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Abstract

Current operating systems offer poor performance
when a numeric application’s working set does not
fit in main memory. As a result, programmers who
wish to solve “out-of-core” problems efficiently are
typically faced with the onerous task of rewriting
an application to use explicit I/O operations (e.g.,
read/write). In this paper, we propose and evaluate
a fully-automatic technique which liberates the pro-
grammer from this task, provides high performance,
and requires only minimal changes to current oper-
ating systems. In our scheme, the compiler pro-
vides the crucial information on future access pat-
terns without burdening the programmer, the oper-
ating system supports non-binding prefetch and re-
lease hints for managing I/O, and the operating sys-
tem cooperates with a run-time layer to accelerate
performance by adapting to dynamic behavior and
minimizing prefetch overhead. This approach main-
tains the abstraction of unlimited virtual memory
for the programmer, gives the compiler the flexibil-
ity to aggressively move prefetches back ahead of
references, and gives the operating system the flex-
ibility to arbitrate between the competing resource
demands of multiple applications. We have imple-
mented our scheme using the SUIF compiler and
the Hurricane operating system. Our experimen-
tal results demonstrate that our fully-automatic
scheme effectively hides the I/O latency in out-of-
core versions of the entire NAS Parallel benchmark
suite, thus resulting in speedups of roughly twofold
for five of the eight applications, with one applica-
tion speeding up by over threefold.
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1 Introduction

Many of the important computational challenges
facing scientists and engineers today involve solving
problems with very large data sets. For example,
global climate modeling, computational physics and
chemistry, and many engineering problems (e.g.,
aircraft simulation) can easily involve data sets that
are too large to fit in main memory [7, 9, 23]. For
such applications (which are commonly referred to
as “out-of-core” applications), main memory sim-
ply constitutes an intermediate stage in the memory
hierarchy, and the bulk of the data must reside on
disk or other secondary storage. Ideally one could
efficiently solve an out-of-core problem by simply
taking the original in-core program and increas-
ing the problem size. In theory, a paged virtual
memory system could provide this functionality by
transparently migrating data between main mem-
ory and disk whenever page faults occur. While
this approach does yield a logically correct answer,
the resulting performance is typically so poor that
it is not considered a viable technique for solving
out-of-core problems [35].

In practice, scientific programmers who wish to
solve out-of-core problems typically write a separate
version of the program with explicit I/O calls for the
sake of achieving reasonable performance. Writing
an out-of-core version of a program is a formidable
task—it is not simply a matter of inserting a few
I/O read or write statements, but often involves
significant restructuring of the code, and in some
cases can have a negative impact on the numerical
stability of the algorithm [35]. Thus the burden of
writing a second version of the program (and ensur-
ing that it behaves correctly) presents a significant
barrier to solving large scientific problems.
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1.1 The Problem with Paged Virtual
Memory

The performance of out-of-core applications that
rely simply on paged virtual memory to perform
their I/O is typically quite poor, as we will see later
in Section 4. In our experiments, the performance
loss is not due to limited I/O bandwidth (in fact,
the disk utilization is fairly low), but rather to I/O
latency, since each page fault causes the application
to suffer the full latency of fetching the data from
disk.

One can potentially achieve better performance
by rewriting out-of-core applications to use explicit
I/O calls (e.g., the read/write interface in UNIX)
for the following three reasons. First, the non-
blocking I/O calls provided by asynchronous I/O
interfaces allow an application to hide latency by
overlapping disk I/O with computation. For ex-
ample, if non-blocking disk reads can be scheduled
early enough, then all of the latency can potentially
be hidden. In contrast, a disk read under paged vir-
tual memory typically does not begin until it is trig-
gered by a page fault, at which point the application
suffers the full latency of the disk I/O. Second, ex-
plicit I/O calls can fetch a large number of blocks
in a single request, which is important to fully ex-
ploit the underlying parallelism in high-bandwidth
I/O systems (e.g., disk arrays). In contrast, page
faults typically result in only a single outstanding
page-sized read request at a time for a given pro-
cess. (Although most operating systems attempt
some form of page fault prefetching both to hide
latency and to have multiple outstanding disk re-
quests, it is difficult to do this efficiently for reasons
we will discuss later in Section 2.2.) Finally, the
explicit management of memory buffer space un-
der explicit I/O allows the application to minimize
memory consumption by immediately freeing (and
if dirty, writing out to disk) any buffers containing
data that will not be accessed again in the near fu-
ture. Under paged I/O, since the memory manager
lacks application-specific knowledge of future access
patterns, it may make bad decisions and free pages
that are about to be accessed. To avoid this prob-
lem, the memory manager is typically conservative
by allocating more memory to the application than
is actually required, which may result in poor re-
source utilization.

1.2 The Problem with Explicit I/O

While explicit I/O offers the potential for improved
performance over paging, it unfortunately suffers
from several disadvantages. The primary disadvan-

tage is the large burden placed on the programmer
of rewriting an application to insert the I/O calls—
our goal is to avoid this burden altogether. Another
disadvantage is the performance overhead of these
I/O system calls, which typically involve copying
overhead to transfer data between the system’s I/O
buffers and the buffers managed by the application.

A third, less obvious disadvantage is that with
explicit I/O, the application is implicitly making
low-level policy decisions with its I/O requests (e.g.,
the size of the requests, and the amount of mem-
ory to be used for I/O buffering). However, the
best policy decisions depend not only on application
access patterns, but also on the physical resources
available. Hence an application written assuming
a particular amount of physical memory and disk
bandwidthmay perform poorly on a machine with a
different set of resources, or in a multiprogrammed
environment where some of the resources are being
used by other applications. To illustrate how the
available physical resources affect an application’s
performance, consider the amount of memory avail-
able for buffering I/O. If sufficient physical memory
is available such that the entire data set can fit in
memory, then an application with explicit I/O will
pay the system call overhead with no benefit. On
the other hand, if the application uses more buffer
space for I/O than the available physical memory,
then the buffers will suffer page faults, possibly re-
sulting in worse performance than if the application
had simply relied on paged virtual memory from the
start.

1.3 Our Solution

To achieve high performance in out-of-core appli-
cations, we propose and evaluate a fully-automatic
scheme for prefetching I/O whereby the operating
system and the compiler cooperate to combine the
advantages of both explicit I/O and paged virtual
memory without suffering from the disadvantages.
In our scheme, the compiler provides the crucial
information on future access patterns without bur-
dening the programmer, the operating system pro-
vides a simple interface for managing I/O which
is optimized to the needs of the compiler, and a
run-time layer accelerates performance by adapting
to dynamic behavior and minimizing prefetch over-
head. Our experimental results demonstrate that
our scheme effectively hides the I/O latency in out-
of-core versions of the entire NAS Parallel bench-
mark suite [2], thus resulting in speedups of roughly
twofold for the majority of these applications, and
over threefold in one case.
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This paper is organized as follows. We begin in
Section 2 by discussing how the compiler and the
operating system can cooperate to automatically
prefetch disk accesses for out-of-core applications.
Next, in Sections 3 and 4, we describe our experi-
mental framework and present our experimental re-
sults. Finally, in Sections 5, 6, and 7, we present
related work, future work, and conclusions.

2 Automatically Tolerating
I/O Latency

This section describes our system for automatically
tolerating I/O latency. We begin by discussing the
fundamental challenges that we have overcome, we
then present an overview of our system, and finally
we discuss the three major components of the sys-
tem (i.e. the compiler, operating system, and run-
time layer support) in more detail.

2.1 Fundamental Performance Is-
sues

Our goal is to fully hide I/O latency, thus elimi-
nating its impact on overall execution time. Con-
ceptually, one can view our approach as enhancing
the performance of virtual memory, since that is
the abstraction we present to the programmer. Un-
der paged virtual memory, an out-of-core applica-
tion invokes two types of disk accesses: (i) faulting
pages are read from disk into memory, and (ii) dirty
pages are written out to disk to free up memory.
Hiding write latency is reasonably straightforward
since writes can be buffered and pipelined. Hiding
read latency, on the other hand, is difficult because
the application stalls waiting for the read (i.e. the
page fault) to complete. The key to tolerating read
latency is to split apart the request for data and the
use of that data, while finding enough useful work
to keep the application busy in between. We can
accomplish this by prefetching pages sufficiently far
in advance in the execution stream such that they
reside in memory by the time they are needed.

Since prefetching does not reduce the number of
disk accesses, but simply attempts to perform them
over a shorter period of time, it cannot reduce the
execution time of an application whose I/O band-
width demands already outstrip the bandwidth pro-
vided by the hardware. Fortunately, we can con-
struct cost-effective, high-bandwidth I/O systems
by harnessing the aggregate bandwidth of multi-
ple disks [5, 16, 28]. Roughly speaking, one can
always increase the I/O bandwidth by purchasing

additional disks.1

In addition to hiding I/O latency and provid-
ing sufficient I/O bandwidth, a third challenge in
achieving high performance is effectively managing
main memory, which can be viewed as a large, fully-
associative cache of data that actually resides on
disk. There are two issues here. First, to minimize
page faults, we would like to choose the optimal
page to evict from memory when we need to make
room for new pages that are being faulted in. To-
ward this goal, most commercial operating systems
use an approximation of LRU replacement to se-
lect victim pages. While LRU replacement may be
a good choice for a default policy, there are cases
where it performs quite poorly, and in such cases
we would like to exploit application-specific knowl-
edge to choose victim pages more effectively. The
second issue is that we would like to minimize mem-
ory consumption, particularly when doing so does
not degrade performance. For example, rather than
filling up all of main memory with data that we are
streaming through, we may be able to achieve the
same performance by using only a small amount of
memory as buffer space. By minimizing memory
consumption, more physical memory will be avail-
able to the rest of the system, which is particularly
important in a multiprogrammed environment. To
accomplish both of these goals, we introduce an
explicit release operation whereby the application
provides a hint to the OS that a given page is not
likely to be referenced again soon, and hence is a
good candidate for replacement.

In summary, our approach overcomes the fun-
damental challenges of accelerating paged virtual
memory as follows: (i) prefetches are used to toler-
ate disk read latency, (ii) multiple disks are used to
provide high-bandwidth I/O, and (iii) release oper-
ations are used to effectively manage memory. We
now discuss the overall structure of our software
system.

2.2 Software Architecture Overview

To prefetch and release data effectively, we need
detailed knowledge of an application’s future ac-
cess patterns. Although one might attempt to de-
duce this information from inside the OS by look-
ing for repeated patterns in the access history, such
an approach would be limited only to simple ac-
cess patterns (e.g., even the simple indirect refer-

1There are more subtle issues involved with increasing
I/O bandwidth, of course. However, this approach does ap-
pear to be promising enough for our purposes, and exploring
I/O bandwidth issues further is beyond the scope of this
paper.
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ences that commonly occur in sparse-matrix appli-
cations would be extremely difficult for the OS to
predict), and would require adding additional com-
plexity to the OS, which is something we wish to
avoid.2 Instead, we turn to the compiler to pro-
vide information on future access patterns, since it
has the luxury of being able to examine the entire
program all at once. Also, by using the compiler
to extract this information automatically, we avoid
placing any burden on the programmer, who con-
tinues to enjoy the abstraction of unlimited virtual
memory.

2.2.1 The Compiler / OS Interface

Given that the compiler will be extracting and pass-
ing access pattern information to the OS, an im-
portant question is what form this interface should
take. Note that this interface will only be used by
the compiler, and not by the programmer—the pro-
grammer’s interface will be unlimited virtual mem-
ory, and the compiler and operating system coop-
erate to preserve this illusion. Ideally, we would
like an interface that requires minimal complexity
within the OS (so that it can be readily incorpo-
rated into an existing commercial OS), and which
maximizes the compiler’s ability to improve perfor-
mance, given the strengths and weaknesses of real-
istic compilation technology.

One possibility would be for the compiler to
pass a summary of future access patterns to the OS
through a single call at the start of execution. How-
ever, from the compiler’s perspective, this approach
is undesirable since the access patterns in real appli-
cations often depend on dynamic control and data
dependencies that can only be resolved at run-time.
For example, in the bucket sort application (BUK)
discussed later in this paper, the important data ac-
cesses are indirect references based on the contents
of a large array. The values in this array are un-
known at startup time; but even if they were known,
passing this very large array along with a descrip-
tion of how to use it to compute addresses would
greatly complicate not only the interface and the
compiler, but also the OS, which would ultimately
be responsible for generating the addresses. An-
other disadvantage of this approach is that it pushes
the complexity of matching up the access patterns
with when those accesses actually take place into
the OS. For example, if the compiler indicates that
the program will be streaming through a large ar-
ray, it is not helpful if the OS brings the data into

2This additional complexity may increase the critical
page fault path in the OS, and hence degrade application
performance.

memory too fast (or too slow) relative to the rate at
which it is being consumed. Since tracking an ap-
plication’s access patterns means that the OS must
see either page faults or explicit I/O on a regular
basis, it is unclear that this interface offers any less
overhead than an interface requiring regular system
calls. Hence we will focus instead on an interface
where prefetch addresses are passed in at roughly
the time when the prefetch should be sent to disk,
and where release addresses are passed in when the
data is no longer needed.

The next logical question is whether we can sim-
ply compile to an existing asynchronous read/write
I/O interface, or whether a new interface is ac-
tually needed. There are two reasons why exist-
ing read/write I/O interfaces are unacceptable for
our purposes. First, for the compiler to success-
fully move prefetches back far enough to hide the
large latency of I/O, it is essential that prefetches
be non-binding [19]. The non-binding property
means that when a given reference is prefetched, the
data value seen by that reference is bound at refer-
ence time; in contrast, with a binding prefetch, the
value is bound at prefetch time. The problem with
a binding prefetch is that if another store to the
same location occurs during the interval between a
prefetch and a corresponding load, the value seen
by the load will be stale. Hence we cannot move
a binding prefetch back beyond a store unless we
are certain that they are to different addresses—
unfortunately, this is one of the most difficult prob-
lems for the compiler to resolve in practice (i.e. the
problem of “alias analysis”, also known as “memory
disambiguation” or “dependence analysis”). Since
an asynchronous I/O read call implicitly renames
data by copying it into a buffer, it is a binding
prefetch. To illustrate this problem, consider the
code in Figure 1(a). If we use the read/write in-
terface, we might generate code similar to Fig-
ure 1(b). Unfortunately, this code produces an in-
correct result if the parameters a and b are aliased
(e.g., foo(&X[0],&X[0])) or even partially over-
lap (e.g, foo(&X[10],&X[0])). To implement non-
binding prefetching, the data should have the same
name (or address) both in memory and on disk,
which corresponds to the abstraction of paged vir-
tual memory. Figure 1(c) shows the preferred code
which uses non-binding prefetch and release opera-
tions, and always produces a correct result.

The second problem with an asynchronous
read/write interface is that it compels the OS to
perform an I/O access. Instead, we would prefer
to give the OS the flexibility to drop requests if
doing so might achieve better performance, given
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foo(double *a, double *b) {
/* Assume that a & b reside */
/* on disk at this point. */
...

for (i = 0; i < 100; i++) {
a[i+1] = a[i] + b[i];

}
}

foo(double *a, double *b) {
double a buf[101], b buf[100];

/* Read a & b from disk into buffers. */
read(a,&a buf[0],101*sizeof(double));

read(b,&b buf[0],100*sizeof(double));

...

for (i = 0; i < 100; i++) {
a buf[i+1] = a buf[i] + b buf[i];

}
/* Write a buf back out to disk. */
write(a,&a buf[0],101*sizeof(double));

}

foo(double *a, double *b) {
/* Prefetch a & b into memory. */
prefetch(a,101*sizeof(double));
prefetch(b,100*sizeof(double));
...

for (i = 0; i < 100; i++) {
a[i+1] = a[i] + b[i];

}
/* Finished with a & b. */
release(a,101*sizeof(double));
release(b,100*sizeof(double));

}
(a) Original Code (b) Read/Write Interface (c) Prefetch/Release Interface

Figure 1: Example illustrating the importance of non-binding prefetches.

the dynamic demands for and availability of phys-
ical resources. For example, if there is not enough
physical memory to buffer prefetched data, or if
the disk subsystem is overloaded, we may want to
drop prefetches. Hence the preferred interface is
a natural extension of paged virtual memory which
includes prefetch and release as non-binding perfor-
mance hints, thus giving the compiler the flexibility
to aggressively move prefetches back ahead of refer-
ences, and giving the OS the flexibility to arbitrate
between the competing resource demands of multi-
ple applications. (Note that the “MADV WILLNEED”
and “MADV DONTNEED” hints to the madvise() inter-
face can potentially be used to implement prefetch
and release in UNIX.)

2.2.2 Minimizing Prefetch Overhead

Earlier studies on compiler-based prefetching to
hide cache-to-memory latency have demonstrated
the importance of avoiding the overhead of un-
necessarily prefetching data that already resides in
the cache [19, 20]. To address this problem, com-
piler algorithms have been developed for inserting
prefetches only for those references that are likely
to suffer misses. An analogous situation exists with
I/O prefetching, since we do not want to prefetch
data that already resides in main memory—hence,
we perform similar analysis in our compiler (as
we discuss later in Section 2.3). Unfortunately, it
is considerably more difficult to avoid unnecessary
prefetches with I/O prefetching since main memory
is so much larger than a cache that our loop-level
compiler analysis tends to underestimate its ability
to retain data. As a result, unnecessary prefetches
do occur, and we must be careful to minimize their
overhead.

Compared with cache-to-memory prefetching,
where the overhead of an unnecessary prefetch is

simply a wasted instruction or two3, the overhead of
an unnecessary I/O prefetch is considerably larger
since it involves making a system call and checking
the page table before discovering that the prefetch
can be dropped. To reduce this overhead, we in-
troduce a run-time layer layer in our system which
keeps track at the user level of whether pages are
believed to be in memory or not. Therefore we
can typically drop unnecessary prefetches immedi-
ately without performing a system call, and we have
found this to be essential in achieving high perfor-
mance.

Having introduced the three layers of our
system—the compiler, the OS, and the run-time
layer—we now discuss each layer in more detail.

2.3 Compiler Support

The bulk of our compiler algorithm is a straight-
forward extension of an algorithm that was devel-
oped earlier for prefetching cache-to-memory misses
in dense-matrix and sparse-matrix codes [19, 20].
Roughly speaking, we changed the input param-
eters that describe the cache size, line size, and
miss latency to correspond to main memory size,
the page size, and the page fault latency, respec-
tively. Based on this memory model, the compiler
uses locality analysis to predict when misses (i.e.
page faults) are likely to occur, it isolates these
faulting instances through loop splitting techniques,
and schedules prefetches early enough using soft-
ware pipelining. Figure 2 shows an example of the
output of our compiler for a simple loop body (no-
tice that it is able to prefetch the indirect a[b[i]]
reference as well as the dense b[i] and c[i][j]

3Unnecessary cache prefetches are dropped as soon as the
primary cache tags are checked. The overhead is simply the
prefetch instruction, plus any instructions needed to gener-
ate the prefetch address, plus one cycle of wasted cache tag
bandwidth.
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int a[1000000];

int b[1000000];

int c[1000000][8];

for (i = 0; i < 1000000; i++)

for (j = 0; j < 8; j++)

a[b[i]] = a[b[i]] + c[i][j];

prefetch block(&b[0], 8);

prefetch block(&c[0][0], 4);

for (i = 0; i < 128; i++)

prefetch(&a[b[i]]);

/* Note: 995328 = (� 1000000
4096

� − 1)∗4096 */
for (i1 = 0; i1 < 995328; i1 += 4096) {

prefetch release block(&b[i1+8192], &b[i1-1], 4);

for (i0 = i1; i0 < i1 + 4096; i0 += 512) {
prefetch release block(&c[i0+512][0], &c[i0-1][0], 4);

for (i = i0; i < i0 + 512; i++) {
prefetch(&a[b[128+i]]);
for (j = 0; j < 8; j++)

a[b[i]] = a[b[i]] + c[i][j];

}
}

}
for (i = 995328; i < 1000000; i++)

for (j = 0; j < 8; j++)

a[b[i]] = a[b[i]] + c[i][j];

(a) Original Code (b) Code with Prefetching

Figure 2: Example of the output of the prefetching compiler. (The first argument to all prefetch calls is the
prefetch address; the second argument to prefetch release block is the release address; the final argument
to “block” versions is the number of 4KB pages to be fetched and/or released.)

references). Since space limitations prevent us from
describing the compiler algorithm in detail, we fo-
cus mainly on the major changes to the original
algorithm [19].

Two of our modifications to support I/O
prefetching are related to spatial locality—i.e. when
strided accesses fall within the same page—in which
case page faults only occur on iterations that cross
page boundaries. First, we use strip mining [24]
rather than loop unrolling to isolate these fault-
ing iterations, since replicating a loop body 1000
times or more is clearly infeasible. Notice in Fig-
ure 2(b) that loop i has been strip mined twice
(into loops i0 and i1) to account for the spatial
locality of b[i] and c[i][j]. (The i loop has
been strip mined twice since c[i][j] accesses data
more quickly than b[i], and therefore needs to be
prefetched at a faster rate.) Second, to fully exploit
the available bandwidth in our I/O subsystem, we
prefetch several pages at a time for references with
spatial locality (e.g., four pages are fetched at a
time for b[i] and c[i][j]4). (Note that for ref-
erences without spatial locality—e.g., a[b[i]]—we
prefetch only a single page at a time.) Similarly, we
convert the prolog loops from the original algorithm
into block prefetches whenever possible, as shown
in the first two lines of Figure 2(b).

Generating release operations is straightfor-
4The number of pages to fetch in a block is a parame-

ter which can be specified to the compiler. We chose four
arbitrarily for this example.

ward. The compiler already identifies groups of
references that effectively share the same data and
can be treated as a single reference—this is called
“group locality”. For each of these groups (a group
may potentially contain only a single reference),
the compiler identifies the leading reference (i.e. the
first reference to access the data) as the reference
to prefetch—we simply extend this analysis to also
identify the trailing reference (the last one to touch
the data) as the address to release. (Note that
for indirect references such as a[b[i]], we do not
generate a release operation since it is too difficult
to predict whether the data will be accessed again
soon.) To minimize system call overhead, we bun-
dle prefetch and release requests together whenever
appropriate, as illustrated in Figure 2(b).

Perhaps the most significant change we made to
the original algorithm is to reason more carefully
about loop bounds and array bounds that are small
relative to a page size. This was less of a concern for
cache-to-memory prefetching due to the relatively
small size of cache lines. However, it is common
to find inner loops (and sometimes even surround-
ing loops) which access less data than a 4 KB page
(e.g., the j loop in Figure 2(a)). Attempting to
software pipeline prefetches across such loops is in-
effective, since the pipeline never gets started. In-
stead, our compiler pipelines the prefetches across
the first surrounding loop which touches more than
a page of the given array, as illustrated by the fact
that prefetches for c[i][j] are pipelined along the
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i loop rather than the j loop in Figure 2(b). Having
described the compiler support for I/O prefetching,
we now focus on the other half of the equation: the
operating system.

2.4 Operating System and Run-
Time Layer Interaction

To support compiler directed prefetching, the OS
needs to be able to respond to the prefetch and
release operations issued by the application. This
functionality is easy to add since the OS is already
able to unmap pages of memory and initiate asyn-
chronous requests to the file system. One issue is
how the OS should handle prefetch requests when
there is no free memory available. Since we expect
the application/compiler to be managing memory
requirements, the OS simply drops prefetches when
all memory is in use.

To help the run-time layer reduce the overhead
of prefetching, the OS also provides applications
with a single physical memory page that is shared
with the OS. Applications that prefetch are re-
quired to register with the OS to initiate sharing.
The shared page is used as a bit vector with each
bit representing one or more contiguous pages of the
application’s virtual memory space (a set bit indi-
cates that the corresponding page is in memory).
The granularity of the bit vector is determined by
the run-time layer at program start-up. Bits are
set by the run-time layer when a prefetch request
is issued, and by the OS when non-prefetched page
faults occur. The OS also clears bits when release
requests are issued and when the memory manager
reclaims pages.

The run-time layer uses the bit vector to filter
the prefetches inserted by the compiler by checking
to see if the requested page is already in memory. In
many cases this simple test can avoid the cost of a
system call to the OS, thus reducing overhead. For
block prefetch requests, we check each page until
one is found that is not in memory, then pass all
remaining pages to the OS. In this way, at most
one system call is required for a block prefetch.

3 Experimental Framework

We now describe our experimental platform, and
the applications which we study in our experiments.

3.1 Experimental Platform

The experimental platform used to evaluate our
scheme is the Hurricane file system [16] and Hurri-

Table 1: Experimental platform characteristics.

Processor
Processor type: Motorola 88100
Clock rate: 16.67 MHz
Data cache size: 16KB
Instruction cache size: 16KB

Physical Memory
Total size: 64 MBytes
Available to application: 48 MB

Disks
Number of disks: 7
Maximum transfer rate: 640 KB/sec
Average rotational latency: 8.61 msec
Track-to-track seek time: 5 msec

Kernel Operation Overhead

IPC request: 70 µsec
In-core fault: 200 µsec
Out-of-core fault: 800 µsec
Base prefetch: 60 µsec
+ per out-of-core page: 200 µsec
+ per in-core page: 30 µsec
+ per in-page table page: 10 µsec

File System Operation Overhead
Prefetch (per-page): 70 µsec
Read/Write (per-page): 70 µsec

cane operating system [33] running on the Hector
shared-memory multiprocessor [34]. Hurricane is a
hierarchically clustered, micro-kernel based operat-
ing system that is mostly POSIX compliant. It was
largely irrelevant that the system was a multipro-
cessor; we chose this platform because the system
has multiple disks attached to it, the file system
can stripe a single file across multiple disks, and the
operating system could be modified to add prefetch
and release operations. For all experiments shown
in subsequent sections, the pages of the applications
are striped by the file system round-robin across all
seven disks. An extent-based policy is used to store
the file on each of the disks, where contiguous file
blocks are stored to contiguous blocks on the disk
to avoid seek operations for sequential file accesses.
The disk scheduler treats prefetches the same as
normal disk read requests.

In addition to adding prefetch and release op-
erations to Hurricane, we also added extensive in-
strumentation to enable us to produce the detailed
statistics shown in subsequent sections. The basic
characteristics of our experimental platform (with
the instrumentation disabled) are shown in Table 1,
and more detailed descriptions of the platform can
be found in earlier publications [16, 33, 34].

We believe that our experimental results are
conservative for the following reasons: (i) instru-
mentation is enabled for all the experiments, and
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Table 2: Description of applications.

Memory Required Original
% of Execution

Name Description Input Data Set Absolute Available Time (mins)

BUK integer bucket sort algorithm 223 19-bit integers 103 MB 215 % 21.0
solves an unstructured sparse 28000x28000 sparse

CGM linear system using the matrix with 103 MB 215% 57.2
conjugate gradient method 7,607,024 non-zeros

EMBAR monte-carlo simulation 224 random numbers 134 MB 279% 53.9
FFTPDE 3-D FFT PDE, performs 128x128x128 matrix 117 MB 244% 87.9

forward and inverse FFT’s of complex numbers
computes 3-D scalar potential

MGRID field on a uniform cubical 128x128x128 matrix 58 MB 121% 31.9
grid using a multigrid solver
solves four coupled parabolic /

APPLU elliptic PDE’s using SSOR 5x5x64x64x32 120 MB 250% 48.9
method to invert jacobian matrix matrices
solves five coupled parabolic /

APPSP elliptic PDE’s using diagonalized 90x90x90 matrices 117 MB 244% 224.3
approximate factorization method
solves three coupled parabolic /

APPBT elliptic PDE’s using block approx- 5x5x64x64x32 94 MB 196% 85.2
imate factorization method matrices

hence the system overheads are significantly in-
flated; (ii) the operating system overhead is also
inflated because the hardware does not support
cache coherence, and hence many of the operat-
ing system data structures are accessed in an un-
cached state; and (iii) processor speeds have in-
creased more rapidly than disk speeds, and hence
the importance of tolerating I/O latency has in-
creased in modern systems.

3.2 Applications

To evaluate the effectiveness of our approach, we
measured its impact on the performance of the en-
tire NAS Parallel benchmark suite [2]. We chose
these applications because they represent a variety
of different scientific workloads, their data sets can
easily be scaled up to out-of-core sizes, and they
have not been written to manage I/O explicitly.
Our goal is to show that these scientific benchmarks
can achieve high performance with out-of-core data
sets without requiring any extra effort to rewrite
the program. Because these programs were orig-
inally written to evaluate processor performance,
they all generate a data set at start-up, perform a
series of computations, and then discard the results.
To make the programs more realistic, we modified
them to use a pre-initialized data set and write their
results back out to disk. This was achieved by us-
ing a mapped file I/O interface—the data accesses
have not been modified but the data now comes
from disk. An exception to this strategy is EM-
BAR where a random initialization is performed
once for every iteration and separation would not

be appropriate. A brief description of each of the
benchmarks and the data set used is given in Ta-
ble 2.

We implemented our prefetching algorithm as a
pass in the SUIF (Stanford University Intermediate
Format) compiler [31], which we used to convert
the original Fortran source code of each application
into C code containing prefetch and release calls (as
illustrated earlier in Figure 2(b)). We then compile
this resulting C code into a Hurricane executable
using gcc version 2.5.8 with the -O2 optimization
flag.

4 Experimental Results

We now present the results of our experiments. We
begin by focusing on the impact of our scheme on
overall execution time, including the effectiveness
of the compiler and the run-time layer. We then
look at the performance from a system-level per-
spective, including the effects on disk and memory
utilization.

4.1 Performance Improvement

Figure 3(a) shows the overall performance improve-
ment achieved through our automatic prefetching
scheme. For each application, we show two bars
representing normalized execution time: the origi-
nal program relying simply on paged virtual mem-
ory to perform its I/O (O), and the program once it
is compiled to use prefetching (P). In each bar, the
top section is the amount of time when the proces-
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(a) Overall Performance
(O = original, P = with prefetch)

Original With Prefetch
Avg. Avg. I/O

Total Stall Total Stall Stall
Faults Time Faults Time Reduction

Benchmark (x1000) (msec) (x1000) (msec) (%)

BUK 41.529 24.5 0.810 16.1 98.7%
CGM 135.066 22.0 0.207 26.5 99.8%
EMBAR 65.535 7.7 0.005 13.5 100.0%
FFTPDE 135.646 31.1 28.432 39.3 73.6%
MGRID 62.231 19.9 7.642 24.2 85.1%
APPLU 91.220 26.3 31.663 26.4 65.2%
APPSP 412.234 20.5 143.996 26.2 55.4%
APPBT 156.172 26.2 77.035 25.6 51.9%

(b) I/O Stall Statistics

Figure 3: Overall performance improvement from
prefetching

sor was idle, which corresponds roughly to the I/O
stall time since we run only a single application dur-
ing these experiments. The bottom section of each
bar is the time spent executing in user mode—for
the prefetching experiments, this includes the in-
struction overhead of issuing prefetches, including
any overhead in the run-time layer of checking the
bit vector to filter out unnecessary prefetches. The
middle sections of each bar are the time spent exe-
cuting in system mode. For the original programs,
this is the time required for the operating system
to handle page faults; for the prefetching programs,
we also distinguish the time spent in the OS per-
forming prefetch operations.

As we see in Figure 3(a), the speedup in over-
all performance ranges from 9% to 270%, with the
majority of applications speeding up by more than
80%. Figure 3(b) presents additional information
on page faults5 and stall time. As we see in Fig-
ure 3(b), more than half of the I/O stall time has
been eliminated in seven of the eight applications,

5Throughout this discussion, we will refer to page faults
that cause the application to stall waiting for I/O simply as
faults, and ignore page faults for in-core data.

with three applications eliminating over 98% of
their I/O stall time.

Having established the benefits of our scheme,
we now focus on the costs. Figure 3(a) shows that
the instruction overhead of generating prefetch ad-
dresses and checking whether they are necessary in
the run-time layer causes less than a 20% increase
in user time in five of the eight applications—in
the worst case (CGM), the user time increases by
70%. However, in all cases this increase is quite
small relative to the reduction in I/O stall time. If
we focus on the system-level overhead of perform-
ing prefetch operations, we see in Figure 3(a) that
in most cases this overhead is directly offset by a
reduction in system-level overhead for processing
page faults. Hence the overheads of our scheme are
low enough to translate into significant overall per-
formance improvements in all of these applications.

We wish to emphasize that all of these results
are fully automatic—we have not rewritten any of
the applications or modified the code generated by
the compiler. Having discussed the performance at
a high level, we now focus on the compiler and run-
time layer in more detail.

4.1.1 Effectiveness of the Compiler and
Run-Time Layer

Figure 4 presents additional information which is
useful for evaluating how effective our compiler is
at inserting prefetches appropriately, and how effec-
tive the run-time layer is at minimizing prefetching
overhead. Figure 4(a) shows a breakdown of the
impact of prefetching on the original page faults
in the application. This breakdown contains three
categories: (i) those that were prefetched and and
successfully eliminated page faults (prefetched hit),
(ii) those that were prefetched but remained page
faults (prefetched fault), and (iii) those that were
not prefetched (non-prefetched fault). The combi-
nation of the first two cases is often referred to as
the coverage factor (i.e. the fraction of original page
faults that were prefetched). For all cases except
APPBT, the coverage factor is greater than 75%
(in four cases, it is greater than 99%). Most of
the page faults that we failed to prefetch were due
to inner loops with small loop bounds, where the
fact that the bound was small could not be deter-
mined at compile time. For example, if the j loop
in example in Figure 2(a) had an upper bound of
N which turned out to be small at run-time (but
which we could not determine at compile time),
and if the dimensions of the c matrix were also un-
known at compile time, our compiler can make the
mistake of software pipelining references across the
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Unnecessary Inserted
Prefetches Prefetches
Issued Filtered

Benchmark to OS at Run-Time

BUK 0.07% 99.79%
CGM 0.08% 99.74%

EMBAR 0.00% 0.02%
FFTPDE 7.99% 99.59%
MGRID 8.03% 99.17%
APPLU 3.75% 96.99%
APPSP 7.55% 99.51%
APPBT 2.54% 98.31%

(b) Unnecessary Prefetches
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(c) Performance of prefetching with (W) and
without (WO) filtering (normalized to
the original, non-prefetched case).

Figure 4: Effectiveness of the compiler analysis and
run-time filtering.

j loop rather than the i loop. Situations like this
can cause us to miss important prefetches, since the
software pipeline never gets started. This problem
can be fixed through a straightforward extension
of our compiler algorithm whereby we create two
versions of the loop, and choose the proper one to
execute by testing the loop bound at run-time.

The effectiveness of our compiler in scheduling
prefetches the right amount of time in advance is
reflected by the size of the prefetched fault cate-

gory in Figure 4(a). A large value means that the
prefetches are either not issued early enough, in
which case the page has not arrived in memory by
the time it is referenced, or are issued too early,
in which case the page has already been flushed
from memory before it is referenced. In the cases
where this category is noticeable in Figure 4(a), the
problem is almost always that the prefetches were
not issued early enough. However, given how large
I/O latency is, it is encouraging that this case is
generally small relative to the number of successful
prefetches.

To evaluate the effectiveness of the run-time
layer at reducing prefetching overhead, Figure 4(b)
presents statistics on how many prefetches were un-
necessary (i.e. the page was already mapped into
memory). (Note that a prefetch for a page that is
in memory but is on the free list is not considered
to be unnecessary, since it performs useful work by
reclaiming the page.) The left-hand column of Fig-
ure 4(b) shows that almost all of the prefetches is-
sued to the system by the run-time layer are use-
ful. All unnecessary prefetches that are issued to
the system occur as part of a block prefetch re-
quest in which prefetching is required for at least
one page. The right-hand column of Figure 4(b)
shows the fraction of dynamic prefetches that were
inserted by the compiler which turn out to be un-
necessary, and are filtered out by the run-time layer.
For reasons discussed earlier in Section 2.2.2, it is
difficult for our compiler to avoid inserting unnec-
essary prefetches, and we see that over 96% of the
prefetches were unnecessary for all but EMBAR
(where the access patterns are simple enough that
the compiler’s analysis is perfect).

Figure 4(c) quantifies the performance advan-
tage of the run-time layer. As we seen in Fig-
ure 4(c), half of the applications (BUK, CGM,
FFT and APPSP) run slower than the original non-
prefetching versions when the run-time layer is re-
moved. This is not surprising since the overhead of
dropping an unnecessary prefetch in the run-time
layer is roughly 1% as expensive as issuing it to the
OS. Hence the run-time layer is clearly essential.

4.2 Disk and Memory Utilization

In Figure 5 we break down the types of requests
seen by the disks and show average disk utilization
during execution for both the original and prefetch-
ing versions of the applications. In almost all cases,
the total disk requests do not increase as a result
of prefetching, and for two of the applications they
actually decrease as prefetches prevent the system
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Table 3: Memory sub-system activity and amount of free memory

Original With Prefetch and Release
Pages Minimum Average Pages Pages Minimum Average
Freed Free Free Freed Freed Free Free

by System Memory Memory by System by release Memory Memory
Benchmark (pages) (%) (%) (pages) (pages) (%) (%)

BUK 68916 5.8% 26.9% 3461 41729 29.2% 73.7%
CGM 125817 14.8% 21.1% 125710 834 7.3% 23.4%

EMBAR 55647 15.0% 22.0% 0 65504 98.4% 98.5%
FFTPDE 146699 14.9% 20.9% 156463 7164 9.9% 26.0%
MGRID 59181 14.3% 23.4% 60349 0 12.3% 25.9%
APPLU 82978 11.9% 25.0% 84395 0 7.9% 28.9%
APPSP 450507 10.5% 18.6% 448732 17196 9.0% 35.4%
APPBT 148174 11.3% 22.8% 148580 516 11.7% 25.5%
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(a) Disk activity

Benchmark Original With Prefetch

BUK 11.8% 40.1%
CGM 11.6% 46.0%

EMBAR 5.9% 9.0%
FFTPDE 18.9% 35.1%
MGRID 15.8% 29.0%
APPLU 18.6% 31.8%
APPSP 16.3% 20.7%
APPBT 15.8% 20.1%

(b) Average disk utilization

Figure 5: Breakdown of requests sent to disk and
average utilization (O = original program, P =
with prefetch)

from writing out dirty pages that will be referenced
again soon. Hence the increased disk utilization
shown in Figure 5(b) is simply due to the fact that
we are performing roughly the same number of disk
accesses over a shorter period of time.

Finally, Table 3 summarizes memory usage dur-
ing each application’s execution. Since our current
compiler implementation is not aggressive about in-
serting release operations, most applications do not
contain a significant number of them. However,
when release operations are used (e.g., BUK and
EMBAR), we see that a large percentage of mem-

ory is kept free at all times since only the portion
of the data set actually being used is kept in mem-
ory. We expect that this would greatly reduce the
impact of an out-of-core program on other applica-
tions in a multiprogrammed environment, and we
intend to explore this issue further in future work.

4.3 Problem Size Variations

Having demonstrated the benefits of I/O prefetch-
ing where the problem size is roughly twice as large
as the available memory, we now look at the per-
formance when the problem size is varied.

4.3.1 In-Core Problem Sizes

We begin with cases where the data sets fit within
main memory. In these cases, we would ex-
pect prefetching to degrade performance, since the
prefetches incur overhead but provide little or no
benefit. Figure 6 shows two sets of experiments—
the cold-started and warm-started cases—on data
sets that are roughly 10-35% as large as the avail-
able memory. Starting with the cold-started cases,
we see that prefetching degrades performance in
four cases, but actually improves performance in
three cases (BUK, APPLU, and APPBT) by hid-
ing the latency of cold page faults. To further iso-
late the prefetching overhead, we also warm-started
the applications by preloading all of their data from
the input files into memory before timing the runs.
As expected, prefetching typically degrades perfor-
mance in the warm-started cases since it offers no
potential advantage. However, we believe that the
cold-started cases are more realistic for most appli-
cations, since real programs must read their input
data from disk.

In these experiments, we made no attempt to
minimize prefetching overhead for in-core data sets,
but this is a problem that we are planning to ad-
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Figure 6: Performance with in-core data sets (O = original, P = with prefetch; Cold = cold-started,Warm
= warm-started). Performance is normalized to the original, cold-started cases.
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Figure 7: Performance with larger out-of-core prob-
lem sizes. Numbers above application names indi-
cate how much larger the problem sizes are than
available memory.

dress in future work. In particular, we can generate
code that dynamically adapts its behavior by com-
paring its problem size with the available memory
at run-time, and suppressing prefetches (after the
cold faults have been prefetched in) if the data fits
within memory. The fact that I/O prefetching can
still potentially improve performance even on rela-
tively small data sets by hiding cold page faults is
an encouraging result.

4.3.2 Larger Out-of-Core Problem Sizes

In addition to looking at smaller problem sizes,
we also experimented with much larger data sets
than our earlier out-of-core problem sizes. Figure 7
shows the performance of three applications where
the problem size is 4-10 times larger than the avail-
able memory. Recall that for MGRID, our earlier
problem size was only 20% larger than the available
memory–the next larger problem size (shown in Fig-
ure 7) requires 464 MB of memory, which is approx-
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Figure 8: Performance of BUK (cold-started) across
a range of problem sizes.

imately 10 times more than what is available. In
all three cases, the performance improvements re-
main large. In fact, prefetching offers slightly larger
speedup in all three cases since there is more I/O
latency to hide.

4.3.3 Case Study: BUK

To illustrate the impact of I/O prefetching on per-
formance across a wide range of problem sizes, we
look at the BUK application as a case study. We
chose BUK because we can easily set the problem
size to any value for this application. Ignoring
page faults, we would normally expect the execu-
tion time of BUK to increase linearly with the prob-
lem size. As we see in Figure 8, the original ver-
sion of BUK (without prefetching) suffers a large
discontinuity in execution time once the problem
no longer fits in memory (recall that our proto-
type has 64 MB of physical memory, roughly 48
MB of which is available to the application). In
contrast, the prefetching version of the code suffers
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no such discontinuity—execution time continues to
increase linearly. For this particular application,
the prefetching version of the code outperforms
the original code on all problem sizes, since even
small problem sizes benefit from prefetching cold
misses.6 Hence this application exemplifies what we
are attempting to accomplish with automatic I/O
prefetching: programmers can write their code in a
natural manner and still achieve good performance
even on out-of-core problem sizes.

5 Related Work

Much related work has depended on the use of an
explicit I/O interface by the programmer. On the
OS side, this work includes the automatic detection
of file access patterns in the file system [1, 10, 11,
12, 14, 15, 17], as well as the use of access patterns
supplied directly by the application using an I/O
type of interface [22, 26, 30, 4]. For compilers it
involves analysis to move explicit I/O calls back and
change them to asynchronous I/O calls instead [25].
While some of the OS policies developed may be
useful in our environment, our goal is to avoid the
use of explicit I/O entirely.

Of the file system prefetching techniques men-
tioned above, the work on Transparent Informed
Prefetching (TIP) by Patterson et. al [22] is most
relevant to our work in that hints provided by the
application level are used by the operating system
to optimize file prefetching and replacement. In
fact, the cost model employed by TIP might be
very useful for our memory manager. However,
TIP targets applications which are written to use
explicit I/O, and they depend on the programmer
(rather than the compiler) instrumenting the code
with hints. Also, their hints follow a very differ-
ent model, where no concept of time is embedded
in the hints, and hence their operating system sup-
port must be more complex than ours.

Compiling for out-of-core array codes tends to
focus on two areas. The first is reordering com-
putation to improve data reuse and reduce the to-
tal I/O required [3]. The second area is inserting
explicit I/O calls into array codes [6, 13, 21, 29].
In general, the compilers are aided by extensions
to the source code that indicate particular struc-
tures are out-of-core. In addition, some of the
work specifically targets I/O performance for paral-
lel applications [3], while we have achieved impres-
sive speedups for even single-threaded applications.

6For BUK, it is more realistic to cold-start the applica-
tion, since it must always read its input data set from disk.

We feel that compiler analysis that targets an I/O
interface is limited by the alias analysis problem
described earlier, and in general cannot be as ag-
gressive as an algorithm that supports non-binding
prefetching.

Other work has also been done in the area of
prefetching for paged virtual memory systems. As
for file systems, some of the work depends on the
OS detecting patterns to initiate prefetching [8, 27].
These techniques suffer from the fact that some
number of faults are required to establish patterns
before prefetching can begin, and when the pat-
terns change unnecessary prefetches will occur. Us-
ing application-specific knowledge to assist mem-
ory management policies was studied by Malkawi
and Patel [18], however they only considered retain-
ing needed pages in memory and did not consider
prefetching.

The most relevant work to our study was con-
ducted nearly twenty years ago by Trivedi [32],
who looked at the use application access patterns
extracted by a compiler to implement “prepag-
ing”. Although the interface to the OS is nearly
identical, there are some significant differences.
First, Trivedi’s compiler analysis was restricted to
programs in which blocking could be performed
whereas previous studies on prefetching for caches
have shown that many programs which can be
prefetched cannot be blocked [20]. Thus, our ap-
proach is much more widely applicable. Second,
improvements in compiler analysis enable us to be
much more aggressive, allowing the prefetching of
indirect references and other interesting structures.
Third, we have found that the use of the run-time
layer is essential to achieving good performance
when the compiler must deal with symbolic loop
bounds, whereas this component was missing from
earlier work.

6 Future Work

We view this work as an encouraging first step, and
we are currently extending our research in the fol-
lowing directions. We are implementing our requi-
site support within commercial operating systems
so that future results can be collected on larger,
more modern systems where I/O latency is ex-
pected to be even more of a problem. To address
the challenges of multiprogrammed workloads—
where multiple applications compete for shared
resources—we are exploring new ways that the com-
piler and OS can cooperate so that applications can
adapt their behavior to dynamically fluctuating re-
source availability, and we will make more extensive
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use of release operations to minimize memory con-
sumption. Multiprocessors also provide interesting
challenges, such as co-locating data (on disk) and
computation within the same node to minimize net-
work traffic. Page-based prefetching is applicable to
domains other than disk I/O; for example, we are
adapting our compiler technology to prefetch the
page-sized chunks of data that are communicated
between workstations in distributed shared mem-
ory (DSM) systems. Finally, we are investigating
how to extend the scope of our work beyond array-
based codes to also include pointer-based codes and
other non-numeric applications.

7 Conclusions

This paper has demonstrated that with only minor
modifications to current operating systems, we can
enhance paged virtual memory to deliver high per-
formance to out-of-core applications without plac-
ing any additional burden on the programmer.
We have proposed and evaluated a fully-automatic
scheme whereby the operating system and the com-
piler cooperate as follows: the compiler analyzes fu-
ture access patterns to predict when page faults are
likely to occur and when data is no longer needed,
the operating system uses this information to man-
age I/O through non-binding prefetch and release
hints, and a run-time layer interacts with the oper-
ating system to accelerate performance by adapting
to dynamic behavior and minimizing prefetch over-
head. We implemented our scheme in the context of
a modern research compiler and operating system.

Our experimental results demonstrate that our
scheme yields substantial performance improve-
ments when we take unmodified, “in-core” versions
of scientific applications and run them with out-of-
core problem sizes. We successfully hid more than
half of the I/O latency in all of the NAS Paral-
lel benchmarks—in three cases, we eliminated over
98% of the latency. For five of the eight applica-
tions, this reduction in I/O stalls translates into
speedups of roughly twofold, with two cases speed-
ing up by threefold or more. Given these encourag-
ing results, we advocate that commercial operating
systems provide the modest support necessary for
the prefetch and release operations.
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