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Abstract
Machine learning (ML) algorithms are commonly applied
to big data, using distributed systems that partition the data
across machines and allow each machine to read and update
all ML model parameters — a strategy known as data par-
allelism. An alternative and complimentary strategy, model
parallelism, partitions the model parameters for non-shared
parallel access and updates, and may periodically reparti-
tion the parameters to facilitate communication. Model par-
allelism is motivated by two challenges that data-parallelism
does not usually address: (1) parameters may be depen-
dent, thus naive concurrent updates can introduce errors
that slow convergence or even cause algorithm failure; (2)
model parameters converge at different rates, thus a small
subset of parameters can bottleneck ML algorithm comple-
tion. We propose scheduled model parallelism (SchMP), a
programming approach that improves ML algorithm con-
vergence speed by efficiently scheduling parameter updates,
taking into account parameter dependencies and uneven con-
vergence. To support SchMP at scale, we develop a dis-
tributed framework STRADS which optimizes the through-
put of SchMP programs, and benchmark four common ML
applications written as SchMP programs: LDA topic mod-
eling, matrix factorization, sparse least-squares (Lasso) re-
gression and sparse logistic regression. By improving ML
progress per iteration through SchMP programming whilst
improving iteration throughput through STRADS we show
that SchMP programs running on STRADS outperform non-
model-parallel ML implementations: for example, SchMP
LDA and SchMP Lasso respectively achieve 10x and 5x
faster convergence than recent, well-established baselines.
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1. Introduction
A variety of machine learning (ML) algorithms are used to
explore and exploit big data originating from diverse sources
such as activities on the internet, profiling and transactions in
finance, advertisement and healthcare, or experiments in the
physical sciences, to name a few. The demand for distributed
ML programs that run over a cluster is driven by two trends:
(1) big data: a single machine’s computational power is in-
adequate for running ML algorithms on big datasets in a rea-
sonable amount of time; (2) large models: even if a dataset
size is not increased, ML application running times increase
when their underlying ML model is given more parameters
— which recent ML applications have been striving towards
(e.g., at least hundreds of millions of parameters [19]).

The trend towards richer, larger ML models with more
parameters (up to tens of billions [21]) is driven by the need
for more “explanatory power”: it has been observed that big
datasets contain “longer tails” (rare-yet-unique events) than
smaller datasets, and detection of such events can be crucial
to downstream tasks [34, 37]. Many of these big models are
extremely slow to converge when trained with a sequential
algorithm, thereby motivating model parallelism [9, 20, 22,
37] — which as the name suggests, splits ML model param-
eters across machines, and makes each machine responsible
for updating only its assigned portion of parameters (either
using the full data, or a data subset). Even when the model
is relatively small, model parallel execution can still mean
the difference between hours or days of compute on a single
machine, versus minutes on a cluster [5, 33].

Model parallelism can be contrasted with data par-
allelism, where each machine gets one partition of the
data, and iteratively generates sub-updates that are applied
to all ML model parameters (which are accessible with
read/write operations from all machines; that is, distributed
shared memory or replicated memory), until convergence is
reached. This is possible because most ML algorithms adopt
the so-called i.i.d. assumption on data — that is, under a
given estimate of the model parameters, the data instances
(or subsets of data instances) are independent and identi-



cally distributed. As a result, all machines’ sub-updates can
be easily aggregated. This convenient property does not ap-
ply to model parallel algorithms, which introduce new sub-
tleties: (1) the model parameters are not independent, and
(2) different model parameters may take different numbers
of iterations to converge (i.e., uneven convergence). Hence,
the effectiveness of a model-parallel algorithm is greatly af-
fected by its schedule – which parameters are updated in
parallel, and how they are prioritized [22, 23, 41].

Unlike conventional computer programs, whose progress
can be measured by throughput (operations per unit time),
the progress of an ML program is measured by a numeri-
cally explicit objective function specified by the ML applica-
tion. More progress is made when the objective increases (or
decreases) to approach an optimum at a faster rate. Poorly-
chosen schedules inhibit progress made during an ML algo-
rithm iteration, or may even cause the algorithm to fail (i.e.,
the objective function never approaches an optimum value).
It is important to note that progress per iteration is distinct
from iteration throughput (number of iterations executed
per unit time); effective ML implementations combine high
progress per iteration with high iteration throughput, yield-
ing high progress per unit time. Despite these challenges,
model-parallel algorithms have shown promising speedups
over their data-parallel counterparts [34, 37].

In the ML literature, there is a strong focus on verifying
the safety or correctness of parallel algorithms via statisti-
cal theory [5, 26, 42], but this is often done under simple
assumptions about distributed environments — for example,
network communication and synchronization costs are often
ignored. On the other hand, the systems literature is focused
on developing distributed systems [10, 21, 25, 38], with
high-level programming interfaces that allow ML developers
to focus on the ML algorithm’s core routines. Some of these
systems enjoy strong fault tolerance and synchronization
guarantees that ensure correct ML execution [10, 38], while
others [17, 21] exploit the error-tolerance of data-parallel
ML algorithms, and employ relaxed synchronization guar-
antees in exchange for higher iterations-per-second through-
put. These systems do not directly support fine-grained con-
trol over parameter updates that takes into account param-
eter dependencies and uneven convergence, which are vital
for algorithm correctness and speed.

In an earlier work [20], we showed that specific model
parallel strategies could be created for three well-established
ML algorithms, and proposed programming primitives to
represent the key operations of each model parallel strategy
— however, we did not explain how model parallel strate-
gies could be developed for general ML applications, and
the system design used in the earlier work lacked critical
system optimizations for achieving high throughput. We ad-
dress these issues in this work by describing general prin-
ciples for developing new model parallel ML applications
beyond those previously addressed; furthermore, we identify

and propose system optimizations for two general categories
of model parallel ML algorithms, show how several ML ap-
plications can be rewritten as instances of these categories,
and present a thorough evaluation that dissects application
performance into an ML metric, progress per iteration and
a system metric, iteration throughput. We refer to the two
categories as “static schedules” or “dynamic schedules”, de-
pending on whether their schedule depends on the dynamic
values of the model parameters being trained. Our set of sys-
tems optimizations significantly improve the performance of
static or dynamic schedule algorithms: (1) pipelined com-
putation of parameter updates and schedule functions, (2)
load balancing of parameter updates (which become an un-
even workload as a result of accounting for parameter de-
pendencies), (3) using a ring topology to flow parameters
between machines in lockstep. The overall system design
finds a “sweet spot” between algorithmic progress per itera-
tion and iteration throughput, resulting in high progress per
unit time and faster algorithm completion.

Our approach addresses the following challenges for ex-
isting systems: (1) limited appreciation for model parallel
update execution order and how it can accelerate model
parallel algorithms; (2) limited systems support for model
parallel algorithms; (3) limited understanding of the safety
and correctness of model parallel algorithms under realistic
systems conditions. Specifically, this paper proposes sched-
uled model parallelism (SchMP), where an ML application
scheduler generates model parallel schedules that improve
model parallel algorithm progress per update, by considering
dependency structures and prioritizing parameters. SchMP
allows model parallel algorithms to be separated into (1) a
control component responsible for dependency checking and
prioritization, and (2) an update component that executes it-
erative ML updates in the parallel schedule prescribed by the
control component.

To realize SchMP, we develop a SchMP framework
called STRADS in about 10,000 lines of C++ that par-
allelizes SchMP ML applications over a cluster. Even as
SchMP applications innately enjoy high progress per iter-
ation, STRADS improves the number of iterations executed
per second by (1) pipelining SchMP iterations, (2) overlap-
ping SchMP computation with parameter synchronization
over the network, and (3) streaming computations around
a ring topology. Through SchMP on STRADS, we achieve
high performance parallel ML; that is, increased progress
per iteration and increased iterations per second. The result
is substantially increased progress per second, and there-
fore faster ML algorithm completion. We benchmark vari-
ous SchMP algorithms implemented on STRADS — Gibbs
sampling for topic modeling [4, 16, 37], stochastic gradient
descent for matrix factorization [13], and coordinate descent
for sparse linear (i.e., Lasso [11, 31]) and logistic [12] re-
gressions — and show that SchMP programs on STRADS
outperform non-model parallel ML implementations.



2. Model Parallelism
Although machine learning problems exhibit a diverse spec-
trum of model forms, their computer program implementa-
tions typically take the form of an iterative convergent pro-
cedure, meaning that they are optimization or Markov Chain
Monte Carlo (MCMC [32]) algorithms that repeat some set
of fixed-point update routines until convergence (i.e. a stop-
ping criterion has been reached):

A(t) = A(t−1) + ∆(D,A(t−1)), (1)

where index t refers to the current iteration, A the model
parameters, D the input data, and ∆() the model update
function1. Such iterative-convergent algorithms have special
properties that we shall explore: tolerance to numeric errors
in model parameters during iteration, dependency structures
that must be respected during parallelism, and uneven con-
vergence across model parameters.

In model parallel ML programs, parallel workers re-
cursively update subsets of model parameters until conver-
gence, refining Eq. (1) to the following form:

A(t) = A(t−1) +
∑P
p=1 ∆p(D,A

(t−1), Sp(D,A
(t−1))),

where ∆p() is the model update function executed at par-
allel worker p. The “schedule” Sp() identifies a subset of
parameters in A, instructing the p-th parallel worker which
parameters it should work on sequentially (i.e. workers may
not further parallelize within Sp()). Since the data D is un-
changing, we drop it from the notation for clarity:

A(t) = A(t−1) +
∑P
p=1 ∆p(A

(t−1), Sp(A
(t−1))). (2)

Our goal is to develop re-usable strategies for model pa-
rameter scheduling, based on an understanding of ML math-
ematical principles. To this end, Eq.(2) presents a generic
form for ML algorithms, in which an application-specific up-
date function ∆ and a schedule function S can be plugged
in. Because ML applications depend on a small number of
“workhorse” algorithms (e.g. gradient descent, coordinate
descent, and Gibbs sampling, to name just a few), and be-
cause these workhorses exhibit the additive model updates
seen in Eq. 2, SchMP is thus generally applicable to many
ML algorithms. SchMP can either reproduce the behavior of
existing ML implementations (for example, by using a basic
schedule function S that iterate sequentially across all pa-
rameters in A), or improve upon them by developing model
parallel schedules for ML application instances and system
optimizations that apply to such instances.

2.1 Properties of ML Algorithms
Intrinsic properties of ML algorithms (i.e., Eq. (1)) provide
powerful opportunities for and limitations on effective par-
allelism. (1) Model Dependencies: the elements of A (the
parameters) are not necessarily independent of each other,

1 The summation between ∆() and A(t−1) can be generalized to a general
aggregation function F (A(t−1),∆()); for concreteness we restrict our
attention to the summation form, but the techniques proposed in this paper
can be applied to F .

and updates to one element may strongly affect later up-
dates to other parameters [14, 20, 22]. (2) Uneven Con-
vergence: different model parameters may converge at dif-
ferent rates, leading to new speedup opportunities via pa-
rameter prioritization [22, 41]. Finally, (3) Error-Tolerant:
a limited amount of stochastic error during computation of
∆(D,At−1) in each iteration does not lead to algorithm fail-
ure (though it might slow down convergence speed) [5, 17,
21].

Sometimes, it is not practical or possible to find a “per-
fect” parallel execution scheme for an ML algorithm, which
means that some dependencies will be violated, leading to
incorrect update operations. But, unlike classical computer
science algorithms where incorrect operations usually lead
to failure, iterative-convergent ML programs (which can also
be viewed as “fixed-point iteration” algorithms) can self-
correct under a limited amount of incorrect updates or other
errors (though at the cost of potentially slower convergence).
There remains a strong incentive to minimize errors: the
more dependencies the system finds and avoids, the more
progress the ML algorithm will make each iteration — how-
ever, searching for and serializing those dependencies may
incur non-trivial computational costs and delays, reducing it-
eration throughput. Because an ML program’s convergence
speed is essentially progress per iteration multiplied by iter-
ation throughput, it is important to balance these two consid-
erations. Below, we explore this idea by explicitly discussing
variations within model parallelism, in order to expose pos-
sible ways by which model parallelization can be made effi-
cient.

2.2 Variations of Model Parallelism
We restrict our attention to model parallel programs that
partition M model parameters across P worker threads in
an approximately load-balanced manner. Here, we introduce
variations on model parallelism, which differ on their parti-
tioning quality. Concretely, partitioning involves construct-
ing a size-M2 dependency graph, with weighted edges eij
that measure the dependency between parameters Ai and
Aj . This measure of dependency differs from algorithm to
algorithm: e.g., in Lasso regression eij is the correlation be-
tween the i-th and j-th data dimensions. The total violation
of a partitioning is the sum of weights of edges that cross
between the P partitions, and we wish to minimize this.

Ideal Model Parallel: Theoretically, there exists an
“ideal” load-balanced parallelization over P workers which
gives the highest possible progress per iteration; this is indi-
cated by an ideal (but might be computationally intractable)
schedule Sidealp () that replaces the generic Sp() in Eq. (2).
There are two points to note: (1) even this “ideal” model par-
allelization can still violate model dependencies and incur
errors (compared to sequential execution) because of cross-
worker coupling; (2) computing Sidealp () is expensive in
general because graph-partitioning is NP-hard. The quality
of Sideal ultimately depends on the potential for parallelism



in the ML problem. If the potential parallelism is less than
the degree of parallelism P allowed by the available com-
puting resources, then the ideal schedule on P workers will
inevitably break dependencies. Ideal model parallelization
achieves the highest progress per iteration amongst load-
balanced model parallel programs, but may incur a large
one-time or even every-iteration partitioning cost, which can
greatly reduce iteration throughput.

Random Model Parallel: At the other extreme is random
model parallelization, in which a schedule Srandp () simply
chooses one parameter at random for each worker p [5]. As
the number of workers P increases, the expected number
of violated dependencies will also increase, leading to poor
progress per iteration (or even algorithm failure). However,
there is practically no cost to iteration throughput.

Approximate Model Parallel: As a middle ground be-
tween ideal and random model parallelization, we may ap-
proximate Sidealp () via a cheap-to-compute schedule
Sapproxp (). A number of strategies exist: one may partition
small subsets of parameters at a time (instead of theM2-size
full dependency graph), or apply approximate partitioning
algorithms [29] such as METIS [18] (to avoid NP-hard par-
titioning costs), or even use strategies that are unique to a
particular ML program’s structure.

In this paper, we explore strategies for efficient and effec-
tive approximate model parallelization:

Static Partitioning: A fixed, static schedule Sfixp (),
based on ML application domain knowledge, hard-codes
the partitioning for every iteration beforehand. Progress per
iteration varies depending on how well Sfixp () matches the
ML program’s dependencies, but like random model paral-
lel, this has little cost to iteration throughput.

Dynamic Partitioning: Dynamic partitioning Sdynp ()
tries to select independent parameters for each worker, by
performing pair-wise dependency tests between a small
number L of parameters (which can be chosen differently
at different iterations, based on a priority policy as discussed
in Section 4.1); the GraphLab system achieves a similar
outcome via graph consistency models [22]. The idea is to
only do L2 computational work per iteration, which is far
less than M2 (where M is the total number of parameters),
based on a priority policy that selects the L parameters that
matter most to the program’s convergence. Dynamic parti-
tioning can achieve high progress per iteration, similar to
ideal model parallelism, but may suffer from poor itera-
tion throughput on distributed clusters: because only a small
number of parameters are updated each iteration, the time
spent computing ∆p() at the P workers may not amortize
network latencies and the cost of computing Sdynp ().

Pipelining: This is not a different type of model paral-
lelism per se, but a complementary technique that can be
applied to any model parallel strategy. Pipelining allows the
next iteration(s) to start before the current one finishes, en-
suring that computation is always fully utilized; however,

this introduces staleness into the model parallel execution:
A(t) = A(t−1) +

∑P
p=1 ∆p(A

(t−s), Sp(A
(t−s))). (3)

Note how the model parameters A(t−s) being used for
∆p(), Sp() come from iteration (t − s), where s is the
pipeline depth. In system parlance, we intentionally allow
such data-hazards in exchange for higher iteration through-
put. Unlike traditional programs, where data-hazards lead to
whole program failure, ML applications can still converge
under stale model images (up to a practical limit) [8, 17]
because ML applications are intrinsicially error-tolerant.
Pipelining therefore sacrifices some progress per iteration
to increase iteration throughput, and is a good way to raise
the throughput of dynamic partitioning. In [20], we pro-
posed that scheduling operations Sp could be pipelined to
hide scheduling overhead, but did not provide a detailed sys-
tem design, and also did not consider pipelining the updates
to model parameters ∆p, which make up the bulk of an ML
algorithm’s execution time. In Section 3.3.2, we present a
system design that pipelines both scheduling Sp and up-
date operations ∆p based on stale execution (Eq. 3) — in
essence, a system optimization that overlaps communication
with update computation.

Prioritization: Like pipelining, prioritization is comple-
mentary to model parallel strategies. The idea is to mod-
ify Sp() to prefer parameters that, when updated, will yield
the most convergence progress [22], while avoiding parame-
ters that are already converged [21]; this is effective because
ML algorithms exhibit uneven parameter convergence. Since
computing a parameter’s potential progress can be expen-
sive, we may employ cheap-but-effective approximations or
heuristics to estimate the potential progress (as shown in
Section 4.1). Prioritization can thus greatly improve progress
per iteration, at a small cost to iteration throughput.

2.3 Scheduled Model Parallelism for Programming
Model parallelism accommodates a wide range of partition-
ing and prioritization strategies (i.e. the schedule Sp()),
from simple random selection to complex, dependency-
calculating functions that can be more expensive than the
updates ∆p(). In existing ML program implementations, the
schedule is often written as part of the update logic, ranging
from simple for-loops that sweep over all parameters one
at a time, to sophisticated systems such as GraphLab [22],
which “activates” a parameter whenever one of its neigh-
boring parameters changes. We contrast this with scheduled
model parallelism (SchMP), in which the schedule Sp()
computation is explicitly separated from update ∆p() com-
putation. The rationale behind SchMP is that the schedule
can be a distinct object for systematic investigation, sepa-
rate from the updates, and that a model parallel ML program
can be improved by simply changing Sp() without altering
∆p().

In order to realize SchMP programming, we have de-
veloped a framework called STRADS, that exposes param-
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Figure 1: STRADS: To create an SchMP program, the user codes
the SchMP Instructions, similar to MapReduce. The Services are
system components that execute SchMP Instructions over a cluster.
We provide two Implementations of the Services: a Static Engine
and a Dynamic Engine, specialized for high performance on static-
schedule and dynamic-schedule SchMP programs respectively. The
user chooses which engine (s)he would like to use.

eter schedules Sp() and parameter updates ∆p() as sepa-
rate functions for the user to implement (analogous to how
MapReduce requires the user to implement Map and Re-
duce). This separation allows generic optimizations to be
applied and enjoyed by many model parallel programs: e.g.,
our STRADS implementation performs automatic pipelin-
ing for dynamic model parallelism, and uses a ring commu-
nication topology for static model parallelism; we believe
further yet-unexplored optimizations are possible.

3. System Implementation
STRADS is a system to execute SchMP programs, in which
low-level machine/traffic coordination issues are abstracted
away. The goal is to improve ML convergence speed in two
ways: (1) users can easily experiment with new model par-
allel schedules for ML programs, using the aforementioned
techniques to improve ML algorithm convergence per itera-
tion; (2) the STRADS provides systems optimizations such
as pipelining to automatically increase the iteration through-
put of SchMP programs.

Conceptually, STRADS is divided into three parts (Fig-
ure 1): (1) SchMP Instructions (schedule(), update(),
aggregate()), which the user implements to create an
SchMP program; (2) Services, which execute SchMP In-
structions over a cluster (Scheduler, Job Executors, Pa-
rameter Manager); (3) Implementations of the Services,
specialized for high performance on different types of
SchMP programs (Static Engine and Dynamic Engine). The
ML programmer writes code within the SchMP instruction
layer, while lower-level system considerations, such as inter-
machine communication and job execution, are managed
automatically by the STRADS system.

3.1 User-implemented SchMP Instructions
Table 1 shows the three SchMP Instructions, which are
abstract functions that a user implements in order to cre-
ate an SchMP program. All SchMP programs are itera-
tive, where each iteration begins with schedule(), fol-
lowed by parallel instances of update(), and ending with

aggregate(); Figure 1 shows the general form of an
SchMP program.

3.2 STRADS Services
STRADS executes SchMP Instructions across a cluster via
three Services: the Scheduler, Job Executors, and the Pa-
rameter Manager. The Scheduler is responsible for com-
puting schedule() and passing the output jobs {Sp} on;
most SchMP programs only require one machine to run
the Scheduler, others may benefit from parallelization and
pipelining over multiple machines. The Scheduler can keep
local program state between iterations (e.g. counter variables
or cached computations).

The P jobs {Sp} are distributed to P Job Executors,
which start worker processes to run update(). On non-
distributed file systems, the Job Executors must place
worker processes exactly on machines with the data. Global
access to model variables A is provided by the Parameter
Manager, so the Job Executors do not need to consider
model placement. Like the Scheduler, the Job Executors
may keep local program state between iterations.

Once the worker processes finish update() and gener-
ate their intermediate results Rp, the aggregator process on
scheduler (1) performs aggregate() on {Rp}, and (2)
commit model updates and thus reach the next state A(t+1)

p .
Control is then passed back to the Scheduler for the next
iteration (t+ 1). Finally, the Parameter Manager supports
the Scheduler and Job Executors by providing global ac-
cess to model parametersA. The Static Engine and Dynamic
Engine implement the Parameter Manager differently.

3.3 Service Implementations (Engines)
Many ML algorithms use a “static” schedule, where the or-
der of parameter updates is known or fixed in advance (e.g.
Matrix Factorization and Topic Modeling). One may also
write “dynamic” schedules that change in response to the
model parameters, and which can outperform static-schedule
equivalents — our SchMP-Lasso program is one example.
These two classes of schedules pose different systems re-
quirements; static schedule() functions tend to be com-
putationally light, while dynamic schedule() functions
are computationally intensive.

Static-schedule algorithms usually generate jobs Sp with
many parameters; it is not uncommon to cover the whole
parameter space A in a single SchMP iteration, and com-
munication of parameters A across the network can easily
become a bottleneck. On the other hand, dynamic-schedule
algorithms prefer to create small parameter update jobs Sp,
which not only reduces the computational bottleneck at the
scheduler, but also allows the ML algorithm to quickly react
to and exploit uneven parameter convergence. However, this
makes the SchMP iterations very short, and therefore latency
(from both scheduler computation and network communica-
tion) becomes a major issue.



SchMP Function Purpose Available Inputs Output
schedule() Select parameters A to update model A, data D P parameter jobs {Sp}
update() Model parallel update equation one parameter job Sp, local data Dp, parameters A one intermediate result Rp

aggregate() Collect Rp and update model A P intermediate results {Rp}, model A new model state A
(t+1)
p

Table 1: SchMP Instructions. To create an SchMP program, the user implements these Instructions. The available inputs are optional —
e.g. schedule() does not necessarily have to read A,D (such as in static partitioning).
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Figure 2: Static Engine: (a) Parameters Ap and intermediate re-
sults Rp are exchanged over a ring topology. (b) Job Executor
architecture: the Parameter Manager and a job pool manager re-
ceive and dispatch jobs to executor threads; results Rp are immedi-
ately forwarded without waiting for other jobs to complete.

Because static- and dynamic-schedule SchMP algorithms
have different needs, we provide two distinct but complete
Implementations (“engines”) of the three Services: a Static
Engine specialized for high performance on static-schedule
algorithms, and a Dynamic Engine specialized for dynamic-
schedule algorithms. For a given ML program, the choice of
Engine is primarily driven by domain knowledge — e.g. it
is known that coordinate descent-based regressions benefit
greatly from dynamic schedules [20, 29]. Once the user has
chosen an Engine, STRADS provides default schedule()
implementations appropriate for that Engine (described in
the next Section) that can used as-is. These defaults cover
a range of ML programs, from regressions through topic
models and matrix factorization.
3.3.1 Static Engine
In static-schedule algorithms, every iteration reads/writes to
many parameters, causing bursty network communication.
To avoid network hot spots and balance communication, the
Static Engine’s Parameter Manager connects Job Execu-
tors into a logical ring (Figure 2), used to transfer parameters
Ap and intermediate results Rp.

The Job Executors forward received parameters Ap and
results Rp to their next ring neighbor, making local copies
of needed Ap, Rp as they pass by. Once Ap, Rp return to
their originator on the ring, they are removed from circu-
lation. The Static Engine uses a straightforward, single-
threaded implementation for its Scheduler (because static
schedule()s are not computationally demanding).
3.3.2 Dynamic Engine
Dynamic-schedule algorithms have short iterations, hence
computation time by Job Executors is often insufficient to
amortize away network communication time (Figure 3a). To
address this, the Dynamic Engine uses pipelining (Figure 3b)
to overlap communication and computation; the Scheduler
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Figure 3: Dynamic Engine pipelining: (a) Non-pipelined execu-
tion: network latency dominates; (b) Pipelining overlaps network-
ing and computation.

will start additional iterations before waiting for the previous
one to finish. The pipeline depth (number of in-flight itera-
tions) can be set by the user. When the scheduling latency
is higher than the update latency, scheduling may become a
bottleneck to iteration throughput. To address this problem,
the scheduling can be distributed over multiple scheduler in-
stances as shown in Figure 3a, 3b by running an individual
scheduler instance on a partition of model parameters.

Although pipelining improves iteration throughput and
overall convergence speed, it may lower progress per itera-
tion due to (1) using the old model state A(t) instead of new
updates A(t+s), and (2) dependencies between pipelined it-
erations due to overlapping of update jobs Sp. This does
not lead to ML program failure because ML algorithms
can tolerate some error and still converge — albeit more
slowly. Pipelining is basically execution with stale param-
eters, A(t) = F (A(t−s), {∆p(A

(t−s), Sp(A
(t−s)))}Pp=1)

where s is the pipeline depth.

3.4 Other Considerations
Fault tolerance: STRADS execution can be made fault-
tolerant, by checkpointing the model parameters A every x
iterations. Because ML programs are error-tolerant, back-
ground checkpointing (which may span several iterations),
is typically sufficient.
Avoiding lock contention: To avoid lock contention, the
STRADS Scheduler and Job Executors avoid sharing data
structures between threads in the same process. For example,
when jobs Sp are being assigned by a Job Executor process
to individual worker threads, we use a separate, dedicated
queue for each worker thread.
Dynamic Engine parameter reordering: Within each Dy-
namic Engine iteration, STRADS re-orders the highest pri-
ority parameters to the front of the iteration, which im-
proves the performance of pipelining. The intuition is as fol-
lows: because high-priority parameters have a larger effect



Algorithm 1 Generic SchMP ML program template
A: model parameters
Dp: local data stored at worker p
P : number of workers

Function schedule(A,D):
Generate P parameter subsets [S1, . . . ,SP ]
Return [S1, . . . ,SP ]

Function update(p,Sp, Dp, A): // In parallel over p = 1..P
For each parameter a in Sp:
Rp[a] = updateParam(a,Dp)

Return Rp

Function aggregate([R1, . . . , RP ], A):
Combine intermediate results [R1, . . . , RP ]
Apply intermediate results to A

Algorithm 2 SchMP Dynamic, Prioritized Lasso
X,y: input data
{X}p, {y}p: rows/samples of X,y stored at worker p
β: model parameters (regression coefficients)
λ: `1 regularization penalty
τ : G edges whose weight is below τ are ignored

Function schedule(β,X):
Pick L > P params in β with probability ∝ (∆βa)2

Build dependency graph G over L chosen params:
edge weight of (βa, βb) = correlation(xa,xb)

[βG1 , . . . , βGK ] = findIndepNodeSet(G, τ )
For p = 1..P :

Sp = [βG1 , . . . , βGK ]
Return [S1, . . . ,SP ]

Function update(p,Sp, {X}p, {y}p, β):
For each param βa in Sp, each row i in {X}p:
Rp[a] += xiayi −

∑
b 6=a x

i
ax

i
bβb

Return Rp

Function aggregate([R1, . . . , RP ],S1, β):
For each parameter βa in S1:

temp =
∑P

p=1Rp[a]

βa = S(temp, λ)

on subsequent iterations, we should make their updated val-
ues available as soon as possible, rather than waiting until
the end of the pipeline depth s.

4. SchMP Implementations of ML Programs
We describe how two ML algorithms can be written as
Scheduled Model Parallel (SchMP) programs. The user im-
plements schedule(), update(), aggregate(); al-
ternatively, STRADS provides pre-implemented schedule()
functions for some classes of SchMP programs. Algorithm 1
shows a typical SchMP program.

4.1 Parallel Coordinate Descent for Lasso
Lasso, or `1-regularized least-squares regression, is used
to identify a small set of important features from high-
dimensional data. It is an optimization problem

minβ
1
2

∑n
i=1

(
yi − xiβ

)2
+ λ‖β‖1 (4)
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Figure 4: Random Model Parallel Lasso: Objective value (lower
the better) versus processed data samples, with 32 to 256 workers
performing concurrent updates. Under naive (random) model par-
allel, higher degree of parallelism results in worse progress.

where ‖β‖1 =
∑d
a=1 |βa| is a sparsity-inducing `1-regularizer,

and λ is a tuning parameter that controls the sparsity level
of β. X is an N -by-M design matrix (xi represents the i-th
row, xa represents the a-th column), y is an N -by-1 obser-
vation vector, and β is the M -by-1 coefficient vector (the
model parameters). The Coordinate Descent (CD) algorithm
is used to solve Eq. (4), and thus learn β from the inputs
X,y; the CD update rule for βa is

β
(t)
a ← S(x>a y −

∑
b 6=a x

>
a xbβ

(t−1)
b , λ), (5)

where S(·, λ) is a soft-thresholding operator [11].
Algorithm 2 shows an SchMP Lasso that uses dynamic,

prioritized scheduling. It expects that each machine locally
stores a subset of data samples (which is common practice
in parallel ML), however the Lasso update Eq. (5) uses a
feature/column-wise access pattern. Therefore every worker
p = 1..P operates on the same scheduled set of L param-
eters, but using their respective data partitions {X}p, {y}p.
Note that update() and aggregate() are a straightfor-
ward implementation of Eq. (5).

We direct attention to schedule(): it picks (i.e. pri-
oritizes) L parameters in β with probability proportional
to their squared difference from the latest update (their
“delta”); parameters with larger delta are more likely to
be non-converged. Next, it builds a dependency graph over
these L parameters, with edge weights equal to the correla-
tion2 between data columns xa,xb. Finally, it removes all
edges in G below a threshold τ > 0, and extracts nodes βGk
that do not have common edges. All chosen βGk are thus
pairwise independent and safe to update in parallel.

Why is such a sophisticated schedule() necessary?
Suppose we used random parameter selection [5]: Fig-
ure 4 shows its progress, on the Alzheimer’s Disease (AD)
data [40]. The total compute to reach a fixed objective
value goes up with more concurrent updates — i.e. progress
per unit computation is decreasing, and the algorithm has
poor scalability. Another reason is uneven parameter con-
vergence: Figure 5 shows how many iterations different
parameters took to converge on the AD dataset; > 85% of
parameters converged in < 5 iterations, suggesting that the
prioritization in Algorithm 2 should be very effective.
Default schedule() functions: The squared delta-based
parameter prioritization and dynamic dependency check-

2 On large data, it suffices to estimate the correlation with a data subsample.
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ing in SchMP Lasso’s schedule() (Algorithm 2) gen-
eralize to other regression problems — for example, we
also implement sparse logistic regression using the same
schedule(). STRADS allows ML programmers to re-
use Algorithm 2’s schedule() via a library function
scheduleDynRegr().
4.2 Parallel Gibbs Sampling for Topic Modeling
Topic modeling, a.k.a. Latent Dirichlet Allocation (LDA), is
an ML model for document soft-clustering; it assigns each of
N text documents to a probability distribution over K top-
ics, and each topic is a distribution over highly-correlated
words. Topic modeling is usually solved via a parallel Gibbs
sampling algorithm involving three data structures: an N -
by-K document-topic table U , anM -by-K word-topic table
V (where M is the vocabulary size), and the topic assign-
ments zij to each word “token” j in each document i. Each
topic assignment zij is associated with the j-th word in the
i-th document, wij (an integer in 1 through M ); the zij , wij
are usually pre-partitioned over worker machines [1].

The Gibbs sampling algorithm iteratively sweeps over all
zij , assigning each one a new topic via this probability dis-
tribution over topic outcomes k = 1..K:

P (zij = k | U, V ) ∝ α+Uik

Kα+
∑K

`=1 Ui`
+

β+Vwij,k

Mβ+
∑M

m=1 Vmk
, (6)

where α, β are smoothing parameters. Once a new topic
for zij has been sampled, the tables U, V are updated by
(1) decreasing Vi,oldtopic and Uwij ,oldtopic by one, and (2)
increasing Ui,newtopic and Vwij ,newtopic by one.

Eq. (6) is usually replaced by a more efficient (but
equivalent) variant called SparseLDA [36], which we also
use. We will not show its details within update() and
aggregate(); instead, we focus on how schedule()
controls which zij are being updated by which worker. Al-
gorithm 3 shows our SchMP LDA implementation, which
uses a static “word-rotation” schedule, and partitions the
documents over workers. The word-rotation schedule parti-
tions the rows of V (word-topic table), so that workers never
touch the same rows in V (each worker just skips over words
wij associated with not-assigned rows). The partitioning is
“rotated” P times, so that every word wij in each worker is
touched exactly once after P invocations of schedule().

As with Lasso, one might ask why this schedule() is
useful. A common strategy is to have workers sweep over
all their zij every iteration [1], however, as we show later in

Algorithm 3 SchMP Static-schedule Topic Modeling
U, V : doc-topic table, word-topic table (model params)
N,M : number of docs, vocabulary size
{z}p, {w}p: topic indicators and token words stored at worker p
c: persistent counter in schedule()

Function schedule():
For p = 1..P : // “word-rotation” schedule
x = (p− 1 + c) mod P
Sp = (xM/P, (x+ 1)M/P ) // p’s word range

c = c+ 1
Return [S1, . . . ,SP ]

Function update(p,Sp, {U}p, V, {w}p, {z}p):
[lower,upper] = Sp // Only touch wij in range
For each token zij in {z}p:

If wij ∈ range(lower,upper):
old = zij
new = SparseLDAsample(Ui, V, wij , zij)
Record old, new values of zij in Rp

Return Rp

Function aggregate([R1, . . . , RP ], U, V ):
Update U, V with changes in [R1, . . . , RP ]

Section 5, this causes concurrent writes to the same rows in
V , breaking model dependencies.
Default schedule() functions: Like SchMP Lasso,
SchMP LDA’s schedule() (Algorithm 3) can be gener-
ically applied to ML program where each data sample
touches just a few parameters (Matrix Factorization is one
example). The idea is to assign disjoint parameter subsets
across workers, who only operate on data samples that
“touch” their currently assigned parameter subset. For this
purpose, STRADS provides a generic scheduleStaticRota()
that partitions the parameters into P contiguous (but dis-
joint) blocks, and rotates these blocks amongst workers at
the beginning of each iteration.

4.3 Other ML Programs
In our evaluation, we consider two more SchMP ML Pro-
grams — sparse Logistic Regression (SLR) and Matrix Fac-
torization (MF). SchMP SLR uses the same dynamic, pri-
oritized scheduleDynRegr() as SchMP Lasso, while
the update() and aggregate() functions are slightly
different to accommodate the new LR objective function.
SchMP MF uses scheduleStaticRota() that, like
SchMP LDA, rotates disjoint (and therefore dependency-
free) parameter assignments amongst the P distributed
workers.

5. Evaluation
We compare SchMP ML programs implemented on STRADS
against existing parallel execution schemes — either a well-
known publicly-available implementation, or if unavailable,
we write our own implementation — as well as sequential
execution. Our intent is to show (1) SchMP implementations
executed by STRADS have significantly improved progress
per iteration over other parallel execution schemes, coming
fairly close to “ideal” sequential execution in some cases. At



ML app Data set Workload Feature Model Parameters Data size
MF Netflix 100M ratings 480K users, 17K movies (rank=40) 19× 106 (74MB) 2.2GB
MF x256 Netflix 25B ratings 7.6M users, 272K movies (rank=40) 318× 106 (1.2GB) 563GB

LDA NYTimes 99.5M tokens 300K documents, 100K words 1K topics 400× 106 (1.5GB) 0.5GB
LDA PubMed 737M tokens 8.2M documents, 141K words, 1K topics 8.3× 109 (31GB) 4.5GB
LDA ClueWeb 10B tokens 50M webpages, 2M words, 1K topics 52× 109 (193GB) 80GB
Lasso AlzheimerDisease(AD) 235M nonzeros 463 samples, 0.5M features 0.5× 106 (2MB) 6.4GB
Lasso LassoSynthetic 2B nonzeros 50K samples, 100M features 100× 106 (381MB) 60 GB

Logistic LogisticSynthetic 1B nonzeros 50K samples, 10M features 10× 106 (3.8MB) 29 GB

Table 2: Data sets used in our evaluation.

the same time, (2) the STRADS system can sustain high iter-
ation throughput (i.e. model parameters and data points pro-
cessed per second) that is competitive with existing systems.
Together, the high progress per iteration and high iteration
throughput lead to faster ML program completion times (i.e.
fewer seconds to converge).

While [20] demonstrated that SchMP can achieve fast
ML program completion times, they did not break down
the results into algorithmic progress per update and update
throughput, which are important metrics that distinguish be-
tween the performance gains due to SchMP (which improves
algorithm progress per update) versus the system design
(which improves update throughput). Our experiments pro-
vide this crucial breakdown, in order to distinguish between
the two sources of performance gain.
Cluster setup: Unless otherwise stated, we used 100 nodes
each with 4 quad-core processors (16 physical cores) and
32GB memory; this configuration is similar to Amazon EC2
c4.4xlarge instances (16 physical cores, 30GB memory).
The nodes are connected by 1Gbps ethernet as well as a
20Gbps Infiniband IP over IB interface. Most experiments
were conducted on the 1Gbps ethernet; we explicitly point
out those that were conducted over IB.
Datasets: We use several real and synthetic datasets — see
Table 2 for details. All real datasets except AD are public.
Performance metrics: We compare ML implementations
using three metrics: (1) objective function value versus to-
tal data samples operated upon3, abbreviated OvD; (2) total
data samples operated upon versus time (seconds), abbrevi-
ated DvT; (3) objective function value versus time (seconds),
referred to as convergence time. The goal is to achieve the
best objective value in the least time — i.e. fast convergence.

OvD is a uniform way to measure ML progress per iter-
ation across different ML implementations, as long as they
use identical parameter update equations — we ensure this
is always the case, unless otherwise stated. Similarly, DvT
measures ML iteration throughput across comparable imple-
mentations. Note that high OvD and DvT imply good (i.e.
small) ML convergence time, and that measuring OvD or
DvT alone (as is sometimes done in the literature) is insuffi-
cient to show that an algorithm converges quickly.

3 ML algorithms operate upon the same data point many times. The total
data samples operated upon exceeds N , the number of data samples.

5.1 Static SchMP Evaluation
Our evaluation considers static-schedule SchMP algorithms
separately from dynamic-schedule SchMP algorithms, be-
cause of their different service implementations (Section 3.3).
We first evaluate static-schedule SchMP algorithms running
on the STRADS Static Engine.
ML programs and baselines: We evaluate the performance
of LDA (a.k.a. topic model) and MF (a.k.a collaborative
filtering). STRADS uses Algorithm 3 (SchMP-LDA) for
LDA, and a scheduled version of the Stochastic Gradi-
ent Descent (SGD) algorithm4 for MF (SchMP-MF). For
baselines, we used YahooLDA, and BSP-MF – our own
implementation of the classic BSP SGD for MF ; both
are data parallel algorithms, meaning that they do not use
SchMP schemes. These baselines were chosen to analyze
how SchMP affects OvD, DvT and convergence time; later
will we show convergence time benchmarks against the
GraphLab system which does use model parallelism.

To ensure a fair comparison, YahooLDA was modified to
(1) dump model state at regular intervals for later objective
(log-likelihood) computation5; (2) keep all local program
state in memory, rather than streaming it off disk, because
it fits for our datasets. All LDA experiments were performed
on the 20Gbps Infiniband network, so that bandwidth would
not be a bottleneck for the parameter server used by Ya-
hooLDA. Note that in LDA OvD and DvT measurements,
we consider each word token as one data sample.
5.1.1 Improvement in convergence times
Static SchMP has high OvD: In the LDA experiments, Ya-
hooLDA’s OvD decreases substantially when going from 25
to 50 machines (NYT/PubMed data sets), or to 100 machines
(ClueWeb data set). In contrast, SchMP-LDA maintains the
same OvD (Figures 6a, 6b, 6c). For MF, Figure 6f shows that
BSP-MF is sensitive to step size6; if BSP-MF employs the
ideal step size determined for serial execution, it does not
properly converge on ≥ 32 machines. In contrast, SchMP-
MF can safely use the ideal serial step size (Figures 6d,6e),

4 Due to space limits, we could not provide a full Algorithm figure. Our
SchMP-MF divides up the input data such that different workers never
update the same parameters in the same iteration.
5 With overhead less than 1% of total running time.
6 A required tuning parameter for SGD MF implementations; higher step
sizes lead to faster convergence, but step sizes that are too large can cause
algorithm divergence/failure.
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Figure 7: Static SchMP: convergence times. (a-c) SchMP-LDA vs YahooLDA; (d-e) SchMP-MF with varying number of machines m.

and approaches the same OvD as serial execution within 20
iterations.
STRADS Static Engine has high DvT: For LDA, ta-
ble 3 shows that SchMP-LDA enjoys higher DvT than Ya-
hooLDA; we speculate that YahooLDA’s lower DvT is pri-

marily due to lock contention on shared data structures be-
tween application and parameter server threads (which the
STRADS Static Engine tries to avoid).
Static SchMP on STRADS has low convergence times:
Thanks to high OvD and DvT, SchMP-LDA’s convergence
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Figure 9: Static Engine: Job pool load balancing. (a) Biased word
frequency distribution in NYTimes data set; (b) by dispatching the
300 heaviest words first, convergence speed improves by 30 percent
to reach objective value -1.02e+9; (c) this dispatching strategy does
not hurt OvD.

times are not only lower than YahooLDA, but also scale
better with increasing machine count (Figures 7a, 7b, 7c).
SchMP-MF also exhibits good scalability (Figure 7d, 7e).
5.1.2 Benefits of Static Engine optimizations
The STRADS Static Engine achieves high DvT (i.e iteration
throughput) via two system optimizations: (1) reducing syn-
chronization costs via the ring topology; (2) using a job pool
to perform load balancing across Job Executors.
Reducing synchronization costs: Static SchMP programs
(including SchMP-LDA and SchMP-MF) do not require all
parameters to be synchronized across all machines, and this
motivates the use of a ring topology. For example, consider
SchMP-LDA Algorithm 3: the word-rotation schedule()
directly suggests that Job Executors can pass parameters to
their ring neighbor, rather than broadcasting to all machines;
this applies to SchMP-MF as well.

STRADS’s Static Engine implements this parameter-
passing strategy via a ring topology, and only performs
a global synchronization barrier after all parameters have
completed one rotation (i.e. P iterations) — we refer to this
as “Macro Synchronization”. This has two effects: (1) net-
work traffic becomes less bursty, and (2) communication is
effectively overlapped with computation; as a result, DvT is
improved by 30% compared to a naive implementation that
invokes a synchronization barrier every iteration (“Micro
Synchronization”, Figure 8a). This strategy does not nega-
tively affect OvD (Figure 8c), and hence time to convergence
improves by about 30% (Figure 8b).
Job pool load balancing: Uneven workloads are common
in Static SchMP programs: Figure 9a shows that the word

Data set(size) #machines YahooLDA SchMP-LDA
NYT(0.5GB) 25 38 43
NYT(0.5GB) 50 79 62

PubMed(4.5GB) 25 37 70
PubMed(4.5GB) 50 75 107
ClueWeb(80GB) 25 39.7 58.3
ClueWeb(80GB) 50 78 114
ClueWeb(80GB) 100 151 204

Table 3: Static SchMP: DvT for topic modeling (million tokens
operated upon per second).

distribution in LDA is highly skewed, meaning that some
SchMP-LDA update() jobs will be much longer than
others. Hence, STRADS dispatches the heaviest jobs first to
the Job Executor threads. This improves convergence times
by 30% on SchMP-LDA (Figure 9b), without affecting OvD.

5.1.3 Comparison against other systems:
GraphLab: We compare SchMP-MF with GraphLab’s
SGD MF implementation, on a different set of 8 machines
— each with 64 cores, 128GB memory. On Netflix , GL-
SGDMF converged to objective value 1.8e+8 in 300 sec-
onds, and SchMP-MF converged to 9.0e+7 in 302 seconds
(i.e. better objective value in the same time). In terms of
DvT, SchMP-MF touches 11.3m data samples per second,
while GL-MF touches 4.5m data samples per second.
Comparison against single-core LDA: We compare SchMP-
LDA with a single-core LDA implementation (Single-LDA)7

on PubMed. Single-LDA converges in 24.6 hours while
SchMP-LDA takes 17.5 minutes and 11.5 minutes on 25
machines (400 cores) and 50 machines (800 cores) respec-
tively. Both Single-LDA and SchMP-LDA show similar
OvD results. In DvT, Single-LDA processes 830K tokens
per second while SchMP-LDA processes 70M tokens on 25
machines (175K tokens per core), and 107M tokens on 50
machines (133K tokens per core). The locking contention
on a shared data structure within a machine accounts for
the reduced per-core efficiency of SchMP versus Single-
LDA. Even so, the distributed approach of SchMP achieves
substantial speed-up gains (84 times on 25 machines, 128
times on 50 machines) over Single-LDA. We leave further
machine-level optimizations, such as relaxed consistency on
shared data structures within a machine, as future work.
Bösen: We compare SchMP-LDA against an implementa-
tion of LDA on a recent parameter server, Bösen[35], which
prioritizes model parameter communication across the net-
work, based on each parameter’s contribution to algorithm
convergence. Thus, Bösen improves convergence rate (OvD)
over YahooLDA while achieving similar token processing
throughput (DvT). On the NYT data with 16 machines8,

7 For fair comparison, Single-LDA implements the same sampling algo-
rithm and the same data structure of SchMP-LDA, and is lock-free. We use
C++11 STL library for implementing the sampling algorithm routine from
scratch without third-party library.
8 For fair comparison, we set the stopping log-likelihood value to -
1.0248e+09 for all experiments: Bösen, YahooLDA, SchMP-LDA with 16
machines.
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Figure 10: Dynamic SchMP: OvD. (a) SchMP-Lasso vs Shotgun-Lasso [5] on one machine (64 cores); (b) SchMP-Lasso vs Shotgun-
Lasso on 8 machines; (c) SchMP-Lasso with & w/o dynamic partitioning on 4 machines; (d) SchMP-SLR vs Shotgun-SLR on 8 machines.
m denotes number of machines.
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Figure 11: Dynamic SchMP: convergence time. Subfigures (a-d) correspond to Figure 10.

SchMP-LDA and Bösen are 7 and 3 times faster, respec-
tively, than YahooLDA, and SchMP-LDA is about 2.3 times
faster than Bösen. The SchMP-LDA improvement comes
from the static model-parallel schedule() in Algorithm 3
(that avoids violating model dependencies in LDA), which
the Bösen data-parallel LDA implementation does not have.

5.2 Dynamic SchMP Scheduling
Our evaluation of dynamic-schedule SchMP algoritms on
the STRADS Dynamic Engine shows significantly improved
OvD compared to random model parallel scheduling. We
also show that (1) in the single machine setting, Dynamic
SchMP comes at a cost to DvT, but overall convergence
speed is still superior to random model parallel; and (2) in
the distributed setting, this DvT penalty mostly disappears.
ML programs and baselines: We evaluate `1-regularized
linear regression (Lasso) and `1-regularized Logistic regres-
sion (sparse LR, or SLR) – STRADS uses Algorithm 2
(SchMP-Lasso) for the former, and we solve the latter us-
ing a minor modification to SchMP-Lasso 9 (called SchMP-
SLR). To the best of our knowledge, there are no open-
source distributed Lasso/SLR baselines that use coordinate
descent, so we implement the Shotgun Lasso/SLR algo-
rithm [5] (Shotgun-Lasso, Shotgun-SLR), which uses ran-
dom model parallel scheduling.

5.2.1 Improvement in convergence times
Dynamic SchMP has high OvD: Dynamic SchMP achieves
high OvD, in both single-machine (Figure 10a) and dis-
tributed, 8-machine (Figure 10b) configurations; here we
have compared SchMP-Lasso against random model parallel
Lasso (Shotgun-Lasso) [5]. In either case, Dynamic SchMP
decreases the data samples required for convergence by an

9 Lasso and SLR are solved via the coordinate descent algorithm, hence
SchMP-Lasso and SchMP-SLR only differ slightly in their update equa-
tions. We use coordinate descent rather gradient descent because it has no
step size tuning and more stable convergence [27, 28].

order of magnitude. Similar observations hold for distributed
SchMP-SLR versus Shotgun-SLR (Figure 10d).
STRADS Dynamic Engine DvT analysis: Table 4 shows
how STRADS Dynamic Engine’s DvT scales with increas-
ing machines. We observe that DvT is limited by dataset
density — if there are more nonzeros per feature column,
we observe better DvT scalability with more machines. The
reason is that the Lasso and SLR problems’ model paral-
lel dependency structure (Section 4.1) limits the maximum
degree of parallelization (number of parameters that can be
correctly updated each iteration), thus Dynamic Engine scal-
ability does not come from updating more parameters in par-
allel (which may be mathematically impossible), but from
processing more data per feature column.
Dynamic SchMP on STRADS has low convergence times:
Overall, both SchMP-Lasso and SchMP-SLR enjoy bet-
ter convergence times than their Shotgun counterparts. The
worst-case scenario is a single machine using a dataset (AD)
with few nonzeros per feature column (Figure 11a) — when
compared with Figure 10a, we see that SchMP DvT is much
lower than Shotgun (Shotgun-Lasso converges faster ini-
tially), but ultimately SchMP-Lasso still converges 5 times
faster. In the distributed setting (Figure 11b Lasso, Fig-
ure 11d SLR), the DvT penalty relative to Shotgun is much
smaller, and the curves resemble the OvD analysis (SchMP
exhibits more than an order of magnitude speedup).

5.2.2 Benefits of Dynamic Engine optimizations
The STRADS Dynamic Engine improves DvT (data through-
put) via iteration pipelining, while improving OvD via dy-
namic partitioning and prioritization in schedule().
Impact of dynamic partitioning and prioritization: Fig-
ures 10c (OvD) and 11c (OvT) show that the convergence
speedup from Dynamic SchMP comes mostly from priori-
tization — we see that dependency checking approximately
doubles SchMP-Lasso’s OvD over prioritization alone, im-
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aaaaaaaaaa
Application

nonzeros per
column 1K 10K 20K

SchMP-Lasso 4 machines 125 212 202
SchMP-Lasso 8 machines 162 306 344

SchMP-LR 4 machines 75 98 103
SchMP-LR 8 machines 106 183 193

Table 4: Dynamic SchMP: DvT of SchMP-Lasso and SchMP-
LR, measured as data samples (millions) operated on per second,
for synthetic data sets with different column sparsity.

plying that the rest of the order-of-magnitude speedup over
Shotgun-Lasso comes from prioritization. Additional evi-
dence is provided by Figure 5; under prioritization most pa-
rameters converge within just 5 iterations.
Pipelining improves DvT at a small cost to OvD: The
STRADS Dynamic Engine can pipeline iterations to im-
prove DvT (iteration throughput), at some cost to OvD. Fig-
ure 12c shows that SchMP-Lasso (on 8 machines) converges
most quickly at a pipeline depth of 3, and Figure 12d pro-
vides a more detailed breakdown, including the time take
to reach the same objective value (0.0003). We make three
observations. First, DvT improvement saturates at pipeline
depth 3. Second, OvD, expressed as the number of data sam-
ples to convergence, gets proportionally worse as pipeline
depth increases. Hence, the sweet spot for convergence time
is pipeline depth 3, which halves convergence time com-
pared to no pipelining (depth 1). Third, pipelining at depth 3
hurts OvT in the initial stage, but gets ahead of pipelining at
depth 1,2 in the middle of running time due to the property of
iterative algorithm. As iterations increases, delta of param-
eter update becomes smaller so that the erros from pipeline
dimiminishes while the iteration throughput gain of pipeline
is being kept constantly.

STRADS dynamic engine sets the pipeline depth to 3 by
default. Since update() consists of three stages (Figure
3b), depth 3 is usually the sweet spot for convergence speed.
There are two possible cases where a smaller pipeline depth
could be more beneficial: 1) the latency of updates is far
longer than the communication latency; 2) the problem has
very strong dependency structures. In these cases, the OvD
performance gains from setting a pipeline depth less than 3

can outweigh the DvT gains at depth 3, and manual depth
tuning may be required to maximize covergence speed.

5.2.3 Comparisons against other systems
We compare SchMP-Lasso/SLR with Spark MLlib (Spark-
Lasso, Spark-SLR), which uses the SGD algorithm. As with
the earlier GraphLab comparison, we use 8 nodes with 64
cores and 128GB memory each. On the AD dataset (which
has complex gene-gene correlations), Spark-Lasso reached
objective value 0.0168 after 1 hour, whereas SchMP-Lasso
achieved a lower objective (0.0003) in 3 minutes. On the Lo-
gisticSynthetic dataset (which was constructed to have few
correlations), Spark-SLR converged to objective 0.452 in
899 seconds, while SchMP-SLR achieved a similar result.10

This confirms that SchMP is more effective in the presence
of more complex model dependencies.

Finally, we want to highlight that the STRADS system
can significantly reduce the code required for an SchMP
program compared to a standalone SchMP program imple-
mentation using MPI[24]: our SchMP-Lasso implementa-
tion (Algorithm 2) has 390 lines in schedule(), 181 lines
in update() and aggregate(), and another 209 lines
for miscellaneous uses like setting up the program environ-
ment while the standalone MPI implementation consists of
about six thousand lines of code.

6. Related work
Early systems for scaling up ML focus on data paral-
lelism [6] to leverage multi-core and multi-machine archi-
tectures, following the ideas in MapReduce [10]. Along
these lines, Mahout[3] on Hadoop [2] and more recently
MLI [30] on Spark [39] have been developed. The sec-
ond generation of distributed ML systems — e.g. parameter
servers (PS, [1, 9, 17, 21]) — address the problem of dis-
tributing large shared models across multiple workers. Early
systems were designed for a particular class of ML prob-
lems, e.g., [1] for LDA and [9] for deep neural nets. More
recent works [17, 21] have generalized the parameter server
concept to support a wide range of ML algorithms. There
are counterparts to parameter server ideas in STRADS:

10 In the SchMP-Lasso/LR experiments, we did not include the overhead of
checkpointing. We found that it is negligible (< 1% of total execution time)
and dominated by update computation time.



for instance, stale synchronous parallel (SSP, [7, 8, 17])
and STRADS both control parameter staleness; the for-
mer through bookkeeping on the deviation between work-
ers, and the latter through pipeline depth. Another example
is filtering [21], which resembles parameter scheduling in
STRADS, but is primarily for alleviating synchronization
costs, e.g., their KKT filter suppresses transmission of “un-
necessary” gradients, while STRADS goes a step further and
uses algorithm information to make update choices (not just
synchronization choices).

None of the above systems directly address the issue of
conflict updates, which leads to slow convergence or even
algorithmic failure [20]. Within the parallel ML literature,
there have been several approaches: some works choose to
ignore the dependencies (while also cautioning that this may
cause algorithm failure) [5, 26], while others focus on under-
standing the dependency structure of a specific ML model,
such as Matrix Factorization [13] or Latent Dirichlet Allo-
cation [37]. The first systematic approach was proposed by
GraphLab [14, 22], where ML computational dependencies
are encoded by the user in a graph, so that the system may se-
lect disjoint subgraphs to process in parallel — thus, graph-
scheduled model parallel ML algorithms can be written in
GraphLab. Intriguing recent work, GraphX [15], combines
these sophisticated GraphLab optimizations with database-
style data processing and runs on a BSP-style MapReduce
framework, sometimes without significant loss of perfor-
mance.

Task prioritization (to exploit uneven convergence) was
studied by PrIter [41] and GraphLab [22]. The former, built
on Hadoop [2], prioritizes data samples that contribute most
to convergence, while GraphLab ties prioritization to the
program’s graph representation. STRADS prioritizes the
most promising model parameter values.

7. Conclusion
We developed STRADS to improve the convergence speed
of model parallel ML at scale, achieving both high progress
per iteration (via dependency checking and prioritization
through SchMP programming), and high iteration through-
put (via STRADS system optimizations such as pipelining
and the ring topology). Consequently, SchMP programs run-
ning on STRADS achieve a marked performance improve-
ment over recent, well-established baselines: to give two ex-
amples, SchMP-LDA converges 10x faster than YahooLDA,
while SchMP-Lasso converges 5x faster than randomly-
scheduled Shotgun-Lasso.

There are issues we would like to address in the fu-
ture: chief amongst them is automatic schedule() cre-
ation, so users only have to implement update() and
aggregate(), while scheduling is left to the system. We
would also like to apply SchMP to ML programs that were
not in our experiments, but offer similar scheduling opportu-
nities due to complex model structure — such as deep neu-

ral nets and network models. A final issue we would like
to explore is hybrid approaches combining data-parallelism
and model-parallelism. [9] presented a hybrid approach spe-
cialized for training a large scale deep neural network, that
showed promise for handling problems with extremely large
data and model sizes. We would like to generalize the hy-
brid approach to a wider range of ML algorithms, beyond
deep neural networks. While the ML community has devel-
oped the theoretical foundations for hybrid approaches, we
have not yet observed substantial system support for these
approaches from the systems community.

Finally, we believe that SchMP can improve other sys-
tems’ ML application performance. Since SchMP is an
approach to ML algorithm design, it is mostly orthogo-
nal to the underlying system implementation, and therefore
it should be possible to implement SchMP algorithms on
Spark [39], MapReduce [10], and the Parameter Server sys-
tem [21] [7]. We believe such implementations will bene-
fit from improved algorithm progress per iteration (a prop-
erty of SchMP), but improving iteration throughput (like in
STRADS ) may require additional system optimizations for
SchMP algorithms (e.g. schedule and update pipelining).
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