often ends a read in the middle of a file bloc

scores a reuse hit when it reads the rest of the block with the next read system call. M

the remaining reuse hits result from page faults serviced from the cache. (Digital UN

P̂

P̂

P̂

132 CHAPTER 6

ystems

only

core

locks

me by

uate,

th one

dard

 con-

ooth

licy.

uces

s. The

ore

ch too

on

t, LRU
ache
aching’s
he.
higher reuse count results from its greater number of page faults.) Overall, these s

would do no worse if instead of hundreds of blocks from the large matrix, they

cached the single most recently used block.

With informed caching turned on, TIP effectively uses the cache buffers to s

nearly 75,000 additional reuse hits in the large matrix which reduces the number of b

fetched from disk by an equivalent number. On one disk, this reduces elapsed ti

36% compared to informed prefetching alone. When disk bandwidth is inadeq

improved caching avoids disk latency. Figure 6.3 shows Davidson’s elapsed time wi

disk on TIP with and without informed caching as a function of cache size. With stan

LRU caching, extra buffers are of no use until the entire dataset fits in the cache. In

trast, informed caching with TIP’s min-max global valuation of blocks yields the sm

exploitation of additional cache buffers that is expected from an MRU replacement po

On more disks, prefetching masks disk latency, but informed caching still red

elapsed time an additional 8% by avoiding the CPU overhead of extra disk accesse

prefetch horizon limits the use of buffers for prefetching and so avoids a pitfall of m

aggressive prefetching strategies which may use excess I/O bandwidth to prefet

Figure 6.3. Davidson performance vs. cache size. This graph shows the elapsed time for the Davids
benchmark as a function of cache size on a single disk. Informed caching inTIP discovers an MRU-like
policy which uses additional buffers to increase cache hits and reduce elapsed time. In contras
caching inTIP, no hints derives no benefit from additional buffers until there are enough of them to c
both the entire dataset and needed shared libraries which also occupy cache buffers. Informed c
advantage leads, in the most dramatic case, to a 54% reduction in elapsed time with a 17-MByte cac

4 6 8 10 12 14 16 18 20 22
cache size (MBytes)

0

50

100

150

200

250

300

350

el
ap

se
d

tim
e

(s
ec

)

 TIP, no hints
TIP

TIP PERFORMANCE EVALUATION 133

n of

f an

e is

owards

e than

cessed

e case

s large

 tech-

ts to

havior

w the

rated by

rojec-

stored

 of edge

d data

s

bles

usters.

miss.

igital

mall
deeply and flush all cached blocks [Kimbrel96]. TIP effectively balances the allocatio

cache buffers between prefetching and caching.

In general, the benefit of informed caching is sensitive to the spacial locality o

application’s I/O workload and how well conventional caching is working. If the cach

small relative to the number of distinct blocks that are repeatedly accessed, as it is t

the left in Figure 6.3, then not even optimal caching can reduce elapsed time by mor

a small percentage. On the other hand, if the cache is large enough to hold all ac

blocks, then all block reuses are cache hits regardless of caching policy. This is th

towards the right in the figure. However, great gains are possible when the cache i

enough to hold a substantial portion of the blocks reused, but conventional caching

niques are failing to deliver cache hits.

6.3.2 XDataSlice

XDataSlice (XDS) is an interactive scientific visualization tool that allows scientis

view arbitrary slices through a 3-D dataset. The XDS benchmark simulates this be

by rendering a sequence of 25 random slices from a dataset consisting of 5123 32-bit float-

ing point values and requiring 512 MBytes of disk storage. Figures 6.4 and 6.5 sho

benchmark’s access pattern which is a series of short sequential segments sepa

some stride. The length of the sequential segments is roughly proportional to the p

tion of the slice being rendered onto the z-axis, the axis along which blocks are

sequentially. Neither the sequences nor the strides are completely regular because

effects and discretization as arbitrary slice orientations are mapped to integer-size

blocks.

Figure 6.6a shows the average elapsed time on the usual four configurations pluTIP,

no prefetching which has hints but does not use them for informed prefetching, disa

DU’s heuristic readahead for the hinted data, and does not read hinted blocks in cl

Thus,TIP, no prefetching represents performance when almost every access is a

Table 6.3 gives the corresponding raw numbers. As was the case with Davidson, D

UNIX and TIP without hints have comparable performance with the exception of a s

difference in faults revealed by the prefetching and caching numbers in Table 6.4.

134 CHAPTER 6

es
of the 25
ers hints
 do the

imple
 eye can
ow this,
this
0 10 20 30
application CPU time (seconds)

0

10000

20000

30000

40000

50000

60000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

Figure 6.4. XDataSlice access pattern. This graph shows which blocks XDS accessed at different tim
during the benchmark. XDS reads blocks needed to render a slice in ascending order. Thus, each
slices fetched produces one monotonically increasing sequence of accesses in this graph. XDS deliv
for one slice at a time. All of the access patterns may be loosely described as strided. But, not only
strides vary from slice to slice, they vary within a single slice. In fact, this graph is misleadingly s
because the y-axis represents about 10,000 blocks per inch which is more than printers or the human
resolve. Most of the access which appear to be sequential in this graph are actually strided. To sh
Figure 6.5 graphs the region fromy= 26,000 – 30,000 which is demarcated by the horizontal lines in
figure.

TIP PERFORMANCE EVALUATION 135

S’s

vantage

an it

 actu-

ahead

 hits.

 a sin-

n disks,

read for

nce. The

ial in that
e blocks,
ee
, XDS’
lock on
Although sequential readahead worked well for Davidson, it fails miserably for XD

short sequential reads. First, it does not provide the concurrency needed to take ad

of disk array parallelism so, without hints, XDS performs little better on 10 disks th

does on 1. Indeed, when bandwidth is scarce on one disk, Digital UNIX’s readahead

ally hurts rather than helps XDataSlice as shown by the performance ofTIP, no prefetch-

ing. From Table 6.4, of the roughly 60,000 blocks prefetched by the sequential read

heuristic for the first two configurations, only about 25,000 ever become prefetch

Overall, Digital UNIX reads 1.7 times as many blocks from disk as are accessed. On

gle disk, readahead increases elapsed time by about 50 seconds or 18%. On te

there is bandwidth to spare, so the useless readaheads are less likely to delay a

needed data and the 25,000 good readaheads have a chance to improve performa

Figure 6.5. Close-up of XDataSlice’s accesses to a small range of its dataset. This graph expands the
region between the horizontal lines in Figure 6.4. It shows that accesses that appeared to be sequent
figure are, in fact, themselves strided. In this graph, some of the accesses which appear to be singl
are in fact short sequential runs. For example, most of the dots nearx=2.7 seconds represent reads of thr
sequential blocks which is enough to trigger DU’s sequential readahead heuristic. Although strided
access pattern is complex. It would be a challenge to develop a heuristic algorithm that could quickly
to its pattern and prefetch deeply with high accuracy.

0 5 10 15 20 25 30
application CPU time (seconds)

26000

27000

28000

29000

30000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

136 CHAPTER 6

 20 sec-

etch

, the

 time.

 to pay

s,

n of

lice’s

an on

lices
c
he dis
 unused
, mask
use, so

prefetch
little
nd that.
on three
net result is that sequential readahead on ten disks reduces elapsed time by about

onds. The cross-over point is at three disks.

With hints, informed prefetching knows what to prefetch. Thus, TIP can pref

aggressively in parallel and exploit the bandwidth of the disk array. On ten disks

result is a 93% reduction in I/O stall time which leads to an 82% reduction in elapsed

Because informed prefetching does not waste I/Os, the TIP system does not have

the CPU overhead,Tdriver, of performing Digital UNIX’s useless readaheads. Thu

informed prefetching reduces CPU time as well as I/O stall time.

Figure 6.6b shows the effect of informed prefetching on stall time as a functio

prefetch depth. The curves reveal a number of interesting peculiarities in XDataS

performance. First, at a prefetch depth of 0, stall is greater on two or more disks th

Figure 6.6. XDataSlice performance. Graph (a) shows the elapsed time for rendering 25 random s
through a 512 MByte dataset. InTIP, no prefetching, TIP is not prefetching or using DU’s heuristi
readahead for the hinted data. Without TIP’s informed prefetching, the system makes poor use of tk
array because it doesn’t know what to prefetch. In fact, DU’s heuristic readahead prefetches so many
blocks that it hurts performance on one disk. But, informed by hints, TIP is able to prefetch in parallel
the latency of the many seeks, and reduce overall elapsed time by 82%. There is very little data re
informed caching does not further decrease elapsed time. Graph (b) shows stall as a function of
depth for theTIP, no caching case. For this application which performs many seeks and has
computation between reads, there is benefit in prefetching out to the prefetch horizon, but little beyo
An unbalanced load (see Figure 6.7) on four disk causes the stall on four disks to exceed the stall
disks at prefetching depths less than about 32.

(a) total elapsed time (b) I/O stall time vs. prefetch depth

0 100 200
prefetch depth

0

50

100

150

200

250

300

350

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

100

200

300

el
ap

se
d

tim
e

(s
ec

)

CPU

I/O stallDigital UNIX
TIP, no hints
TIP, no prefetching
TIP, no caching
TIP

TIP PERFORMANCE EVALUATION 137

 XDS

e rest of

to the

e. As

e other

width

ure

al
,000
refetch
e in this
one. This is because the typical sequential run is four or five blocks. On one disk,

seeks once to the start of the run and then does efficient sequential accesses for th

the run. On two or more disks, however, a single sequential run often spills over in

next stripe unit so that the application incurs the latency of two seeks instead of on

the prefetching depth increases, this second seek is overlapped with one or mor

seeks and its impact is eventually offset by the larger array’s higher transfer band

and ability to fetch multiple sequential runs simultaneously.

Table 6.3. XDataSlice elapsed time. This table presents the raw numbers graphically portrayed in Fig
6.6. Units are seconds and the numbers in parentheses are the 95% confidence intervals.

Table 6.4. XDataSlice prefetching and caching performance. Aggressive sequential readahead in Digit
UNIX and TIP without hints works poorly for this workload of many short sequential runs. Of over 60
prefetches, only about 25,000 ever become prefetch hits. Informed prefetching knows what not to p
as well as what to prefetch and so can prefetch aggressively and accurately. There is very little reus
workload, so informed caching does not significantly increase reuse hits.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
38.66 289.71 38.96 281.16 38.65 263.43 38.91 269.07 38.87 249.61

(0.11) (1.05) (0.36) (0.77) (0.07) (2.08) (0.29) (1.18) (0.05) (1.07)

TIP, no hints
39.95 285.61 39.94 275.53 40.27 256.52 39.87 263.46 40.01 244.57

(0.21) (0.57) (0.14) (0.69) (0.32) (1.47) (0.08) (0.44) (0.28) (0.82)

TIP, no prefetch
39.68 234.62 39.77 262.18 39.46 266.63 39.50 263.01 39.90 263.09

(0.29) (0.42) (0.59) (1.28) (0.23) (2.43) (0.27) (0.76) (0.57) (1.44)

TIP, no caching
32.39 207.26 32.01 116.70 32.04 72.07 32.31 59.25 33.44 18.27

(0.12) (0.20) (0.08) (1.51) (0.09) (0.19) (0.20) (0.17) (0.15) (0.41)

TIP
32.93 206.13 32.44 115.07 32.59 71.22 32.63 58.57 33.82 17.33

(0.18) (0.13) (0.11) (0.44) (0.17) (0.33) (0.33) (0.62) (0.13) (0.12)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
55194 8829 62011 23171 7808 26480 20905 20593

(41) (31) (4) (2) (31) (2) (10) (9)

TIP, no hints
48166 1799 60710 22681 2641 25381 20144 20101

(14) (0) (3) (2) (4) (1) (9) (9)

TIP, no prefetch
48160 1799 179 65 2669 169 45321 45279

(0) (0) (1) (1) (0) (1) (1) (1)

TIP, no caching
48160 1799 45328 14871 2662 45318 179 137

(0) (0) (1) (1) (0) (1) (1) (1)

TIP
48160 1799 45307 14863 2688 45297 174 132

(0) (0) (1) (0) (1) (1) (0) (0)

138 CHAPTER 6

 disks

 and the

ad on

ne can

in the

viate

ray is

r these

tually

be sen-

o work

ill

. But,

stiga-

bout

f the

ond

nee in

tal o
lanced, but
to 12,700
 sit idle.
Another interesting result is that the I/O stall time on 4 disks is greater than on 3

up to a prefetch depth of about 32. Because the dataset dimensions, the block size,

stripe unit are all powers of 2, some slices have a pathologically unbalanced worklo

a 4-disk array as shown in Figure 6.7. The situation is analogous to the contention o

find in the interleaved memory of a supercomputer. Using a prime number of disks

array, or randomizing the assignment of stripe units to disks could probably help alle

the problem. The effect of the unbalanced load is that the full parallelism of the ar

not always available and performance suffers. Prefetching deeply can smooth ove

transient load imbalances which is why the performance of the four-disk array even

caches up to and surpasses that of the three-disk array. Ideally, prefetching would

sitive to load imbalances and be deeper when beneficial. This observation has led t

developing such adaptability [Kimbrel95, Kimbrel96a, Kimbrel96, Tomkins97]. I w

discuss the relationship of that work to the approach described here in Chapter 7

such adaptability is beyond the scope of this dissertation which is limited to an inve

tion of prefetching and caching algorithms that do not rely on specific information a

data layout.

Even with the unbalanced load, the prefetch horizon of =73 captures most o

potential stall reduction, as shown in Figure 6.6b, and stall decreases very little bey

for any array size. At the same time, the prefetch horizon successfully captures the k

Figure 6.7. XDataSlice disk load distribution for a range of accesses on a four-disk array. This figure
shows how activity is distributed across the disks in a four-disk array for a range of 3000 of XDS’ tof
about 50,000 accesses. Some slices and therefore sequences of accesses are reasonably well-ba
some, such as this one, are highly unbalanced. For example, all of the accesses from about 11,600
go to only two disks and most only go one disk. For this period of over 1000 accesses, disks 0 and 1

10000 11000 12000 13000
access number

0

1

2

3
di

sk
 n

um
be

r

||||||
||||||||
||
||

||
||||||||
||||||||
||

||
||||||||
||||||||
||

|

|

|

||
||
||||||||
||||||||

||
||
||||||||
||||||||

||
||
||||||||
||||||||

|||
|
||||||||
||||||||

|||
|
||||||||
||||||||

|||
|
||||||||
||||||||

||||

||||||||
||||||||

||||

||||||||
||||||||

|||||

||||||||
||||||||

|||||

|||||||
||||||||

|||||

|||||||
||||||||

||||||

|||||||
||||||||

||||||

||||||
||||||||

||||||

||||||
||||||||

|||||||

|||||
||||||||

|||||||||||||||
|
||||||||
|
||||||||
|
||||||||
||
||||||||
||
||||||||
||

||||||||
||||||||
|

||||||||
||||||||
||

||||||||
||||||||
||

||||||||
||||||||
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
||||||||||||||||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||
||
||||||||||||||||

|

|

|||||||||
|
|
||||||||||||||
||||||||||||||||

||||||||||||||||
|||||||||||||||
|
|
|||||||||||||
|||||||||||||||

P̂

P̂

TIP PERFORMANCE EVALUATION 139

rizon.

s and

 depth

h

y little

g to

tantial

ven for

e is little

into a

erac-

ation

conds.

bling

nition

only

des an

ich it

 reads

ench-

shows

 ini-

ormed

ing the
the curve for 4 and 10 disks; there is benefit in prefetching out to the prefetch ho

Davidson performs a significant amount of computation between sequential read

therefore, in the absence of caching, does not benefit from increasing the prefetch

beyond 16. But, XDS does little computation between reads (Tapp is small), and its reads

often require seeks to new locations (Tdisk is large), so its application-specific prefetc

horizon is close to the system-wide upper bound, .

Because XDataSlice is reading thin slices from a very large dataset, there is ver

reuse in its workload. Consequently, there is little opportunity for informed cachin

avoid I/O accesses. For similar reasons informed clustering does not play a subs

role. Standard clustering of sequential reads is important, but because hints are gi

one slice at a time, and because accesses within a slice are in ascending order, ther

opportunity for informed clustering to combine multiple, widely-separated accesses

single larger one.

XDataSlice originally required all data to be memory-resident to render slices int

tively. These results show that with informed prefetching and a disk array, this applic

can run out-of-core and still render a slice from a very large dataset in about two se

Informed prefetching doesn’t just improve performance; for XDataSlice, it is an ena

technology that provides important new out-of-core capability.

6.3.3 Sphinx

Sphinx is a high-quality, speaker-independent, continuous-voice, speech-recog

system. In our experiments, Sphinx is recognizing an 18-second recording comm

used in Sphinx regression testing. Figure 6.8 shows its access pattern which inclu

initialization scan of its language models followed by a recognition phase during wh

dynamically loads needed language data. Roughly 65,000 of Sphinx’s 78,000 block

occur during the initialization phase. Figure 6.9 shows the elapsed time for the b

mark, Table 6.5 gives the corresponding elapsed-time numbers, and Table 6.6

caching and prefetching performance.

Digital UNIX’s sequential readahead and a two-disk array help Sphinx during its

tialization scan even though the skips lead to some false readahead. But, with inf

prefetching, it takes advantage of the array even for the many small accesses dur

P̂

140 CHAPTER 6

 its
all the

crease in
fter this
ring the
d so is
0 25 50 75 100 125 150
application CPU time (seconds)

0

5000

10000

15000

20000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

Figure 6.8. Sphinx access pattern. During the first 53 seconds, Sphinx initializes itself by scanning
language models and dictionaries to build internal tables. One language-model file accounts for
blocks from 493–23,016 in the graph. The scans are in ascending order, but there are skips which de
size until, from global offset 13768, the skips are smaller than a block so all blocks are accessed. A
initialization phase, Sphinx dynamically hints and loads pieces of the language model as needed du
recognition phase. The file holding the digitized speech being recognized only occupies 8 blocks an
not visible on the graph.

TIP PERFORMANCE EVALUATION 141

 These

than for

69%

plica-

th. In

n. Nor-

 disk

 all of

nition

r disk

g resil-

more

P can

inx’s

the
eces o
ints and
epth. In
ling, but
recognition phase that dynamically load the needed parts of the language model.

small reads also lead to some false readahead, although to a much smaller extent

XDataSlice. On just three disks, informed prefetching reduces I/O stall time by

which translates into a 21% reduction in elapsed time for this compute-intensive ap

tion.

Referring to Figure 6.9b, we see the familiar curve of stall time vs. prefetch dep

this case, however, the results on one disk point to an interesting new phenomeno

mally, when the stall time drops off on one disk, the expectation is that it is due to

scheduling advantages of queuing multiple requests. In this case, however, virtually

the hints during the initialization phase and over 85% of the hints during the recog

phase are given in ascending order of block address so there is little opportunity fo

scheduling to reduce access time. Instead, the greater prefetch depth is providin

iency to Sphinx’s bursty I/O workload. Sphinx often pauses to compute for ten or

milliseconds in the middle of a hinted burst of reads. By prefetching more deeply, TI

take advantage of the computation-induced lulls in I/O activity, to get ahead of Sph

Figure 6.9. Sphinx performance. As (a) shows, without hints Sphinx derives only a small benefit from
disk array. With hints, TIP’s informed prefetch takes advantage of the array for the random loads of pif
the language model. Informed caching does not help because Sphinx gives mostly small bursts of h
has poor access locality. Figure (b) shows the familiar relationship between stall time and prefetch d
this case, however, the advantage of deeper prefetching on a single disk is not better disk schedu
increased resilience to Sphinx’s bursty I/O accesses.

1 2 3 4 10
number of disks

0

50

100

150

200

250

300
el

ap
se

d
tim

e
(s

ec
)

(a) total elapsed time (b) I/O stall time vs. prefetch depth

CPU

I/O stallDigital UNIX
TIP, no hints
TIP, no caching
TIP

0 100 200
prefetch depth

0

20

40

60

80

100

120

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂

142 CHAPTER 6

 to take

 are a

ultiple

ache

more,

nifi-

h fur-

es are

g
ecause it
reveals
at there
data requests. Because these lulls are short, a prefetch depth of only 16 is sufficient

full advantage of them.

For a number of reasons, informed caching does not help Sphinx. Although there

good number of reuse hits, as shown in Table 6.6, most of these are a result of m

partial-block reads that hit in the first segment of the LRU queue. Sphinx’s internal c

and large datasets lead to little locality in its file accesses beyond this. Further

Sphinx’s small bursts of hints do not give TIP sufficient advance knowledge to sig

cantly improve cache performance. In general, informed caching requires hints muc

ther in advance than does informed prefetching.

Table 6.5. Sphinx elapsed time. These are the data graphed in Figure 6.9a. The numbers in parenthes
the 95% confidence intervals for the averages of the five runs.

Table 6.6. Sphinx prefetching and caching performance.These data show that informed prefetchin
achieves almost 50% more prefetch hits with only 26% more prefetches than sequential readahead b
can prefetch accurately. Although there is substantial buffer reuse by Sphinx, LRU queue profiling
that virtually all of these reuse hits occur in the most recently used segment of the LRU queue and th
is little opportunity for informed caching to improve performance.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
145.88 99.29 146.31 72.73 146.16 68.55 145.94 67.17 146.29 64.98

(0.67) (0.37) (0.85) (0.32) (0.80) (0.42) (0.15) (0.38) (0.81) (0.37)

TIP, no hints
148.89 98.15 149.34 72.49 149.02 68.34 149.18 67.37 149.49 65.08

(0.65) (0.25) (0.51) (1.10) (0.62) (0.46) (0.49) (0.44) (0.80) (0.42)

TIP, no caching
152.87 76.15 153.10 32.01 150.77 21.31 153.19 18.55 150.81 14.93

(0.53) (0.26) (0.80) (0.48) (0.92) (0.36) (0.81) (0.45) (0.34) (0.85)

TIP
152.26 76.36 152.13 31.55 153.02 20.94 152.09 18.14 152.56 14.20

(0.52) (0.65) (0.85) (0.40) (0.50) (0.30) (0.67) (0.24) (1.28) (0.15)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
78879 1142 21135 4356 51125 17822 9930 4570

(111) (113) (38) (12) (40) (22) (80) (24)

TIP, no hints
78665 929 21103 4343 50909 17808 9947 4554

(4) (0) (19) (7) (49) (10) (47) (14)

TIP, no caching
78393 890 26849 7731 51307 26730 355 288

(0) (0) (14) (4) (14) (14) (3) (3)

TIP
78363 860 26764 6487 51368 26648 346 279

(9) (9) (92) (21) (97) (93) (0) (0)

TIP PERFORMANCE EVALUATION 143

 disk

s the

uential

80% of

ential

larger

es the

 with-

ugh

quential

nd does

poses

 of

time by

sults
for the
sequential
 Agrep’s
al files.
re valid
6.3.4 Agrep

In this benchmark, Agrep searches 1349 kernel source files occupying 2922

blocks for a simple string that does not occur in any of the files. Figure 6.10 show

misleadingly simple global access pattern; misleading because the single large seq

access is actually a concatenation of sequential accesses to the many files. Over

these files have only one or two blocks and are therefore too small for any sequ

readahead. Over 94% consist of five blocks or less. Only four of the 1349 files are

than 20 blocks and the largest has 38. The average number is 2.17 blocks.

Figure 6.11 shows the elapsed and stall times for this search and Table 6.7 giv

numbers for part (a) of the figure. As was the case for both XDataSlice and Sphinx,

out informed prefetching there is little parallelism in Agrep’s I/O workload. Even tho

the files are searched sequentially, because most are small, even aggressive se

readahead successfully prefetches only about a third of the blocks (see Table 6.8) a

not achieve parallel transfer. However, Agrep’s disclosure of future accesses ex

potential I/O concurrency not within individual files, but across multiple files. Arrays

as few as four disks reduce elapsed time by 72% and of ten disks reduced elapsed

84%.

Figure 6.10. Agrep access pattern. In the benchmark, Agrep searches 1349 files sequentially. This re
in the trivial access pattern shown here. But, because the single linear global block addresses used y-
axis map to so many separate files, the file system does not observe the accesses as one single
read, but as many short, disjoint sequential reads for which sequential readahead is not too useful.
hints disclose the larger pattern and enable TIP to prefetch across files and not just within individu
During the delay in starting the search, Agrep is checking each of its arguments to make sure they a
file names. As it does so, it discloses the eventual sequential read of the file in a hint.

0.0 0.5 1.0 1.5 2.0 2.5
application CPU time (seconds)

0

500

1000

1500

2000

2500

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

144 CHAPTER 6

 there-

 files

hows

ll times

ge of

oth the

 the

uential

reada-

itional

ches
head to
 files that
 by this
In this benchmark, all the files are read only once, so there is no data reuse and

for no opportunity for informed caching benefits.

6.3.5 Gnuld

The Gnuld benchmark links the 562 object files of a TIP kernel. These object

comprise approximately 64 MBytes, and produce an 8.8-MByte kernel. Figure 6.12 s

the access pattern for the benchmark. Figure 6.13 presents the elapsed and I/O sta

for this test and Table 6.9 gives the numerical data for the elapsed time.

Gnuld is another example of a serial I/O workload that is unable to take advanta

disk-array parallelism as is seen from the flat performance across array sizes for b

Digital UNIX andTIP, no hints runs. For most of its accesses, Gnuld is looping over

object files reading small segments from each. As was the case for XDataSlice, seq

readahead actually hurts performance for this workload. As Table 6.10 shows, false

head leads to the wasted prefetching of over 1100 blocks. But, here, there is an add

penalty of false readahead: more cache misses. Comparing the reuse hits forTip, no hints

Figure 6.11. Agrep performance. This figure shows the elapsed time (a) and stall time (b) for sear
through 1349 files in three directories. Most of the files are not large enough for sequential reada
expose concurrency and take advantage of the disk array. Disclosure exposes concurrency across
informed prefetching uses to reduce elapsed time by up to 84%. Because there is no data reuse
application, there is no opportunity for informed caching.

(a) total elapsed time (b) I/O stall time vs. prefetch depth

0 100 200
prefetch depth

0

10

20

30

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

10

20

30

el
ap

se
d

tim
e

(s
ec

)

CPU

I/O stallDigital UNIX
TIP, no hints
TIP, no caching
TIP

TIP PERFORMANCE EVALUATION 145

f

 arrays,

ize is.

 a

the I/O

hing

fetch

es are

y,
e of the
andTIP, no prefetch, we see that the false readahead inno hints reduces the number o

reuse hits by 330. Whereas false prefetches delay useful prefetches less on larger

these cache misses incur the full latency of a disk access no matter what the array s

Informed prefetching inTIP, no caching suffers from neither false prefetching nor

decrease in reuse hits. It takes advantage of a ten-disk array to eliminate 84% of

stall time and reduce overall elapsed time by 74%.

Informed caching in theTIP runs increases reuse hits by 600 compared to prefetc

alone inTIP, no caching. Most of the avoided misses are for hinted data which inTIP, no

caching are prefetched back. On a single disk there is insufficient bandwidth to pre

all of the misses without stall and informed caching reduces elapsed time by 6%.

Table 6.7. Agrep elapsed time. These are the data graphed in Figure 6.11a. The numbers in parenthes
the 95% confidence intervals for the averages of the five runs.

Table 6.8. Agrep prefetching and caching performance. Although Agrep searches the file sequentiall
most of the files are short, so sequential readahead only prefetches about a third of the blocks. Non
blocks from the searched files are reused, so there is no opportunity for informed caching.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
2.27 24.72 2.30 23.37 2.22 23.35 2.22 23.19 2.23 24.08

(0.03) (0.30) (0.11) (0.73) (0.03) (0.96) (0.03) (0.70) (0.04) (0.88)

TIP, no hints
2.36 24.40 2.30 23.10 2.34 23.01 2.37 22.87 2.38 23.41

(0.02) (0.34) (0.05) (0.84) (0.03) (0.68) (0.15) (0.59) (0.04) (0.66)

TIP, no caching
2.34 19.86 2.28 9.87 2.31 7.02 2.29 4.72 2.44 1.80

(0.03) (0.32) (0.02) (0.19) (0.05) (0.20) (0.03) (0.13) (0.18) (0.13)

TIP
2.40 19.81 2.30 10.07 2.35 6.92 2.33 4.66 2.43 1.69

(0.03) (0.45) (0.02) (0.20) (0.02) (0.25) (0.05) (0.12) (0.01) (0.02)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
3425 497 1077 613 407 1065 1953 1933

(25) (25) (367) (261) (19) (366) (358) (357)

TIP, no hints
3305 377 1050 598 335 1044 1925 1920

(13) (13) (358) (256) (14) (358) (357) (358)

TIP, no caching
3309 381 2949 1771 341 2945 23 13

(7) (7) (1) (1) (6) (1) (3) (1)

TIP
3307 379 2951 1771 337 2949 21 12

(11) (11) (1) (0) (11) (3) (4) (1)

146 CHAPTER 6

uild
he new
he 152-
0 2 4 6 8 10 12
application CPU time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

Figure 6.12. Gnuld access pattern.Gnuld makes many passes over the 562 object files it is linking to b
a new kernel. It is only after it has read the headers and symbols from each file that it starts writing t
kernel, symbols at the end first and code at the beginning next. The blip at offsets 5620–5772 is t
block AFS file system library being loaded. The next largest object file is only 50 blocks in size.

vm
un

ix
ou

tp
ut

 fi
le

TIP PERFORMANCE EVALUATION 147

0,000

Bytes)

ind a

ritten

ode,

e outer

ts, the

t pass,

tching

lation

fter the

h case

iving

 80%-

lin
ahead
6.3.6 Postgres

The Postgres benchmarks are joins of two relations. The outer relation contains 2

unindexed tuples (3.2 MBytes) whereas the inner relation has 200,000 tuples (32 M

and is indexed (5 MBytes). In the first benchmark, 20% of the outer-relation tuples f

match in the inner relation. In the second, 80% find a match. One output tuple is w

sequentially for every tuple match. Recall from Section 3.4.3, that in the original c

Postgres loops over the outer-relation tuples, interleaving sequential accesses to th

relation with random accesses to the index and the inner relation. To generate hin

loop is split and Postgres passes over the outer-relation tuples twice. During the firs

Postgres performs all the index lookups. It then issues hints for the reads of the ma

inner-relation tuples which it performs during the second pass over the outer-re

tuples. Figures 6.14 and 6.15 show the access pattern for the two benchmarks a

loop is split. Figure 6.16 and Tables 6.11 and 6.12 give the results for the 20%-matc

and Figure 6.17 and Tables 6.13 and 6.14 give the results for the 80%-match case.

Splitting the loop substantially reduces Postgres elapsed time even without g

hints. On a single disk, it reduces elapsed time by 25% and 35% for the 20%- and

Figure 6.13. Gnuld performance. This figure shows the elapsed time (a) and stall time (b) for Gnuld to k
a Digital UNIX kernel. Informed prefetching again takes advantage of the disk array where read
heuristics fail. TIP reduces elapsed time by up to 74%.

(a) total elapsed time (b) I/O stall time vs. prefetch depth

0 100 200
prefetch depth

0

20

40

60

80

100

120

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

20

40

60

80

100

120
el

ap
se

d
tim

e
(s

ec
)

Digital UNIX
TIP, no hints
TIP, no prefetch
TIP, no caching
TIP

CPU

I/O stall

148 CHAPTER 6

 longer

cache

sts from

 These

es are

s
t, leads to
in
any

 caching
Restructuring the code increases the locality of the index accesses which are no

interleaved with inner-relation tuple accesses. The increased locality increases

effectiveness and therefore the number of reuse hits as a percentage of total reque

52% to 65% in the 20%-match case and from 47% to 63% in the 80%-match case.

caching gains dwarf the CPU penalty.

Table 6.9. Gnuld elapsed time. These are the data graphed in Figure 6.13a. The numbers in parenthes
the 95% confidence intervals for the averages of the five runs.

Table 6.10. Gnuld prefetching and caching performance. Gnuld loops over the object files several time
reading short segments from the files. This access pattern defeats sequential readahead and, in fac
some false prefetching which displaces some useful blocks and decreases the number of reuse hits TIP, no
hints compared toTIP, no prefetch. Informed prefetching accurately prefetches more than twice as m
blocks which exposes concurrency for the disk array and does not decrease reuse hits. Informed
increases reuse hits by 600 which helps reduce stalls when bandwidth is limited by a small array.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

Digital UNIX
11.10 86.77 11.04 87.19 11.05 82.77 10.99 83.52 10.92 81.61

(0.31) (0.87) (0.10) (1.29) (0.14) (1.63) (0.10) (1.00) (0.09) (0.77)

TIP, no hints
11.35 87.04 11.41 87.79 11.46 83.00 11.43 84.19 11.39 82.29

(0.14) (0.71) (0.11) (1.86) (0.22) (2.91) (0.12) (1.77) (0.08) (1.18)

TIP, no prefetch
12.49 82.95 12.70 82.34 12.67 77.65 12.51 78.63 12.54 76.89

(0.03) (0.20) (0.18) (0.20) (0.16) (0.95) (0.03) (0.16) (0.05) (0.22)

TIP, no caching
11.08 68.56 11.03 38.60 11.04 27.37 11.09 22.77 11.32 13.32

(0.08) (0.28) (0.06) (0.22) (0.05) (0.41) (0.06) (0.31) (0.05) (0.23)

TIP
11.11 63.65 11.00 35.11 11.16 25.08 11.23 21.24 11.36 12.70

(0.11) (3.46) (0.06) (1.25) (0.09) (0.12) (0.14) (0.85) (0.17) (0.43)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

Digital UNIX
23734 1303 5816 2710 12056 4662 7016 5191

(48) (48) (621) (321) (45) (111) (97) (89)

TIP, no hints
23525 1094 5784 2689 11924 4631 6970 5174

(34) (34) (615) (319) (32) (109) (106) (101)

TIP, no prefetch
23538 1106 103 47 12252 82 11203 11164

(44) (44) (3) (1) (43) (4) (5) (4)

TIP, no caching
23541 1109 11027 4880 12247 11006 287 247

(44) (44) (3) (1) (43) (4) (5) (4)

TIP
23536 1104 10477 4431 12856 10402 277 239

(32) (32) (384) (304) (312) (321) (8) (3)

TIP PERFORMANCE EVALUATION 149

 few

 though

there are

 hints.

res
d in a
k inner
ved and

e is
es in the
Postgres benefits little from Digital UNIX’s sequential readahead. There are

sequential accesses apart from the 818 accesses to the outer relation. Thus, even

the 80%-match case has three times as many accesses as the 20%-match case,

about the same number of prefetches in the two cases when Postgres does not give

0 5 10 15 20 25 30 35 40 45 50
application CPU time (seconds)

0

1000

2000

3000

4000

5000

6000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

0 5 10 15 20 25
application CPU time (seconds)

0

1000

2000

3000

4000

5000

gl
ob

al
 o

ffs
et

 (
8

K
B

yt
e

bl
oc

ks
)

Figure 6.14. Postgres, 20% match, access pattern.On its first pass through the outer relation, Postg
tries to find a match for each record in the inner-relation index. It then discloses the blocks it will rea
hint. On the second pass, it performs 3976 hinted reads of matching records from the 4082-bloc
relation. Before the loop-splitting, the accesses to the inner-relation index and data files were interlea
the access locality was much lower.

Figure 6.15. Postgres, 80% match, access pattern. The general access pattern for the 80% match cas
identical to that of the 20% match case, except that because more outer-relation records have match
inner relation, it performs 15,674 hinted reads of matching records from the inner relation.

outer relation

inner-relation index

inner relation

outer relation

inner-relation index

inner relation

150 CHAPTER 6

e
res
 cache
tching
, deep

reduces

h
ng inne
unities
 fetch
d time by
Figure 6.16. Postgres, 20% match, performance. In (a), theoriginal runs show the performance befor
Postgres’ loop is split to give hints. Thesplit loop runs show the performance of the restructured Postg
running on the usual four configurations. The restructuring improves access locality and therefore
performance, allowing it to run faster than the original Postgres even without hints. Informed prefe
further reduces I/O stall time. Graph (b) shows stall as a function of prefetch depth. On one disk
prefetching improves disk scheduling and reduces stall, but on ten disks, prefetching too deeply
cache effectiveness and increases stall. See text for details.

(a) total elapsed time (b) I/O stall time vs. prefetch depthCPU

I/O stall

0 100 200
prefetch depth

0

20

40

60

80

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

20

40

60

80

100

120

140

el
ap

se
d

tim
e

(s
ec

)
original: Digital UNIX
split loop: Digital UNIX
split loop: TIP, no hints
split loop: TIP, no caching
split loop: TIP

Figure 6.17. Postgres, 80% match, performance. Overall performance is very similar to the 20%-matc
case except that the larger number of matches leads to more random hinted reads of the matchir
relation tuples which lead to greater gains from informed prefetching. They also provide more opport
for informed caching to reduce the number of blocks fetched from disk and for informed clustering to
adjacent blocks for widely separated accesses which improves access efficiency and reduces elapse
31%.

(a) total elapsed time (b) I/O stall time vs. prefetch depthCPU

I/O stall

0 100 200
prefetch depth

0

50

100

150

200

250

st
al

l t
im

e
(s

ec
)

1 disks
2 disks
3 disks
4 disks
10 disks

P̂1 2 3 4 10
number of disks

0

100

200

300

400

el
ap

se
d

tim
e

(s
ec

)

original: Digital UNIX
split loop: Digital UNIX
split loop: TIP, no hints
split loop: TIP, no caching
split loop: TIP

TIP PERFORMANCE EVALUATION 151

ency in

of the

 result

idual

 to 13

parallel

bers

uce the
Because sequential readahead does not work for Postgres, there is little concurr

Postgres’ I/O workload and, without hints, Postgres is unable to take full advantage

disk array. Indeed, what little advantage Postgres does find in the larger arrays is a

not of the disks working in parallel, but of the data being spread over less of an indiv

disk’s surface which lowers the per-block access time from 16 msec on one disk

msec on ten disk for the 80%-match case. We see again that disk arrays need

workloads to take advantage of the hardware parallelism they offer.

Table 6.11. Postgres, 20% match, elapsed time. These are the data graphed in Figure 6.16a. The num
in parentheses are the 95% confidence intervals for the averages of the five runs.

Table 6.12. Postgres, 20% match, prefetching and caching performance. Splitting the loop adds 1000
reuse hits and decreases elapsed time even without hints. Informed caching and clustering red
number of prefetch I/Os by 250 which reduces stall by 7% on a single disk.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

original:
Digital UNIX

24.50 101.45 26.24 96.78 24.41 89.55 24.30 86.57 24.13 77.45

(0.16) (0.48) (3.13) (2.40) (0.24) (1.24) (0.36) (0.56) (0.38) (0.24)

split loop:
Digital UNIX

28.08 65.77 28.06 64.18 27.72 60.04 27.71 57.09 28.29 51.93

(0.28) (0.37) (0.18) (0.42) (0.28) (0.23) (0.10) (0.18) (0.59) (0.48)

split loop:
TIP, no hints

28.35 69.00 28.70 65.37 28.50 61.69 28.45 58.56 28.03 53.84

(0.41) (0.53) (0.72) (0.64) (0.37) (0.44) (0.14) (0.96) (0.36) (0.41)

split loop:
TIP, no caching

28.65 50.01 28.42 28.78 28.75 21.50 28.66 18.05 28.78 14.44

(0.40) (0.36) (0.23) (0.43) (0.34) (0.30) (0.39) (0.20) (0.36) (0.20)

split loop:
TIP

28.60 46.72 28.40 27.08 28.60 20.38 28.58 17.06 28.34 13.37

(0.50) (0.46) (0.26) (0.53) (0.68) (0.49) (0.36) (0.34) (0.22) (0.28)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

original:
Digital UNIX

11125 2395 724 174 5201 523 5401 5313

(47) (46) (5) (6) (49) (6) (12) (13)

split loop:
Digital UNIX

11254 2555 1121 233 6174 1039 4041 3961

(34) (35) (13) (2) (31) (5) (11) (10)

split loop:
TIP, no hints

10851 2151 1070 224 5744 901 4204 4139

(24) (28) (16) (4) (37) (8) (13) (8)

split loop:
TIP, no caching

10926 2096 4240 3340 5743 4074 1108 1042

(31) (31) (20) (12) (20) (12) (6) (5)

split loop:
TIP

10787 2082 4107 3086 5787 3934 1065 1002

(20) (19) (17) (21) (17) (8) (4) (2)

152 CHAPTER 6

dvan-

 20%-

ostgres

ups hit

 20%-

6.17b

 stall.

bers

en while
With informed prefetching, Postgres has I/O workload concurrency and takes a

tage of the parallelism of the disk array to reduce elapsed time by up to 47% for the

match case and up to 67% for the 80%-match case. Some stall remains because P

doesn’t give hints for the index lookups. Nevertheless, because most of these look

in the cache, informed prefetching eliminates up to 73% and 87% of the stall for the

and 80%-match benchmarks of this I/O-bound application.

The results for stall as a function of prefetch depth shown in Figures 6.16b and

reveal an interesting effect on the ten-disk array: prefetching too deeply increases

Table 6.13. Postgres, 80% match, elapsed time. These are the data graphed in Figure 6.17a. The num
in parentheses are the 95% confidence intervals for the averages of the five runs.

Table 6.14. Postgres, 80% match, prefetching and caching performance. Splitting the loop again
increases reuse hits substantially. The impact of informed clustering is, again, to reduce reuse hits ev
reducing elapsed time.

system
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

original:
Digital UNIX

46.49 345.32 46.59 334.89 46.47 309.63 46.25 294.57 47.39 269.09

(0.49) (2.27) (0.60) (1.63) (0.49) (1.56) (1.06) (1.01) (4.68) (3.81)

split loop:
Digital UNIX

47.01 207.55 47.69 205.35 47.07 192.50 46.98 180.00 47.13 162.59

(0.35) (0.21) (1.44) (0.38) (0.31) (1.06) (0.30) (0.71) (0.82) (0.67)

split loop:
TIP, no hints

48.35 210.40 48.45 203.94 48.50 192.81 48.32 181.94 48.09 166.01

(0.72) (0.91) (0.45) (1.62) (0.68) (2.15) (0.57) (2.66) (0.68) (0.67)

split loop:
TIP, no caching

47.98 138.31 48.29 67.58 48.74 43.79 48.62 32.47 48.71 21.62

(0.40) (0.42) (0.37) (0.48) (0.32) (0.21) (0.32) (0.15) (0.69) (0.31)

split loop:
TIP

46.85 81.67 47.13 40.75 46.83 29.35 47.03 23.78 47.16 18.18

(0.25) (1.88) (0.42) (1.19) (0.42) (1.18) (0.40) (0.30) (0.88) (0.27)

system
(1 disk)

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

original:
Digital UNIX

35081 2422 792 196 16157 354 18570 18477

(59) (58) (24) (12) (86) (14) (109) (108)

split loop:
Digital UNIX

33820 2553 1174 248 20316 787 12715 12632

(70) (71) (6) (2) (64) (3) (17) (17)

split loop:
TIP, no hints

33788 2522 1188 256 20296 795 12696 12618

(31) (26) (14) (4) (97) (8) (78) (78)

split loop:
TIP, no caching

33921 2524 12593 11552 20263 12190 1467 1386

(26) (26) (8) (9) (23) (9) (4) (4)

split loop:
TIP

33787 2515 10300 5655 23377 9106 1303 1221

(25) (25) (314) (304) (110) (112) (7) (6)

TIP PERFORMANCE EVALUATION 153

se the

ching,

0 at a

ough

d about

t 7 sec-

duces

atch

ber of

ck on

ance.

idual

s. How-

stall for

e over-

ance

 a sin-

 80%-

isks is

32 in

 within

in 1%

ndom

ly sep-

e 80%-

 or
Using too many buffers for prefetching can reduce cache effectiveness and increa

number of cache misses. For example, for these experiments without informed ca

the number of cache misses for the 80%-match case increases from about 128

prefetch depth of one to about 1880 at a prefetch depth of 256 (not shown). Alth

these are small numbers compared to the nearly 34,000 total requests, they each ad

12 msec of stall to the elapsed time of the benchmark on ten disks or a total of abou

onds.

On a single disk, more effective disk scheduling at the deeper prefetch depths re

disk service time from almost 15 msec to under 12 msec per block for the 80%-m

case. This reduction more than offsets the increase in stall from the larger num

misses. With a single disk, bandwidth is at premium, and the disk is the bottlene

overall performance. Thus, the greatest gains come from maximizing disk perform

With ten disks, there is ample bandwidth and maximizing the performance of indiv

disks is less important; stall has already been masked, at least for hinted accesse

ever, the unhinted misses cannot take advantage of array parallelism and therefore

the full latency of a disk access. The stall for these unhinted accesses determines th

all stall for the benchmark.

The upper-bound prefetch horizon, , strikes a good compromise in perform

across array sizes. It obtains most of the benefit from improved disk scheduling on

gle disk where it reduces total disk service time by 19% and 24% for the 20%- and

match cases as will be seen in Table 6.15. On the other hand, stall time on ten d

within, respectively, 4% and 6% of the minimum which occurs at a prefetch depth of

both cases. The elapsed time when prefetching to a depth of =73 is, on one disk,

1% of the elapsed time when prefetching to a depth of 256, and is, on ten disks, with

of the elapsed time when prefetching to a depth of 32.

Using the hints for informed caching and informed clustering inTIP reduces the

elapsed time of the 20%- and 80%-match cases by 4% and 31% compared toTIP, no

cachingon a single disk. TIP is able to take advantage of the hints for the many ra

inner-relation reads to increase cache effectiveness and cluster together many wide

arated accesses into a much smaller number of more sequential accesses. For th

match case, informed caching inTIP increases the number of reuse hits by over 3000

P̂

P̂

154 CHAPTER 6

-

ster

an the

s more

st lim-

izing

isks,

is little

f I/O

d there-

isks.

at are

bench-

. First,

hedule,

, some

mple, a

 in the

s num-

ted to

is and

tches

d to the

raction

st read

kups

of the

 being
more than 15% compared toTIP, no cachingas seen in Table 6.14. And, for the 80%

match case, informed clustering inTIP increases the average blocks per prefetch clu

from 1.09 in theTIP, no caching case to 1.82. Consequently,TIP needs 5900 fewer I/Os

to prefetch only 2300 fewer blocks. These effects are more dramatic in the 80%- th

20%- match case because the larger number of inner-relation accesses provide

opportunities for informed caching and clustering.

The impact on elapsed time is greatest on a single disk where bandwidth is mo

ited. As was the case for disk scheduling when prefetching without caching, optim

disk performance is most important when the disk is the bottleneck. On ten d

informed prefetching alone masks most of the stall for hinted accesses and there

room for additional improvement. Nevertheless, the large reduction in the number o

accesses, especially in the 80%-match case, reduces disk-driver CPU overhead an

fore reduces CPU time in that case by about 1.5 seconds or a little over 3% on ten d

Unfortunately, informed clustering increases the number of prefetched blocks th

never accessed by about 800 to nearly 8% of the total prefetched in the 80%-match

mark. There are two reasons why so many are ejected before they can be used

because TIP’s local value estimates do not generate a full clustering and caching sc

but instead build clusters opportunistically around prefetches that are about to occur

blocks may be clustered that cannot be cached until they are accessed. For exa

prefetch may present the opportunity to cluster a prefetch for access number 2000

hinted access sequence. At a later time, an opportunity to cluster-prefetch for acces

ber 1000 may arise. If the block for access 2000 is the least valuable, it will be ejec

cluster-prefetch the block for access 1000. A full schedule could have anticipated th

avoided cluster-prefetching block 2000 in the first place. Fortunately, cluster-prefe

are cheap, so the cost of ejecting some cluster-prefetched blocks is small compare

benefit of the many successful cluster-prefetches.

The second reason clustered blocks are ejected is a result of a complex inte

between the hinted cache and the LRU cache. When the loop is split, Postgres mu

the outer relation twice. The first time it reads the relation, it also performs index loo

which push the outer-relation blocks to the tail of the LRU queue. During this phase

computation, there are few hits at the tail of the queue because the outer relation is

TIP PERFORMANCE EVALUATION 155

luable.

blocks.

locks,

ing the

-rela-

rmed

r-rela-

ess the

ually,

 and

locks

 to be

fter the

 ejec-

m are

ill be

sts once

e outer

 cache

edictor

en the

sses its

there

e grows.

ctually

ring

psed

ested

 time
scanned sequentially, and so the tail of the LRU does not appear to be very va

Then, Postgres delivers thousands of hints for the reads of the inner-relation data

TIP takes a few buffers from the tail of the LRU queue to begin prefetching these b

and more for clustered reads. As Postgres performs the join, it begins reaccess

outer-relation tuples with unhinted reads while consuming some of the hinted inner

tion data blocks. This hint consumption leads to more prefetching and more info

clustering. Eventually, prefetched and clustered blocks completely displace the oute

tion blocks from the tail of the LRU queue. However, as Postgres continues to reacc

outer-relation blocks, it scores hits on the ghost buffers at the tail of the LRU. Event

the tail of the LRU queue starts to look valuable and buffers for further prefetching

clustering come not from the LRU queue, but from the hinted cache which holds b

for reuse and blocks that were prefetched as part of a cluster and are waiting

accessed for the first time. But, because hinted blocks get put on the LRU queue a

hinted access occurs, the now-growing LRU queue saves some of these blocks from

tion. The LRU estimator does not save clustered blocks, however, and many of the

ejected, even if they will be accessed before a recently consumed hinted block w

reaccessed. Of course, growing the queue does not restore the data that the gho

held and the larger queue does not gain any additional cache hits. Fortunately, th

relation is read sequentially, so heuristic readahead brings its blocks back into the

without adding much stall.

This sequence of events highlights a weakness of using the LRU queue as a pr

of future behavior, especially at the boundary between phases in a computation wh

characteristics of the workload are changing. It suggests that a workload that acce

data exactly twice may be the worst-case scenario for the LRU estimator. Initially,

are no hits and the queue looks useless. Then there are ghost hits, and the queu

But, the data is never re-accessed a third time, so that larger queue does not a

increase the number of hits.

Despite these difficulties with the LRU estimator, informed caching and cluste

delivers substantial gains for this application, including up to a 31% reduction in ela

time. The primary goal of informed caching is to reduce the number of blocks requ

from disk, and the primary goal of informed clustering is to reduce the disk service

156 CHAPTER 6

clus-

m

15.

 does

ance

y are

k per-

ering

rmance

se, as

lapsed

rfor-

s use

perfor-

 of

 appear

IX’s

an pro-

xcept

esults

g.

ponsi-

ne can
per block by increasing disk workload sequentiality. Even with the ejection of some

tered prefetch blocks, informed caching inTIP reduces the number of blocks fetched fro

disk by 17% compared toTip, no caching for the 80%-match case as shown in Table 6.

And, informed clustering reduces the service time per block by 22%. So, not only

TIP perform fewer accesses, it services each more quickly. Clearly, these perform

benefits far outweigh the cost of ejecting some of the clustered blocks before the

accessed.

6.3.7 The impact on disk service time

As just discussed in the context of the Postgres benchmark, TIP can improve dis

formance through two mechanisms: more effective disk scheduling, and clust

prefetches. Table 6.15 summarizes the impact of these mechanisms on disk perfo

for all of the benchmarks on a single disk. I focus on single-disk performance becau

noted above, that is where the impact of improvements in disk performance on e

time is greatest.

To help clarify the individual impact of the two mechanisms, I consider the pe

mance of three system configurations.TIP, no caching (prefetch depth=0), or simplyTIP,

no caching(0), receives hints but does not use them for prefetching, although it doe

them for clustering sequential accesses and avoiding false readahead. It shows

mance when disk queues are short. I use it as the base case for comparison insteadDig-

ital UNIX because it does not suffer from false readahead which can make accesses

to be highly sequential, yet it does cluster sequential accesses which Digital UN

readahead does fairly well. Thus, it represents a sort of idealized base case.TIP, no cach-

ing shows the performance when hints are used to generate deep queues which c

vide disk-scheduling opportunities, but hints are not used for caching or clustering e

within the prefetch horizon. Thus, by comparing its disk performance with theno cach-

ing(0) case, it is possible to see the benefit of more effective disk scheduling that r

from informed prefetching. Finally,TIP uses hints for prefetching, clustering and cachin

Informed caching may reduce the number of blocks requested, but clustering is res

ble for assembling these requests into larger clusters than sequential clustering alo

T
IP

 P
E

R
F

O
R

M
A

N
C

E
 E

V
A

L
U

A
T

IO
N

157

Table the impact of disk scheduling and request
cluster rks on three system configurations.TIP, no caching
(prefet prefetch depth in the performance graphs for each
bench ueues which can be used for disk scheduling.TIP, no
cachin h thecaching(0)case, shows the impact of using
long q hing. Comparison withTIP, no cachingis an
indicat uration, this table shows: the total time for the disk to
service quested by those accesses; and the total service time
divided

bench

TIP

l
ce
ec)

I/Os blocks
service
time per

block (ms)

David
15 9053 50988 2.69

3) (328) (1073) (0.10)

XData
19 14880 45210 4.98

5) (0) (1) (0.00)

Sph
09 6815 27164 4.09

9) (22) (93) (0.01)

Agr
2 1980 3143 7.96

4) (28) (28) (0.07)

Gn
8 5160 12111 6.06

5) (310) (387) (0.14)

Postg

20% m

8 4146 5261 10.24

2) (29) (10) (0.08)

Postg

80% m

62 6981 12050 8.69

4) (294) (324) (0.32)
6.15. Summary of disk performance for the benchmarks running on a single disk. This table reports
ing on disk performance. The statistics were collected in the disk driver while running the benchma
ch depth = 0) or simplyTIP, no caching(0)is the same configuration used to measure stall as a function of
mark with the prefetch depth set to 0. It shows disk performance when there are no deep request q
g is the familiar configuration that uses hints to prefetching out to the prefetch horizon. Comparison witno
ueues of prefetch requests for disk scheduling. Finally,TIP uses hints for prefetching, clustering and cac
ion of the impact of using large numbers of hints to cluster widely separated accesses. For each config
 all accesses (in seconds); the number of distinct disk accesses; the number of 8-KByte blocks re
 by the number of blocks (in milliseconds).

mark

TIP, no caching (prefetch depth = 0) TIP, no caching

total
service

time (sec)
I/Os blocks

service
time per

block (ms)

total
service

time (sec)
I/Os blocks

service
time per

block (ms)

tota
servi

time (s

son
181.32 15980 125741 1.44 275.18 15993 125822 2.19 137.

(0.85) (0) (0) (0.01) (0.27) (3) (3) (0.00) (2.9

Slice
228.89 14889 45229 5.06 225.78 14893 45236 4.99 225.

(0.20) (2) (5) (0.00) (0.11) (0) (0) (0.00) (0.1

inx
103.69 8406 27238 3.81 113.21 8069 27258 4.15 111.

(0.36) (13) (37) (0.01) (0.08) (6) (15) (0.00) (0.3

ep
27.97 1992 3155 8.87 25.00 1972 3135 7.97 25.0

(0.13) (6) (6) (0.03) (0.31) (20) (20) (0.05) (0.4

uld
80.70 5621 12669 6.37 78.56 5620 12673 6.20 73.3

(0.07) (4) (4) (0.00) (0.05) (6) (7) (0.00) (3.5

res,

atch

69.91 4410 5375 13.01 57.03 4443 5441 10.48 53.8

(0.30) (17) (17) (0.01) (0.45) (21) (21) (0.05) (0.5

res,

atch

213.17 13024 14445 14.76 162.43 13052 14516 11.19 104.

(2.19) (143) (143) (0.02) (0.44) (15) (15) (0.02) (2.0

158 CHAPTER 6

f

etch-

s is

 time is

ime at

y the

sure of

imilar

 block

nder-

by Fig-

d many

e

l cluster

 were

th in

ld be

s. Incor-

resting

hange
tering.
ties for

oes
luster-

LRU
avidson.
achieve. By comparingTIP’s performance toTIP, no caching, one can see the benefit o

using large numbers of hints to cluster widely separated accesses1.

The first unexpected result is that service time for Davidson is higher when pref

ing in TIP, no caching than it is inTIP, no caching(0). Normally, I would expect the

deeper queues inTIP, no caching to lead to a reduction in service time. Even though thi

not the case here, the elapsed time does go down slightly (not shown). The service

misleading in this case because of the disk’s internal readahead. The wallclock t

which the sequential data requested by Davidson will be available is determined b

rotation of the disk under the read head. The service time in this case is just a mea

how far in advance of that time the request for the data is queued at the disk. A s

effect can be seen to a lesser degree for Sphinx.

The total service time for Davidson goes down substantially inTIP as informed cach-

ing reduces the number of blocks fetched from disk. However, the service time per

rises. This is because, through a dynamic of the implementation that I do not fully u

stand, Davidson does not end up with the single range of cached blocks suggested

ure 4.7 for repeated sequential access, but instead ends up with one large range an

small sequential groups caching random blocks in the file2. Filling the gaps between thes

groups leads to disk requests that are non-sequential and may be smaller than a ful

of 8 blocks. This experience suggests that informed caching might be improved if it

mindful of clusters when it estimates the cost of ejecting a block. It is cheaper, bo

terms of disk driver overhead and disk access latency, to eject a block that cou

prefetched as part of a cluster than to eject one that would require a separate acces

porating such cost estimates into the informed caching estimates could be an inte

area for future research.

1 It must be noted that there is ambiguity in this comparison because informed caching may c
the set of blocks fetched from disk and therefore the sequentiality of the disk workload before clus
But, reducing the number of blocks read from disk most likely reduces, not increases the opportuni
sequential clustering. Thus, any increase in cluster size and reduction in service time per block forTIP com-
pared toTIP, no caching is almost certainly the result of informed clustering. Thus, if this comparison d
not provide definitive evidence, it does provide highly suggestive evidence of the impact of informed c
ing.

2 My hunch is that, periodically, when a batch of buffers is moved from the annex to the
queue, some buffers suddenly become available to cache whatever blocks were last accessed by D
As the wave of prefetching and MRU replacement moves on, these blocks remain cached.

TIP PERFORMANCE EVALUATION 159

e is lit-

f its

 sequen-

r

 many

e case.

 do not

own.

given in

 so the

 about

ause

g only

equen-

 the

rmed

s-

ocks in

 reads

g. In

r

r-
XDataSlice takes care to issue its requests in ascending order in the file, so ther

tle opportunity either for disk scheduling or informed clustering for this application.

Sphinx, during its long initialization phase which includes more than 80% o

accesses, issues requests in ascending order. Many of these requests benefit from

tial readahead and so, like Davidson, the service time inTIP, no caching is higher than in

TIP, no caching(0). Clustering, even just within the prefetch horizon inTIP, no caching,

reduces the number of disk accesses by 340. Informed clustering inTIP eliminates more

than 1100 more accesses, and, compared toTIP, no caching, reduces service time pe

block from 4.15 msec to 4.09 msec. One might expect a larger reduction given the

random accesses seen in Figure 6.8, but there are two reasons why this is not th

First, the large number of nearly sequential accesses during the initialization phase

provide much opportunity for substantial improvement and this brings the average d

Second, during the recognition phase when accesses are more random, hints are

small bursts (see Figure 3.6). There is no opportunity to cluster across these bursts

clustering opportunity is not as great as it appears. Informed clustering needs hints

many future accesses to be most effective.

Agrep obtains a 10% reduction in disk service time for disk scheduling bec

informed prefetching can sort requests across multiple files. But, because clusterin

happens within files as explained in Section 5.2.2, and because Agrep reads files s

tially, evenTIP, no caching(0), which only clusters for sequential accesses, builds all

clusters possible and there is no additional benefit from using more hints for info

clustering.

Gnuld derives a few percent benefit from better request sorting inTIP, no caching

compared toTIP, no caching(0). Gnuld also derives a small additional benefit from clu

tering a few access from one pass over its input files with accesses to contiguous bl

subsequent passes.

Finally, as discussed at length in the previous section, Postgres’ many random

benefit most of all the applications from both disk scheduling and informed clusterin

the 20%-match case, disk scheduling inTIP, no caching reduces the service time pe

block by 19% and informed clustering inTIP further reduces it by another couple of pe

160 CHAPTER 6

% and

uests

 from

plica-

eduling

rovide

 a 22%

 use

d inter-

er, it is

sent

sive

 and

hould

ve its

om-

suffer

other

ent to

 hints,

 little

may

ation.

 been

lace.
cent. In the 80%-match case, disk scheduling reduces average service time 24

informed clustering reduces it by another 22%.

Overall, most of the benchmark applications were able to organize their file req

into ascending order to start with. Consequently, for most of the benchmarks, gains

both scheduling and informed clustering are only a few percent. However, when ap

tions perform reads that are scattered randomly as is the case for Postgres, disk sch

can reduce average disk service time by up to 24%. Further, if applications can p

hints about many accesses, as Postgres can, informed clustering can provide up to

reduction in service time.

6.4 Multiple-process results

Multiprogramming I/O-intensive applications does not generally lead to efficient

of resources because these programs eject each other’s blocks from the cache an

pose disk accesses which disturbs each other’s disk access sequentiality. Howev

inevitable that I/O-intensive programs will be multiprogrammed. In this section, I pre

the implications of informed prefetching and caching on multiprogrammed I/O-inten

applications.

When multiple applications are running concurrently, the informed prefetching

caching system should exhibit three basic properties. First and foremost, hints s

increase overall throughput. Second, an application that gives hints should impro

own performance. Third, non-hinting applications should not suffer unfairly when a c

peting application gives hints. This last is a bit vague; what does it mean not to

unfairly?

In my view, it does not mean that a non-hinter should not suffer at all when an

application hints. All applications suffer when forced to share a machine and the ext

which they suffer depends on how the other applications use the machine. Without

an I/O-intensive application may be blocked on the disk so often that it interferes

with a CPU-intensive application. When the I/O-intensive application gives hints, it

stall less on the disk, use more of the CPU, and slow down the CPU-intensive applic

But, the same thing would have happened if the CPU-intensive application had

forced to share the machine with another CPU-intensive application in the first p

TIP PERFORMANCE EVALUATION 161

but that

t nec-

 multi-

to an

ques-

fer so

suffer

operty

rease

rhead

ement

airs of

Here,

s even

 non-

cold

 results

n and

act of

resent

plete,

 idle.

ts, and

me is

 and

r indi-

eses).
When an application gives hints, it changes the way it uses a machine’s resources,

does not mean it uses them unfairly.

The previous argument only asserts slowing down a competing application is no

essarily unfair; it does not define fairness. Fairness is a deep issue, especially when

ple resources are involved and a ‘fair’ allocation of the disk, for example, may lead

‘unfair’ allocation of the CPU. I do not attempt here to find answers to these hard

tions. For the purposes of this dissertation, I take it to be fair for an application to suf

long as overall throughput increases. That is, it would be unfair for an application to

so much that overall throughput suffers. From this perspective, the third desired pr

listed above is really just another facet of the first property: that hints should inc

overall throughput. The cost-benefit model attempts to reduce the sum of the I/O ove

and stall time for all executing applications, and thus, I expect the resource manag

algorithms to benefit multiprogrammed workloads and have the desired properties.

To explore how well TIP meets these performance expectations, I report three p

application executions: Gnuld/Agrep, Sphinx/Davidson, and XDataSlice/Postgres.

Postgres performs the join with 80% matches and precomputes its data accesse

when it does not give hints. For each pair of applications, I ran all four hinting and

hinting combinations on TIP starting the two applications simultaneously with a

cache and measuring the elapsed time of each. Figures 6.18 through 6.20 show the

for Gnuld/Agrep, and Figures 6.21 through 6.23 show the results for Sphinx/Davidso

XDataSlice/Postgres.

In both sets of figures, the upper graphs (Figures 6.18 and 6.21) show the imp

hints on throughput for the three pairs of applications. Tables 6.16 through 6.18 p

these same results in tabular format. I report the time until both applications com

broken down by total CPU time and simultaneous stall time during which the CPU is

In all cases, the maximum elapsed time decreases when one application gives hin

decreases further still when both applications give hints. Simultaneous I/O stall ti

virtually eliminated for two out of the three pairs when both applications give hints

the parallelism of 10 disks is available.

The middle and lower graphs in the two sets of figures show the elapsed time fo

vidual applications when paired with another application (whose name is in parenth

162 CHAPTER 6

y
 is
ch
ent
e
ld

e
e
on.
re
see
ly
 or

 o
the
ars
om
p
 to
is
ne
ld
Figure 6.18. Elapsed time for both Gnuld and Agrep
to complete. The pair of workloads are run concurrentl
on TIP and the elapsed time of the last to complete
reported along with the total CPU busy time. For ea
number of disks, four bars are shown. These repres
the four hint/nohint combinations. For example, th
second bar from the left in any quartet of bars is Gnu
hinting and Agrep not hinting.

Figure 6.19. Elapsed time for Gnuld when run with
Agrep. These figures report data taken from the sam
runs onTIP as reported in Figure 6.18. However, th
elapsed time shown represents only Gnuld’s executi
The hint/nohint combinations are identical to Figu
6.18. Compare bars one and two or three and four to
the impact of giving hints when Agrep is respective
non-hinting or hinting. Compare bars one and three
two and four to see the impact of Agrep giving hints.

Figure 6.20. Elapsed time for Agrep when run with
Gnuld. These figures report data from the same setf
runs as reported in Figures 6.18 and 6.19. However,
inner two bars are swapped relative to the inner two b
of the other figures. For example, the second bar fr
the left in any quartet is Gnuld not hinting and Agre
hinting. Compare bars one and two or three and four
see the impact of giving hints when Gnuld
respectively non-hinting or hinting. Compare bars o
and three or two and four to see the impact of Gnu
giving hints.

1 2 3 4 10
number of disks

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

CPU

I/O stall
nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

Gnuld and Agrep

Gnuld (with Agrep)

Agrep (with Gnuld)

TIP PERFORMANCE EVALUATION 163

,
nx and
e right.

me
 are for

e
the inner
er of a
(a) Sphinx and Davidson

(a) Sphinx (with Davidson)

(a) Davidson (with Sphinx)

Figure 6.21. Elapsed time for both applications to compete.In a format identical to that of Figure 6.18
this figure shows the elapsed time for both of a pair of applications to complete. Results for Sphi
Davidson running together are on the left, results for XDataSlice and Postgres, 80% match are on th

Figure 6.22. Elapsed time for one of a pair of applications. These figures report data taken from the sa
runs as reported in Figure 6.21. However, in a format identical to that of Figure 6.19, the times shown
only one of a pair of applications running. Sphinx is on the left and XDataSlice is on the right.

Figure 6.23. Elapsed time for the other of a pair of applications.These figures report data from the sam
runs as Figures 6.21 and 6.22. However, the inner two bars of each quartet are swapped relative to
two bars of the other figures. Thus, in a format identical to Figure 6.20, they report the time for the oth
pair of applications. Davidson is on the left and Postgres, 80% match is on the right.

(b) XDataSlice and Postgres,80% match

(b) XDataSlice (with Postgres, 80% match)

(b) Postgres, 80% match with XDataSlice

CPU

I/O stall
1 2 3 4 10

number of disks

0

100

200

300

400

500

600

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

100

200

300

400

500

600

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

100

200

300

400

500

600

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

200

400

600

800

1000

1200

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

200

400

600

800

1000

1200

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

1 2 3 4 10
number of disks

0

200

400

600

800

1000

1200

el
ap

se
d

tim
e

(s
ec

)

nohint - nohint
hint - nohint
nohint - hint
hint - hint

164 CHAPTER 6

r

o

Table 6.16. Elapsed time for both Gnuld and Agrep to complete. This table gives the complete data fo
Figure 6.18.

Table 6.17. Elapsed time for both Sphinx and Davidson to complete.The data in this table corresponds t
the left-hand graph in Figure 6.21.

Table 6.18. Elapsed time for both XDataSlice and Postgres, 80% match, to complete. This is the
complete data for the right-hand graph in Figure 6.21.

Gnuld - Agrep
1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
14.72 154.96 14.61 117.86 14.61 106.40 14.52 103.52 14.42 92.27

(0.14) (7.46) (0.03) (2.83) (0.23) (2.56) (0.16) (1.29) (0.09) (0.69)

hint - no hint
13.52 108.99 12.72 58.85 12.75 46.19 12.76 39.35 12.62 27.41

(0.22) (3.75) (0.14) (1.49) (0.14) (0.83) (0.10) (1.11) (0.04) (0.60)

no hint - hint
14.54 125.77 14.37 102.46 14.37 94.47 14.43 92.41 14.39 86.12

(0.16) (0.21) (0.04) (1.70) (0.07) (0.49) (0.22) (1.76) (0.06) (2.58)

hint - hint
14.30 94.22 14.23 49.64 14.19 36.92 14.22 31.79 14.42 20.50

(0.23) (2.54) (0.16) (0.48) (0.07) (0.77) (0.08) (0.15) (0.16) (0.33)

Sphinx -
Davidson

1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
263.11 268.61 265.03 154.08 270.54 88.48 296.91 85.72 272.74 58.27

(1.25) (1.43) (0.52) (1.65) (0.67) (1.40) (22.8) (9.27) (1.54) (0.38)

hint - no hint
267.37 235.56 270.34 93.01 278.48 23.62 278.17 26.42 279.69 10.38

(0.52) (1.34) (1.45) (3.33) (1.46) (1.13) (1.04) (1.43) (1.37) (0.36)

no hint - hint
263.03 172.55 265.32 105.52 267.98 62.25 269.69 66.02 268.56 50.49

(0.94) (6.14) (0.86) (10.4) (2.61) (3.18) (4.98) (1.56) (0.67) (1.08)

hint - hint
268.70 125.76 270.06 44.20 282.23 16.28 272.97 17.21 273.21 8.73

(1.16) (2.66) (0.69) (1.39) (18.3) (2.10) (1.52) (0.27) (1.85) (0.13)

XDataSlice -
Postgres, 80%

1 disk 2 disks 3 disks 4 disks 10 disks

CPU stall CPU stall CPU stall CPU stall CPU stall

no hint - no hint
97.62 1005.1 95.74 616.98 94.65 466.93 95.18 458.29 95.84 347.98

(0.89) (2.12) (0.39) (4.39) (0.77) (1.99) (0.73) (2.70) (1.36) (5.05)

hint - no hint
86.03 642.12 82.76 356.67 82.37 270.33 83.23 265.44 82.88 182.24

(0.79) (3.32) (1.01) (1.28) (0.37) (1.43) (1.91) (8.15) (0.27) (4.26)

no hint - hint
92.21 587.22 91.14 396.06 92.32 328.67 89.90 316.84 100.19 256.40

(0.95) (12.6) (0.34) (2.93) (0.41) (3.07) (1.31) (14.1) (8.61) (4.65)

hint - hint
84.34 487.52 82.16 195.33 81.10 112.36 81.46 100.81 81.91 36.45

(0.72) (3.98) (1.40) (2.04) (0.68) (1.10) (0.50) (6.70) (0.47) (5.15)

TIP PERFORMANCE EVALUATION 165

s, the

apped

upper

while

 does

e indi-

ults

ppli-

nstead

e the

tions

ause

and

e disk

rmi-

direc-

es are

e disk

k, this

PU uti-

equen-

for

 are at

require a

t share

s seen

tive-

ilization
Although vertical columns of graphs in the figures correspond to the same test run

middle two bars in any quartet of the lower figures (Figures 6.20 and 6.23) are sw

relative to the middle two bars in the corresponding quartets of the middle and

graphs. So, for example, in Figures 6.18 and 6.19, ‘hint-nohint’ means Gnuld hints

Agrep does not, whereas in Figure 6.20 ‘hint-nohint’ means Agrep hints while Gnuld

not. Tables 6.19 through 6.24 show the prefetching and caching performance for th

vidual applications in each pair of experiments.

A traditional goal of multiprogramming is to increase CPU utilization. These res

show that multiprogramming I/O-intensive workloads has the opposite effect when a

cations must share a single disk. For example, running Gnuld and Agrep together i

of serially on a single disk reduces CPU utilization by 21% from 11% to 8.7% becaus

pair of applications uses the disk much less efficiently than do either of the applica

when running alone. Both applications read multiple files from any one directory. Bec

Digital UNIX’s UFS file system tries to store individual files sequentially on the disk

to store multiple files from the same directory near each other on the disk surface, th

workloads of both Gnuld and Agrep utilize the disk read head efficiently or, in the te

nology of Chapter 2, have high sequentiality. But, because they read from different

tories, when the applications are run together on a single disk, their access

interleaved and the workload sequentiality is greatly reduced. This increases averag

service time from 6.9 msec to 9.3 msec. Because the single disk is the bottlenec

increase in service time leads to an increase in elapsed time and the reduction in C

lization noted above.

Sharing a single disk between XDataSlice and Postgres reduces disk workload s

tiality just as it did for Gnuld and Agrep. The problem is particularly acute

XDataSlice’s many false readaheads. When running alone, the false readaheads

least sequential. But, when interleaved with Postgres’ accesses, these readaheads

long expensive seek. Further exacerbating the problem is that when Postgres mus

the cache with XDataSlice, its reuse hits drop from about 20,000 to about 10,000 a

in the ‘no hint - no hint,’ single-disk row of Table 6.24. This reduction in cache effec

ness translates into an increase in disk load. Together these effects reduce CPU ut

by 41% from 15% to 8.9%.

166 CHAPTER 6

 shaded

ersed in
Table 6.19. Gnuld prefetching and caching performance when run with Agrep. This table shows results
for the Gnuld runs in Figure 6.19 on arrays of one and ten disks. The shaded rows correspond to the
rows in Table 6.20 below.

Table 6.20. Agrep prefetching and caching performance when run with Gnuld. This table shows results
for the Agrep runs in Figure 6.20 on arrays of one and ten disks. Just as the middle two bars were rev
that figure, so the middle pairs of rows are reversed relative to Table 6.19 above.

Gnuld
(with

Agrep)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
23197 766 5747 2673 11563 4593 7040 5246

(13.7) (13.7) (613) (317) (14.6) (106) (104) (96.0)

10
23201 770 5728 2633 11581 4565 7054 5210

(7.55) (7.55) (634) (319) (16.4) (103) (92.3) (89.3)

hint -

no hint

1
23286 854 10427 4302 12709 10296 280 240

(7.55) (7.55) (199) (80.2) (168) (173) (6.57) (1.82)

10
23296 864 10310 4189 12847 10174 274 235

(6.17) (6.17) (151) (116) (84.9) (82.5) (6.87) (3.31)

no hint -

hint

1
23201 770 5512 2549 11608 4557 7036 5240

(12.3) (12.3) (6.96) (3.19) (15.6) (5.14) (6.99) (5.18)

10
23273 842 5496 2515 11667 4538 7068 5216

(18.5) (18.5) (8.92) (4.70) (16.1) (8.00) (9.80) (10.0)

hint -

hint

1
23253 821 10499 4331 12534 10447 271 240

(45.3) (45.3) (276) (197) (201) (206) (5.55) (3.11)

10
23248 816 10451 4145 12587 10399 261 231

(11.5) (11.5) (123) (73.0) (84.1) (83.7) (12.7) (5.86)

Agrep
(with

Gnuld)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
3041 113 1020 573 96 1013 1932 1926

(0.00) (0.00) (367) (268) (0.00) (367) (367) (367)

10
3043 115 1019 513 98 1012 1932 1926

(6.17) (6.17) (367) (257) (5.94) (367) (367) (367)

hint -

no hint

1
3036 108 2932 1764 94 2929 13 6

(12.3) (12.3) (5.29) (1.74) (6.50) (5.14) (7.55) (3.08)

10
3050 122 2931 1600 104 2927 18 8

(6.17) (6.17) (0.00) (0.00) (5.65) (0.00) (0.51) (0.51)

no hint -

hint

1
3037 109 868 465 98 860 2078 2077

(0.00) (0.00) (8.74) (7.71) (0.00) (8.74) (8.74) (8.74)

10
3037 109 863 406 98 855 2084 2083

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

hint -

hint

1
3036 108 2930 1763 93 2927 15 6

(12.3) (12.3) (0.51) (0.51) (6.17) (0.00) (6.17) (3.08)

10
3041 113 2931 1600 96 2928 16 7

(0.00) (0.00) (1.03) (0.00) (1.54) (3.08) (4.63) (2.06)

TIP PERFORMANCE EVALUATION 167

nd to the

ars were
Table 6.21. Sphinx prefetching and caching performance when run with Davidson. This table shows
results for the Sphinx runs in Figure 6.22a on arrays of one and ten disks. The shaded rows correspo
shaded rows in Table 6.22 below.

Table 6.22. Davidson prefetching and caching performance when run with Sphinx. This table shows
results for the Davidson runs in Figure 6.23a on arrays of one and ten disks. Just as the middle two b
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.21 above.

Sphinx
(with

Davidson)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
78745 1010 21260 4384 50800 17702 10243 4765

(16.6) (16.3) (31.4) (8.84) (160) (27.0) (165) (53.6)

10
78874 1142 21315 4359 50417 17704 10752 4982

(15.1) (15.1) (24.9) (10.8) (43.7) (40.8) (21.7) (17.4)

hint -

no hint

1
78630 1127 27256 6936 51175 26476 978 890

(25.5) (25.5) (28.5) (94.9) (37.0) (120) (125) (126)

10
78596 1093 28090 6955 50331 27521 744 666

(22.6) (22.6) (41.8) (73.6) (50.6) (94.6) (89.1) (88.0)

no hint -

hint

1
78874 1142 21294 4413 50603 17692 10578 4909

(89.6) (89.6) (40.0) (11.2) (67.7) (30.3) (56.8) (32.2)

10
78889 1157 21366 4382 50172 17629 11087 5189

(14.8) (14.8) (53.7) (10.2) (58.7) (56.0) (63.4) (50.9)

hint -

hint

1
78562 1059 27898 6931 50481 27386 694 609

(68.9) (68.9) (108) (93.1) (81.8) (162) (124) (122)

10
78595 1092 28321 7025 50165 27671 758 680

(21.2) (21.2) (106) (72.2) (120) (149) (54.6) (58.2)

Davidson
(with

Sphinx)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
147029 1128 124859 15977 21368 124828 832 254

(0.63) (0.00) (5.65) (1.03) (0.63) (4.63) (4.63) (3.08)

10
147563 1663 124859 16083 21796 124797 970 336

(93.1) (93.1) (14.1) (7.55) (74.7) (12.2) (9.06) (6.24)

hint -

no hint

1
147397 1495 64212 10185 83115 64073 208 136

(2.86) (1.99) (537) (232) (526) (532) (28.3) (29.4)

10
147446 1544 61913 10146 85442 61794 209 166

(172) (172) (845) (488) (1010) (852) (115) (115)

no hint -

hint

1
147330 1430 124964 16017 21566 124897 867 277

(72.7) (72.5) (27.4) (10.0) (66.5) (15.7) (8.43) (3.49)

10
147568 1668 124862 16085 21799 124796 972 336

(87.9) (87.9) (16.6) (6.21) (74.1) (12.6) (4.03) (3.00)

hint -

hint

1
147299 1397 61536 9770 85698 61414 187 137

(153. (153) (1990) (90.3) (1890) (1950) (40.8) (30.7)

10
147527 1625 60224 9576 87220 60143 163 118

(142) (142) (571) (362) (627) (586) (6.83) (7.24)

168 CHAPTER 6

.
 shaded

.
ars were
Table 6.23. XDataSlice prefetching and caching performance when run with Postgres, 80% match
This table shows results for the XDataSlice runs in Figure 6.22b on arrays of one and ten disks. The
rows correspond to the shaded rows in Table 6.24 below.

Table 6.24. Postgres, 80% match, prefetching and caching performance when run with XDataSlice
This table shows selected results for the Postgres runs in Figure 6.23b. Just as the middle two b
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.23 above.

XDataSlice
(with

Postgres)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
48467 2105 60815 22722 2836 25417 20213 20160

(41.6) (41.6) (10.3) (2.97) (32.9) (8.26) (6.97) (3.15)

10
48322 1961 60873 22691 2705 25412 20205 20155

(326) (326) (53.8) (19.6) (290) (38.2) (25.0) (16.9)

hint -

no hint

1
48253 1892 45287 14862 2794 45272 186 142

(82.3) (82.3) (32.9) (15.7) (50.9) (31.3) (14.2) (11.9)

10
48191 1830 44965 14905 3061 44951 179 136

(48.3) (48.3) (19.8) (14.5) (42.2) (18.9) (2.44) (2.38)

no hint -

hint

1
48770 2409 60860 22738 3068 25460 20241 20178

(204) (204) (46.7) (18.1) (155) (29.9) (20.1) (14.2)

10
48598 2228 60937 22715 2889 25465 20243 20181

(37.3) (38.0) (31.6) (10.5) (65.2) (22.9) (8.85) (7.06)

hint -

hint

1
48251 1890 45323 14878 2758 45309 184 140

(54.3) (54.3) (45.6) (13.2) (48.0) (43.7) (12.3) (10.3)

10
48211 1850 44986 14909 3057 44973 180 137

(40.7) (40.7) (11.4) (21.3) (37.9) (12.2) (4.81) (4.19)

Postgres
(with

XDataSlice)
disks

requests prefetches cache

total faults blocks I/Os
reuse
hits

prefetch
hits

misses
miss
I/Os

no hint -

no hint

1
33697 2430 1173 253 10440 369 22887 22791

(44.6) (44.2) (14.9) (9.36) (87.6) (9.81) (88.1) (86.4)

10
33702 2435 1308 271 10140 429 23132 23039

(29.0) (30.7) (10.8) (7.68) (385) (26.9) (404) (403)

hint -

no hint

1
33719 2449 10072 6139 17018 9305 7395 7299

(8.11) (6.17) (157) (98.3) (344) (97.7) (247) (246)

10
33654 2384 11019 6206 15082 9772 8800 8721

(105) (106) (751) (573) (738) (560) (470) (468)

no hint -

hint

1
33750 2475 1133 248 12582 421 20747 20647

(7.33) (7.55) (1.74) (1.26) (121) (5.83) (115) (115)

10
33732 2457 1172 244 18168 679 14885 14786

(52.3) (52.8) (6.05) (3.51) (341) (4.22) (360) (367)

hint -

hint

1
33727 2449 10117 6010 15207 9261 9258 9156

(21.3) (22.6) (84.3) (339) (192) (153) (100) (97.7)

10
33764 2486 10619 5616 21298 9040 3425 3334

(39.7) (38.2) (283) (200) (407) (107) (414) (424)

TIP PERFORMANCE EVALUATION 169

k and

 shar-

 multi-

e large

service

ask

ughly

n not

mina-

lica-

nsive

tions,

cut-

CPU

21%

zation

not a

pro-

 disk

tching

giving

ion is

mpare

n fact,

ning by

duling

n the

g with
Sphinx and Davidson are well-behaved when they run together on a single dis

CPU utilization is unchanged. Neither of them use much cache when not hinting, so

ing the cache does not cause extra misses. And, both of them do a fair number of

block sequential accesses which get clustered into large disk accesses. Thes

accesses are fairly efficient so that interleaving them only increases aggregate disk

time by 7%. The two applications do enough computation for multiprogramming to m

most of this modest increase in disk service time, and CPU utilization remains ro

constant at about 50%.

In contrast to the single-disk performance, multiprogramming on disk arrays ca

only increase processor utilization, but also expose I/O concurrency. Qualitative exa

tion of the ‘no hint - no hint’ bars in the graphs shows that, in contrast to single-app

tion performance, larger arrays reduce elapsed time for multiprogrammed, I/O-inte

applications. Quantitatively, on a three-disk array and for all three pairs of applica

the CPU utilization when multiprogramming is within 5% of the utilization when exe

ing the applications serially. A ten-disk array turns Gnuld/Agrep’s 21% reduction in

utilization into a 17% increase and XDataSlice/Postgres’ 41% reduction into a

increase. In an age when processor cost is declining rapidly, the greater CPU utili

when multiprogramming these applications compared to their serial execution is

compelling argument for multiprogramming. However, for a machine that is multi

grammed, these results do provide compelling evidence of the benefit of using a

array.

The real goal of these experiments, though, is to understand how informed prefe

and caching behaves in a multiprogrammed environment. To see the impact of

hints on an individual application’s elapsed time when a second non-hinting applicat

run concurrently, compare bars one and two in Figures 6.19/6.20 and 6.22/6.23. Co

bars three and four to see the impact when the second application is giving hints.

In most cases, giving hints substantially reduces an application’s elapsed time. I

the reductions on one disk are generally greater than when the applications are run

themselves. By queuing multiple requests, prefetching allows better request sche

which compensates for the loss of disk workload sequentiality that results whe

accesses of two applications are interleaved. An exception is Davidson when runnin

170 CHAPTER 6

 non-

aiting

ching

e more

idson

nds

o see

e the

shows

 6.22,

phinx

on no

Sphinx

nts, it

ses, the

hich

se the

enefits

 is evi-

which

 over-

e sec-

it may

mpeting

 hints

 suffer

ormed

time, it

pplica-
Sphinx as shown on the left in Figure 6.23. Without hints, Davidson’s aggressive

hinting readahead lets it monopolize a single disk and Sphinx spends a lot of time w

for Davidson’s accesses to complete. When Davidson gives hints, informed ca

increases reuse hits which reduces the load on the disk and Sphinx’s I/Os complet

quickly leading Sphinx to demand more of the CPU. This reduces the benefit Dav

sees from its hints when it is multiprogrammed with Sphinx. Effectively, Davidson e

up sharing some of the benefit of its hinting with Sphinx.

This brings us to the effect of hints on other applications running in the system. T

the impact on a non-hinting application of another application giving hints, compar

first and third bars in Figures 6.22 and 6.23. Comparing the second to fourth bars

the impact on a hinting application. As described above, and is clear from Figure

Sphinx derives substantial benefit from Davidson’s hints. On the other hand, when S

hints, it is able to compete more effectively against Davidson’s readaheads. Davids

longer dominates resource usage and consequently Davidson slows down when

hints. A reverse effect befalls Agrep when Gnuld hints. In that case, when Gnuld hi

becomes an aggressive user of disk resources which delays Agrep. But, in most ca

non-hinting application benefits from the hinter’s more efficient usage of resources w

leaves more resources for the non-hinter. Non-hinters may also benefit simply becau

hinter completes more quickly and relinquishes resources. Postgres, for example, b

when XDataSlice completes and leaves it the cache buffers for its index lookups as

dent from the large number of reuse hints in the last two 10-disk rows of Table 6.24

show performance when XDataSlice is hinting.

Stepping back from the details of the dynamics of these pairs of applications, the

all conclusion is that when one application hints, throughput increases. And when th

ond application also hints, throughput increases further. When an application hints,

become a more aggressive consumer of system resources at the expense of co

applications. However, as the analysis of the performance when neither application

showed, applications suffer when they must share resources, and how much they

depends on which other application they must share with. But, because the TIP inf

prefetching and caching system allocates resources to reduce overall I/O service

only takes a resource from one application and allocates it to another if the second a

TIP PERFORMANCE EVALUATION 171

erall

ints to

stated

ming

er of

 of I/O-

h to

ench-

 ten-

o take

esses.

ntly

 par-

f

on in

el for a

 for

8%

. This

n for

y

se the
tion will make better use of the resource. The first application may suffer, but ov

throughput increases. As these experiments show, TIP does take advantage of h

reduce I/O service time and improve overall performance. Thus, TIP achieves its

goals: for a single application, TIP reduces elapsed time; and when multiprogram

multiple applications, TIP increases throughput.

6.5 Lessons from prefetching and caching experiments

In this section, I distill the experience gained from the experiments into a numb

general lessons about informed prefetching and caching and about the performance

intensive applications.

1. Serial workloads need prefetching to take advantage of array parallelism. This

insight was one of the original motivations for this work. It is important enoug

restate here and observe that, without informed prefetching, five of the six b

mark applications studied in this dissertation derive little benefit from even a

disk array as shown way back in Figure 2.2. Sequential readahead is able t

advantage of parallel transfer from an array for Davidson’s large sequential acc

But, without some form of effective prefetching, disk arrays do not significa

reduce elapsed time for applications with serial workloads.

2. Informed prefetching obtains its greatest performance gains from prefetching in

allel, not from overlapping I/O and CPU. Prefetching is most commonly thought o

as a technique for overlapping I/O and CPU. But, by far the greatest reducti

elapsed time comes when TIP takes advantage of an array to prefetch in parall

serial workload. From Table 6.25, prefetching to overlap I/O and computation

these benchmarks (TIP, no caching on one disk) reduces elapsed time by up to 2

or an average of 17%. But, prefetching in parallel from a ten-disk array (TIP, no

caching on ten disks) reduces elapsed time by up to 84% or an average of 63%

latter performance gain is well in excess of the 50% maximum possible gai

overlapping I/O and computation which was described in Figure 2.3.

3. Informed caching can increase cache effectiveness. When applications repeatedl

access more unique blocks than fit in the cache, informed caching can increa

172 CHAPTER 6

 with

 or

kload

order.

more

e time

order

 not

ential

ficantly

 are

not in

sses.

cesses,

stering

d

rs
averages
number of reuse hits and reduce dependence on the disk. When coupled

informed clustering inTIP, informed caching reduces elapsed time by up to 36%

an average of 13% compared toTIP, no caching on a single disk where informed

prefetching is least effective.

4. Informed prefetching enables more effective disk scheduling that increases wor

sequentiality when accesses are not already in ascending block-address

Informed prefetching uses hints to build larger disk queues which provides

opportunity for disk scheduling to sort requests and reduce average disk servic

per block by up to 24%. But, sorting requests into ascending block-address

with the CSCAN algorithm only increases sequentiality if the requests are

already in ascending order. Many of the benchmarks do not perform sequ

accesses, but do issue requests in ascending order and do not benefit signi

from more effective disk scheduling. However, when any of the benchmarks

multiprogrammed, the aggregate workload of the interleaved accesses is

ascending order and disk scheduling can increase disk performance.

5. Informed clustering can substantially reduce disk service time for random acce

Clustering sequential reads can reduce the CPU overhead servicing disk ac

but because most modern disks perform their own sequential readahead, clu

Table 6.25. Performance summary for all the benchmarks. This table shows, for each benchmark an
each array size, the elapsed time forTIP, no caching andTIP as a fraction of the elapsed time forTIP, no
hints on the same array size. I useTIP, no hints instead ofDigital UNIX as the base case to eliminate facto
such as the LRU annex and focus instead on the impact of prefetching, caching, and clustering. The
in the last row are the geometric mean of the numbers in each column.

benchmark
1 disk 2 disks 3 disks 4 disks 10 disks

TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP
TIP, no
cache

TIP

Davidson 0.99 0.63 0.98 0.81 0.97 0.88 0.96 0.88 0.90 0.83

XDataSlice 0.74 0.73 0.47 0.47 0.35 0.35 0.30 0.30 0.18 0.18

Sphinx 0.93 0.93 0.83 0.83 0.79 0.80 0.79 0.79 0.77 0.78

Agrep 0.83 0.83 0.48 0.49 0.37 0.37 0.28 0.28 0.16 0.16

Gnuld 0.81 0.76 0.50 0.46 0.41 0.38 0.35 0.34 0.26 0.26

Postgres, 20% 0.81 0.77 0.61 0.59 0.56 0.54 0.54 0.52 0.53 0.51

Postgres, 80% 0.72 0.50 0.46 0.35 0.38 0.32 0.35 0.31 0.33 0.31

geom. mean 0.83 0.72 0.59 0.55 0.51 0.48 0.46 0.44 0.37 0.36

TIP PERFORMANCE EVALUATION 173

ndom

tiality

 up to

disk.

e time

buffers

ter-

s will

ferred

apsed

 enough

uous

ingle

inted

lity of

tes that

stered

y and

 time

 most

neficial.

t help

k and
does not deliver sequential data any sooner. But, when clustering turns many ra

requests into fewer, larger ones, clustering increases disk workload sequen

which, as seen in the Postgres benchmarks, can reduce disk service time by

22%.

6. Informed clustering can increase the number of blocks transferred from

Informed clustering only fetches blocks that are valuable enough to cache at th

they are fetched. But, value estimates are dynamic and better uses of the

holding cluster-prefetch blocks may arise, including the opportunity to clus

prefetch for an access that will occur sooner. Any ejected cluster-prefetch block

have to be fetched from disk a second time, increasing the total blocks trans

from disk. In none of the experiments did this effect lead to a net increase in el

time because clustering accesses decreases per-block service time more than

to offset the cost of refetching some ejected clustered-prefetch blocks.

7. Cache replacement decisions affect disk workload sequentiality. Ejecting a hinted

block implies a subsequent prefetch of the block. If the ejected block is contig

to another uncached, hinted block, it may be possible to prefetch both in a s

cluster. On the other hand, if the ejected block is not contiguous to any other h

block, prefetching it will require a separate disk access. Clearly, the sequentia

these prefetches is greater in the former case. Developing ejection cost estima

are sensitive to the difference in cost between clustered prefetch and non-clu

prefetches would be an interesting area of future research.

8. Optimizing disk performance is most beneficial on a single disk. More effective disk

scheduling and request clustering which both increase workload sequentialit

therefore disk read-channel utilization only have a significant impact on elapsed

when the disk is the bottleneck on system performance. The disk bottleneck is

acute on a one-disk array and so that is where these techniques are most be

When the disk is not the bottleneck, improvements in disk performance do no

improve the performance of whatever other system component is the bottlenec

so have a much smaller impact on overall performance.

174 CHAPTER 6

tial-

 I/O

odern

 But,

out 1

ks to

r to

sses are

s an

ver the

 uti-

ulti-

egate

put.

 com-

 this

 disk

ads

erate

mall,

 can

ation

g two

ution.

uces

gate
9. Informed prefetching from an array can compensate for poor workload sequen

ity. This is the dual of the previous rule. The cheapest way to obtain high

throughput is with sequential accesses to a small number of disks. A single m

disk drive can deliver about 10 MBytes/sec for a purely sequential workload.

when forced to perform random 8-KByte accesses, its throughput drops to ab

MByte/sec. Informed prefetching can take advantage of an array of ten dis

deliver 10 MBytes/sec despite poor workload sequentiality. It is still cheape

obtain needed throughput with sequential accesses, but when sequential acce

difficult or impossible to generate, informed prefetching from an array provide

alternative strategy that can compensate for poor access sequentiality and deli

needed storage bandwidth.

10.Multiprogramming I/O-intensive workloads on one disk reduces throughput. When

the limited bandwidth of a single disk is the bottleneck in a system, maximizing

lization of the disk maximizes system throughput. Interleaving accesses from m

ple I/O-intensive applications, in general, reduces the sequentiality of the aggr

disk workload which reduces disk-head utilization and therefore disk through

This loss of disk throughput reduces system throughput by as much as 41%

pared to serial execution of the applications. Informed prefetching mitigates

effect through improved disk scheduling, but system throughput still drops.

11.Multiprogramming increases I/O concurrency and therefore the throughput of a

array. I already noted above that individual applications with serial disk worklo

cannot exploit array parallelism. Multiprogramming such applications can gen

I/O concurrency which increases array throughput. But, if the array is too s

interleaving accesses reduces the throughput of the individual disks which

negate the increase in throughput from I/O concurrency. In the two-applic

experiments, the break-even point was at about three disks; multiprogrammin

applications on four or more disks increases throughput relative to serial exec

In contrast to informed prefetching which increases I/O concurrency and red

elapsed time for individual applications, multiprogramming only increases aggre

TIP PERFORMANCE EVALUATION 175

lapsed

when

ir of

d to

 even

se.

 out-

tes

fetch-

n from

n stall

mpor-

 to dis-

rs tune

help

izons.

 hints as
at
I/O concurrency which increases system throughput but does not reduce e

time for individual applications.

12.On a single disk, informed prefetching and caching are even more beneficial

multiprogramming than when executing applications serially.Table 6.26 summa-

rizes the results of the multiprogramming experiments. When both of a pa

benchmarks give hints,TIP reduces elapsed time by an average of 37% compare

28% when the benchmarks run alone. Managing the disk and cache well is

more important when multiprogramming is reducing the effectiveness of their u

13. Informed prefetching can derive a large benefit from even a small number of

standing hints.Because prefetching out to the prefetch horizon effectively elimina

stall for hinted accesses when an array is available, it follows that informed pre

ing does not require hints beyond the prefetch horizon. In fact, as can be see

the graphs showing stall time as a function of prefetch depth, large reductions i

are possible at prefetch depths much smaller than the prefetch horizon. It is i

tant that applications disclose multiple accesses at once, but it is not necessary

close thousands at once. Nevertheless, I do not recommend that programme

their hint-giving to the prefetch horizon. Giving as many hints as possible will

ensure that there are enough hints for future machines with larger prefetch hor

Table 6.26. Performance summary for the multiprogramming experiments. This table shows, for each
array size, the elapsed time until both benchmarks complete when one of a pair and when both give
a fraction the elapsed time when neither gives hints. In the1 hinter columns, the hinter is the benchmark th
appears on the same row as the ratio. Theaverage row gives the geometric average of each column.

benchmark
1 disk 2 disks 3 disks 4 disks 10 disks

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

1
hinter

both
hint

Gnuld with

Agrep

0.72
0.64

0.54
0.48

0.49
0.42

0.44
0.39

0.38
0.33

0.83 0.88 0.90 0.91 0.94

Sphinx with

Davidson

0.95
0.74

0.87
0.75

0.84
0.83

0.80
0.76

0.88
0.85

0.82 0.88 0.92 0.88 0.96

XDataSlice with

Postgres, 80%

0.66
0.52

0.62
0.39

0.63
0.34

0.63
0.33

0.60
0.27

0.62 0.68 0.75 0.73 0.80

geom. mean 0.76 0.63 0.73 0.52 0.74 0.49 0.71 0.46 0.73 0.42

176 CHAPTER 6

 noted

tches

/O

rallel

ance

ading

blocks

nds of

sses dis-

ptimi-

 hints

egies.

pth of

tegy

ppli-

n seek

f these

pted its

h to

nted

ample,

jected
Furthermore, deep hints are beneficial for informed clustering and caching, as

below.

14.To be useful, hints do not need to be given far in advance if they are given in ba

and an array is available.Hints given far in advance are useful for overlapping I

with computation. But, achieving the much larger performance gains of pa

prefetching requires multiple outstanding hints at a time but not much adv

notice. XDataSlice, for example, discloses its hints and immediately starts re

data, but still derives a huge benefit from I/O parallelism.

15.Deep hints are needed for informed clustering and caching. Informed clustering can

merge widely separated accesses into one. Informed caching can hold onto

for hundreds or thousands of accesses. But, clustering and caching thousa

accesses in advance requires hints for thousands of accesses. The more acce

closed, the greater the opportunity for clustering and caching. Because these o

zations are most important on a single disk or small arrays, it follows that deep

are most important there as well.

16.Heuristic prefetching needs to be more adaptive than existing readahead strat

Digital UNIX has an adaptive sequential readahead strategy that scales its de

prefetching in proportion to the number of blocks read sequentially. This stra

works well for Davidson’s sequential workload, but hurts performance when a

cations such as XDataSlice and Gnuld read a few blocks sequentially and the

to a new offset. The readahead strategy could possibly reduce the number o

harmful, false readaheads if it monitored the success of its prefetches and ada

aggressiveness accordingly.

17.The LRU queue is an imperfect predictor of future behavior. The LRU algorithm is

the most common heuristic for determining which blocks to cache and whic

eject. Yet, it is an imperfect estimator for the value of caching blocks for unhi

accesses that is especially vulnerable to phase transitions. Postgres, for ex

grows the LRU queue in fruitless attempt to achieve cache hits on the already e

TIP PERFORMANCE EVALUATION 177

esti-

r

not a

ingle

hing

ecent

 to the

added

ces of

ermine

urrent

Hz.

 bytes

nother

uffer

 the

d and

ormal

tes of

 con-

ecking
outer-relation blocks. Its twice-accessed workload is particularly bad for LRU

mation.

18.Pathologically unbalanced disk loads exist. Striping effectively balances the load fo

most of the applications, but XDataSlice demonstrates that simple striping is

universal solution. Randomized striping could help balance the load within a s

device, but there will inevitably be imbalances among devices. Ideally, prefetc

and caching should be sensitive to such imbalances and adapt accordingly. R

work has shown how this can be done [Kimbrel96, Tomkins97].

6.6 System overhead

TIP’s cost-benefit cache management adds both CPU and memory overheads

system. In this section, I quantify these overheads.

To measure the CPU overheads of the different components of the system, I

hand-coded trace points to the entry and exit of selected functions and collected tra

five runs of each of the benchmark applications. I post-processed the traces to det

how much time was spent in the different components of the system.

6.6.1 Tracing infrastructure

Each trace record contains 8 bytes. The time stamp, occupying 4 bytes, is the c

value of the Digital Alpha processor cycle counter which has a resolution of 1/175 M

Two bytes are used for a tag that uniquely identifies each trace point. The last two

are available for a parameter which is used only when switching from one task to a

to record the process id of the old and new processes.

When tracing is on, trace records are stuffed into a statically-allocated in-kernel b

64 MBytes in size which is large enough for about 8 million trace records. When

benchmark run is finished, tracing is turned off and the contents of the buffer are rea

stored in a file for later processing. Because the buffer is so large, it disturbs the n

paging behavior of some of the benchmarks. To compensate, an additional 64 MBy

RAM were added to the system during tracing runs.

To minimize tracing overhead, there is no locking on the trace buffer. Instead,

flicts for the buffer are detected and compensated for during post-processing by ch

178 CHAPTER 6

, the

index

 of a

t there

 a low

.There

 auto-

added

ories.

 spent

inter-

ench-

tage of

luding

s I/O

d, but

note

es not

d

ache,

, but
he run
for backwards-moving time stamps. Also, rather than checking for buffer overflow

size of the buffer is restricted to be a power of two, and the high-order bits of the

into the buffer are masked off, effectively implementing a circular buffer. At the end

tracing run, all of the bits of the index into the trace buffer are checked to ensure tha

has been no wrap-around. The number of records collected during a run ranges from

of about 130,000 for Agrep running on Digital UNIX to a high of about 8,400,0003 for

Davidson when hinting on TIP. Each trace record adds about 40 cycles of overhead

is some variation due to cache effects. This overhead is substantially lower than

mated techniques such as Digital’s ATOM [Eustace95] package which would have

a few hundred cycles per record.

6.6.2 CPU overhead

Table 6.27 analyzes the CPU activity of the seven benchmarks into six categ

User is the time spent at user level between system calls. It does not include time

servicing disk interrupts, but it does include untraced interrupts, such as the clock.System

total reports the total CPU time spent in system calls by the application plus disk

rupts plus idle-process I/O-completion activity. Because these are I/O-intensive b

marks, almost all system time is spent in thefile system. The table reports thetotal time for

the file system and breaks this into four sub-categories,copy, I/O, TIP, andother. It gives

the 95% confidence interval based on the five runs in parentheses and the percen

the total file-system time spent in each of these sub-categories.Copy is the time spent

moving data between user space and the kernel cache buffers.I/O is time spent marshal-

ling buffers for disk accesses plus time spent actually performing the accesses inc

queuing requests, initiating them at the drive, and servicing interrupts. Idle-proces

activity is included here. I/O interrupts serviced by other processes are not include

this time is only about 1-3% of the total time for I/O. It is interesting, for example, to

the large reduction in the time XDataSlice spends on I/O when it gives hints and do

suffer from false readahead.Other includes all other file-system activity in the unmodifie

system, including time spent going through the vnode layer, finding blocks in the c

3 This one run requires a little more than 64 MBytes of RAM, so I enlarged the buffer a little
lied to the tracing code, telling it there was a 128 MByte buffer, and kept my fingers crossed that t
completed before the buffer was overrun. Fortunately, it did.

TIP PERFORMANCE EVALUATION 179

ark

k to
ble 6.28
benchmark system user
system

total
file system

total copy I/O TIP other

Davidson

Digital UNIX
 82.01 26.83 26.65 14.68 5.91 0.00 6.07
(0.63) (0.21) (0.19) (0.12) (0.09) (0.00) (0.08)

 100.0% 55.1% 22.2% 0.0% 22.8%

TIP, no hints
 83.47 31.64 31.45 14.89 5.61 4.39 6.57
(0.93) (0.46) (0.45) (0.26) (0.19) (0.09) (0.08)

 100.0% 47.3% 17.8% 14.0% 20.9%

TIP
 81.19 29.43 29.24 14.27 3.11 7.60 4.26
(1.12) (0.23) (0.23) (0.14) (0.20) (0.04) (0.05)

 100.0% 48.8% 10.6% 26.0% 14.6%

XDataSlice

Digital UNIX
 11.46 26.72 25.83 7.73 12.21 0.00 5.89
(0.01) (0.09) (0.07) (0.01) (0.03) (0.00) (0.05)

 100.0% 29.9% 47.3% 0.0% 22.8%

TIP, no hints
 11.48 29.38 28.38 7.70 11.81 2.72 6.15
(0.06) (0.15) (0.15) (0.01) (0.02) (0.02) (0.12)

 100.0% 27.1% 41.6% 9.6% 21.7%

TIP
 11.43 21.73 20.72 7.74 4.74 3.76 4.48
(0.02) (0.36) (0.35) (0.01) (0.31) (0.02) (0.02)

 100.0% 37.3% 22.9% 18.1% 21.6%

Sphinx

Digital UNIX
 133.67 11.18 9.89 3.08 2.90 0.00 3.92

(0.46) (0.05) (0.06) (0.03) (0.03) (0.00) (0.03)
 100.0% 31.1% 29.3% 0.0% 39.6%

TIP, no hints
 135.15 13.52 12.03 3.10 2.98 1.33 4.62

(1.30) (0.39) (0.34) (0.04) (0.04) (0.01) (0.28)
 100.0% 25.7% 24.8% 11.1% 38.4%

TIP
 136.88 14.84 13.32 3.09 2.27 3.21 4.75

(0.86) (0.07) (0.09) (0.03) (0.02) (0.03) (0.03)
 100.0% 23.2% 17.1% 24.1% 35.7%

Agrep

Digital UNIX
 0.60 1.64 1.24 0.25 0.68 0.00 0.31
(0.01) (0.08) (0.08) (0.03) (0.04) (0.00) (0.03)

 100.0% 20.2% 54.9% 0.0% 24.9%

TIP, no hints
 0.60 1.73 1.31 0.24 0.68 0.09 0.30
(0.02) (0.03) (0.03) (0.01) (0.03) (0.00) (0.01)

 100.0% 18.0% 51.8% 7.1% 23.0%

TIP
 0.59 1.81 1.35 0.23 0.47 0.34 0.31
(0.00) (0.02) (0.02) (0.00) (0.01) (0.00) (0.01)

 100.0% 16.9% 34.7% 25.2% 23.2%

Gnuld

Digital UNIX
 5.23 5.37 4.88 1.14 2.20 0.00 1.55
(0.03) (0.11) (0.10) (0.01) (0.07) (0.00) (0.04)

 100.0% 23.3% 45.0% 0.0% 31.8%

TIP, no hints
 5.21 6.14 5.57 1.14 2.24 0.55 1.64
(0.01) (0.10) (0.10) (0.00) (0.07) (0.01) (0.02)

 100.0% 20.4% 40.2% 9.8% 29.5%

TIP
 5.27 6.01 5.47 1.15 1.39 1.31 1.61
(0.02) (0.11) (0.11) (0.00) (0.05) (0.02) (0.05)

 100.0% 21.1% 25.5% 24.0% 29.5%

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchm
spends inuser andsystem code and the system time spent in thefile system. File system time is broken into
four categories: copying data between user and system space (copy); initiating and servicing disk requests
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one bloc
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Ta
summarizes these numbers.

180 CHAPTER 6

ada-

nd of

orted

rmine

t

il-

, and

l file-

 that

rfor-

h com-

f file-

ystem

ark

k to
ble 6.28
reallocating buffers from one block to another, and time spent initiating heuristic re

head. To facilitate comparison between the overhead of heuristic readahead a

informed prefetching, the time TIP spends initiating informed prefetches is also rep

in other. However, the time TIP spends calculating cost and benefit estimates to dete

whether it should prefetch is included in theTIP category which includes all activities tha

are unique to the TIP system. Thus,TIP includes all cost and benefit calculations, prof

ing the LRU cache, running the min-max algorithm to pick pages for replacement

tracking blocks in the cache of hinted blocks.

Table 6.28 summarizes the file-system results for all of the benchmarks. The tota

system time is the geometric mean of the ratios betweenTIP, no hints or TIP and the base

UNIX system. For the four file-system components, I wanted one set of numbers

would simultaneously give a feel for both the component-by-component relative pe

mance of the systems, and the portion of total time that each system spends in eac

ponent. Thus, for each component, I report the arithmetic average percentage o

system time it represents, scaled by the previously computed ratio for the total file-s

Postgres,
20% match

Digital UNIX
 24.43 3.22 3.05 1.02 1.22 0.00 0.81
(0.10) (0.08) (0.06) (0.01) (0.03) (0.00) (0.03)

 100.0% 33.5% 40.1% 0.0% 26.4%

TIP, no hints
 24.82 3.62 3.44 1.07 1.26 0.27 0.84
(0.18) (0.03) (0.03) (0.01) (0.02) (0.01) (0.02)

 100.0% 31.1% 36.6% 7.9% 24.4%

TIP
 24.45 3.69 3.51 1.09 1.03 0.51 0.88
(0.59) (0.04) (0.03) (0.01) (0.02) (0.02) (0.02)

 100.0% 31.0% 29.4% 14.5% 25.0%

Postgres,
80% match

Digital UNIX
 36.01 10.26 9.74 3.64 3.65 0.00 2.45
(0.41) (0.12) (0.10) (0.06) (0.03) (0.00) (0.04)

 100.0% 37.4% 37.5% 0.0% 25.1%

TIP, no hints
 36.95 11.71 11.06 3.58 3.67 1.02 2.79
(0.34) (0.12) (0.12) (0.01) (0.06) (0.04) (0.13)

 100.0% 32.4% 33.2% 9.2% 25.2%

TIP
 35.88 11.27 10.63 3.79 1.96 2.16 2.72
(0.34) (0.14) (0.13) (0.03) (0.04) (0.07) (0.07)

 100.0% 35.6% 18.5% 20.3% 25.6%

benchmark system user
system

total
file system

total copy I/O TIP other

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchm
spends inuser andsystem code and the system time spent in thefile system. File system time is broken into
four categories: copying data between user and system space (copy); initiating and servicing disk requests
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one bloc
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Ta
summarizes these numbers.

TIP PERFORMANCE EVALUATION 181

, TIP

he

 even

drop.

35%.

e on

ch as

ahead.

tios for

ute the
verages
rithmetic
 per-
tal file-
mselves

ould be
e is not
 allows
.

e
 four
text for
 hints.

 the net
times. For example, to compute the relative timeTIP, no hints spends inI/O, I first com-

pute the arithmetic average of the percentages of timeTIP, no hints spends inI/O in each

of the benchmarks,

,

and then scale this by the total time spent inTIP, no hints,

.4

The summary in Table 6.28 shows that when the applications do not give hints

adds an average overhead of 13.5% to the file system, most of which is spent in tTIP

category. When the applications do give hints, TIP’s overall overhead drops to 8.9%

though the time spent in TIP functions doubles. Several factors contribute to this

First, TIP’s I/O optimizations reduce the time spent on I/O by an average of over

Applications such as Davidson, which benefit from informed caching, spend less tim

I/O because they read fewer blocks from disk when they give hints. Others, su

XDataSlice, read fewer blocks because informed prefetching reduces false read

4 I like this approach better than two possible alternatives. One would have been to report ra
each component just as I do for the total. Unfortunately, the ratio is not defined for theTIP component which
has the value 0.00 for the base Digital UNIX system. Another alternative would have been to comp
geometric average of the percentages of time spent in each component. But, I prefer the arithmetic a
because they sum to 100% for each system whereas the geometric averages do not. Using the a
average is equivalent to implicitly weighting equally each benchmark’s contribution to overall system
formance and taking the total time to run all benchmarks as the metric of interest. In this case, the to
system time and the total time spent in each component would be meaningful numbers in and of the
and then, according to Jain [Jain91, p. 190], the arithmetic average, and not the geometric average, w
the best estimate of the portion of time spent in each component. So, reporting the arithmetic averag
unreasonable. Moreover, scaling the arithmetic averages by the ratios for the total file-system time
both component-by-component comparison and comparison among the components for each system

system
file system

total copy I/O TIP other

Digital UNIX 1.000 0.33 0.39 0.00 0.28

TIP, no hints 1.135 0.33 0.40 0.11 0.30

TIP 1.089 0.33 0.25 0.24 0.27

Table 6.28. File system CPU overhead summary. This table shows the geometric average ratio of tim
spent in the TIP file system with and without hints relative to the base UNIX system. For the
components, this ratio is multiplied by the average fraction of filesytem time each represents (see
further explanation). Overall, TIP adds a 13.5% CPU overhead to the file system when not given
When hints are available, TIP I/O and caching optimizations partially offset TIP overhead and reduce
overhead to 8.9%.

17.8% 41.6% 24.8% 51.8% 40.2% 36.6% 33.2%+ + + + + +
7

--- 0.35=

0.35 1.135× 0.40=

182 CHAPTER 6

ltiple

w giv-

le

es

nt the

t. This

 LRU

 LRU

 LRU

 begin

. The

block

ching

rhead

 these

bably

-

value

 other

 picked

ock or

 the

 size

w hints
Finally, other applications, such as Postgres, benefit from informed clustering of mu

reads into one disk access. An understanding of where time is spent in TIP, and ho

ing hints reducesotherfile-system overhead by nearly 10% requires further analysis.

Table 6.29 breaks time in theTIP column of Table 6.27 into five categories and Tab

6.30 uses the same approach as Table 6.28 to summarize the results except thatTIP, no

hints is used as the base.Hint bookkeepingincludes the time to give hints, resolve nam

of hinted files into a file handle, and build the internal data structures that represe

hints in the cache manager. It also includes a check on every read for a matching hin

is why there is non-zero hint bookkeeping even when applications don’t give hints.LRU

profiling is the time spent recording where in the LRU queue cache hits occur. The

estimator uses this information to generate its estimate of the cost of shrinking the

queue. Because the LRU annex was created to enable efficient profiling of the

queue, time spent moving buffers to and from the annex is included here.LRU profiling

represents by far the largest portion of TIP overhead without hints.Hinted-block tracking

refers to the time spent by hint estimators updating their data structures when they

or end ‘tracking’ a block as part of the min-max algorithm described in Section 4.3.5

current implementation’s use of a simple insertion sort when it starts tracking a

appears not to add too much overhead in most cases.Hint cost/benefit estimates is the time

spent simply computing cost and benefit estimates for prefetching or hinted ca

whenever the min-max algorithm needs one to make allocation decisions. The ove

here is substantial because of the relatively slow divide operations. Reimplementing

cost calculations as a table lookup, at least within the prefetch horizon, could pro

reduce this time substantially. Finally,pick, query, update is the core of the min-max algo

rithm. It includes the time spent picking the least valuable buffer, updating the new

of the estimator that gave up the buffer (except the actual cost estimate), querying

interested estimators, and updating the cost for an estimator that starts tracking the

block. It also includes benefit updates when an application consumes a hinted bl

when the prefetcher issues a new prefetch.

When the system is running without hints, two-thirds of the time is spent profiling

LRU queue. To reduce this overhead, it would certainly be possible to dynamically

the LRU-queue segments to use larger ones during periods when the system had fe

TIP PERFORMANCE EVALUATION 183

.
n when
ue

e

benchmark system

TIP

total
hint book-
keeping

LRU
profiling

hinted-
block

tracking

hint
cost/benefit
 estimates

pick, query,
update

Davidson

TIP,
no hints

 4.39 0.04 3.16 0.00 0.00 1.20
(0.09) (0.00) (0.09) (0.00) (0.00) (0.03)

 100.0% 0.8% 71.9% 0.0% 0.0% 27.3%

TIP
 7.60 0.76 2.29 0.65 1.16 2.74
(0.04) (0.01) (0.02) (0.01) (0.02) (0.03)

 100.0% 10.0% 30.1% 8.6% 15.2% 36.1%

XDataSlice

TIP,
no hints

 2.72 0.06 1.73 0.00 0.00 0.93
(0.02) (0.01) (0.00) (0.00) (0.00) (0.00)

 100.0% 2.2% 63.6% 0.0% 0.0% 34.1%

TIP
 3.76 0.70 1.05 0.24 0.61 1.15
(0.02) (0.00) (0.01) (0.01) (0.01) (0.02)

 100.0% 18.7% 28.0% 6.4% 16.2% 30.7%

Sphinx

TIP,
no hints

 1.33 0.07 0.91 0.00 0.00 0.35
(0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0% 5.2% 68.2% 0.0% 0.0% 26.6%

TIP
 3.21 0.79 0.76 0.06 0.61 0.99
(0.03) (0.01) (0.01) (0.00) (0.01) (0.03)

 100.0% 24.7% 23.7% 1.8% 19.1% 30.7%

Agrep

TIP,
no hints

 0.09 0.01 0.06 0.00 0.00 0.03
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

 100.0% 6.2% 64.5% 0.0% 0.0% 29.1%

TIP
 0.34 0.17 0.05 0.01 0.04 0.07
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

 100.0% 50.1% 16.1% 2.1% 11.3% 20.5%

Gnuld

TIP,
no hints

 0.55 0.02 0.37 0.00 0.00 0.16
(0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0% 3.1% 67.6% 0.0% 0.0% 29.4%

TIP
 1.31 0.49 0.31 0.06 0.16 0.30
(0.02) (0.01) (0.00) (0.01) (0.00) (0.01)

 100.0% 37.3% 23.4% 4.9% 11.9% 22.6%

Postgres
20% match

TIP,
no hints

 0.27 0.01 0.20 0.00 0.00 0.06
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

 100.0% 4.1% 72.4% 0.0% 0.0% 23.5%

TIP
 0.51 0.07 0.20 0.03 0.07 0.14
(0.02) (0.00) (0.01) (0.00) (0.01) (0.01)

 100.0% 13.6% 39.4% 6.2% 13.9% 26.8%

Postgres
80% match

TIP,
no hints

 1.02 0.09 0.71 0.00 0.00 0.22
(0.04) (0.00) (0.04) (0.00) (0.00) (0.01)

 100.0% 9.0% 69.5% 0.0% 0.0% 21.5%

TIP
 2.16 0.38 0.61 0.42 0.29 0.46
(0.07) (0.06) (0.01) (0.03) (0.01) (0.02)

 100.0% 17.8% 28.2% 19.4% 13.5% 21.1%

Table 6.29. TIP CPU overhead. This table breaks the time spent inTIP in Table 6.27 into five categories
Hint bookkeeping includes storing hints and checking whether accesses match hints which occurs eve
an application does not hint.LRU profiling is time spent estimating the hit ratio as a function of LRU que
length and represents by far the largest share of TIP overhead in the absence of hints.Hinted block tracking
is the cost of tracking blocks in the hinted cache.Hint cost/benefit estimates is the cost of computing cost
and benefit estimates.Pick, query, update is the core of the min-max buffer allocation algorithm. Th
numbers in parentheses are the 95% confidence intervals. The percentages are of totalTIP time.

184 CHAPTER 6

e, the

queue

 gen-

mma-

ers of

,

call

loop

release

 6.27.

lock

ccess.

Table

,

ection

n for

ed,

on

total
e
ead is
false

TIP CPU
and therefore little need for precise profiling of the queue. Then, when hints did arriv

segments could be shrunk to gain a more precise estimation of the value of LRU-

buffers. A more radical solution would be to change the way LRU cost estimates are

erated. In Chapter 7, I suggest a possible alternative.

To explore the effect giving hints has on theother parts of the file system (from Table

6.27), Table 6.31 details how time is spent within this category and Table 6.32 su

rizes the results in the usual way. The tables show the time spent in the different lay

code traversed by a read request as it goes through the system. At the highest levelsystem

call to copyout loop includes the time from the invocation of a read or write system

down through the VFS layer to the copyout loop in the UFS layer. The copyout

includes three main steps: get a buffer, copy its contents to/from user space, and

the buffer. The time to actually copy the data was separately accounted for in Table

The other two steps are accounted for in this table byget data buffer andrelease hold on

buffer.

Get data bufferincludes the time to call the cache manager with a request for a b

and if the requested block is not cached, to allocate a new buffer and initiate a disk a

Recall that the time to actually perform the I/O was separately accounted for in

6.27. The time to do the cache lookup iscache lookup. When the TIP system has hints

this lookup step is avoided because the block is found directly from the hint (see S

5.1 for details). This is why the lookup time for the TIP system is so much lower tha

Digital UNIX andTIP, no hints. If the buffer is not cached and a buffer must be allocat

then the time to allocate a new buffer and reassign it from the old to the new block isallo-

cate buffer. Note thatallocate buffer does not include the time to run the TIP allocati

system

TIP

total
hint book-
keeping

LRU
profiling

hinted-
block

tracking

hint
cost/benefit
 estimates

pick, query,
update

TIP, no hints 1.000 0.04 0.68 0.00 0.00 0.27

TIP 2.130 0.52 0.57 0.15 0.31 0.57

Table 6.30. TIP CPU overhead summary. This table shows the geometric average ratio between the
times spent inTIP with and without hints. For the fiveTIP components, this ratio is multiplied by th
average fraction of time spent in each component. Without hints, about two-thirds of TIP overh
profiling the LRU queue. With hints, LRU profiling overhead drops slightly because, for example,
readaheads no longer go through the queue, but all other overheads increase which doubles overall
overhead.

TIP PERFORMANCE EVALUATION 185

e
ses are
benchmark system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Davidson

Digital
UNIX

 6.07 0.97 1.09 0.73 1.53 0.48 0.61 0.65
(0.08) (0.07) (0.04) (0.01) (0.04) (0.00) (0.01) (0.01)

 100.0% 15.9% 17.9% 12.0% 25.3% 7.9% 10.1% 10.7%

TIP,
no hints

 6.57 1.00 1.21 0.99 1.61 0.63 0.52 0.61
(0.08) (0.04) (0.02) (0.05) (0.01) (0.01) (0.01) (0.02)

 100.0% 15.2% 18.5% 15.1% 24.5% 9.6% 7.9% 9.3%

TIP
 4.26 1.00 1.50 0.01 0.36 0.35 0.37 0.66
(0.05) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.03)

 100.0% 23.5% 35.2% 0.3% 8.5% 8.3% 8.7% 15.4%

XDataSlice

Digital
UNIX

 5.89 1.11 1.35 0.42 1.24 0.39 0.41 0.94
(0.05) (0.01) (0.02) (0.01) (0.01) (0.00) (0.00) (0.01)

 100.0% 18.9% 22.9% 7.2% 21.1% 6.7% 7.0% 15.9%

TIP,
no hints

 6.15 1.33 1.42 0.48 1.24 0.45 0.36 0.87
(0.12) (0.03) (0.04) (0.00) (0.04) (0.01) (0.00) (0.01)

 100.0% 21.6% 23.0% 7.8% 20.1% 7.4% 5.8% 14.2%

TIP
 4.48 1.43 0.99 0.01 0.35 0.33 0.32 1.04
(0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

 100.0% 31.9% 22.2% 0.3% 7.9% 7.4% 7.1% 23.1%

Sphinx

Digital
UNIX

 3.92 1.51 0.94 0.34 0.47 0.13 0.30 0.23
(0.03) (0.02) (0.02) (0.02) (0.01) (0.00) (0.00) (0.00)

 100.0% 38.5% 23.9% 8.8% 11.9% 3.2% 7.7% 6.0%

TIP,
no hints

 4.62 1.84 1.11 0.45 0.44 0.17 0.37 0.23
(0.28) (0.12) (0.01) (0.02) (0.01) (0.00) (0.16) (0.00)

 100.0% 39.9% 24.0% 9.7% 9.4% 3.8% 8.0% 5.1%

TIP
 4.75 1.72 1.52 0.03 0.21 0.19 0.27 0.82
(0.03) (0.02) (0.05) (0.00) (0.00) (0.00) (0.00) (0.01)

 100.0% 36.3% 31.9% 0.5% 4.4% 4.0% 5.6% 17.2%

Agrep

Digital
UNIX

 0.31 0.10 0.06 0.02 0.07 0.01 0.02 0.02
(0.03) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

 100.0% 33.4% 19.9% 7.1% 23.1% 3.8% 6.7% 5.6%

TIP,
no hints

 0.30 0.12 0.07 0.03 0.05 0.01 0.02 0.02
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

 100.0% 38.7% 22.5% 8.4% 15.5% 4.2% 5.8% 5.1%

TIP
 0.31 0.11 0.07 0.00 0.03 0.02 0.02 0.06
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

 100.0% 36.2% 22.8% 0.3% 9.2% 6.4% 5.4% 20.0%

Gnuld

Digital
UNIX

 1.55 0.41 0.52 0.12 0.25 0.05 0.12 0.07
(0.04) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0% 26.5% 33.5% 7.7% 16.1% 3.3% 7.5% 4.8%

TIP,
no hints

 1.64 0.48 0.55 0.15 0.22 0.07 0.10 0.07
(0.02) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

 100.0% 29.3% 33.3% 9.3% 13.2% 4.1% 6.0% 4.4%

TIP
 1.61 0.47 0.55 0.04 0.12 0.09 0.09 0.25
(0.05) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.01)

 100.0% 29.0% 34.1% 2.4% 7.3% 5.4% 5.6% 15.8%

Table 6.31. CPU overhead of theother part of the file system. This table shows how time is spent in th
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parenthe
the 95% confidence intervals and percentages are of totalother time. Table 6.32 summarizes these data.

186 CHAPTER 6

.

 con-

euristic

s time

nts, the

e
ses are
algorithm which is accounted for by thepick, query, update component of Table 6.29

Before an I/O to fill the buffer is initiated, the system attempts to cluster requests for

tiguous blocks into one access which takes timecluster I/O requests. Once the hi-level

copyout loop copies the data, the buffer is released back to the cache in timerelease hold

on buffer. After the system services read hits or misses, it executes the readahead h

for unhinted accesses or checks the hint lists for something to prefetch which take

build prefetch requests.

Postgres,
20% match

Digital
UNIX

 0.81 0.23 0.28 0.06 0.13 0.02 0.05 0.03
(0.03) (0.01) (0.01) (0.02) (0.01) (0.00) (0.00) (0.00)

 100.0% 29.1% 35.2% 7.3% 15.9% 2.4% 5.8% 3.7%

TIP,
no hints

 0.84 0.28 0.32 0.05 0.09 0.02 0.04 0.03
(0.02) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00)

 100.0% 33.2% 38.5% 6.5% 10.4% 2.4% 5.2% 3.1%

TIP
 0.88 0.27 0.25 0.03 0.06 0.05 0.05 0.16
(0.02) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

 100.0% 30.6% 29.0% 3.9% 6.9% 5.1% 5.2% 18.7%

Postgres,
80% match

Digital
UNIX

 2.45 0.83 0.93 0.15 0.31 0.04 0.14 0.03
(0.04) (0.03) (0.03) (0.00) (0.01) (0.00) (0.00) (0.00)

 100.0% 34.1% 38.1% 6.1% 12.7% 1.7% 5.7% 1.3%

TIP,
no hints

 2.79 1.08 1.08 0.18 0.24 0.04 0.13 0.03
(0.13) (0.06) (0.08) (0.01) (0.01) (0.00) (0.01) (0.00)

 100.0% 38.6% 38.7% 6.5% 8.7% 1.5% 4.6% 1.2%

TIP
 2.72 0.97 0.82 0.11 0.15 0.11 0.16 0.40
(0.07) (0.04) (0.04) (0.01) (0.02) (0.01) (0.04) (0.01)

 100.0% 35.5% 30.2% 4.1% 5.4% 4.1% 5.7% 14.7%

system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Digital UNIX 1.000 0.28 0.27 0.08 0.18 0.04 0.07 0.07

TIP, no hints 1.072 0.33 0.30 0.10 0.16 0.05 0.07 0.06

TIP 0.973 0.31 0.29 0.02 0.07 0.06 0.06 0.17

Table 6.32. Summary of the CPU overhead of theother part of the file system. Performance in this part
of the file system is comparable in the TIP and base UNIX systems when there are no hints. With hi
TIP optimizations lead to a net reduction of 10% in the overhead of theother component of the file system.

benchmark system

other

total

system
call to

copyout
loop

get data
buffer

cache
lookup

allocate
buffer

cluster
I/O

requests

release
hold on
buffer

build
prefetch
requests

Table 6.31. CPU overhead of theother part of the file system. This table shows how time is spent in th
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parenthe
the 95% confidence intervals and percentages are of totalother time. Table 6.32 summarizes these data.

TIP PERFORMANCE EVALUATION 187

para-

rall

 of the

h

e con-

). The

ndent.

m one

stantial.

cupies

ers of

 hints

ations

truc-

a could

 not a

ne 64-

r

 list for
uld save
s.
As the summary data in Table 6.32 show, the TIP and base UNIX system are com

ble except that when TIP has hints, it can reduce thecache lookups andallocate buffers

components which more than offsets the increase in thebuild prefetch requests compo-

nent. The net effect is about a 10% reduction in the overhead for theother part of the file

system. Becauseother accounts for 25-30% of total file-system overhead, the ove

reduction in file-system overhead is 2.5-3.0%.

6.6.3 Memory overhead

The TIP system consumes some memory for the data structures that keep track

buffers, store hints, and link hints to buffers as hints are resolved.

Even when there are no hints, TIP allocates atipBuf structure (see Figure 5.8) for eac

cache page which supports functions such as profiling the LRU queue. The structur

sumes 104 bytes per page which amounts to a 1.2% overhead.

When an application issues a hint, TIP allocates one 568-bytetipHnt structure plus

one 24-bytetipSeg for each hinted segment or sequential byte range (see Section 3.2

amount of data actually consumed by hint structures is very much application-depe

As Table 3.3 showed, there may from one to thousands of segments per hint and fro

to thousands of blocks per segment. The aggregate memory consumed can be sub

The Postgres (80% match) benchmark issues a hint with 15916 segments which oc

a total of almost 47 pages of memory. For the system to support truly vast numb

hints, it may become necessary to store distant hints on disk.

Of more concern might be the tipHnt structure if many applications give separate

for very small amounts of data. If this becomes a problem, then some simple optimiz

could significantly reduce the size of the tipHnt structure. Of the 568 bytes in the s

ture, 456 are devoted to recording permissions data to aid name resolution. This dat

be stored per-process instead of per-hint to eliminate 80% of this overhead. It was

problem in our experiments, so this data was stored with the hint for convenience.

The final major memory overhead comes when the hints are resolved. There is o

byte tipNex structure for each resolved block.5 And, if the hinted block is not eithe

5 It would be possible to dispense with the separate tracking and prefetching links, have one
the whole access sequence, and rely on a flag to indicate that the buffer was being tracked. This wo
24 bytes per nexus, but would add CPU overhead for sequentially searching the list for tracked block

188 CHAPTER 6

ocates

ached

 many

ere are

issue a

ulta-

much

sually

 much

 Dig-

d for

 64 to

to 117

xhaus-

ould

quired

ions:

small

ication

rks by

ingle
already resident, an LRU ghost buffer, or the target of a resolved hint, the system all

a tipBuf structure for the block. In the worst case, where all hints are for unique, unc

blocks, this amounts to an overhead of 64+104=168 bytes per resolved block. How

such structures are simultaneously allocated is application dependent. Certainly th

no more of them than there are outstanding hints, and most of the benchmarks only

portion of their hints at a time. But, Postgres, for example, issues many hints sim

neously. In this case, the caching horizon, described in Section 5.3.1, limits how

memory may be devoted to any single hint stream to at most 10,000 blocks and u

less. At 10,000 resolved blocks, the tipNex and tipBuf structures could consume as

as 205 pages which is the largest single potential overhead.

A substantial portion of the TIP data structures are memory pointers which on the

ital Alpha CPU are 8 bytes in size. A 32-bit architecture would suffer half the overhea

these pointers which would reduce a tipBuf from 104 to 60 bytes and a tipNex from

36 bytes. This would reduce the worst-case 205 pages of resolved-hint overhead

pages.

These data structures occupy the space they do because they explicitly and e

tively enumerate the outstanding, resolved hints. An interesting area of future work w

be to develop more compact representations of hints that yet could support the re

pick, query, and bid functions without adding too much CPU overhead.

6.7 Conclusion

The experimental results presented in this chapter support three primary conclus

1. many I/O-intensive applications do not benefit from a disk array;

2. informed prefetching’s greatest gains come from prefetching in parallel; and

3. informed caching and the disk optimizations deliver their greatest gains on

arrays.

Together, informed prefetching and caching are hugely successful at reducing appl

elapsed time on any array size.

On a single disk, TIP reduces elapsed time for the suite of application benchma

7% to 50% or an average of 28%. When multiprogramming two applications on a s

TIP PERFORMANCE EVALUATION 189

d time

tions

hing,

gram-

hints,

uces

or an

ults.

antage

age of

experi-

n the

tand-

ers into

imited

aching

elapsed

a sin-

 up to

h of the

elimi-

rther

verhead

most

 cach-

 real-

 also

ificant
disk, TIP’s informed resource management is even more beneficial, reducing elapse

for the pair of applications by 26% to 48% or an average of 37% when both applica

give hints. When it can exploit the parallelism of a ten-disk array for parallel prefetc

TIP reduces elapsed time by 17% to 84% or an average of 64%. Because multipro

ming on a ten-disk array increases both CPU and array utilization even without

there is less opportunity for TIP to improve performance. Nevertheless, TIP red

elapsed time for a pair of applications running on a ten-disk array by 15% to 73%

average of 58% when both applications give hints.

A combination of optimizations is responsible for producing these overall res

Among these, the experiments showed that informed prefetching, which takes adv

of hints within the prefetch horizon, reduces elapsed time by up to 28% or an aver

17% on one disk and by up to 84% or an average of 63% on a ten-disk array. The

ments measuring stall time as a function of prefetch depth clearly show that whe

bandwidth of a disk array is available, not even a full prefetch horizon worth of outs

ing hints is required to deliver huge performance gains. Programmers and research

techniques for automatic hint generation can be confident that disclosing even a l

number of accesses at a time can still lead to large performance gains.

When hints disclose many accesses in advance, they can be used for informed c

and clustering. Compared to prefetching alone, these techniques together reduced

time for individual applications by up to an additional 36% or an average of 13% on

gle disk. On large arrays, informed caching and clustering reduced elapsed time by

8% or an average of 3%. These gains are less dramatic because, as the bandwidt

storage subsystem increases with larger array size, informed prefetching virtually

nates stalls for hinted accesses. The only opportunity for informed caching to fu

improve performance is to reduce the number of accesses and therefore the CPU o

of performing I/O. Managing the cache well and maximizing disk performance is

important when cache and disk resources are in short supply. Thus, TIP’s informed

ing and clustering see their greatest gains on a single disk.

In practice, most of the single-disk informed caching and clustering gains were

ized for just two applications, Davidson and Postgres, 80% match, although Gnuld

benefitted to a lesser degree. All of these applications were able to disclose a sign

190 CHAPTER 6

ep and

medi-

ely-

 on any

cach-

data.

g and

ese

sk ser-

 up to

use, as

masks

 larger

 shorter

e from

 buff-

urce

f cache

 chap-

cache

 func-

of the

ntly

ingle-

ber of

of I/Os

ipro-

 per-

 offset
amount of reuse many accesses in advance. Other applications, such as Agr

XDataSlice reaccess little data. Still others, such as Sphinx, either reuse blocks im

ately, for which LRU caching is effective, or don’t give enough hints to capture wid

separated reuse. In particular, applications that access their files in ascending order

single pass, even if not fully sequential because of strides, gain little from informed

ing and clustering if they don’t disclose hints about multiple passes over the

Informed caching and clustering can only help workloads that provide both cachin

clustering opportunities and hints that span these opportunities.

With regard specifically to optimizing the performance of individual disks, th

experiments showed that informed prefetching’s longer disk queues can reduce di

vice time by up to 24% and informed clustering can reduce per-block service time by

22% on a single disk. On larger arrays, the impact of these gains can be small beca

noted above in the case of informed caching and clustering, informed prefetching

stalls for hinted accesses. But, the impact of disk scheduling is further reduced on

arrays because prefetches are spread over a larger number of disks resulting in a

queue at each drive. Shorter queues mean smaller reductions in disk service tim

scheduling.

Informed prefetching, caching, clustering, and disk scheduling all require cache

ers to improve performance. The original goal in developing the framework for reso

management based on cost-benefit analysis was to find a way to balance the use o

buffers to take advantage of all of these optimizations. The results presented in this

ter show that cost-benefit analysis is indeed an effective mechanism for allocating

buffers. With regard to informed prefetching, the experiments measuring stall as a

tion of prefetch depth show that the upper-bound prefetch horizon captures most

potential stall reduction from both prefetching and disk scheduling without significa

cutting into cache performance, at least for a single application. Further, in the s

application experiments, informed caching and clustering always increase the num

reuse hits, reduce the number of blocks fetched from disk, and reduce the number

needed to fetch the blocks. Significantly, in no experiment, single-application or mult

gramming, didTIP’s application of these resource-demanding optimizations reduce

formance. Never was prefetching so deep that losses in cache effectiveness

TIP PERFORMANCE EVALUATION 191

 LRU

formed

me. On

d time

case.

veral

ation.

 overall

NIX

sented

prove-

hus,

r the

tations

ty for

 appli-

hedul-

ortant

alysis

rom all
prefetching gains. Never was informed caching so aggressive that reductions in

cache effectiveness for unhinted accesses more than offset its gains. Never did in

clustering reduce cache effectiveness enough to lead to an increase disk service ti

the contrary, TIP consistently achieved its stated goal of reducing application elapse

in the single-application case and improving throughput in the multiprogramming

TIP’s cost-benefit buffer allocation effectively balanced the use of buffers for the se

optimizations.

The cost-benefit estimations do not consider the overhead of the TIP implement

But, any serious evaluation must. The overheads measured are noticeable, but the

performance of the TIP system without hints is comparable to the standard Digital U

system. And, when TIP has hints, the performance gains in all the experiments pre

here more than offset the losses due to these overheads. Still, there is room for im

ment. The single largest CPU overhead in the TIP system is for LRU profiling. T

innovations in the algorithms for estimating the cost of shrinking the LRU queue offe

greatest opportunity for CPU overhead reduction. Finding more compact represen

for hints that do not add significantly to CPU overhead offer the greatest opportuni

reducing the memory overhead of the system.

This performance evaluation of TIP shows that a system can take advantage of

cation disclosure of future accesses for prefetching, caching, clustering, and disk sc

ing and dramatically reduce the elapsed time required to run a broad range of imp

I/O-intensive applications. Further, it shows that a system based on cost-benefit an

can effectively manage cache resources to obtain substantial performance gains f

four of these optimizations.

192 CHAPTER 6

193

ation

on cost-

ns. In

vide

known

ested

o disk

umber

oss the

 syn-

ce on

roces-

s? Will

tions

d the
Chapter 7

Generalizing the Results and Future
Work

The experiments presented in Chapter 6 clearly demonstrated the utility of applic

disclosure of future accesses and the effectiveness resource management based

benefit analysis. And yet, the experiments raised or left open a number of questio

this chapter, I will explore some of these in more depth. Where possible, I will pro

answers, or point to work that provides answers. But, in many cases, answers are un

and I raise the questions here only to point to them as areas for future work.

In Section 7.1, I take up the question of why TIP performs well on a single, cong

disk even though the prefetching benefit estimate is based on the assumption of n

congestion. To answer this question, I develop a performance model that takes the n

of disks into account. The model assumes a workload that is evenly balanced acr

array and it neglects the effects of disk scheduling. But, through experiments with a

thetic application, I show that the model is useful for understanding TIP’s performan

smaller arrays.

Next, in Section 7.2, I take up the question of what happens when, over time, p

sors get faster and the prefetch horizon grows to hundreds or thousands of accesse

the upper-bound prefetch horizon, , still be useful? I find that some of the simplifica

of the current implementation may no longer be useful, and that finite bandwidth an

P̂

194 CHAPTER 7

tness.

hip to

hen

ause a

f the

ould be

rm bot-

are the

fetch-

drew

deep

tes the

 from

ch to

 an

 lay-

nter-

 from

ld help

imates

t there

delays
effects of disk scheduling may have to be accounted for explicitly to guarantee robus

But, I argue that the fundamental framework is sound.

In Section 7.3, I discuss other recent work in this area and describe its relations

this work. Specifically, in Section 7.3.1, I describe work that has shown that w

prefetching to a fixed depth, runs of cached blocks or an unbalanced disk load can c

disk to go idle. This work has shown that when, in the long term, the bandwidth o

storage subsystem is the performance bottleneck, these periods of disk idleness sh

exploited for deeper prefetching. The result is a prefetching algorithm,forestall, that

prefetches to a fixed depth when the disks are busy or when they are not the long-te

tleneck, but prefetches more deeply to take advantage of idleness when the disks

bottleneck. The considerations in Section 7.2 apply to the near-term, fixed depth pre

ing, but the deep prefetching usefully extends that work.

Then, in Section 7.3.2, I describe the results of a recent collaboration with An

Tomkins that showed how to incorporate the deep prefetching lessons offorestall into

TIP’s cost-benefit framework. The resulting system, TIPTOE, not only performs

prefetching when appropriate to take advantage of disk idleness, but also incorpora

fact that a disk is a bottleneck into its estimate for the cost of ejecting a hinted block

that disk. A simulation study compares the performance of the cost-benefit approa

buffer allocation to an alternative based on the LRU algorithm.

Both forestall and TIPTOE rely on detailed knowledge of the layout of data on

array. In Section 7.3.3, I briefly discuss how to adapt TIPTOE to a world where data

out is unknown. I conclude that TIPTOE could be much more effective if disk array i

faces included a few minimum features.

Finally, in Section 7.4, I describe a number of areas of future work. These range

specific TIP implementation issues to broad areas of systems research that wou

expand the usefulness of the informed prefetching and caching approach.

7.1 The impact of the no-congestion assumption

The performance model which served as the basis for the cost and benefit est

developed in Chapter 4 makes certain simplifying assumptions. One of these is tha

is never any disk congestion; that is, that disk requests never suffer any queuing

GENERALIZING THE RESULTS AND FUTURE WORK 195

ts pre-

act of

tion is

using

ich

pth. I

n Fig-

r stall

s

fetches
letes at

nd three
atency o
(see Section 4.2.1). Clearly, this assumption is often violated, even in the experimen

sented in Chapter 6. In this section, I will address the questions of what is the imp

this assumption, and why does the system perform so well even when the assump

grossly violated?

7.1.1 The ideal model

Recall from Section 4.2.3 that the change in I/O service time that results from

one buffer to prefetchx instead ofx-1 accesses in advance is given by Equation 4.9 wh

I repeat here:

(7.1)

Thus, the key problem is finding an expression for stall as a function of prefetch de

used a pipeline model for the servicing of prefetch requests which is first described i

ure 4.4 and is repeated here in Figure 7.1 to arrive at the following expression fo

time (Equation 4.12),

∆Tpf x() Tstall x() Tstall x 1–() .–=

Figure 7.1. Average stall time when prefetching in parallel. This figure illustrates informed prefetching a
a pipeline. In this example, three buffers are used to prefetch three blocks concurrently andTapp is assumed
fixed. At time T=0, the application gives hints for all its accesses and then requests the first block. Pre
for the first three accesses are initiated immediately. The first access stalls until the prefetch comp
T=5, at which point the data is consumed and the prefetch of the forth block begins. Accesses two a
proceed without stalls because the latency of prefetches for those accesses is overlapped with the lf
the first prefetch. But, the fourth access stalls forTstall = Tdisk - 3(Tapp+Thit+Tdriver). The next two accesses
don’t stall, but the seventh does. The application settles into a pattern of stalling every third access.

access
number

time (1 time-step = Tapp + Thit + Tdriver)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 I
2 I - - - - C
3 I - - - - C
4 I - -
5 I - - - -
6 I - - - -
7 I - -
8 I - - - -
9 I - - - -
10 I - -

- - - - C

- - C
C

C
- - C

C
C

- - C

I : initiate prefetch - : prefetch in progress C : block arrives in cache : consume block : stall

196 CHAPTER 7

umber

sks

 the

allel-

i-

ion can

for the

array

tall if

longer

 paral-

orting

n is not
(7.2)

(7.3)

The key parameter that determines the behavior of the pipeline in Figure 7.1 is the n

of prefetches that are serviced in parallel. Under the no-congestion assumption, allx of the

prefetches are serviced in parallel which leads to the appearance ofx in the denominator of

Equation 7.3. But, if there are fewer thanx disks, then it is impossible for allx prefetches

to proceed in parallel, and the no-congestion assumption no longer holds.

Suppose there ared disks. At very large prefetching depths, , the number of di

in the array ultimately limits prefetching parallelism. On the other hand, when

prefetching depth is smaller than the array size, , prefetching depth limits par

ism. It is clear, then, that the prefetching parallelism,p, can never be more than the min

mum of the prefetching depth and the array size,d, and we have

. (7.4)

In the ideal case, requests are perfectly balanced over the array and this express

be rewritten as an equality. Taking the next step, we can use this ideal expression

prefetching parallelism to rewrite Equation 7.3 in terms of prefetching depth and

size

(7.5)

Note that under the no-congestion assumption, it is always possible to eliminate s

prefetching is deep enough, but that, when this assumption is removed, it is no

always possible to eliminate stall. Once all the disks are busy, no further increase in

lelism is possible and stall is minimized, at least if we neglect the impact of request s

on disk access time as this model does. Under these conditions, the prefetch horizo

the point at which stall is eliminated, but the point at which stall is minimized.

Tstall x()
Tdisk x Tapp Thit Tdriver+ +()–

x
---=

Tdisk

x
------------- Tapp Thit Tdriver+ +() .–=

x d»

x d<

p min x d,{ }≤

Tstall x d,()
x 0= Tdisk

x 1≥
Tdisk

min x d,{ }
------------------------- Tapp Thit Tdriver+ +()–

.







=

GENERALIZING THE RESULTS AND FUTURE WORK 197

esent

ine the

ts, the

r an

he, and

Bytes

. Disk

tion to

efetch-

erpre-

ount

depth

ctice,

 may go

nten-

 con-

e stall

rives.

hm, the

ess time.

y the

ching
7.1.2 Experiments with a synthetic application

How well does this new, ideal model predict performance? In this section, I pr

the results of a number of experiments with the synthetic application used to determ

system parameters which was first described in Section 6.2. In these experimen

application iterates twice over 2000 unique random blocks from a file striped ove

array of from one to ten disks. Because this is more than the 1536 blocks in the cac

because informed caching is turned off (theTIP, no caching configuration), this results in

4000 8 KByte disk reads. The file size is scaled with array size to a constant 32 M

per disk to keep the average disk access time roughly constant across array sizes.Tapp, the

application elapsed time between read calls, is either 0, 1, 4 or 16 milliseconds

queues are sorted with the CSCAN algorithm.

Figure 7.2 compares the measured per-access stall time for this synthetic applica

the stall predicted by Equation 7.5 for a selection of array sizes and values ofTapp. The

model successfully captures the general shape of the curves. However, at small pr

ing depths it tends to underpredict stall and at large prefetching depths it tends to ov

dict stall. These two discrepancies result from two different effects.

At small prefetching depths, the key factor in determining performance is the am

of prefetching parallelism. The ideal model assumes that increasing prefetch

increases prefetching parallelism up to the limit imposed by the array size. In pra

because the accesses are chosen at random from the whole file, multiple accesses

to the same disk while another disk stays idle. The effect is much like the memory co

tion that may occur in the interleaved memory banks of a supercomputer. This disk

tention reduces the effective prefetching parallelism and consequently increases th

relative to the predicted value.

At large prefetching depths, multiple prefetches are queued at individual disk d

When the queued accesses are sorted according to the CSCAN scheduling algorit

average disk access time drops. The deeper the queue, the smaller the average acc

Naturally, this reduction in disk access time reduces the stall time experienced b

application and leads to the model’s overestimation of stall time at large prefet

depths.

198 CHAPTER 7

ictor o
ds to
 measured
 predicted

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15
st

al
l t

im
e

pe
r

ac
ce

ss
 (

m
se

c)

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

(e)Tapp = 1 msec, disks = 4

(b) Tapp = 16 msec, disks = 1

(c) Tapp = 4 msec, disks = 2

(a) Tapp = 1 msec, disks = 1

Figure 7.2. Measured per-access stall and stall predicted by the ideal model. This figure shows that for a
broad range of application compute times and disk array sizes, the ideal model is a good overall predf
stall time for a synthetic application. Nevertheless, for small prefetch depths, the model ten
underpredict stall, and for large prefetching depths, the model tends to overpredict stall.

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15
st

al
l t

im
e

pe
r

ac
ce

ss
 (

m
se

c)

(d) Tapp = 0 msec, disks = 3

0 8 16 24 32 40 48 56 64
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

(f) Tapp = 0 msec, disks = 10

GENERALIZING THE RESULTS AND FUTURE WORK 199

en the

rs are

 the

ithin

d first-

emely

is the

 itself

th the

ion of

 to sig-

model

curate,

le, the

y the

 access

a work-

ope of

locks

um-

isks to

rray

m the

more.

 disk,
To confirm that these two factors do indeed account for the discrepancies betwe

measured and predicted stall times, I ran some experiments in which these facto

eliminated. To eliminate disk contention, instead of choosing blocks randomly from

whole array, I cycled over the disks in the array and chose blocks randomly from w

each disk. To eliminate the reduction in disk access time for deep queues, I use

come-first-served (FCFS) instead of CSCAN disk scheduling.

Figure 7.3 shows that excepting these two factors, the ideal model is an extr

good predictor of actual performance. The only remaining significant discrepancy

stall on a single disk. Here we see that having a second I/O queued at the drive

allows some of the SCSI and interrupt servicing overheads to be overlapped wi

actual disk access.

The ideal model successfully captures the first-order effects, but its overestimat

parallelism on larger arrays and of disk access latency at large queue depths leads

nificant differences between predicted and actual performance. A more accurate

would require better estimates of both parallelism and access times. To be most ac

such estimates would have to take the specific workload into account. For examp

parallelism of a purely sequential workload is roughly the prefetch depth divided b

number of blocks in each stripe unit, 8 in these experiments. On the other hand, the

time for sequential accesses is much less than for random accesses. Developing

load-dependent model is an interesting area for future research; it is beyond the sc

this dissertation which is limited to generating estimates for prefetching or ejecting b

without considering the broader workload.

7.1.3 Analysis

Let us now return to the original question: why does TIP perform well on small n

bers of disks even though it’s prefetching model assumes that there are enough d

avoid any disk congestion?

Intuitively, many people suspect that the lower I/O bandwidth of a smaller a

would necessitate deeper prefetching. But, the results in Figure 7.3 show that, fro

perspective of I/O parallelism, a smaller array requires prefetching less deeply, not

For example, in Figure 7.3b, a prefetch depth of only two minimizes stall on a single

200 CHAPTER 7

Effec-

 more

fewer

 con-

nce for
 on one
ommand
whereas a prefetch depth of about twelve is required to minimize stall on ten disks.

tively, once the prefetch depth is great enough to keep all disks active, prefetching

deeply cannot further increase I/O parallelism; it takes fewer prefetches to keep

disks active. Thus, from the perspective of I/O parallelism, the assumption of no disk

Figure 7.3. Stall time when disk contention and disk scheduling are eliminated as factors.With these
factors eliminated from the experiments, the ideal model becomes an excellent predictor of performa
all prefetching depths, application compute times, and array sizes. The only remaining discrepancy is
disk where we see that having a second request queued at the drive allows the overlap of SCSI c
processing with the actual disk access.

(b) Tapp = 1 msec(a) Tapp = 0 msec

(c) Tapp = 4 msec (d)Tapp = 16 msec

0 4 8 12 16 20 24 28 32
prefetch depth

0

5

10

15
st

al
l t

im
e

pe
r

ac
ce

ss
 (

m
se

c)

 1 disk
 2 disks
 3 disks
 4 disks
 10 disks
 predicted

0 4 8 12 16
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

0 4 8 12 16
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

0 4 8 12 16
prefetch depth

0

5

10

15

st
al

l t
im

e
pe

r
ac

ce
ss

 (
m

se
c)

GENERALIZING THE RESULTS AND FUTURE WORK 201

of the

 was

igure

d stall

crease

rage

and-

e per-

n, ,

 deliver

sed for

 for-

e Sec-

rived

refetch

ance

ses.

e high

hint-

e size

es, but

ould

mprove
gestion, which is equivalent to assuming a very large array, led to a high estimate

benefit of prefetching deeply. Thus, when TIP ran with a small array, its prefetching

deep enough to keep the array busy in most cases.1

Was TIP’s prefetching therefore too deep? Consider stall on a single disk in F

7.2a. There, disk scheduling is not eliminated as a factor (as it is in Figure 7.3) an

continues to drop at least to a prefetch depth of 64. On smaller arrays, there is no in

in I/O parallelism from prefetching more deeply, but there is a reduction in the ave

disk access time. When bandwidth is most limited, it is most important to maximize b

width by reducing the average access time through disk scheduling. Thus, from th

spective of disk scheduling, prefetching should be deepest on a single disk.

TIP performs well on all array sizes because its upper-bound prefetch horizo

strikes a reasonable balance across array sizes. On larger arrays, it is sufficient to

the parallelism needed to mask stall. On smaller arrays, the prefetching depth not u

parallelism serves to reduce access time through disk scheduling.

7.2 Tightening the bound on prefetch depth

The applicability of a fixed, upper-bound prefetch horizon, , to all array sizes is

tuitous. But, because the use of was a simplification to ease implementation (se

tion 4.3.2), and because its applicability to scheduling on small arrays was not de

from the performance model, there is some concern that the use of a such a static p

horizon will not be robust in the face of the inevitable changes in system perform

parameters. As CPU performance increases, the time to service a hit,Thit, will shrink rela-

tive to the disk access time,Tdisk. This could push to hundreds or thousands of acces

Alternatively, when prefetching from a remote server, access latencies could be quit

which could also increase . Will it still make sense to prefetch to that depth for all

ing processes?

On the current TIP testbed, =73. This is a small number compared to the cach

of 1536. is an upper bound, and therefore larger than it needs to be in some cas

there is little pressure to prefetch less deeply; using fewer buffers for prefetching w

1 It turns out that caching can cause the array to go idle and that deeper prefetching can i
performance in such cases. I will get to this issue in Section 7.3.1.

P̂

P̂

P̂

P̂

P̂

P̂

P̂

202 CHAPTER 7

utting

multa-

aster

recon-

ystem

e to

benefi-

onser-

quest

1. As

 per-

tipro-

nstead

ss

 back

ny pro-

ot indi-

 Equa-

to keep

ing an

How-

m as a

s, the

ads to a
leness
 lessons
not significantly increase cache performance in most cases. One could imagine p

pressure on the prefetch depth by running a large number of hinting applications si

neously, but I have not performed experiments of this sort. However, if grows f

than memory sizes and becomes a large portion of the cache, then it will be time to

sider some of the simplifications that were made in the current implementation; the s

will no longer have the luxury of being so generous with prefetch buffers. It will hav

distinguish more accurately between those occasions when prefetching deeply is

cial and those when it is not. Three factors could be considered to arrive at a more c

vative, accurate estimate of the benefit of using buffers for prefetching.

First, instead of assuming that application CPU time,Tapp, is negligible, and using a

single system-wide prefetch horizon, the system could monitor application inter-re

compute time and determine a per-application prefetch horizon from Equation 4.1

shown by Figure 7.2b, the prefetch horizon shrinks dramatically when applications

form a significant amount of computation. To accommodate high degrees of mul

gramming, it may be useful to take the sharing of the processor into account and, i

of using the single process compute time,Tapp, in the benefit equation, use the inter-acce

non-idle time which would include other processes’ compute time. This would scale

the prefetch horizon for any single process when the processor is shared among ma

cesses. The upper-bound prefetch horizon really applies to the system as a whole, n

vidual processes; multiple processes cannot consume data any faster than one.

Second, congestion and finite bandwidth which affect I/O parallelism,p from Equa-

tion 7.4, could be incorporated into the prefetching benefit estimate as suggested by

tion 7.5. The ideal model tells us that once there are enough outstanding prefetches

all disks busy, queuing additional requests does not increase I/O parallelism, assum

evenly distributed workload and that caching does not let disks go idle.2 From this per-

spective of I/O parallelism, the size of the array determines how deeply to prefetch.

ever, as mentioned above in Section 7.1.2, the most accurate estimate of parallelis

function of queued prefetches would depend on the specific workload. Nevertheles

2 When disks go idle either because the load is unbalanced, or because a run of cache hits le
lull in disk activity, recent work, which I discuss in Section 7.3, shows how to take advantage of that id
for deep prefetching. In Section 7.3.3, I return to this simple model and suggest ways to apply those
here.

P̂

GENERALIZING THE RESULTS AND FUTURE WORK 203

ance

size of

 busy.

etter

rs for

n the

llelism,

How-

ea for

ing so

n 4 in

ests are

access

stimate

ate the

ered. If

hem. If

pplica-

eck,

 factor

 right

order-

n with

es in

servic-

r the

ting the
key point is that it is not necessary for the prefetching depth to scale with the perform

disparity between processors and disks, it is only necessary for it to scale with the

the attached array. A balanced system should have enough buffers to keep all disks

Finally, if finite bandwidth considerations scale back prefetching depth, then a b

estimate of the benefit of disk scheduling should also be included to earn buffe

deeper prefetching when it would reduce stall. This benefit depends primarily o

workload and the length of the queue at each disk, and so, as was the case for para

the optimal prefetching depth does not scale directly with processor performance.

ever, a thorough study of disk scheduling in the presence of hints remains an ar

future research. Here are two problems that need to be addressed.

The first is determining the impact on average access time,Tdisk, of queuing additional

requests. There is no point in depriving the cache of buffers to queue requests if do

will not reduce average access time, and, ultimately, I/O service time. But, as Lesso

Section 6.5 pointed out, sorting requests does not reduce access time if the requ

already in ascending order. On the other hand, sorting can significantly reduce the

time of random accesses. If it were possible to scan upcoming requests and e

access time reduction as a function of queue depth, it would be possible to estim

scheduling benefit of queuing additional requests.

The second, more subtle problem is related to the fact that the requests are ord

1000 prefetches are queued at once, the device driver is free to completely reorder t

the prefetch for the first read were sorted to the last position in the queue, then the a

tion would block until all 1000 disk requests had completed. If the disk is the bottlen

and the reordering would reduce the aggregate service time for all the requests by a

of ten, then forcing the application to wait for all accesses to complete could be the

course to take. However, if the disk is not the bottleneck when prefetching, then re

ing the first request to the end would remove the chance to overlap any computatio

I/O; queuing 1000 requests would increase elapsed time, not reduce it.

One approach, known empirically to be effective [Cao96], is to issue prefetch

batches. A new batch of prefetches could be issued just before the disk completes

ing the previous batch. Batches limit reordering while providing a disk schedule

opportunity to sort requests. If batches are used, the key problem becomes estima

204 CHAPTER 7

emains

of the

 some

recent

re the

 frame-

xten-

luating

um-

ion.

i Cao,

m into

t dis-

ultiple

 to the

com-

er the

ch the

refer-

 mind

 free,

e ejec-

96],

ling to
benefit of adding a buffer to increase the batch size. Developing such an estimate r

an area for future work.

7.3 Comparison with other systems

Although the experiments in Chapter 6 clearly demonstrate the effectiveness

TIP informed prefetching and caching system, they leave open the possibility that

other system might make even better use of the application’s disclosure hints. In a

collaboration with Andrew Tomkins and other researchers, I endeavored to compa

cost-benefit approach to another proposed algorithm, and to extend the cost-benefit

work to include the dynamic load on the disk in its cost-benefit estimations. This e

sion is beyond the scope of this dissertation and neither it nor the experiments eva

the extensions will be described in detail here. However, in this section, I will briefly s

marize the results of this work and direct readers to other sources for more informat

The primary alternative to cost-benefit analysis is an approach developed by Pe

Anna Karlin and other collaborators. Their approach was to decompose the proble

two sub-problems. The first is how to prefetch and cache for a single process tha

closes all of its accesses. The second is how to allocate buffers globally among m

processes. This decomposition led to two studies that explored alternative solutions

two sub-problems.

7.3.1 Prefetching and caching for a single process

Theaggressive algorithm was designed to prefetch and cache in the presence of

plete knowledge of all future accesses [Cao95]. The algorithm is as follows: whenev

disk is free, eject the block whose next reference is furthest in the future to prefet

block whose next reference is soonest, provided that the prefetched block will be

enced before the ejected one. The algorithm was developed with a single disk in

which it uses to pace prefetching. Extended to multiple disks, whenever any disk is

the algorithm prefetches the next-referenced block from that disk subject to the sam

tion constraint as for the single disk. In an implementation of the algorithm [Cao

prefetches are issued in batches of 16 to provide the opportunity for disk schedu

reduce average access time.

GENERALIZING THE RESULTS AND FUTURE WORK 205

e

place-

ess is

issing

cting a

n the

as

3)

ted to

stantial

race-

en

vided

e

s.

b-

s. When

ple,

tails on

e,

eady

ct
 stream of
ccessed
d

In comparing thecost-benefit andaggressive algorithms, it is useful to note that in th

single-process, complete-knowledge case, the two algorithms make very similar re

ment decisions. The block with the lowest ejection cost is the one whose next acc

furthest in the future and the block with the greatest prefetching benefit is the next m

block. Furthermore, the benefit of prefetching a block never exceeds the cost of eje

block that will be referenced before the ejected block. The key differences betwee

algorithms are (1) thatcost-benefit only prefetches out to the prefetch horizon where

aggressive may fill the cache with prefetches, (2) thatcost-benefit initiates new prefetches

as data are consumed whereasaggressive initiates prefetches when the disk is idle, and (

that the hysteresis in the cost-benefit estimates means that a block is only ejec

prefetch another that is referenced substantially before the ejected block (here, sub

means many tens to hundreds of blocks) whereasaggressive has no such hysteresis.

A large collaboration, which included the developers of both algorithms, used t

driven simulation to compare the performance of theaggressive andcost-benefit algo-

rithms when all accesses are known in advance [Kimbrel96].3 Also studied was a third

algorithm,reverse aggressive, which was designed to take disk load into account wh

making ejection/prefetching decisions. The study found: that all three algorithms pro

large benefits compared to a non-prefetching system; thataggressive sometimes out-per-

formedcost-benefit on small arrays; thatcost-benefit out-performed aggressive on larg

arrays; and thatreverse aggressive performed about as well as any algorithm in all case

Aggressive outperformedcost-benefiton small arrays for benchmarks that had su

stantial reuse, such as repeated sequential access, or highly unbalanced disk load

there is high reuse,cost-benefit may cache long subsequences of accesses, for exam

for Davidson’s repeated sequential access of the same file (see Section 4.2.7 for de

how this occurs). When the application is accessing blocks in such a subsequenccost-

benefit may let the disk go idle because all blocks within the prefetch horizon are alr

3 The study actually used a variant of thecost-benefit algorithm calledfixed-horizon. It prefetches a
fixed distance into the future whereascost-benefit scales back prefetching when prefetching would eje
cached blocks that will be reaccessed soon. For the cache sizes studied, and when there is only one
hints and therefore one set of cached blocks, there are always blocks available that will not be rea
until far in the future, andcost-benefit is equivalent tofixed-horizon with the horizon set to the upper-boun
prefetch horizon, .P̂

206 CHAPTER 7

to

n the

unbal-

 array,

and

, even

lication’s

is
with
out.
cached as shown in Figure 7.4.Aggressive takes advantage of these lulls in disk activity

prefetch very far in advance. Similarly, when the disk load is unbalanced,aggressive takes

advantage of lulls in activity on one disk to prefetch more deeply on that disk.Aggressive

therefore maximized utilization of a single disk and I/O parallelism on an array. Whe

bandwidth of a single disk or small array is the performance bottleneck, or when an

anced load reduces the number of active disks and therefore the effective size of an

aggressive can eliminate some stall and increase performance.

On larger arrays,aggressive used the high bandwidth available to flush the cache

fill it with prefetched data as shown in Figure 7.5. In contrast,cost-benefit, which assumes

ample bandwidth, prefetches only deeply enough to eliminate stalls. Consequently

though neither algorithm suffers significant stalls on larger arrays,aggressive performs

time 0

time 1

time 2

time 3

time 4

prefetched blocks

blocks cached for reuse

Legend

(a) Aggressive

(b) Cost-benefit

time 0

time 1

time 2

time 3

time 4

stalled!

consumed blocks

Figure 7.4. The lost opportunity of not prefetching during idleness on a small array.When an
application is consuming a long sequence of cached data, the disk is not needed to service the app
immediate requests and the disk may go idle. Figure (a) shows howaggressive takes advantage of this
idleness to prefetch as far into the future as possible. In contrast, Figure (b) shows howcost-benefit’s
bounded prefetching lets disks stay idle.Cost-benefit does not resume prefetching until consumption
within the prefetch horizon, , at time 2. When bandwidth is limited, prefetching can’t keep up
consumption, and the application stalls sooner than it would have had prefetching continued through

P̂

P̂

GENERALIZING THE RESULTS AND FUTURE WORK 207

he

 the

to the

fetch-

educe

ource,

d CPU

d

ped a

. The

, when
ls
 driver
 elapsed
use
.

substantially more disk accesses thancost-benefit. These additional accesses incur t

CPU overhead,Tdriver, of performing an access which adds to the elapsed time for

aggressive algorithm.

The lesson from these experiments was that prefetching should be sensitive

long-term load on the disks. When disk bandwidth is the constraining resource, pre

ing during periods of transient disk idleness can avoid stalls far in the future and r

elapsed time. On the other hand, when disk bandwidth is not the constraining res

prefetching beyond the prefetch horizon can unnecessarily flush the cache and ad

overhead to an application’s elapsed time.

Unfortunately, althoughreverse aggressive was already sensitive to disk load, it ha

too much computational overhead to run on-line. However, the collaboration develo

new algorithm,forestall, which is sensitive to disk load and has reasonable overhead

time 0

time 1

time 2

time 3

time 4

(a) Aggressive

time 0

time 1

time 2

time 3

time 4

(b) Cost-benefit

Figure 7.5. The wasted effort of prefetching too aggressively on a large array.Aggressive always ejects
a cached block if it can take advantage of an idle disk to prefetch a closer block. Figure (a) shows how
sufficient parallelism exists so there are often idle disks,aggressive flushes distant, cached blocks and fil
the cache with prefetched blocks. In applications with significant reuse, this will incur unnecessary
overhead by performing a disk access for each request which can have a significant impact on the
time. Figure (b) shows how, in contrast,cost-benefit’s bounded prefetching retains the distant bocks for re
but because there is enough bandwidth for prefetching to keep up with consumption, no stall ensues

prefetched blocks

blocks cached for reuse

Legend

consumed blocks

208 CHAPTER 7

hm

ng for

lication

tch in

on. On

e the

i-

n

tter of

limited

current

 recent

hing-

ch and

hinted

lobal

mong

ain a

it, and,

f the

locks

ess and
algorithm usesfixed-horizon for near-term prefetching and a disk-load sensitive algorit

for deep prefetching. The basic idea is to look forward in the hint sequence, estimati

each access when the disk will be able to perform the hinted read and when the app

will issue the actual read request. If the disk will have no problem servicing the prefe

time, then the prefetch may be delayed until the access reaches the prefetch horiz

the other hand, if the request is anticipated before the disk will be able to servic

prefetch, then the disk isconstrained and prefetching from that disk should begin immed

ately. The simulation results showed thatforestall’s performance for any benchmark o

any array size ranges from only 2% slower to as much as 5.8% faster than the be

aggressive andcost-benefit on each configuration.

Sensitivity to disk load, such as that found inforestall, is not incorporated into the

prefetching-benefit estimate in Chapter 4 because the scope of this dissertation is

to estimates that are independent of both the layout of hinted data on disk and the

contents of the cache. The slower performance ofcost-benefiton small disks and for

unbalanced loads is the cost of these simplifications. However, as described below,

extensions to this work show how to incorporate disk load not only into the prefetc

benefit estimate, but also into the ejection-cost estimate.

7.3.2 Allocating resources among multiple processes

A second comparative study investigated the second sub-problem: how to prefet

cache when there are multiple processes and when not all accesses are

[Tomkins97]. The study compared using the time-tested LRU algorithm to make g

allocation decisions to the cost-benefit approach.

Pei Cao showed how to adapt the LRU algorithm to partition the cache buffers a

competing processes while using an algorithm such asaggressive or forestall to decide

within a partition when to prefetch and what to eject [Cao96]. The idea is to maint

global LRU queue with each buffer being owned by the process that last accessed

instead of simply ejecting the block at the head of the LRU list, to give the owner o

head block the opportunity to hold onto that block and eject a different one of its b

instead. She showed how swapping and placeholders could be used assure fairn

GENERALIZING THE RESULTS AND FUTURE WORK 209

called

 uses

Recent

-

load

it esti-

 ben-

ately.

ming

d the

a con-

in that

ency

tion

s

tion 7.7

ction

tching
robustness in the face of poor replacement decisions. The resulting algorithm is

LRU-SP.

The cost-benefit approach does not explicitly partition the cache, but instead

independent estimators and the common currency to make allocation decisions.

work has shown how to adapt the disk-load-sensitiveforestall algorithm to the cost-bene

fit approach to build a modified TIP system called TIPTOE (TIP with temporal over

estimators) [Tomkins97, Tomkins97a]. The adaptation requires generating a benef

mate in terms of the common currency.

The fundamental modeling insight of Chapter 4 remains the basis of TIPTOE: the

efit of prefetching is the reduction of stall. However, theforestall algorithm showed the

superiority of a stall estimate that takes transient disk load into account. Theforestall tech-

niques can be used to detect constrained disks that will cause stall. A disk isconstrained if

it cannot service all prefetches in time even if prefetching non-stop starting immedi

Detection of constraint involves estimates of how quickly the application is consu

data and how quickly the disk can service prefetches. The TIPTOE work determine

change in stall that results from deep prefetching beyond the prefetch horizon on

strained disk and also the change in buffer usage or bufferage required to obta

reduction in stall. Dividing the one by the other produces the following common-curr

benefit of prefetching a blockx accesses in advance from a constrained disk:

(7.6)

Within the prefetch horizon, TIPTOE applies TIP’s benefit estimate which, from Equa

4.24, is,

(7.7)

for . The difference is the roughly factor ofx in the denominator which occur

because Equation 7.6 estimates stall on a single constrained disk, whereas Equa

supposes that stall on one ofx other accesses may mask stall for another.

Constrained disks also affect ejection decisions. Recall from Equation 4.16 in Se

4.2.4 that the cost of ejecting a hinted block is the additional CPU overhead of prefe

Benefitdeep_pf

∆Tdeep_pfx()
∆bufferage

Tdisk

x
------------- .= =

Benefitpf

Tdisk

x x 1–()
------------------- ,=

1 x P̂≤<

210 CHAPTER 7

e same

 refine

OE to

essed

 from

cess

ill not

er 6 to

 to be

nge of

LRU

n. But,

e cost-

reuse at

 data

n cur-

in this

er, the
the ejected block back plus any stall that will be incurred on the eventual access. Th

stall estimate used to compute the benefit of deep prefetching can also be used to

the cost estimate for ejecting blocks from a constrained disk. Doing so leads TIPT

this equation for the cost of ejecting a block from a constrained disk that will be acc

beyond the prefetch horizon:

(7.8)

TIPTOE uses TIP’s estimate of the cost of ejection from unconstrained disks which,

Equation 4.31, is,

(7.9)

for . The essential difference is that TIPTOE anticipates a stall for a full disk ac

for a block ejected from a constrained disk whereas TIP assumes that the prefetch w

stall.

The multiple-process study used traces of the benchmark suite used in Chapt

drive simulations of four algorithms:LRU-SP coupled with both the originalaggressive

algorithm andforestall, theTIP system described in this dissertation, and theTIPTOE sys-

tem just described. Overall, the study found cost-benefit prefetching and caching

somewhat better than LRU, reducing elapsed time from 5% to 8% over a broad ra

combinations of two or three hinting and non-hinting applications. To first order, the

queue allocates buffers to processes in proportion to their rate of data consumptio

rate of consumption is not a good indicator of data reuse. The study showed that th

benefit approach can take advantage of disclosure hints to cache the blocks whose

a global level will be soonest and not waste buffers caching for low-reuse but high

rate applications. TIP’s comparison of independent estimates in terms of the commo

rency allows such a global assessment of value to be made efficiently.

The single-process experiments that led to the invention of theforestall algorithm

showed that it is fruitful to push beyond the cost and benefit estimates presented

dissertation to arrive at estimates that are sensitive to transient disk load. Howev

Costeject_constrained

∆Teject_constrainedx()
∆bufferage

Tdriver Tdisk+

x
------------------------------------- .= =

Costeject

Tdriver

y P̂–
----------------- .=

y P̂>

GENERALIZING THE RESULTS AND FUTURE WORK 211

the

IPTOE

pter 4,

 hinted

. The

 high-

nce

onven-

 disk.

es these

rgely

ks and

ces. I

ng and

nding

s how

ossible

mains

 deep

cache

 the

vice can

n

work that incorporated theforestall lessons into the cost-benefit framework and led to

TIPTOE system shows the fundamental soundness of the cost-benefit approach. T

reconfirms the analysis that uncovered the basic relationships described in Cha

namely that the benefit of prefetching is reduced stall, and that the cost of ejecting a

block is the CPU overhead of prefetching it back plus any stall that will be incurred

fact that the disk-sensitive stall estimates could be incorporated into the framework

lights the basic extensibility of the cost-benefit framework. Finally, the performa

results demonstrate the superiority of the cost-benefit resource allocation over the c

tional LRU algorithm.

7.3.3 Applying TIPTOE to arrays that hide data layout

Detecting an unbalanced load requires knowledge of the layout of data on the

What approach should be pursued when the interface to the storage subsystem hid

details from the file system?

The first step is eliminating unbalanced loads as a problem. I believe this is la

possible if the storage subsystem randomizes the assignment of stripe units to dis

accepts hints so that it can prefetch internally to smooth out transient load imbalan

discuss other support the storage subsystems could provide for informed prefetchi

caching in Section 7.4.7. A remaining issue is determining the number of outsta

prefetches needed to achieve a desired level of parallelism. If the prefetcher know

much raw parallelism is available and that addresses are randomized, it should be p

to estimate the parallelism achieved by a set of outstanding prefetches. But, this re

an area for future work.

Assuming that the above techniques successfully eliminate load imbalance,

prefetching is still desirable to take advantage of the idleness induced by runs of

hits. But, if the system cannot prefetch from individual disks, it must prefetch from

array as a unit. I suspect that where the current model assumes that a storage de

perform one access in timeTdisk, an extended model could treat an array ofd disks as

being capable of servicingd requests in timeTdisk. Working out the details remains a

area for future work.

212 CHAPTER 7

nd this

I sum-

 from

The

n the

 (see

ne the

ch to

 break-

 global

When a

current

erenced.

er of

ses that

to con-

til that

ate of

 turn

 ran-

fect the

uture

tive to
7.4 Future work

In the previous sections, I highlighted a number of areas for researchers to exte

work. But, I have not yet had the chance to touch on all such areas. In this section,

marize areas that could benefit from additional work. These are organized loosely

the most TIP-specific to the most general.

7.4.1 Implementation optimizations

In Section 6.6, I identified LRU profiling as the biggest CPU overhead in TIP.

largest part of the overhead of LRU profiling, accounting for about a 3% overhead o

file system, is overflowing buffers from one segment of the LRU queue to the next

Section 5.2.6 for a description of this process). This operation is required to determi

queue position of buffers that are the target of a cache hit.

It might be possible to avoid this overhead by using a completely different approa

estimating the cost of ejecting an LRU buffer based on access numbers. Instead of

ing the queue into segments, each buffer could be stamped with the number, in a

count of accesses, of the access that is releasing the buffer to the tail of the queue.

cache hit occurs, the difference between the buffer’s stamp and the number of the

access would indicate how many accesses had passed since the buffer was last ref

To assess the value of buffers in the LRU queue, a histogram of hits vs. numb

accesses in the queue could be kept on a running basis. Given the number of acces

the buffer at the head of the LRU queue has been in the queue, it may be possible

sult this histogram and arrive at an expected value for the number of accesses un

buffer will produce a cache hit. From that, it should be possible to arrive at an estim

the cost of ejecting the block at the head of the list. Clearly, much work remains to

this sketch of an idea into a practical LRU estimator.

7.4.2 Cluster-sensitive caching

Informed clustering builds efficient sequential accesses out of smaller, possibly

dom accesses. As pointed out in Lesson 7 in Section 6.5, replacement decisions af

opportunity for clustered prefetches to refetch ejected blocks. A useful area for f

research would be developing an estimator for the cost of ejection that was sensi

clustering opportunities for the subsequent prefetch.

GENERALIZING THE RESULTS AND FUTURE WORK 213

hether

 at the

licy.

blocks

LRU

 LRU

 cache,

are of

e been

ses to

 hints

, Gnuld

e LRU

he case

stem

cesses.

r cor-

ing all

n are

es, the

ching

 per-

 LRU

n the

essed

cks,
7.4.3 Protecting the unhinted cache from hinted blocks: the post-hint estimator

In TIP, all blocks are placed on the LRU queue after they have been accessed w

the access was hinted or not. This is the behavior of the unmodified system, and

time of the original implementation, I had no good reason to implement a different po

However, a consequence of this policy is that the LRU queue is shared between

that were hinted and unhinted. Effectively, hinters get their normal share of the

queue and then, if their hints disclose reuse, they take additional buffers from the

queue to cache their hinted data. Hints only increase an application’s share of the

they do not decrease it. No similar mechanism lets unhinted blocks gain a larger sh

the cache; unhinted blocks must always share the LRU queue with blocks that hav

hinted and read.

In many cases, this policy works well. Some applications perform unhinted acces

previously hinted blocks and rely on the LRU queue for cache hits. Also, sometimes

for a second hinted access appear long after the first hinted access. For example

issues hints for some of its passes only after the previous pass has completed. If th

cache did not hold on to these blocks, these reaccesses would not be cache hits.

On the other hand, many hinted blocks are never or seldom reaccessed, as in t

of Agrep or XDataSlice, or are reaccessed only according to hints which the sy

already has available, as in the case of Davidson or Postgres’ outer-relation data ac

When these applications are running alone, this is not a problem; the LRU estimato

rectly discerns that there are few hits in the LRU queue, and the queue shrinks, leav

of the buffers for hinted accesses. However, if a hinting and non-hinting applicatio

running together, or if a single application interleaves hinted and unhinted access

many unneeded hinted blocks dilute the effectiveness of the LRU queue for ca

unhinted data.

The LRU caching behavior for hinted and unhinted blocks should be adaptive to

form well in both cases. One possible way to achieve this is to maintain a separate

estimator for hinted blocks. If hinted blocks are reaccessed or rehinted later, the

queue in such a post-hint estimator will grow. However, if unhinted blocks are reacc

more often, then the original LRU queue, which is no longer diluted with unhinted blo

will grow.

214 CHAPTER 7

ch a

ch as

process

tum-

for a

ected,

 sepa-

ve size

rough

m the

 to the

 iden-

 for the

d val-

tor sup-

.4. An

sses

ti-

al.

 be

e

In my recent collaboration with Andrew Tomkins, we found, in simulation, that su

post-hint estimator could reduce elapsed time for a pair of applications by as mu

30%, and that the average reduction for a set of seven single-process and 11 multi-

experiments on a range of array sizes was nearly 5% [Tomkins97].

Implementing a post-hint estimator remains an area for future work. The only s

bling block I anticipate is the active region of the LRU queue (see Section 5.3.3

description of the active region). Because the active region in the LRU queue is prot

its buffers would be unavailable for caching post-hint blocks if these were sent to a

rate post-hint queue. Consequently, a post-hint queue would have a smaller effecti

than the current single queue. One way around this would be to send all buffers th

the active region and only send buffers to the post-hint queue as they overflowed fro

active to the inactive region of the queue.

7.4.4 Generalized estimators

A post-hint estimator is just one example of new estimators that could be added

TIP system. Generalizing, the cost-benefit framework allows the system designer to

tify subclasses of a resource, such as post-hint buffers, and then build an estimator

value of allocating resources to that subclass. All that is required is that the estimate

ues be accurately expressed in terms of the common currency, and that the estima

port the required pick, query, update and bid operations described in Section 5.2

interesting area for future work would be exploring what sorts of different subcla

might be useful in practice. Here are some possibilities:

• Currently, there is a separate estimator for every hinting process. Should each

non-hinting process have its own LRU queue? Or, should there only be one es

mator for each process group? If separating hinted from unhinted blocks is a

good idea, perhaps separating the blocks from all processes would be benefici

• Heuristic prefetching has the advantage of not requiring any application modifi-

cations. Perhaps sequential readahead and more sophisticated heuristics could

embodied in prefetching estimators. If they were successful at predicting future

accesses, they would merit buffers for prefetching.

• Virtual memory shares the same memory resource with the file buffer cache. Th

GENERALIZING THE RESULTS AND FUTURE WORK 215

y

ward.

 such

 some

 about

erleav-

 could

elation

sses of

 but it

r, the

t of

C

cog-

celled.

ly skip

. How-

 model

ompli-

ot dis-

ut its

 to dis-

that, in

ch an
two could be managed as a single resource with the addition of a virtual memor

estimator.

7.4.5 The hint interface

The disclosure-hint interface described in Chapter 3 is simple and straight-for

One could imagine many possible enhancements. In many cases, supporting

enhancements would require substantial extensions to the TIP system. Here are

examples.

The current interface only allows a process to give a single linear stream of hints

its own accesses. There are times when an application may not know the exact int

ing of its requests and so desire to create multiple parallel hint streams. Postgres

have used such a facility to give a hint for the second sequential read of the inner r

which occurred in parallel with the outer-relation accesses (see Figure 6.14).

In some cases, it may be desirable for one process to give hints about the acce

another. For example, a C compiler can scan source code for ‘#include’ directives,

cannot know what files these included header files will themselves include. Howeve

make program could know all of the header files if the makefile included a full lis

dependencies. In such a case, themake program could give hints about what files the

compiler will include. One challenge in supporting hints from multiple sources is re

nizing when the system has received duplicate hints for the same accesses.

The current interface requires that all hinted accesses either occur or be can

Some applications may not be able to deliver such accuracy; they may inadvertent

some hinted accesses. The system could be made resilient to minor inaccuracies

ever, as discussed in Section 3.2, such resiliency may complicate the programming

and be undesirable for that reason. Is there a way to add such resiliency without c

cating the programming model?

Inaccurate hints are hints that are wrong. Imprecise hints are correct, but do n

close full information. For example, Postgres was unable to give precise hints abo

accesses to the inner-relation index. However, it would have been easy for Postgres

close that it was going to perform about 4000 random accesses to the index. Note

contrast to hints that advise the system to cache index blocks with high-priority, su

216 CHAPTER 7

tion is

on to

e to

andom

eds to

t one

s they

enu

 help

le for

sclose

uential

form

about to

 could

eed to

tantial

ore

lready

uch

tech-

uch-

d to a

closure

le to
imprecise hint adheres to the disclosure hint model; it discloses what the applica

going to do. An informed prefetching and caching system could use this informati

cache at high priority. But, if enough buffers were available, it could also decid

prefetch the whole index with efficient, sequential accesses and then service the r

requests from the cache. The disclosure hint gives the system the knowledge it ne

make such a decision.

A variant of the imprecise hint could be an exclusive-or hint which discloses tha

of several files will be accessed. For example, if users are looking at a menu of file

could view, the system could hint that with high probability one of the files on the m

will be read.

Imprecise hints are incompatible with rigorous matching of hints to accesses. To

the system’s hint matching stay synchronized with the application, it may be desirab

applications to insert markers in a hint stream. For example, an application could di

that it will perform several hundred random accesses and then a 100-block seq

access. If the application could put a marker between the two hints, it could later in

the system that the random reads were over and the sequential accesses were

begin by indicating that it had consumed all hints before the maker. These markers

also help the system stay synchronized with an interactive application that may n

abruptly change course.

7.4.6 Automatic hint generation

In Chapter 3, I showed that many applications can be annotated to give a subs

number of precise hints without too much difficulty. However, I am sure that many m

programs would give hints if annotations could be added automatically. We have a

seen that compilers can generate hints for scientific applications [Mowry96], but m

remains to be done for irregular programs.

On a more speculative level, it might be possible to combine simple compiler

niques with access profiling. For example, it might be possible to augment Lei and D

amp’s access pattern trees [Lei97] with the disclosure of the arguments passe

program to arrive at a more accurate prediction of accesses. Such a simple dis

would not be hard to generate automatically. At a finer granularity, it might be possib

GENERALIZING THE RESULTS AND FUTURE WORK 217

arame-

clear

d set.

agine

normal

from

ts that

-pri-

 export

d for

 place-

 block

 blocks

surface

al posi-

 prox-

3].

, the

on cli-

e disk.

. They

re fully

opti-

able to

e lay-

rface
profile procedures or modules within a program and correlate accesses with the p

ters passed when invoking the procedure.

7.4.7 Disk subsystem enhancements

In the course of building TIP and experimenting with its performance, it became

that the disk subsystem could do more to support informed prefetching.

First, support for low-priority requests needs to be added to the SCSI comman

The current interface supports high-priority, head-of-line requests. One could im

queuing demand requests at this high-priority, and queuing prefetch requests at

priority. But, these high-priority requests are serviced in-order and so don’t benefit

on-disk scheduling. It would be better to have separate class of low-priority reques

would benefit from scheduling, would not starve, and could be promoted from a low

ority to a high-priority request.

Second, storage subsystems, which often hide the details of data layout, should

an interface that allows file-system and application clients to optimize their workloa

performance. The SCSI interface, for example, makes no guarantees about data

ment, but there is a common understanding that blocks stored in sequential linear

addresses will tend to be stored in sequential locations on the disk surface. Further,

stored at close logical addresses will tend to be stored near each other on the disk

so that seeks between them are short. The SCSI interface hides details of rotation

tion, but, through convention, exposes the most important features: sequentiality and

imity. The Logical Disk interface makes these two characteristics explicit [de Jonge9

Disk arrays have a third important performance parameter, parallelism. Ideally

interface to an array would expose all three parameters. File-system and applicati

ents should know when an access will be sequential within one stripe unit on a singl

They should be able to specify in some way that blocks should be near each other

should be able to issue multiple requests and be reasonably confident that they a

exploiting the parallelism of the array. And, if there are any important parity update

mizations, such as the large write optimization (see Section 2.1), clients should be

exploit them. It is probably not possible or even desirable to expose the details of th

out, and consequently truly optimal performance will not be possible. But, the inte

218 CHAPTER 7

ance

were

 least

o max-

e sure

 to keep

dden,

ing an

g the

atho-

future

ooth out

ork-

st for

desktop

nsive

nomic

ld use

shared

astruc-

age of

her. I

lysis to

lated.
should expose enough information for clients to take advantage of the key perform

characteristics of the subsystem. It would be optimal if clients could know that they

exploiting all ten disks in a ten-disk array, but it would be acceptable if they could at

be confident they were exploiting eight or nine of the ten.

Informed prefetching and caching systems need to know how to issue requests t

imize parallelism as discussed in Sections 7.1.2 and 7.3.3. The first step is to mak

clients know how many requests, on average, need to be queued at the subsystem

all disks utilized. But, workloads can be unbalanced. If the actual data layout is hi

there is no way for the prefetching file system to know that its requests are generat

unbalanced load. Two mechanisms could avoid this problem. First, randomizin

assignment of stripe units to disks would reduce the likelihood that a workload is p

logically unbalanced. Second, the subsystem could itself accept hints about

accesses. Then the subsystem could prefetch more deeply when necessary to sm

transient load imbalances.

7.4.8 A disk array for everyone

This dissertation has clearly demonstrated the utility of disk arrays for serial w

loads when hints are available for informed prefetching. But, this is not a lesson ju

data centers and expensive workstations; everyone could use a disk array, even

personal computers. Although many PC applications are not particularly I/O-inte

when running, almost all of them are during launch.

The problem is that current arrays are not cheap. Clearly, it does not make eco

sense to attach a private 10-disk array to a 16 MByte PC. And yet, I believe PCs cou

the bandwidth of such an array. The challenge, then, is to develop architectures for

storage that can deliver the array performance at an affordable cost. If such an infr

ture became available, I suspect application writers would find a way to take advant

it, and I/O-intensive PC applications would become commonplace.

7.5 Conclusion

In this chapter, I carried the analysis of the previous chapters one step furt

explored the impact of removing the assumption of no congestion and used that ana

shed light on TIP’s performance on small arrays where the assumption is clearly vio

GENERALIZING THE RESULTS AND FUTURE WORK 219

 deep

es for

zon, ,

s will

rrent

y

 the

odel

mple

locks

eyond

ped

ted it

uding

exten-

ers as

roach

ework
I showed that from the perspective of I/O parallelism, smaller arrays require less

prefetching. But, deep prefetching on small arrays produces greater opportuniti

scheduling to reduce the average disk access time. The upper-bound prefetch hori

works well because it is a reasonable compromise across array sizes.

Through time, the growing performance disparity between disks and processor

increase and the time will come to drop some of the simplifications of the cu

implementation and include computation time,Tapp, in benefit estimates. Further, b

explicitly modeling the benefit of parallelism and disk scheduling, tighter bounds on

number of buffers required for prefetching should be obtainable.

I discussed recent related work that showed that the TIP prefetching benefit m

works well when high bandwidth is available. But, that work also shows that when a

bandwidth is not available, and when unbalanced workloads or runs of cached b

result in idle disks, the system should take advantage of that idleness to prefetch b

the prefetch horizon. I described joint work with Andrew Tomkins in which we develo

an estimator for the benefit of using buffers for such deep prefetching and incorpora

into the cost-benefit framework and so built TIPTOE.

I went on to discuss other possible extensions to the cost-benefit framework incl

a post-hint estimator to protect the LRU queue for unhinted accesses. Many other

sion are possible.

The resilience of the cost-benefit framework to changing conditions and paramet

well as the many opportunities for extensions show that the fundamental app

adopted for TIP is sound. Cost-benefit analysis provides a durable, extensible fram

for resource management.

P̂

P̂

220 CHAPTER 7

221

arallel-

or per-

 that

rmance

stor-

asyn-

d for

izes.

 only

llelism.

e key

ffering

ough-

g I/O

cting

 disser-

, and

what to

plica-
Chapter 8

Conclusion

In the late eighties and early nineties, researchers argued that storage device p

ism was required for secondary storage performance to balance increasing process

formance and proposed Redundant Arrays of Inexpensive Disks (RAID) to provide

parallelism [Patterson88, Gibson92a]. Since then, the processor and storage perfo

trends they identified have continued. In my analysis of the four principal virtues of

age workloads that maximize performance (ASAP or avoidance, sequentiality,

chrony, and parallelism), I again found that only parallelism could satisfy the deman

storage throughput. The other virtues help maximize the throughput of arrays of all s

Unfortunately, many computer applications have serial I/O workloads that access

one disk at a time and are therefore unable to take advantage of disk-array para

How can systems deliver the performance of parallel I/O to such applications? Th

performance insight is that aggressive prefetching can do for serial reads what bu

does for serial writes: mask latency with asynchrony and expose parallelism for thr

put. No longer should prefetching be viewed simply as a technique for overlappin

with computation; I/O parallelism is prefetching’s greatest benefit.

How can such aggressive prefetching be achieved given the difficulty of predi

future accesses and the performance penalty of prefetching unneeded data? In this

tation, I show that many applications can disclose their future file requests in hints

that a system can use these hints to decide when and how much to prefetch, and

cache. Formally, the thesis of this dissertation is that many important, I/O-bound ap

222 CHAPTER 8

system

n wall-

fective

stering

tating

sed to

rame-

alysis

rame-

ations

locate

close

 that

need

e con-

ferent

cific

quests

 define

rity of

 usage

ically.

tions

pplica-

hen

which

nuld

 to the
tions can provide accurate hints about their future accesses, that operating

prefetching and caching according to these hints can substantially reduce applicatio

clock elapsed time, and that run-time cost-benefit analysis can be the basis of ef

resource management that balances the use of cache buffers for prefetching, clu

prefetches, caching for hinted accesses, and caching in a traditional LRU queue.

The proof of the thesis is in three steps. First, I develop techniques for anno

applications to give hints about their future file requests and show they can be u

annotate a suite of six important, I/O-intensive applications. Second, I develop a f

work for resource management based on the run-time application of cost-benefit an

and build an informed prefetching and caching system, called TIP, based on this f

work. Finally, through measurements of the performance of the annotated applic

running on TIP, I show that the operating system can use application hints to al

resources and deliver the promised performance gains.

The vision set forth in this dissertation is that serial applications need only dis

their future accesses to obtain high-performance, parallel I/O. The implication is

applications need not be rewritten to be more parallel — often a difficult task. Nor

they manage a private buffer pool and asynchronous I/O requests. Nor need they b

cerned with the number and timing of prefetches and how these might vary on dif

machines. Nor need they violate the modularity of the file system by controlling spe

implementation actions. Instead, applications need only disclose in advance the re

they will make of the file system. Further, they can use the same terms that already

the file-system interface to disclose this information and thereby respect the modula

the system. And, in doing so, they free the operating system to optimize resource

globally because they provide the evidence for a policy decision.

The hope is that some day, application disclosures will be generated automat

For the purposes of proving my thesis, however, it is sufficient to show that applica

can be annotated by hand. In Chapter 3, I describe three techniques for annotating a

tions to give disclosure hints: in-line hints, loop duplication, and loop splitting. I t

apply these techniques to annotate a broad suite of I/O-intensive applications

includes: Davidson computational physics, XDataSlice 3D scientific visualization, G

object code linker, Sphinx speech recognition, Agrep text search, and two queries

CONCLUSION 223

cations

e to

 prom-

 disclo-

pen-

ess effi-

tradi-

tions

timiza-

anism

enefit

ating

s. Sec-

timates

imates

ns, but

naly-

t, inde-

ock or

ts and

s into
Postgres relational database. Thus, I have shown that important and diverse appli

can provide hints about their future accesses.

For the vision of high-performance, parallel I/O through application disclosur

become reality, I have to show how a system can use disclosure hints to deliver the

ised performance. In this dissertation, I described a system that takes advantage of

sure hints for four primary I/O optimizations:

1. informed caching to hold on to useful blocks and outperform LRU caching inde

dent of prefetching;

2. informed clustering of multiple accesses into one larger access;

3. informed disk management that better schedules accesses to increase acc

ciency; and,

4. informed prefetching to parallelize the disk workload and mask access latency.

All of these optimizations require use of the cache buffers already employed for

tional LRU caching. The primary challenge in automatically applying these optimiza

is building a mechanism that can balance the use of cache buffers for all of these op

tions as well as LRU caching.

The thesis posits that run-time cost-benefit analysis can be the basis of a mech

that effectively balances the use of cache buffers. The motivation for using cost-b

analysis is two-fold. First, cost-benefit analysis provides a rational basis for alloc

buffers that does not depend on the proper adjustment of a number of tuning knob

ond, cost-benefit analysis is a general technique that should easily accommodate es

for new resources, such as virtual memory or remote files, as well as improved est

for resources already being managed. The thesis claims neither of these assertio

they did guide me in my design.

In Chapter 4, I develop a framework for the run-time application of cost-benefit a

sis to resource management. The framework includes three key components. Firs

pendent cost and benefit estimates of the impact on I/O service time of ejecting a bl

allocating a buffer for a prefetch avoid the need to consider all possible replacemen

thereby limit the complexity of the system and ease the integration of new estimate

224 CHAPTER 8

timates

O ser-

imates.

sed in

erall

would

ame-

o use a

uffer

mand

 ease

 inde-

and its

 time.

 and

nno-

ints to

antita-

, with

educe

single

 appli-

lapsed

peri-

educ-

tively

cache

g and
the system. Second, a common currency for the expression of cost and benefit es

relates consumption of the cache buffer resource to the system goal of reducing I/

vice time and enables the global comparison of the independently generated est

Finally, an allocation algorithm accepts the many independent estimates, expres

terms of the common currency, scales them in proportion to their contribution to ov

performance, and compares them at a global level to identify the replacement that

produce the greatest net reduction in I/O service time.

The first step in building an informed prefetching and caching system on this fr

work is developing independent cost and benefit estimates. Chapter 4 shows how t

model of I/O performance to estimate the cost of ejecting a hinted block or taking a b

from the LRU queue, and to estimate the benefit of using a buffer to service a de

miss or prefetch a block. It goes on to suggest modifications to the estimates to

implementation. And it presents an efficient algorithm that takes advantage of the

pendent estimates to find the globally least-valuable block so that it can be ejected

buffer reallocated to prefetch new data when doing so would reduce I/O service

Chapter 5 describes the details of TIP, my implementation of informed prefetching

caching based on this framework.

The evaluation, in Chapter 6, of TIP’s performance when running the suite of a

tated applications shows that an operating system can indeed use disclosure h

deliver the promised performance benefits. Figure 8.1 summarizes the results. Qu

tively, TIP reduced elapsed times for the benchmarks on a single disk by up to 50%

an average of 28%. On a ten-disk array, TIP took advantage of parallelism to r

elapsed time by up to 84%, with an average of 64%. When multiprogramming on a

disk, where resource contention is at its worst, TIP reduced elapsed time for pairs of

cations by up to 48%, with an average of 37%. On a ten-disk array, TIP reduced e

time for pairs of applications by up to 73%, with an average of 58%. Further, all ex

ments with both a single application and when multiprogramming demonstrated a r

tion in elapsed time.

All by themselves, these results argue that TIP must be allocating buffers effec

to optimize I/O performance. To further strengthen the argument, I measured TIP’s

and disk performance when hints were unavailable, when using hints for prefetchin

CONCLUSION 225

 clus-

ormed

 com-

queues

d that

ecific

 use of

ti-
nsive
g, only
ormed
ciently
they do
clustering within the prefetch horizon, and when also using deep hints for informed

tering and caching. These experiments showed that the use of deep hints for inf

clustering and caching could reduce application elapsed time by as much as 36%

pared to prefetching alone. They also showed on a single disk that the longer disk

generated by informed prefetching could reduce disk service time by up to 24%, an

informed clustering could reduce per-block service time by up to 22%. These sp

results together with the elapsed time results demonstrate that TIP balances the

buffers for all four I/O optimizations.

1 2 3 4 5 6 7 8 9 10
number of disks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

re
la

tiv
e

el
ap

se
d

tim
e

Davidson
XDataSlice
Gnuld
Sphinx
Agrep
Postgres (20% match)
Postgres (80% match)

1 2 3 4 5 6 7 8 9 10
number of disks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

re
la

tiv
e

el
ap

se
d

tim
e

(a) relative performance without TIP (b) relative performance with TIP

Figure 8.1. Elapsed time vs. array size with and without TIP. These graphs show elapsed time on mul
disk arrays as a fraction of elapsed time on a single disk without TIP for the suite of I/O-inte
applications. Graph (a), a reprise of Figure 2.2, shows that without informed prefetching and cachin
Davidson’s sequential accesses benefit from array parallelism. Graph (b) shows that TIP’s inf
prefetching and caching can take advantage of array parallelism for all of the applications. On a suffi
large array, all become compute bound. Further, most perform better on a single disk with TIP than
on a ten-disk array without TIP.

226 CHAPTER 8

port

at, in

ses an

owed

ates

posed

nage-

at the

this is

istrib-

mech-

frees

 disk

f effec-

formed

imiza-

ut of
In recent joint work with Andrew Tomkins, we provide additional evidence in sup

of the claim that allocation based on cost-benefit analysis is effective by showing th

simulation, the cost-benefit approach outperforms a competing approach which u

LRU queue to allocate buffers at a global level [Tomkins97].

As described in Chapter 7, the same recent study and another [Kimbrel96], sh

how to improve the specific prefetching-benefit and hinted-block-ejection-cost estim

proposed in this dissertation in Chapter 4. No claim is made that the estimators pro

here are optimal. To the contrary, my hope was that a framework for resource ma

ment based on cost-benefit analysis would be flexible and extensible. The fact th

improved estimators could be integrated into the existing framework argues that

indeed the case. Recent work by David Rochberg extending TIP to prefetch from a d

uted file system further strengthens this argument [Rochberg97].

Collectively, these results show that disclosure hints are a feasible and effective

anism for passing I/O optimization information across the file-system interface that

applications from the burden of buffer management and scheduling their own

accesses. Further, they show that run-time cost-benefit analysis can be the basis o

tive cache resource management that takes advantage of disclosure hints for in

prefetching and caching. Together, disclosure hints and cost-benefit based I/O opt

tion provide a powerful solution to the problem of delivering the scalable throughp

disk arrays to the many important applications with serial storage workloads.

227

, A.,

ays,”

ust,

rt CS-

X,”

.

ty of

om-

ies

-

Bibliography

[Accetta86] Accetta, M.J., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian

Young, M., “Mach: A New Kernel Foundation for UNIX Development,”Proceedings

of the Summer 1986 USENIX Conference, Atlanta, GA, June, 1986, pp. 93-112.

[Akyürek92] Akyürek, S., Salem, K., “Placing Replicated Data to Reduce Seek Del

Proceedings of the USENIX File System Conference, May, 1992. Also available as

Computer Science Technical Report CS-TR-2746, University of Maryland, Aug

1991.

[Akyürek93] Akyürek, S., Salem, K., “Adaptive Block Rearrangement,”Proceedings of

IEEE International Conference on Data Engineering, April, 1993, pp. 182-189. An

expanded version of the paper is available as Computer Science Technical Repo

TR-2854, University of Maryland, March, 1992.

[Akyürek93a] Akyürek, S., Salem, K., “Adaptive Block Rearrangement under UNI

Proceedings of the USENIX Summer Technical Conference, June, 1993, pp. 307-321

Also available as Computer Science Technical Report CS-TR-3054, Universi

Maryland, April , 1993.

[Amdahl67] “Validity of the Single Processor Approach to Achieving Large Scale C

puting Capabilities,” American Federation of Information Processing Societ

(AFIPS) Spring Joint Conference, V 30, Atlantic City, NJ, April 18-20, 1967, pp. 483

485.

228

hed-

llel-

.

.K.,

on

2.

ro-

AID

uter

.

tion-

ing

-

and

re-

,

e of

ng,”
[Anderson92] Anderson, T.E., Bershad, B.N., Lazowska, E.D. and Levy, H.M., “Sc

uler Activations: Effective Kernel Support for the User-Level Management of Para

ism,” ACM Transactions on Computer Systems (TOCS), V 10 (1), February, 1992, pp

53-79.

[Baker91] Baker, M. G., Hartman, J. H., Kupfer, M.D., Shirriff, K.W., Ousterhout, J

“Measurements of a Distributed File System,”Proceedings of the 13th Symposium

Operating System Principles (SOSP), Pacific Grove, CA, October, 1991, pp. 198-21

[Cabrera91] Cabrera, L.-F., Long, D.D.E., “Swift: Using Distributed Disk Striping to P

vide High I/O Data Rates,”Computing Systems, V 4 (4), 1991, pp. 405-439.

[Cao93] Cao, P., Lim, S.B., Venkataraman, S., Wilkes, J., "The TickerTAIP Parallel R

Architecture,"Proceedings of the 20th Annual International Symposium on Comp

Architecture (ISCA), May, 1993, pp. 52-63. Available from http://www.cs.wisc.edu/

~cao/publications.html.

[Cao94] Cao, P., Felten, E.W., Li, K., “Application-Controlled File Caching Policies,”Pro-

ceedings of the Summer 1994 USENIX Conference, Boston, MA, June 6-10, 1994, pp

171-182. Available from http://www.cs.wisc.edu/~cao/publications.html.

[Cao94a] Cao, P., Felten, E.W., Li, K., “Implementation and Performance of Applica

Controlled File Caching,”Proceedings of the First USENIX Symposium on Operat

Systems Design and Implementation (OSDI), Monterey, CA, November, 1994, pp.165

178. Available from http://www.cs.wisc.edu/~cao/publications.html.

[Cao95] Cao, P., Felten, E.W., Karlin, A., Li, K., “A Study of Integrated Prefetching

Caching Strategies,”Proceedings of the Joint International Conference on Measu

ment & Modeling of Computer Systems (SIGMETRICS), Ottawa, Canada, May, 1995

pp. 188-197. Available from http://www.cs.wisc.edu/~cao/publications.html.

[Cao96] Cao, P., Felten, E.W., Karlin, A., Li, K., “Implementation and Performanc

Integrated Application-Controlled File Caching, Prefetching and Disk Scheduli

229

-

sing

rge

“The

h

 and

 for

on

 J.-P.,

e,”

pti-

l

-

,

ACM Transaction on Computer Systems (TOCS), V 14 (4), November, 1996, pp. 311

343. Available from http://www.cs.wisc.edu/~cao/publications.html.

[Chen93] Chen, C-M. M., Roussopoulos, N., “Adaptive Database Buffer Allocation U

Query Feedback,”Proceedings of the 19th International Conference on Very La

Data Bases (VLDB),Dublin, Ireland, 1993, pp. 342-353.

[Chen96] Chen, P.M., Ng, W.T., Chandra, S., Aycock, C., Rajamani, G., Lowell, D.,

Rio File Cache: Surviving Operating System Crashes,”Proceedings of the Sevent

International Conference on Architectural Support for Programming Languages

Operating Systems (ASPLOS-VII), Cambridge, MA, October 1-5, 1996, pp. 74-83.

[Chou85] Chou, H.T., DeWitt, D.J., “An Evaluation of Buffer Management Strategies

Relational Database Systems,”Proceedings of the 11th International Conference

Very Large Data Bases (VLDB), Stockholm, 1985, pp. 127-141.

[Corbett95] Corbettt, P.F., Feitelson, D.G., Fineberg, S., Hsu, Y., Nitzberg, B., Prost,

Snir, M., Traversat, B., Wong, P., “Overview of the MPI-IO Parallel I/O Interfac

IPPS '95 Workshop on Input/Output in Parallel and Distributed Systems, April, 1995,

pp. 1-15.

[Corbett96] Corbett, P.F., Feitelson, D.G., "The Vesta Parallel File System," ACM Transac-

tions on Computer Systems (TOCS), V 14 (3), August, 1996, pp. 225-264.

[Cornell89] Cornell, D. W., Yu, P. S., “Integration of Buffer Management and Query O

mization in Relational Database Environment,”Proceedings of the 15th Internationa

Conference on Very Large Data Bases (VLDB), Amsterdam, August 1989, pp. 247

255.

[Cray93] Cray Research, Advanced I/O User’s Guide SG-3076 8.0, Cray Research, Inc.

Order desk phone number (612) 683-5907, Mendota Heights, MN, 1993.

230

ata

ata

New

o-

.

allel

e

 for

ib-

tle-

ut-

Sys-

igh

al
[Curewitz93] Curewitz, K.M., Krishnan, P., Vitter, J.S., “Practical Prefetching via D

Compression,”Proceedings of the 1993 ACM Conference on Management of D

(SIGMOD), Washington, DC, May 1993, pp. 257-266.

[de Jonge93] de Jonge, W., Kaashoek, M.F., Hsieh, W.C., “The Logical Disk: A

Approach to Improving File Systems,”Proceedings of the Fourteenth ACM Symp

sium on Operating Systems Priciples (SOSP), Asheville, NC, December 5-8, 1993, pp

15-28.

[del Rosario94] del Rosario, J.M., Choudhary, A., "High Performance I/O for Par

Computers: Problems and Prospects,"IEEE Computer, V 27 (3), March, 1994, pp. 59-

68.

[Denning67] Denning, P.J., “Effects of Scheduling on File Memory Operations,”American

Federation of Information Processing Societies (AFIPS) Spring Joint Conferenc, V

30, Atlantic City, NJ, April 18-20, 1967, pp. 9-21.

[Dibble88] Dibble, P., Scott, M., Ellis, C., "Bridge: A High-Performance File System

Parallel Processors,"Proceedings of the Eighth International Conference on Distr

uted Computing Systems, San Jose, CA, June, 1988, pp. 154-161.

[Ebling94] Ebling, M.R., Mummert, L.B., Steere, D.C., “Overcoming the Network Bot

neck in Mobile Computing,”Proceedings of the IEEE Workshop on Mobile Comp

ing Systems and Applications, Santa Cruz, CA, December, 1994.

[Engler95] Engler, D.R., Kaashoek, M.F., O’Toole, Jr., J., “Exokernel: An Operating

tem Architecture for Application-Level Resource Management,”Proceedings of the

15th ACM Symposium on Operating Systems Principles (SOSP), Copper Mountain

Resort, CO, December 3-6, 1995, pp. 251-266.

[Eustace95] Eustace, A., Srivastava, A., “ATOM: a Flexible Interface for Building H

Performance Program Analysis Tools,”Proceedings USENIX Winter 1995 Technic

Conference, New Orleans, LA, January 1995, pp. 303-314.

231

iing:

X

 with

ys-

m

age,”

erg,

erg,

ent &

.

l.

dic-

atic

pli-

Sys-
[Ganger97] Ganger, G.R., Kaashoek, M.F., “Embedded Inodes and Explicit Group

Exploiting Disk Bandwidth for Small File,”Proceedings of the Winter 1997 USENI

Technical Conference, January, 1997, pp. 1-17.

[Geist87] Geist, R., Daniel, S., “A Continuum of Disk Scheduling Algorithms,”ACM

Transactions on Computer Systems, V 5 (1), February, 1987, pp. 77-92.

[Gibson92] Gibson, G. A., Patterson, R. H., Satyanarayanan, M., “Disk Reads

DRAM Latency,”Proceedings of the Third Workshop on Workstation Operating S

tems, IEEE, Key Biscayne, FL, April, 1992, pp. 126-131. Available fro

http://www.pdl.cs.cmu.edu/Publications/publications.html.

[Gibson92a] Gibson, G., “Redundant Disk Arrays: Reliable, Parallel Secondary Stor

Ph. D. thesis, MIT Press, Cambridge, MA, 1992.

[Gibson97] Gibson, Garth; Nagle, Deavid F.; Amiri, Khalil; Chang, Fay W.; Feinb

Eugene M.; Gobioff, Howard; Lee, Chen; Ozceri, Berend; Riedel, Erik; Rochb

David; Zelenka, Jim, “File Server Scaling with Network-Attached Secure Disks,”Pro-

ceedings of the 1997 ACM Sigmetrics International Conference on Measurem

Modeling of Computer Systems (SIGMETRICS), Seattle, WA, June 15-18, 1997, pp

272-284. Available from http://www.pdl.cs.cmu.edu/Publications/publications.htm

[Griffioen93] Griffioen, J., Appleton, R., “Automatic Prefetching in a WAN,”Proceedings

of the IEEE Workshop on Advances in Parallel and Distributed Systems, Princeton,

NJ, October, 6, 1993, pp. 8-12. Available from http://www.dcs.uky.edu/

~griff/papers/mybib.html.

[Griffioen94] Griffioen, J., Appleton, R., “Reducing File System Latency using a Pre

tive Approach,”Proceedings of the 1994 Summer USENIX Conference, Boston, MA,

1994. Available from http://www.dcs.uky.edu/~griff/papers/mybib.html.

[Griffioen95] Griffioen, J., Appleton, R., “Performance Measurements of Autom

Prefetching,”Proceedings of the International Society for Computers and their Ap

cations (ISCA) International Conference on Parallel and Distributed Computing

232

m

n of

Com-

om

File

inia,

tem,”

ciples

ng

e

ASP-

rket

IDC
tems, Orlando, FL, October, 1995, pp. 165-170. Available fro

http://www.dcs.uky.edu/~griff/papers/mybib.html.

[Griffioen96] Griffioen, J., Appleton, R., “The Design, Implementation, and Evaluatio

a Predictive Caching File System,” Technical Report CS-264-96, Department of

puter Science, University of Kentucky, June, 1996. Available fr

http://www.dcs.uky.edu/~griff/papers/mybib.html.

[Grimshaw91] Grimshaw, A.S., Loyot Jr., E.C., “ELFS: Object-Oriented Extensible

Systems,” Technical Report TR-91-14, Computer Science, University of Virg

1991.

[Grochowski96] Grochowski, E.G., Hoyt, R.F., “Future Trends in Hard Disk Drives,”IEEE

Transactions on Magnetics, V 32 (3), May, 1996, pp. 1850-1854.

[Hartman93] Hartman, J.H., Ousterhout, J.K., “The Zebra Striped Network File Sys

Proceedings of the Fourteenth ACM Symposium on Operating Systems Prin

(SOSP), Ashville, NC, December, 1993, pp. 29-43.

[Harty92] Harty, K., Cheriton, D.R., “Application-Controlled Physical Memory Usi

External Page-Cache Management,”Proceedings of the Fifth International Conferenc

on Architectural Support for Programming Languages and Operating Systems (

LOS-V), Boston, MA, October, 1992, pp. 187-199.

[Haskin96] Haskin, R., Schmuck, F., "The Tiger Shark File System,"Proceedings of IEEE

1996 Spring COMPCON, Santa Clara, CA, February, 1996.

[Hennessy96] Hennessy, J.L., Patterson, D.A.,Computer Architecture A Quantitative

Approach, 2nd ed., Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[IDC96] International Data Corporation, “1996 Worldwide Disk Subsystems Ma

Review and Forecast,” International Data Corporation publication number

#11365, June, 1996.

233

Rota-

ries,

oft-

itec-

.W.,

r

on

,

ica-

 the-

 Mel-

s,”

ul-

puter
[Jacobson91] Jacobson, D.M. and Wilkes,J., “Disk Scheduling Algorithms Based on

tional Position,” Technical Report HPL-CSP-91-7, Hewlett-Packard Laborato

February, 1991.

[Jain91] Jain, Raj,The Art of Computer Systems Performance Analysis, John Wiley &

Sons, New York, ISBN 0-471-50336-3, 1991.

[Kiczales] Kiczales, G., “Towards a New Model of Abstraction in the Engineering of S

ware,”Proceedings of the IMSA `92 Workshop on Reflection and Meta-level Arch

tures, 1992.

[Kimbrel96] Kimbrel, T., Tomkins, A., Patterson, R.H., Bershad, B., Cao, P., Felten, E

Gibson, G.A., Karlin, A.R., Li, K., “A Trace-Driven Comparison of Algorithms fo

Parallel Prefetching and Caching,”Proceedings of the 2nd USENIX Symposium

Operating Systems Design and Implementation (OSDI), Seattle, WA, October 28-31

1996, pp. 19-34. Available from http://www.pdl.cs.cmu.edu/Publications/publ

tions.html.

[Kistler93] Kistler, J.J., “Disconnected Operation in a Distributed File System,” Ph. D.

sis, Technical Report CMU-CS-93-156, School of Computer Science, Carnegie

lon University, 1993. Available from http://www.cs.cmu.edu/afs/cs.cmu.edu/

project/coda/Web/docs-coda.html.

[Korner90] Korner, K., “Intelligent Caching for Remote File Service,Proceedings of the

10th International Conference on Distributed Computing Systems, 1990, pp. 220-226.

[Kotz90] Kotz, D., Ellis, C.S., “Prefetching in File Systems for MIMD Multiprocessor

IEEE Transactions on Parallel and Distributed Systems, V 1 (2), April, 1990, pp. 218-

230.

[Kotz91] Kotz, D., "Prefetching and Caching Techniques in File Systems for MIMD M

tiprocessors,” Ph. D. thesis, Technical Report CS-1991-16, Department of Com

Science, Duke University, 1991.

234

File

t

es-

rsity

rior

an-

,

og-
[Kotz93] Kotz, D., Ellis, C.S., “Practical Prefetching Techniques for Multiprocessor

Systems,”Distributed and Parallel Databases, V 1 (1), January, 1993, pp. 33-51.

[Kotz94] Kotz, D., “Disk-directed I/O for MIMD Multiprocessors,”Proceedings of the 1s

USENIX Symposium on Operating Systems Design and Implementation, Monterey,

CA, November, 1994, pp. 61-74.

[Krieger94] Krieger, O., "HFS: A Flexible File System for Shared Memory Multiproc

sors," Ph. D. thesis, Department of Electrical and Computer Engineering, Unive

of Toronto, 1994.

[Kroeger96] Kroeger, T.M., Long, D.D.E., “Predicting File System Actions from P

Events,”Proceedings of the USENIX 1996 Annual Technical Conference, San Diego,

CA, January 22-26, 1996, pp. 319-328.

[Lampson83] Lampson, B.W., “Hints for Computer System Design,”Proceedings of the

9th Symposium on Operating System Principles (SOSP), Bretton Woods, N.H., 1983,

pp. 33-48.

[Lee96] Lee, E.K., Thekkath, C.A., "Petal: Distributed Virtual Disks,"Proceedings of the

Seventh International Conference on Architectural Support for Programming L

guages and Operating Systems (ASPLOS-VII), Cambridge, MA, October 1-5, 1996

pp. 84-92.

[Lee90] Lee, K.-F., Hon, H.-W., Reddy, R., “An Overview of the SPHINX Speech Rec

nition System,”IEEE Transactions on Acoustics, Speech and Signal Processing, V 38

(1), January, 1990, pp. 35-45.

[Lei97] Lei, H., Duchamp, D., “An Analytical Approach to File Prefetching,”Proceedings

1997 USENIX Annual Technical Conference, January, 1997. Also available from

http://www.cs.columbia.edu/~lei/resume.html.

235

ifica-

-

ues

er-

em

-

le

,”

D5

is-

.

O

o-

in-

ign,
[Madhyastha97] Madhyastha, T.M., Reed, D.A., “Input/Output Access Pattern Class

tion Using Hidden Markov Models,”Workshop on Input/Output in Parallel and Dis

tributed Systems (IOPADS), November, 1997.

[Mattson70] Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L., “Evaluation Techniq

for Storage Hierarchies,”IBM Systems Journal, V 9 (2), 1970, pp. 78-117.

[McKellar69] McKellar, A.C., Coffman, Jr., E.G., “Organizing Matrices and Matrix Op

ations for Paged Memory Systems,”Communications of the ACM, V 12 (3), March

1969, pp. 153-165.

[McKusick84] McKusick, M.K., Joy, W.J., Leffler, S.J., Fabry, R.S., “A Fast File Syst

for UNIX,” ACM Transactions on Computer Systems, V 2 (3), August 1984, pp. 181

197.

[McVoy91] McVoy, L.W., Kleiman, S.R., “Extent-like Performance from a UNIX Fi

System,”Proceedings of the Winter 1991 USENIX Conference, Dallas, TX, January,

1991, pp. 33-43.

[Microsoft93] Microsoft Corporation, “Microsoft Windows & MS-DOS 6 User’s Guide

Microsoft Press, Redmond, WA, 1993.

[Mogi94] Mogi, K., Kitsuregawa, M., “Dynamic Parity Stripe Reorganizations for RAI

Disk Arrays,”Proceedings of the Third International Conference on Parallel and D

tributed Information Systems (PDIS), Austin, TX, September 28-30, 1994, pp. 17-26

[Mowry96] Mowry, T., Demke, A., Krieger, O., “Automatic Compiler-Inserted I/

Prefetching for Out-of-Core Applications,”Proceedings of Second USENIX Symp

sium on Operating Systems Design and Implementation (OSDI), Seattle, WA, October

28-31, 1996, pp. 3-17.

[NCSA89] National Center for Supercomputing Applications. “XDataSlice for the X W

dow System,” http://www.ncsa.uiuc.edu/, Univ. of Illinois at Urbana-Champa

1989.

236

inal

SIG-

, M.,

Log-

,

ali-

-90-

ical

Tem-

 Inex-

t of

ort on

ca-

med

nd
[Ng91] Ng, R., Faloutsos, C., Sellis, T., “Flexible Buffer Allocation Based on Marg

Gains,” Proceedings of the 1991 ACM Conference on Management of Data (

MOD), pp. 387-396.

[Ousterhout85] Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer

Thompson, J.G., “A Trace-Driven Analysis of the UNIX 4.2 BSD File System,”Pro-

ceedings of the 10th Symposium on Operating System Principles (SOSP), Orcas

Island, WA, December, 1985, pp. 15-24.

[Ousterhout89] Ousterhout, J., Douglis, F., “Beating the I/O Bottleneck: A Case for

Structured File Systems,”ACM Operating Systems Review, V 23 (1), January, 1989

pp. 11-28. Also available as Technical Report UCB/CSD 88/467, University of C

fornia-Berkeley, 1988.

[Palmer90] Palmer, M.L., Zdonik, S.B., “Predictive Caching,” Technical Report CS

29, Computer Science, Brown University, 1990.

[Palmer91] Palmer, M.L., Zdonik, S.B., “FIDO: A Cache that Learns to Fetch,” Techn

Report CS-90-15, Computer Science, Brown University, 1991.

[Parsons97] Parsons, I., Unrau, R., Schaeffer, J., Szafron, D., “PI/OT: Parallel I/O

plates,”Parallel Computing, V 23 (4-5), June, 1997, pp. 543-570.

[Patterson88] Patterson, D., Gibson, G., Katz, R., “A Case for Redundant Arrays of

pensive Disks (RAID),”Proceedings of the 1988 ACM Conference on Managemen

Data (SIGMOD), Chicago, IL, June, 1988, pp. 109-116.

[Patterson93] Patterson, R.H., Gibson, G.A., Satyanarayanan, M., “A Status Rep

Research in Transparent Informed Prefetching,”ACM Operating Systems Review, V 27

(2), April, 1993, pp. 21-34. Available from http://www.pdl.cs.cmu.edu/Publi

tions/publications.html.

[Patterson94] Patterson, R.H., Gibson, G.A., “Exposing I/O Concurrency with Infor

Prefetching,”Proceedings of the 3rd IEEE International Conference on Parallel a

237

7-

, J.,

on

6,

ica-

ol-

ory

ence

lica-

 of a

M.,

strib-

SP-

 in a
Distributed Information Systems (PDIS), Austin, TX, September 28-30, 1994, pp.

16. Available from http://www.pdl.cs.cmu.edu/Publications/publications.html.

[Patterson95] Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka

“Informed Prefetching and Caching,”Proceedings of the 15th ACM Symposium

Operating Systems Principles (SOSP), Copper Mountain Resort, CO, December 3-

1995, pp. 79-95. Available from http://www.pdl.cs.cmu.edu/Publications/publ

tions.html.

[RAB96] Raid Advisory Board,The RAIDbook, A Source Book for Disk Array Techn

ogy, 5th ed., edited by Paul Massiglia, ISBN 1-879936-90-9, The RAID Advis

Board, 13 Marie Lane, St. Peter, MN, 1996.

[Peacock88] Peacock, J.K., “The Counterpoint Fast File System,”Proceedings of the

USENIX Winter Conference, Dallas, TX, February 9-12, 1988, pp. 243-249.

[Rochberg97] Rochberg, D., Gibson, G., “Prefetching Over a Network: Early Experi

with CTIP,” ACM SIGMETRICS Performance Evaluation Review, V 25 (3), December,

1997, pp. 29-36. Also available at http://www.pdl.cs.cmu.edu/Publications/pub

tions.html.

[Rosenblum92] Rosenblum, M., Ousterhout, J.K., “The Design and Implementation

Log-Structured File System,”ACM Transactions on Computer Systems, V 10 (1), Feb-

ruary, 1992, pp. 26-52.

[Rozier88] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont,

Herrmann, F., Kaiser, C., Langlois, S., Leonard, P., Neuhauser, W., “CHORUS Di

uted Operating System,”Computing Systems, V 1 (4), 1988, pp. 305-370.

[Ruemmler91] Ruemmler, C., Wilkes, J., “Disk Shuffling,” Technical Report HPL-C

91-30, Hewlett-Packard Laboratories, October, 1991.

[Sacco82] Sacco, G.M., Schkolnick, M., “A Mechanism for Managing the Buffer Pool

Relational Database System Using the Hot Set Model,”Proceedings of the 8th Inter-

238

-

,

ns,”

isk

niver-

 Few

tera-

m

p.

the

l

national Conference on Very Large Data Bases (VLDB), September, 1982, pp. 257

262.

[Salem86] Salem, K. Garcia-Molina, H., “Disk Striping,”Proceedings of the 2nd IEEE

International Conference on Data Engineering, 1986.

[Seltzer90] Seltzer, M. I., Chen, P. M., Ousterhout, J. K., “Disk Scheduling Revisted,”Pro-

ceedings of the Winter 1990 USENIX Technical Conference, Washinton, DC, January

1990.

[Smith78] Smith, A.J., “Sequentiality and Prefetching in Database Systems,”ACM Trans-

actions on Database Systems, V 3 (3), September, 1978, pp. 223-247.

[Smith85] Smith, A.J., “Disk Cache — Miss Ratio Analysis and Design Consideratio

ACM Transactions on Computer Systems, V 3 (3), August 1985, pp. 161-203.

[Staelin90] Staelin, C., Garcia-Molina, H., “Clustering Active Disk Data to Improve D

Performance,” Technical Report CS-TR-283-90, Computer Science, Princeton U

sity, September, 1990.

[Stathopoulos94] Stathopoulos, A., Fischer, C.F., “A Davidson Program for Finding a

Selected Extreme Eigenpairs of a Large, Sparse, Real, Symmetric Matrix,”Computer

Physics Communications, V 79, 1994, pp. 268-290.

[Steere97] Steere, D.C., “Exploiting the Non-Determinism and Asynchrony of Set I

tors to Reduce Aggregate File I/O Latency,”Proceedings of the 16th ACM Symposiu

on Operating Systems Principles (SOSP), Saint-Malo, France, October 5-8, 1997, p

252-263.

[Stodolsky93] Stodolsky, D., Gibson, G., Holland, M., “Parity Logging: Overcoming

Small Write Problem in Redundant Disk Arrays,”Proceedings of the 21st Annua

International Symposium on Computer Architecture (ISCA), May, 1993, pp. 64-75.

Available at http://www.pdl.cs.cmu.edu/Publications/publications.html.

239

n of

,

tems

ted

tems

ess

al

,

u/

ol of

om
[Stonebraker86] Stonebraker, M., Rowe, L, “The Design of Postgres,”Proceedings of 1986

ACM International Conference on Management of Data (SIGMOD), Washington, DC,

May 28-30, 1986.

[Stonebraker90] Stonebraker, M., Rowe, L.A., Hirohama, M., “The implementatio

POSTGRES,”IEEE Transactions on Knowledge and Data Engineering, V 2 (1),

March, 1990, pp. 125-142.

[Sun88] Sun Microsystems, Inc., Sun OS Reference Manual, Part Number 800-1751-10

Revision A, May 9, 1988.

[Tait91] Tait, C.D., Duchamp, D., “Detection and Exploitation of File Working Sets,”Pro-

ceedings of the 11th International Conference on Distributed Computing Sys,

Arlington, TX, May, 1991, pp. 2-9.

[Terry87] Terry, D.B., “Caching Hints in Distributed Systems,”IEEE Transactions on

Software Engineering, V SE-13 (1), January, 1987.

[Thekkath97] Thekkath, C.A., Mann, T., Lee, E.K., "Frangipani: A Scalable Distribu

File System,"Proceedings of the Sixteenth ACM Symposium on Operating Sys

Principles (SOSP), Saint-Malo, France, October 5-8, 1997, pp. 224-237.

[Tomkins97] Tomkins, A., Patterson, R.H., Gibson, G.A., “Informed Multi-Proc

Prefetching and Caching,”Proceedings of the 1997 ACM Sigmetrics Internation

Conference on Measurement & Modeling of Computer Systems (SIGMETRICS)Seat-

tle, WA, June 15-18, 1997, pp. 100-114. Available from http://www.pdl.cs.cmu.ed

Publications/publications.html.

[Tomkins97a] Tomkins, A., Ph. D. thesis, Technical Report CMU-CS-97-181, Scho

Computer Science, Carnegie Mellon University, 1997. Available fr

http://www.cs.cmu.edu/~andrewt.

[Trivedi79] Trivedi, K.S., “An Analysis of Prepaging”,Computing, V 22 (3), 1979, pp.

191-210.

240

hni-

nded

ions

nge-

.

ar-

ms

 on

ol,”

,

[Vitter91] Vitter, J.S., Krishnan, P., “Optimal Prefetching via Data Compression,” Tec

cal Report CS-91-46, Computer Science, Brown University, July, 1991. An exte

abstract appears inProceedings of the 32nd Annual IEEE Symposium on Foundat

of Computer Science, Puerto Rico, October, 1991.

[Vongsathorn90] Vongsathorn, P., Carson, S.D., “A System for Adaptive Disk Rearra

ment,”Software - Practice and Experience (UK), V 20 (3), March 1990, pp. 225-242

[Wilkes96] Wilkes, J., Golding, R., Staelin, C., Sullivan, T., “The HP AutoRAID Hier

chical Storage System,”ACM Transactions on Computer Systems (TOCS), V 14 (1),

February 1996, pp. 108-136.

[Wolfe96] Wolfe, M.J.,High Performance Compilers for Parallel Computing, Addison-

Wesley, Redwood City, CA, 1996.

[Worthington94] Worthington, B. L., Ganger, G. R., Patt, Y. N., “Scheduling algorith

for modern disk drives,”Proceedings of the 1994 ACM Sigmetrics Conference

Measurement and Modeling of Computer Systems (SIGMETRICS), May, 1994, pp.

241-51.

[Wu92] Wu, S. and Manber, U. “AGREP - a Fast Approximate Pattern-Matching To

Proceedings of the 1992 Winter USENIX Conference, San Francisco, CA, January

1992, pp. 20-24.

	Informed Prefetching and Caching
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	Introduction
	Asynchrony + Throughput = Low Latency
	2.1 Disk drive performance characteristics
	2.2 ASAP: the four virtues for I/O workloads
	2.2.1 Avoiding accesses avoids latency
	2.2.2 Increasing sequentiality increases channel u...
	2.2.3 Asynchrony masks latency
	2.2.4 Parallelizing I/O workloads increases array ...
	2.2.5 ASAP summary

	2.3 Disclosure hints for aggressive prefetching an...
	2.4 Related work
	2.5 Conclusions

	Disclosing I/O Requests in Hints
	3.1 Hints that disclose
	3.2 The hint interface
	3.3 Annotation techniques
	3.3.1 In-line hinting
	3.3.2 Loop duplication
	3.3.3 Loop splitting

	3.4 Annotating applications to give hints
	3.4.1 Agrep
	3.4.2 Gnuld
	3.4.3 Postgres
	3.4.4 Davidson
	3.4.5 XDataSlice
	3.4.5.1 XDataSlice organization
	3.4.5.2 Extending HDF to disclose hints to TIP

	3.4.6 Sphinx

	3.5 Conclusion

	Cost-Benefit Analysis for Informed Resource Manage...
	4.1 A framework for I/O management by cost-benefit...
	4.1.1 Independent estimates
	4.1.2 A common currency for comparing estimates
	4.1.3 An allocation algorithm
	4.1.4 Assembling the components

	4.2 Cost-benefit analysis for informed prefetching...
	4.2.1 System model & assumptions
	4.2.2 The cost of shrinking the LRU cache
	4.2.3 The benefit of prefetching
	4.2.4 The cost of ejecting a hinted block
	4.2.5 The benefit of informed clustering
	4.2.6 Global buffer value and the min-max buffer
	4.2.7 An example: emulating MRU replacement

	4.3 Implementation of cost-benefit I/O management
	4.3.1 The LRU estimator
	4.3.2 The prefetching estimator
	4.3.3 The hinted cache estimator
	4.3.4 Implementation of informed clustering
	4.3.5 Identifying the min-max buffer

	4.4 Conclusion

	Implementation of Informed Prefetching and Caching...
	5.1 Overview
	5.2 Implementation of cost-benefit buffer allocati...
	5.2.1 Informed prefetching
	5.2.2 Informed clustering
	5.2.3 Allocating the min-max buffer
	5.2.4 Estimator functions
	5.2.5 The nexus data structure
	5.2.6 The LRU estimator
	5.2.7 The hinted cache estimator

	5.3 Other implementation challenges
	5.3.1 Hint management and the caching horizon
	5.3.2 Using integer arithmetic to compute cost and...
	5.3.3 Managing mapped pages with the LRU annex
	5.3.4 The orphan estimator
	5.3.5 Disk driver support for prefetching

	5.4 Conclusion

	TIP Performance Evaluation
	6.1 Experimental testbed
	6.2 Measuring cost-benefit model parameters
	6.3 Single application performance
	6.3.1 MCHF Davidson algorithm
	6.3.2 XDataSlice
	6.3.3 Sphinx
	6.3.4 Agrep
	6.3.5 Gnuld
	6.3.6 Postgres
	6.3.7 The impact on disk service time

	6.4 Multiple-process results
	6.5 Lessons from prefetching and caching experimen...
	6.6 System overhead
	6.6.1 Tracing infrastructure
	6.6.2 CPU overhead
	6.6.3 Memory overhead

	6.7 Conclusion

	Generalizing the Results and Future Work
	7.1 The impact of the no-congestion assumption
	7.1.1 The ideal model
	7.1.2 Experiments with a synthetic application
	7.1.3 Analysis

	7.2 Tightening the bound on prefetch depth
	7.3 Comparison with other systems
	7.3.1 Prefetching and caching for a single process...
	7.3.2 Allocating resources among multiple processe...
	7.3.3 Applying TIPTOE to arrays that hide data lay...

	7.4 Future work
	7.4.1 Implementation optimizations
	7.4.2 Cluster-sensitive caching
	7.4.3 Protecting the unhinted cache from hinted bl...
	7.4.4 Generalized estimators
	7.4.5 The hint interface
	7.4.6 Automatic hint generation
	7.4.7 Disk subsystem enhancements
	7.4.8 A disk array for everyone

	7.5 Conclusion

	Conclusion
	Bibliography

