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Abstract

Informed prefetching provides a simple mechanism for
I/O-intensive, cache-ineffective applications to efficiently
exploit highly-parallel I/O subsystems such as disk arrays.
This mechanism, dynamic disclosure of future accesses,
yields substantial benefits over sequential readahead
mechanisms found in current file systems for non-sequen-
tial workloads. This paper reports the performance of the
Transparent Informed Prefetching system (TIP), a minimal
prototype implemented in a Mach 3.0 system with up to
four disks. We measured reductions by factors of up to 1.9
and 3.7 in the execution time of two example applications:
multi-file text search and scientific data visualization.

1: Introduction

Reducing program execution time is commonly the rea-
son for purchasing new, faster processors. However, for
programs that process stored data, faster processors do not
linearly decrease execution time unless they are coupled
with proportionately faster storage systems. Because stor-
age performance is increasing more slowly than processor
performance, data-intensive programs do not benefit as
much as one might expect from a faster processor. To
directly combat this limitation, new storage systems are
increasing disk parallelism, usually in the form of Redun-
dant Arrays of Inexpensive Disks (RAID) [Patterson88,
Gibson91].

RAID subsystems exploit data striping to provide high
throughput: high data rate for large parallel transfers and
I/O concurrency and disk load balancing for large numbers
of small accesses [Kim86, Livny87]. Unfortunately, RAID
subsystems cannot reduce the access latency of isolated
small reads and can increase small write latencies
[Chen90, Stodolsky93]. The situation is analogous to that
of parallel processors which are effective when applied to
large jobs distributed over the processors and to many
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independent small jobs running in parallel. But, parallel
processors do not reduce the execution time of a serial pro-
gram any more than RAIDs reduce the latency of a small
access. Since serial streams of small accesses dominate
many important workloads, access latency is an increas-
ingly important component of overall system perfor-
mance. Distributed file systems further increase its
importance by adding transfer and server overheads to the
storage access time [Sandberg85, Satya85].

Caching recently used file blocks can provide fast
access when a program’s workload is small or has high
locality. But, growing file sizes and the large volume of
read-once data limit the effectiveness of file caching
[Baker91]. Beyond caching, prefetching soon-to-be-
needed file blocks is the best method of reducing storage
access time [Feiertag71, McKusick84].

To be most successful, prefetching should be based on
the knowledge of future accesses often available within
applications. By passing hints to the file system, applica-
tions can disclose this information to lower levels of the
system. There, it may be combined with global knowledge
of the competing demands for system resources. Thus
informed, a file system can transparently prefetch needed
data and optimize resource utilization. We call this
informed prefetching.

As presented previously, informed prefetching reduces
application execution time through three mechanisms
[Patterson93].

Exposure of an application’s I/O concurrency: The
primary advantage of informed prefetching is its ability to
perform multiple I/O accesses in parallel so that applica-
tions and users spend less time waiting for these accesses
to complete. Because informed prefetching systems know
what to prefetch, they can utilize resources less timidly
than uninformed prefetching systems. It is this ability of
informed prefetching to expose and exploit I/O concur-
rency that enables it to convert the high throughput of par-
allel I/O technologies to the lower access latencies these
storage technologies cannot directly provide.
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Increased storage efficiency: Because informed
prefetching systems prefetch aggressively, they can fill
otherwise empty I/O queues with low-priority accesses
and create opportunities for storage subsystem optimiza-
tions [Seltzer90].

Informed cache management: Knowledge of future
I/O requests can be used to hold on to needed blocks and
avoid disk accesses altogether. Thus, an informed cache
can outperform a standard LRU cache even without
prefetching [Chou85, Korner90, Cao94].

To obtain the full benefit of these mechanisms, applica-
tion hints to an informed prefetching system should not
advise particular lower-level policies or actions. Instead,
they shoulddisclose knowledge of future accesses using
the same abstractions and semantics that the application
later uses for I/O requests. Such disclosure does not vio-
late sound software engineering principles of modularity
and, as will be shown in Section 3.2.2, allows hints to be
passed through multiple software layers. Further, in con-
trast to advice, disclosure provides portability and the flex-
ibility needed to support global resource optimizations.

In this paper, we present a prototypeTransparent
Informed Prefetching (TIP) system. The primary goal of
our prototype, and the thrust of this paper, is to explore the
large benefits arising from the exposure of I/O concur-
rency. We do not address storage efficiency or cache man-
agement further in this paper.

We evaluate our prototype with two I/O-intensive,
cache-ineffective applications: multi-file text search and
data visualization. They share the following key features:

• the amount of data they manipulate are large and
growing,

• they usually do little computation per data byte
accessed,

• they are easily and generally coded as sequential
(single-threaded) applications,

• they do not reuse blocks or they flush even huge
caches between reuse,

• they perform significant numbers of non-sequential
accesses, either because they access blocks from
many files or because they access non-sequential
blocks in a large file.

Together these features indicate that multi-file text
search and data visualization do not benefit much from
disk arrays, large buffer caches or traditional per-file and
per-disk readahead. Informed prefetching file systems,
however, see the accesses of even these applications as
sequential in the “hint address space” and exploit this
sequentiality to overlap multiple accesses and fully utilize
disk parallelism.

Section 2 describes the implementation of our TIP pro-
totype. Section 3 describes our test applications in detail

and reports their performance in our system. Sections 4
and 5 discuss related work and conclusions.

2: The TIP prototype

As Figure 1 shows, we built our prototype Transparent
Informed Prefetching system (TIP), in a Mach 3.0 system
[Accetta86, Golub90] augmented with disk striping soft-
ware (UX version 42, MK version 83). We installed TIP in
the file buffer cache of the 4.3BSD Unix Fast File System
(FFS) [McKusick84] in the UX server where it has the
opportunity to execute whenever a buffer or disk was
accessed.

The system ran on a DECstation 5000/200 with 32
megabytes of RAM, two SCSI strings and up to four IBM
0661 Lightning disks formatted with a file block size of
8Kbytes. The Striper process striped data across the disks
with a stripe unit of 128 512-byte sectors, or eight 8 Kbyte
file blocks. There were 400 8 Kbyte buffers in the file
cache.

Although Mach 3.0 may be inefficient in terms of
instruction counts and memory cache behavior [Chen93]
particularly when an application’s primary activity is mov-
ing lots of data [Druschel93], it allowed us to add TIP and
the disk striping functionality outside of the kernel. More-
over, operating system overheads have little impact on the

Figure 1: Experimental system. The prototype was
implemented in the Mach 3.0 operating system which is
decomposed into a user-level Unix server, UX, and a
microkernel, MK. To maintain binary compatibility with
earlier operating systems, an emulator, EM, is added in the
address space of applications. A separate user-level
Striper process intercepts disk requests from UX and
redirects them to the appropriate disk in an array of up to
four disks. The flexibility of the Mach 3.0 operating system
made this possible, but this flexibility comes at the cost of
considerable overhead. Thin arrows indicate the control
path that a read system call traverses to get data from disk,
while thick arrows represent data copies.
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non-TIP execution time of disk-bound applications,
though they do limit speedup once TIP has removed the
disk bottleneck. For this reason, and because our DEC
5000/200 testbed is about four times slower than current
fast workstations, we believe our results are pessimistic
for today and even more so for the future.

Our TIP implementation is deliberately minimal. It
defines only enough functionality to exploit the types of
precise disclosure easily generated by our test applica-
tions. While we are aware of the hint language richness
and prefetching control problems that could be explored
with synthetic workloads, we prefer to develop primitive
mechanisms and allow higher level layers to build richer
functionality on these primitives [Steere94]. Accordingly,
an important goal in the development of our TIP prototype
was to provide a platform for experimenting with I/O-
intensive applications.

For ease of implementation, hints are passed to a
pseudo-device named “/dev/tip” through the Unix I/O con-
trol (ioctl) mechanism. Each hint indicates a sequence of
accesses within one file. If multiple files will be accessed,
a hint for each should be given in the order these files will
be accessed. Currently, hints may specify either sequential
or non-sequential access.

A tipio_seq hint indicates that a file will be read
sequentially in its entirety. Its only parameter is the name
of the file to be read.

A tipio_seg hint delivers a list of subsequences of a file
that will be accessed in the given order. Its parameters are
the file name and a list of <offset, length> couples.

Note that these hints disclose an application’s future
behavior without reference to specific file system behavior
such as caching or prefetching. Additionally, they are
specified using the same abstractions that will later be
used to access the file: file name, byte offset and byte
count.

The simplest way to describe the structure of the TIP
file system is follow the actions (possibly) triggered by a
hint. This description assumes familiarity with the BSD
filesystem [Leffler89].

When /dev/tip receives an application’s hint, it adds it
to the end of a prefetch queue. Thetip_prefetch() routine
draws a hint from this queue and uses the standard FFS
routines to resolve the file name to an inode or file handle.
TIP resolves file names lazily, on dequeue rather than
enqueue, to avoid pinning more than one entry in the inode
cache.

Given a resolved file name,tip_prefetch() iterates
through the requested blocks allocating a buffer for each
block not found in the buffer cache, marking each buffer
“prefetch”, and enqueuing the necessary disk access.
When a prefetch access completes, the buffer containing
its data is treated as though it was a FFS readahead block,

and may be aged out of the cache. If the block becomes the
target of a read system call, its prefetch mark is cleared
and it becomes indistinguishable from blocks demand-
fetched into the cache.

We use the prefetch flag as an accounting measure to
limit the number of buffers containing prefetched but
unread data. Without this throttling, TIP could prefetch too
far ahead and flush its own prefetch buffers before they
can be read. Thetip_prefetch() routine, once initiated, iter-
ates through the prefetch queue until it runs out of hints or
it reaches a ceiling on the number of prefetch buffers. To
reinitiate prefetching,tip_prefetch() is called whenever the
count of prefetch buffers or hints changes. In particular, it
is called whenever a buffer containing prefetched data is
read or whenever a prefetch buffer ages out from the cache
unread. In the experiments described in the next section,
we set the prefetch ceiling at 150 out of the 400 cache
buffers.

3: Informed prefetching case studies

To supply our TIP prototype with hints, we have instru-
mented two applications. The multi-file text search appli-
cation,grep, searches many files with a simple sequential
access pattern. We have instrumented grep to give hints
across all the files it will search. At the other extreme is
XDataSlice, a data visualization package that accesses
blocks non-sequentially from a single very large file. We
have instrumented it to give hints about the blocks within
the file it will access. XDataSlice also serves to illustrate
how hints may be passed through layers of software with-
out violating software modularity.

The primary performance measure of our system is the
elapsed execution time of applications giving hints. Thus,
we report the elapsed execution times in seconds when
running each application with and without giving hints.
The times reported are averages of a number of runs and
the sample standard deviation is reported in parentheses.
As an indication of the benefits of I/O concurrency, the
tests were run on arrays of one, two, three, and four disks.
The speedup reported is simply the ratio of the average
non-TIP to TIP-enhanced execution time.

3.1: Grep: prefetching across files

The simplest and most common file access pattern of
Unix applications is whole file sequential read. A good
example is grep which searches files for a specified pattern
of text. Typically, grep is asked to search all the files on a
list which is passed as an argument to grep at invocation.

Since the arguments to grep completely determine the
file accesses grep will make, it is simple to loop through
the file list and pass atipio_seq hint to TIP for each file.
Because FFS readahead heuristics work well for sequen-
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tial accesses, it might seem that TIP is not needed for this
application. However, such single-file heuristics never get
a chance to engage when, as is often the case, the files
searched are small. In contrast, TIP knows about multiple
files it can prefetch before they are even opened. In this
way, TIP exposes concurrency across files that simple
heuristics cannot.

To evaluate the performance of TIP, we instrumented a
fast version of grep calledagrep, developed by U. Manber
at the University of Arizona. Before agrep reads any files,
it loops through the list of files to validate its arguments. It
was a simple matter to add a few lines in this loop to pass
thetipio_seq hint to TIP.

We then used the modified agrep to search four sets of
files. The first set consisted of 139 include files for the
X11 window system. These files were stored in 187 file
blocks and block fragments 8KB or less in size. The sec-
ond set consisted of 158 mail messages and archived bul-
letin board posts including a couple of posts of Frequently
Asked Questions. The third set was a directory full of
source files. The last set was three chapters of Unix man-
ual pages. We ran the four-test sequence thirty times both
with and without TIP. When running with three and four
disks, our test hardware occasionally suffered from an
erroneous bus reset, adding about fifteen seconds to a run.

Tests suffering from such glitches were eliminated from
the sample leaving between twenty-five and thirty trials
for each test. Table 1 summarizes the results of these
experiments.

The first result is that grep does not, by itself, signifi-
cantly benefit from the disk array. Looking across the ‘no
TIP’ rows in Table 1 reveals that grep execution times
without TIP are essentially flat. The parallel hardware of a
disk array does not benefit applications that present a
serial I/O workload.

The second result is that, with one disk, TIP achieves
speedups of 1.2 to 1.4 by overlapping I/O with computa-
tion. As more disks are added, TIP is able to leverage its
knowledge of multiple files to deliver speedups ranging
from 1.4 to 1.9, nearly halving the execution time.

A surprising result is that, as Table 2 shows, grep
becomes CPU-bound with just two disks. For this applica-
tion, the CPU is unable to take advantage of additional
disks. CPU utilization would be 100%, instead of 93%,
except that, as discussed in Section 2, the current TIP
implementation uses the standard, blocking FFS file name
resolution routines, and, hence, does not prefetch meta-
data such as directory and inode blocks.

Table 2 further reveals that the UX server, not grep, is
the largest consumer of CPU time. Partially, this reflects

Table 1: Time to search a number of small files for a text string. This table shows the total execution time for
searches through four sets of files. The numbers were collected by performing each search in turn and repeating the
sequence thirty times both with and without TIP. The numbers in parentheses are sample standard deviations. The tests
were repeated with the data striped over an array of 1, 2, 3, and 4 disks. The speedup is the ratio of non-TIP to TIP-
enhanced execution time. The results show that, without TIP, grep performance is nearly flat no matter how many disks are
in the array. By overlapping CPU with I/O, TIP achieves speedups of from 1.2 to 1.4 on a single disk. By performing I/Os
concurrently, TIP achieves speedups of from 1.4 to 1.9 on four disks. TIP performance might have been higher, except that
the CPU becomes the bottleneck, as shown in Table 2.

Files searched
Time (seconds)

1 disk 2 disks 3 disks 4 disks

X11 includes
139 files
187 blocks

no TIP 3.21 (0.15) 2.98 (0.11) 2.92 (0.08) 3.02 (0.22)

with TIP 2.35 (0.08) 1.90 (0.04) 1.85 (0.04) 1.85 (0.03)

Speedup 1.37 1.57 1.58 1.63

bboard, mail
158 files
218 blocks

no TIP 3.62 (0.27) 3.40 (0.13) 3.19 (0.15) 3.29 (0.13)

with TIP 2.68 (0.11) 2.17 (0.05) 2.12 (0.05) 2.15 (0.03)

Speedup 1.35 1.57 1.50 1.53

source code
57 files
152 blocks

no TIP 2.11 (0.09) 2.16 (0.09) 2.02 (0.08) 2.24 (0.07)

with TIP 1.66 (0.11) 1.24 (0.06) 1.21 (0.04) 1.20 (0.03)

Speedup 1.27 1.74 1.67 1.87

man pages
834 files
892 blocks

no TIP 16.80 (0.37) 15.26 (0.27) 15.17 (0.34) 14.75 (0.26)

with TIP 13.71 (0.37) 10.72 (0.14) 10.46 (0.19) 10.44 (0.44)

Speedup 1.23 1.42 1.45 1.41
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the cost of multiple data copies and other overheads of the
microkernel structure. The main cost, however, is the
basic work required to open files and guide data through
the file system. TIP compounds this problem by resolving
file names twice: once when hint processing implicitly
opens the file, and later when the application explicitly
opens the file. We expect that by caching the result of
TIP’s name resolution, we can eliminate most of the TIP-
induced system overhead.

In the larger picture, CPU performance is increasing
rapidly. Already, workstations four times faster than the
DECstation 5000/200 are widely available. Such worksta-
tions should dramatically reduce system overhead and
exploit the concurrency of much larger arrays. This trend
will only increase the benefits of TIP.

3.2: XDataSlice: non-sequential prefetching
within a file

Traditional, sequential readahead can effectively
reduce execution time for I/O-intensive applications that
emphasize sequential access into large files. But, it does
not benefit, and may penalize, applications that feature
non-sequential file access. XDataSlice is one such applica-
tion.

XDataSlice (XDS) is a data visualization package
developed by the National Center for Supercomputing
Applications (NCSA) at the University of Illinois at
Urbana-Champaign. XDS allows its user to select and
view a false-color representation of an arbitrary planar
slice from a 3-D scientific dataset. Such viewable datasets
are generated by a variety of applications such as airplane
and automobile airflow simulation, climate and pollution
simulation, and magnetic resonance imaging equipment.
Because engineers, scientists, and doctors periodically call
for much greater scope and resolution for their datasets, it
is not uncommon for these datasets to be very large. For
example, a cube of 3003 32-bit floating point data ele-
ments requires more than 100 megabytes of storage, and a

cube of 8003 elements requires almost 2 gigabytes. Unfor-
tunately, too often, science must defer to computer specifi-
cations such as main memory size and accounting policies
when determining dataset size. For example, NCSA’s
original XDS does not support dynamic access to large
datasets; if your dataset does not fit in memory, you can’t
use XDS to view it.

One of our goals in studying data visualization is to
reverse this technology-drives-science dynamic by making
graceful and limited the performance degradation and
code complexity that results from increasing dataset size.
Informed prefetching combines a simple, uniform inter-
face with transparent exploitation of storage concurrency
and a global throttle on memory and storage resource com-
mitments. Thus, programs written to dynamically load
data and disclose their accesses to an underlying informed
prefetching system can transparently benefit from
increased storage concurrency even if their access patterns
are single-threaded and non-sequential. To demonstrate
this, we first extended XDS to load slices of data dynami-
cally from disk. These extensions have been delivered
back to NCSA and are available in their contributed-code
tree.

We next added disclosing hints for TIP to exploit. Our
selection of XDS as an example application for informed
prefetching was fortuitous because XDS has an internally
layered structure. In adding hints to XDS, we show how to
use layered disclosure to pass optimization information
through layers of software without violating the integrity
of module interfaces.

We now describe the structure of XDS, how we added
dynamic loading and disclosing hints to it, and its perfor-
mance on a 3003 element dataset striped over multiple
disks.

3.2.1: XDataSlice organization: XDS reads data from
files stored in a self-describing format called the
Hierarchical Data Format (HDF). NCSA has developed a
library of routines to simplify access to HDF files and to

Table 2: CPU usage during a grep text search. This table reports CPU usage statistics collected during an example
test reported in Table 1. Shown are the CPU times for the grep task, the UX server task, the Striper disk array task and the
idle thread. The numbers don’t quite add up both because of measurement truncation and because there are other tasks on
the system not being measured. Without TIP, CPU utilization during a grep text search is low. With TIP, CPU utilization is
nearly 100%. These numbers reveal the UX filesystem code as a major CPU bottleneck, in part because the current version
of TIP duplicates name resolution work in UX. Fortunately, the TIP-induced reduction in idle time far outweighs this additional
overhead.

Files searched
from 2 disk array

Time (seconds) CPU
utiliza-

tiongrep UX MK Striper Idle Total

bboard, mail
no TIP 0.40 0.88 0.08 0.15 1.86 3.40 45%

with TIP 0.56 1.25 0.09 0.09 0.15 2.17 93%
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enforce the HDF standard format. XDS binds this HDF
library between itself and the file system. The HDF library
is itself composed of two layers: low-level storage
management in theH layer and scientific dataset object
management in theDFSD layer.

A single HDF file may contain many data objects such
as raster images, raw scientific data, or the format of
numerical data. But, to the low-level H layer of the HDF
library, all are just arrays of bytes with a name. The high-
level DFSD layer of the library refers to these elemental
data objects by name and may request the H layer to
deliver logical byte ranges from within individual objects.
It is up to the H layer to allocate file space and keep track
of the location and size of all the data objects.

The DFSD layer groups a number of elemental data
objects together to form a scientific data set. These objects
include one holding the raw scientific data and others
holding dataset metadata such as the dimensions of the
data, the data type, and units and labels for the axes.
Applications built on top of the DFSD layer refer to the
scientific data set as if it were one complex data object
with many typed data fields.

The XDataSlice code, operating outside of the HDF
library, uses the DFSD interface to determine dataset size
so it can allocate adequate memory. Then, in the original
code, it uses this interface to read the entire dataset into
memory. To render a slice of the dataset, XDS loops
through all the pixels in the slice mapping each to a data
element stored in memory. False color is applied based on
a data element’s value and the resulting bitmap is dis-
played in an X window.

We extended this basic package to load data dynami-
cally from large datasets. Standard 3-D HDF data objects
are written to disk in row-major order. This has the disad-
vantage of requiring that the entire data object be read to
render a slice that cuts across all rows. To make loading
arbitrary slices efficient, we reorganized the object into
submatrices as shown in Figure 2 and updated the DFSD
layer to export a blocked view of the scientific data object.
We then modified XDS to first determine which blocks are
needed and load them into memory before rendering the
requested slice in the usual way. All of these changes add
useful functionality and are independent of TIP.

3.2.2: Extending HDF to issue and deliver hints to TIP:
For this new version of XDataSlice to take advantage of
TIP, it must disclose its expected accesses. Since the
primary benefit of TIP is exposing I/O concurrency, the
source of hints should be at a level aware of a large
volume of work before it is actually requested. There are a
number of possibilities, but a simple and natural choice is
to issue hints within the DFSD layer of the library since

XDS hands this layer a list of the needed blocks. This list
is an excellent hint for TIP.

Unfortunately, the DFSD layer cannot directly pass the
list of blocks on to TIP. Even after the DFSD layer trans-
lates block coordinates into logical offsets within the sci-
entific data object, it does not know the offsets within the
enclosing file. It relies on the lower H layer for addressing
and accessing files. It is possible for the DFSD layer to
“peek beneath the covers” of the H layer to find the offsets
of the objects about which it wishes to issue hints, but this
exposure of the H layer internal data structures would vio-
late the design’s modularity and expose the implementa-
tion to unforeseen bugs when the H layer is independently
modified at some later time.

A much better solution is to formally incorporate a path
for the disclosure of optimization information into the
interface to the H layer of the library [Kiczales92]. We
have done this by adding aHhint() routine. It accepts hints
from higher layers of the library in the language used by
the rest of H layer: offsets and lengths within data objects.
Hhint maps data object offsets to file offsets and passes
these file offsets to TIP using thetipio_seg hint. Such dis-
closure is consistent with the module interfaces already in
place; the DFSD layer issues hints about data objects and
the Hhint routine translates these data object hints into
files access hints which it discloses directly to TIP. The
modularity of the HDF library is not a barrier to hints that
disclose.

Z
Y

X

Figure 2: Blocked dataset storage layout. To
facilitate the retrieval of arbitrary slices of data, the dataset
is partitioned into submatrices each stored in its own file
system block. The shaded cube above shows one such
block and its share of a slice through the dataset. The
blocks themselves are stored in row-major order, Z-axis
first. Thus, sequential disk access favors slices in the Y-Z
plane. To compensate, the blocks are asymmetrical, so
that rendering slices in the X-Y plane requires fewer total
blocks.
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moving the data through the system to the application.
Increasing the number of disks over which data is striped
does not further improve the rendering time of these slices.
To reduce their rendering time below 4.3 seconds we
would need to upgrade the DECstation 5000/200’s with a
faster processor, upgrade its memory system for faster
copies, or significantly reduce the operating system over-
head.

Speedups are more pronounced in the X-Y plane
because its access pattern on disk is much more non-
sequential, causing its disk accesses to return data at a
lower bandwidth (per disk). This allows the increased stor-
age concurrency of three and four disks to be effective
because the bandwidth maximum of the operating system
structure is not as quickly reached. However, with the data
striped over four disks, accessing X-Y planes saturates the
CPU; additional disks would not be effective. Note that
the benefits of TIP are greatest when the disk bottleneck is
most severe and the access latencies resulting from long
seeks are largest.

The faster response time of the X-Y plane with TIP at
saturation results from the asymmetry of data submatrices
assigned to each filesystem block. The asymmetrical
dimensions of 16x16x8, roughly balance the disk read
latency for the three planes when TIP is not engaged.
Because the dataset dimensions in elements are
300x300x300, the dataset dimensions in blocks are
19x19x38. This means that slices in the Y-Z and X-Z
planes must read 19x38=722 blocks while slices in the X-

3.2.3: XDataSlice performance: To evaluate the
performance of a TIP-enhanced XDataSlice we measured
the time to render slices of a 3-D scientific dataset
containing 3003 32-bit floating point numbers. The file
containing this dataset is a little over 100 megabytes in
size. Because the Decstation 5000/200 on which we ran
our tests contained only 32 megabytes of RAM, this test
depends on the ability of XDS to load slices dynamically
from disk. Though XDS can render slices in any
orientation, for convenience we rendered slices normal to
one of the three axes. For each orientation, we measured
the time required to render each of 10 random slices. The
experimental setup, described in Section 2, is the same one
used for the multi-file search experiments.

Table 3 shows speedups in the time to render a slice
that range from 1.0 (no speedup), in the case of X-Z planes
with the dataset contained on one disk, to 3.7 (meaning
that TIP-enhanced response time is 27% non-TIP response
time) in the case of X-Y planes with the dataset striped
over four disks.

With only one disk, rendering any slice is so I/O-bound
that overlapping computation with I/O has no significant
effect. Striping the data set over just two disks yields
speedups of 1.2 to 2.4. These speedups result from over-
lapping concurrent disk accesses. In the Y-Z and, to a
lesser extent, X-Z plane most of the blocks accessed are
sequential on disk, there is little positioning time to over-
lap, so the TIP-increased parallelism has raised the total
storage bandwidth to its maximum. The CPU saturates

Table 3: Time to visualize a slice of a 3-D scientific dataset. This table shows the response time of XDataSlice
when it renders a slice of a 3-D dataset along three planes: Y-Z, X-Z, and X-Y. All values are computed as the average of 10
executions with sample standard deviations shown in parentheses. Each plane was tested with and without TIP when the
dataset was striped over 1, 2, 3, and 4 disks. Speedup is the ratio of the slice’s response time without TIP and with TIP.
These results show that XDataSlice cannot exploit the disk array without TIP and that with only one disk, XDataSlice is so
I/O-bound that TIP is unable to overlap much computation. With as little as two disks, however, TIP provides speedups of 1.2
to 2.4, saturating the CPU for the Y-Z and X-Z planes. The X-Y plane continues to benefit from increased disk parallelism,
saturating the CPU at four disks with a speedup of 3.7.

Slice rendered
Time (seconds)

1 disk 2 disks 3 disks 4 disks

no TIP 5.21 (0.06) 5.25 (0.05) 5.17 (0.08) 5.18 (0.73)

Y-Z with TIP 5.12 (0.07) 4.27 (0.05) 4.32 (0.06) 4.36 (0.05)

(722 blocks) Speedup 1.02 1.23 1.20 1.19

no TIP 5.86 (0.05) 6.07 (0.09) 6.17 (0.04) 6.36 (0.08)

X-Z with TIP 5.84 (0.06) 4.36 (0.05) 4.43 (0.07) 4.43 (0.04)

(722 blocks) Speedup 1.00 1.39 1.39 1.43

no TIP 8.16 (0.10) 8.40 (0.19) 8.16 (0.11) 8.23 (0.15)

X-Y with TIP 7.86 (0.04) 3.49 (0.07) 2.56 (0.06) 2.23 (0.03)

(361 blocks) Speedup 1.04 2.41 3.19 3.69
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are at a high level of abstraction. However, Korner uses
traces of file system activity to predict future access pat-
terns.

Researchers have also proposed an object-oriented file
system layered on top of the Unix file system called ELFS
[Grimshaw91]. ELFS has knowledge of file structure and
high-level file operations that allow it to help prefetch and
cache operations. However, ELFS emphasizes user control
over file activity. It would be possible instead for users to
give hints to ELFS which would translate them into hints
for the low-level file system. Thus, hints could be used to
bridge layers of the system at the application level. In such
a context, ELFS and TIP would complement each other
well.

5: Conclusions

The primary benefit of informed prefetching, its ability
to increase the I/O concurrency of single-threaded applica-
tions, is perhaps best illustrated by an analogy to parallel
processing.

Parallel processors provide the hardware infrastructure
to relieve the bottleneck of a serial processor. But, exist-
ing, serial programs do not automatically benefit from par-
allel hardware. Converting old serial algorithms and
inventing new parallel algorithms to take advantage of
parallel processors is hard. But, without this software
effort, parallel processors are of limited use.

Similarly, disk arrays provide the I/O hardware infra-
structure to relieve the bottleneck of slow disk drives. But,
applications do not automatically benefit from arrays. In
this paper, we show that informed prefetching exposes I/O
concurrency so that existing and future applications can
transparently utilize the parallelism of disk arrays.

We have presented our experience with two applica-
tions running on TIP, our prototype informed prefetching
filesystem. TIP achieves speedups of 1.4 to 1.9 for text
searches through large numbers of small files and speed-
ups of 1.2 to 3.7 when visualizing slices from a large sci-
entific dataset. In all cases, speedups were limited only by
the throughput of the CPU, not by the latency of disk
accesses. Our results suggest that the combination of TIP
with disk arrays will be able to satisfy the I/O needs of
ever-faster processors.

We have also shown that such substantial benefits do
not depend on tightly knit and tuned applications and sys-
tems. Instead, they are available to structured, modular
programs that disclose optimization information in a man-
ner consistent with their established module interfaces.

Just as the efficient utilization of parallel processors
makes possible the computation of ever larger and more
important problems, so, we hope, will the exposure and
exploitation of I/O concurrency through informed

Y plane read only 19x19=361 blocks. With TIP-generated
disk concurrency, the positioning time delays which lead
to this asymmetrical blocking are completely overlapped,
the operating system is driven to bandwidth saturation,
and the smaller number of blocks per X-Y plane halves the
response time relative to other planes.

Notice also that for the X-Y plane, TIP-derived speed-
ups are superlinear for two and three disks. This occurs
because the cost of data copying and computation not
overlapped in the non-TIP case is large enough that over-
lapping it with “N” disks leads to speedups approaching
“N+1”.

4: Related work

The idea of giving hints is not new. For example,
Trivedi suggested using programmer or compiler gener-
ated hints for prepaging [Trivedi79]. Hints are now widely
enough understood that they appear in various existing
implementations. For example, Sun Microsystems’ operat-
ing system provides two “advise” system calls that instruct
the virtual memory system’s policy decisions [Sun88].

Database systems researchers have long recognized the
opportunity to accurately prefetch based on application
level knowledge [Stonebraker81]. They have also exten-
sively examined the opportunity to apply this knowledge
through advice to buffer management algorithms
[Sacco82, Chou85, Cornell89, Ng91] and for I/O optimi-
zations [Selinger79]. We hope to extend these techniques
to informed prefetching.

Many researchers have looked into prefetching based
on access patterns inferred from the stream of user I/O
requests [Curewitz93, Kotz91, Tait91, Palmer91, Kor-
ner90]. Kotz looked at intelligent prefetching for MIMD
multiprocessors with scientific workloads. He extended
the applicability of readahead to non-sequential, but regu-
lar, accesses within one file by predicting future accesses
based on previously observed access patterns. He achieved
significant performance improvements for stride access
patterns in large scientific datasets.

A drawback to speculative prefetching based on prior
observations is that it risks hurting, rather than helping,
performance [Smith85]. When a prediction is wrong,
prefetching the unneeded data consumes valuable
resources which could have been used for accessing
needed data or storing recently used and soon-to-be-reused
data. Kotz observed this phenomena in some of his tests,
and its impact would be more severe if his techniques were
applied to less regular accesses.

Our view of the problem is perhaps most similar to
Korner’s who recognized the value of high-level hints as a
means of bridging levels of abstraction from files to disk
blocks. Her characterizations of access patterns, like ours,
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prefetching make possible work with ever larger and more
important datasets.

Much work remains to be done in this area. Most
immediately, a member of our group is adding asynchro-
nous name resolution to the TIP prototype so that we can
prefetch metadata in addition to user data. Of the three
benefits of informed prefetching, this paper addresses only
one, exposure of I/O concurrency. We have begun
research into the other two, informed cache management
and increased I/O efficiency. The former emphasizes glo-
bal resource allocation given partial foreknowledge and
the latter emphasizes disk scheduling policies given deep
queues of low-priority accesses.

More broadly, for TIP to be generally useful, a wide
range of applications need to generate hints. In some
cases, this is best done manually or in libraries. In the long
run, we believe that compiler-created runtime code is the
best method of generating hints. Finally, mechanisms are
needed to ensure that performance gracefully degrades
when hints are imprecise or incorrect. These mechanisms
should allow inferences from application traces to be
given as hints when better information is unavailable.
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