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ABSTRACT
Inspired by Google’s BigTable, a variety of scalable, semi-
structured, weak-semantic table stores have been developed
and optimized for different priorities such as query speed,
ingest speed, availability, and interactivity. As these systems
mature, performance benchmarking will advance from mea-
suring the rate of simple workloads to understanding and de-
bugging the performance of advanced features such as ingest
speed-up techniques and function shipping filters from client
to servers. This paper describes YCSB++, a set of exten-
sions to the Yahoo! Cloud Serving Benchmark (YCSB) to
improve performance understanding and debugging of these
advanced features. YCSB++ includes multi-tester coordi-
nation for increased load and eventual consistency measure-
ment, multi-phase workloads to quantify the consequences
of work deferment and the benefits of anticipatory configu-
ration optimization such as B-tree pre-splitting or bulk load-
ing, and abstract APIs for explicit incorporation of advanced
features in benchmark tests. To enhance performance de-
bugging, we customized an existing cluster monitoring tool
to gather the internal statistics of YCSB++, table stores,
system services like HDFS, and operating systems, and to
offer easy post-test correlation and reporting of performance
behaviors. YCSB++ features are illustrated in case studies
of two BigTable-like table stores, Apache HBase and Ac-
cumulo, developed to emphasize high ingest rates and fine-
grained security.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and SoftwareÑ performance evaluation; H.2.4 [Database
Management]: SystemsÑdistributed and parallel databases;
D.2.5 [Software Engineering]: Testing and DebuggingÑ
testing tools, diagnostics
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1. INTRODUCTION
The past few years have seen an emergence of large-scale

table stores that are more simple and lightweight, and pro-
vide higher scalability and availability than traditional re-
lational databases [11, 46]. Table stores, such as BigTable
[12], Dynamo [17], HBase [27] and Cassandra [1, 33], are an
intrinsic part of Internet services. Not only are these stores
used by data-intensive applications, such as business ana-
lytics and scientiÞc data analysis [8, 45], but they are also
used by critical systems infrastructure; for example, the next
generation Google Þle system, called Colossus, stores all Þle
system metadata in BigTable [20].

This growing adoption, coupled with spiraling scalability
and tightening performance requirements, has led to the in-
clusion of a range of (often re-invented) optimization fea-
tures that signiÞcantly increase the complexity of under-
standing the behavior and performance of the system. Table
stores that began with a simple table model and single-row
transactions have extensions with new mechanisms for con-
sistency, bulk insertions, concurrency, data partitioning, in-
dexing, and query analysis.

A key functionality enhancement for applications that con-
tinuously capture petabytes into a table is to increase the
speed of ingest [45]. Typically data is ingested in a table
using iterative insertions or bulk insertions. Iterative inser-
tions add new data through single row ÒinsertÓ or ÒupdateÓ
operations that are often optimized using techniques such as
client-side bu!ering, disabling logs [35, 43], relying on fast
storage devices [49], and indexing structures optimized for
high-speed inserts [23Ð25, 38]. Bulk loads bypass the regu-
lar insertion code path by converting existing datasets from
their external storage format to the format of the native ta-
ble store so that insertion bypasses the normal insert code
path. Proposals to speed up bulk loading include using opti-
mization frameworks to pre-split partitions [47] and running
Hadoop jobs to parallelize data loading [5, 28].

Another useful feature is the ability to run distributed
computations directly on data stored at table store servers
instead of clients. BigTable co-processors allow arbitrary
application code to run directly on tablet servers even when
the table is growing and expanding over multiple servers
[8, 15]. HBase plans to use a similar technique for server-side
Þltering and Þne-grained access control [30, 32, 40]. Such
a server-side execution model, inspired from early work in
parallel databases [18], is designed to drastically reduce the
amount of data shipped to the client. This signiÞcantly im-
proves performance, particularly of scan operations with an
application-deÞned Þlter.



Extensions to the YCSB framework Observations in HBase and Accumulo
Distributed testing using multiple YCSB client nodes

ZooKeeper-based barrier synchronization for multiple
YCSB clients to coordinate start and end of di!erent tests

Distributed setup beneÞts multi-client, multi-phase test-
ing (to evaluate weak consistency and table pre-splits)

Distributed event notiÞcation using ZooKeeper to under-
stand the cost (measured as read-after-write latency) of
weak consistency

Both HBase and Accumulo support strong consistency,
but using client-side batch writing for higher throughput
results in weak consistency with higher read-after-write
latency as batch sizes increase

Ingest-intensive workload extensions

External Hadoop tool that formats data to be inserted
into a format used natively by the table store servers

Bulk insertion delivers the highest data ingest rate of all
ingestion techniques, but the servers may end up doing
expensive load-balancing

A new workload executor for externally pre-splitting the
key space into variable-sized and Þxed-size ranges.

Ingest throughput of Accumulo increases by 20% but if
range partitioning is not known a priori the servers may
incur expensive re-balancing and merging overhead

Offloading functions to the DB servers

New workload executor that generates ÒdeterministicÓ
data to allow use of appropriate Þlters and DB client API
extensions to send Þlters to servers

Server-side Þltering beneÞts HBase andAccumulo only
when the client scans enough data (more than 10 MB) to
mask network and disk I/O overhead

Fine grained access control

New workload generator and API extensions to DB clients
to test both schema-level and cell-level access control mod-
els (HBase does not support access control [27] butAc-
cumulo does)

AccumuloÕs access control increases the size of the ta-
ble and may reduce insert throughput (if client CPU is
saturated) or scan throughput (when server returns ACLs
with the data) in proportion to controls imposed

Table 1: Summary of contributions Ð For each advanced functionality that YCSB++ benchmarks, this table describes the
techniques implemented in YCSB and the key observations from our HBase and Accumulo case studies.

The profusion of table stores calls for developing e!ective
benchmarking tools, and the Yahoo! Cloud Serving Bench-
mark (YCSB) has answered this call successfully. YCSB is a
great framework for measuring the basic performance of sev-
eral popular table stores including HBase, Voldemort, Cas-
sandra and MongoDB [14]. YCSB has an abstraction layer
for adapting to the API of a speciÞc table store, for gathering
widely recognized performance metrics and for generating
a mix of workloads. Although it is useful for characteriz-
ing the baseline performance of simple workloads, such as
single-row insertions, lookups or deletions, YCSB lacks sup-
port for benchmarking advanced table store functionality.
Advanced features make a table store attractive for a wide
range of use cases, but their complex interactions can be
very hard to benchmark, debug and understand, especially
when a store exhibits poor performance.

Our goal is to extend the scope of table store benchmark-
ing in YCSB to support complex features and optimiza-
tions. In this paper, we present a systematic approach to
benchmark advanced functionality in a distributed manner,
and implement our techniques as extensible modules in the
YCSB framework. We do not modify the table stores un-
der evaluation, but the abstraction layer adapting a speciÞc
table store to a benchmarking oriented API for a speciÞc
advanced function may be simple or complex, depending on
the capabilities of the underlying table store.

Table 1 summarizes the key contributions of this paper.
The Þrst contribution is a set of benchmarking techniques
to measure and understand Þve advanced features: weak

consistency, bulk insertions, table pre-splitting, server-side
Þltering and Þne-grained access control. The second contri-
bution is implementing these techniques, which we collec-
tively call YCSB++, as extensible modules in the YCSB
framework. Our Þnal contribution is the experience of an-
alyzing these features in two table stores, HBASE [27] and
Accumulo, both inspired by BigTable and exhibiting most
or all of YCSB++ features.

2. YCSB++ DESIGN
In this section, we present an overview of table stores,

including HBase and Accumulo, followed by the design
and implementation of advanced functionality benchmark-
ing techniques in YCSB++.

2.1 Overview of table stores
HBase and Accumulo are scalable semi-structured ta-

ble stores that store data in a multi-dimensional sorted map
where keys are tuples of the form{ row, column, timestamp } .
Both are inspired by GoogleÕs BigTable system [12]. HBase
is being developed as a part of the open-source Apache
Hadoop project [26, 27] and Accumulo is being developed
by the U.S. National Security Agency. 1 Both are written
in Java and layered on top of the Hadoop distributed Þle
system (HDFS) [6]. They support e"cient storage and re-
trieval of structured data, including range queries, and allow
using tables as input and output for MapReduce jobs. Other
1An open-source release ofAccumulo has been o!ered to
the Apache Software Foundation.



features in these systems pertinent to YCSB++ include au-
tomatic load-balancing and partitioning, data compression
and server-side user-deÞned function such as regular expres-
sion Þltering. To avoid confusion from terminology di!er-
ences in HBase andAccumulo, the rest of this paper uses
terminology from the Google BigTable paper [12].

At a high-level, each table is indexed as a B-tree in which
all records are stored in leaf nodes calledtablets. An HBase
or Accumulo installation consists of tablet servers running
on all nodes in the cluster, and each tablet server handles re-
quests for several tablets. A tablet consists of rows in a con-
tiguous range in the key space and is represented (on disk)
as one or more Þles stored in HDFS. Each table store repre-
sents these Þles in their respective custom formats (BigTable
uses an SSTable format, HBase uses an HFile format and
Accumulo uses an RFile format) which we will refer as
store files. In all cases, store Þles are sorted, indexed, and
used with bloom Þlters to make negative lookups faster [12].
Both HBase and Accumulo provide columnar abstractions
that allow users to group a set of columns into a locality
group. Each locality group is stored in its separate store Þle
in HDFS; this enables e"cient scan performance by avoiding
excess data fetches (from other columns) [48]. These table
stores use a master server that manages schema details and
assigns tablets to tablet servers in a load-balanced manner.

When a table is Þrst created, it has a single tablet, the
root of the B-tree, managed by one tablet server. Inserts are
sent to an appropriate tablet server guided by the cached
state about non-leaf nodes of the B-tree. The leaf tablet
server logs mutation operations and bu!ers all requests in
an in-memory bu!er called memstore. When this memstore
Þlls up, the tablet server ßushes recently written entries to
create a store Þle in HDFS; this process is calledminor com-
paction. As the table grows, the memstore Þlls up again and
is ßushed to create another store Þle. Reads not speciÞed
in a memstore may have to search many store Þles for the
requested entries. This use of multiple store Þles represent-
ing mutations from a particular time period is inspired by
the classic log-structured merge tree (LSM-tree) [38]. Once
a tablet exceeds a threshold size, the tablet server splits
the overßowing tablet (and its key range) by creating a new
tablet on another tablet server and transferring the rows
that belong to the key range of the new tablet. This process
is called a split. A large table may have large number of
tablets and each tablet may have many store Þles. To con-
trol the number of store Þles that may be accessed to ser-
vice a read request,major compaction operations are used
to merge store Þles into fewer store Þles. All Þles are stored
in HDFS and these table stores rely on HDFS for durability
and availability of data.

2.1.1 Additional features in Accumulo
The design and implementation of Accumulo has sev-

eral features that are di!erent from other open-source table
stores. Perhaps the most unique feature inAccumulo is the
iterator framework that embeds user-programmed function-
ality into the di!erent LSM-tree stages. Figure 1 shows how
iterators Þt in the tablet server architecture of Accumulo
and enable in-situ processing during otherwise necessary I/O
operations. For example, iterators can operate during minor
compactions by using the memstore data as input to gener-
ate on-disk store Þles comprised of some transformation of
the input such as statistics or additional indices.

Figure 1: Diagram of data flow in a tablet. Iterator Trees are shown on the minor compaction, major/merging
compaction, and query data flow paths.

Full Context := (� row , cf , cq , vis, time, val �)
Row Context := ( row , � cf , cq , vis, time, val �)
CF Context := ( row , cf , � cq , vis, time, val �)
CQ Context := ( row , cf , cq , � vis, time, val �)

Version Context := ( row , cf , cq , vis, � time, val �)
Time Context := ( row , cf , cq , vis, time, � val �)
Value Context := ( row , cf , cq , vis, time, val )

Figure 2: A set of useful contexts for operations on
key/value pairs. Parentheses () represent a single
tuple, and angle brackets �� represent an ordered
sequence of tuples.

is either another Iterator or the main query function. This
single parentage property with no loops means that the col-
lection of Iterators forms a tree topology.

As additional background needed to fully characterize It-
erators, we define the term context to be the group of cells
that a processing element considers at one time in order to
determine its output. For example, a Reducer is a process-
ing element that operates within the context is a single key
and all of the values associated with it.3 Given our defi-
nition of key and value, we can enumerate a set of useful
contexts over which we can define functions. These contexts
are shown in figure 2.

A Full Context allows operations over an ordered set of
unrestricted key/value pairs, a Row Context allows opera-
tions over an ordered set of key/value pairs which all have
the same row (i.e., a single row in IcyTable), etc. In a Full
Context a processing element would be able to see all of the
data in a table, while in a Value Context a processing el-
ement would only see one key/value pair at a time. With
IcyTable, the Full Context is only available on the client side,
since rows are partitioned across tablet servers and tablet
servers do not have a built-in mechanism to share data for
query. However, all of the other contexts are available on the
server-side, and we have many examples of useful functions
that can be encoded in those contexts.

3For the purpose of this discussion we ignore the possibil-
ity of the Reducer object carrying state between calls to
reduce().

Conceptually, an Iterator is a processing element that has
the form Row Context ⇒ �key , value�. In other words, an It-
erator takes all of the data in a row and provides an ordered
stream of key/value pairs. The following represents a Ver-
sioning Iterator, an iterator that filters the set of key/value
pairs down to the most recent timestamped version of each
key as follows:

1: method init (Iterator src)
2: rp , fp , qp , visp ← ∅
3: s ← src
4: method next ()
5: repeat
6: ((r, f, q, vis, t), v) ← s.next()
7: until (rp , fp , qp , visp) �= (r, f, q, vis)
8: (rp , fp , qp , visp) ← (r, f, q, vis)
9: return ((r, f, q, vis, t), v)

This Versioning Iterator is initialized with a source iter-
ator that it uses as the source for all of its key/value pairs.
In its next method, it skips over any repeated versions of
keys after the first. In doing so, it limits itself to a Ver-
sion Context. For ease of programming, we also provide a
number of specializations of the Iterator that allow us to
explicitly encode functions on more narrow contexts. The
Aggregating Iterator, discussed in Section 4.1, uses a plug-
gable Aggregator object to encode computations within the
Version Context, mapping a stream of values to a single
value. Figure 3 gives a taxonomy of some different Iterators
and the contexts in which they operate.
At the leaves of the Iterator Tree are simple Iterators that

seek to a location in the key space and read key/value pairs
in order from sorted files or the in-memory map. The parent
of these leaves is always a Multiple Iterator, which performs
a merge of the data provided by several sources and presents
a single, sorted view. Several layers of Iterators on top of
the leaves, in every Iterator Tree, are constructed of trusted
system code. These trusted Iterators ensure safe, secure, and
consistent access to data available on the tablet, performing
functions such as cell-level security and key deletion. We

4Context is not really defined for multiple sources. In this
case we have a single key/value pair at a time from each
source, but the rows might not match between them.

Figure 1: Design of the Accumulo tablet server and its use
of iterators for bulk and stream processing.

Iterators read one or more sorted sequences of key-value
pairs and output an ordered stream of key-value pairs. The
input stream can be transformed in various ways depending
on the context of transformation used by an iterator. The
context of an iterator is the degree of commonality among
the key-value pairs that it uses as input for a given oper-
ation. For example, a version context is deÞned as a set
of key-value pairs that share the same row and column but
have di!erent timestamps and values. A versioning iter-
ator operates within that version context and pares down
the input set to the N key-value pairs with the most recent
timestamps. An aggregating iterator also operates within
a version context, and it replaces all key-value pairs in the
set with a new key-value pair whose value is an aggregate
function (e.g. sum) of the key-value pairs in the context.

Accumulo can also create iterator trees by chaining dif-
ferent iterators together such that the output from one iter-
ator serves as the input to another iterator. These iterators
can be organized as a hierarchy, comprising of parent and
child iterators that can create a user-deÞned data process-
ing pipeline to support stream processing, incremental bulk
processing, and partitioned join operations. Iterators can
perform the basic operations of a query language, such as
selection, projection, and set intersection and union within
a partition. Trees of these types of iterators are used to im-
plement scalable information retrieval systems with highly
expressive query languages. Other user-deÞned iterators can
be used to e"ciently encode complex, online statistical ag-
gregation functions that are crucial for big-data analytics.

Another feature unique to Accumulo is Þne-grained cell-
level access control. To the best of our knowledge,Accu-
mulo is the only table store that provides cell-level access
control by associating an access control list (ACL) with ev-
ery cell. This is di!erent from Bigtable, which uses table-
level and column family-level access control mechanisms [12].
HBase proposes to support a coarse-grained schema-level ac-
cess control mechanism that will store and check the ACLs
only at a schema (or metadata) level [30]. Currently, Ac-
cumulo uses cell-level access control only for reads and ad-
ditional schema-level access control for both read and write
operations. To support cell-level ACLs, Accumulo uses a
key speciÞer comprised of the tuple { row, column family,
column qualiÞer, visibility, timestamp } where the visibility
portion is an encoded and-or tree of authorizations.

The authors of Accumulo report that it has been demon-
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Figure 2: YCSB++ functionality testing framework Ð
Light colored boxes show modules in YCSB v0.1.3 [14] and
dark shaded boxes show our new extensions.

strated across diverse hardware conÞgurations and multi-
ple levels of scale and, in a variety of usability tests, it has
been successful at handing very complex data-sets with high-
speed, e"cient ingest and concurrent query workloads. An
open-source release ofAccumulo has been o!ered to the
Apache Software Foundation.

2.2 YCSB background
The Yahoo! Cloud Serving Benchmark (YCSB) is a popu-

lar extensible framework designed to compare di!erent table
stores under identical synthetic workloads [14]; the di!erent
modules in YCSB are shown as light boxes in Figure 2.

The workload executor module loads test data and gen-
erates operations that will be specialized and issued by aDB
client to a table store. The default YCSB workload issues
mixes of basic operations including reads, updates, deletes
and scans. In YCSB, read operations may read() a sin-
gle row or scan() a range of consecutive rows and update
operations may either insert() a new row or update() an
existing one. Operations are issued one at a time per client
thread and their distributions are based on parameters speci-
Þed in theworkload parameter file for a benchmark. The
YCSB distribution includes Þve default workload Þles (called
Workloads A, B, C, D and E ) that generate speciÞc read-
intensive, update-intensive and scan-intensive workloads.

The current YCSB distribution provides DB client mod-
ules with wrappers for HBase, Cassandra [1], MongoDB [2]
and Voldemort [3]; YCSB++ adds a new client for Ac-
cumulo. For a given table store, its DB client converts a
ÔgenericÕ operation issued by the workload executor to an
operation speciÞc for that table store. In an HBase cluster,
for example, if the workload executor generates a read()
operation, the HBase DB client issues a get() operation to
the HBase servers.

YCSB starts executing a benchmark using a pool of client
threads that call the workload executor to issue operations
and then report the measured performance to the stats
module. Users can specify the size of the work generating
thread pool, the table store being evaluated and the work-
load parameter Þle ascommand line parameters.

2.3 Extensions in YCSB++
YCSBÕs excellent modular structure makes it natural for

us to integrate advanced functionality testing mechanisms
as YCSB extensions. Our YCSB++ extensions are shown
as dark shaded boxes in Figure 2.

2.3.1 Parallel testing
The Þrst extension in YCSB++ enables multiple clients,

on di!erent machines, to coordinate start and end of bench-
marking tests. This modiÞcation is necessary because YCSB
was designed to run on a single node and just one instance
of YCSB, even with hundreds of threads, may limit its ability
to test large deployments of table stores e!ectively. YCSB++
controls execution of di!erent workload generator instances
through distributed coordination and event notiÞcation us-
ing Apache ZooKeeper, a service that provides distributed
synchronization and group membership [29, 52]. ZooKeeper
is already used in HBase andAccumulo deployments.

YCSB++ implements a new class, calledZKCoordina-
tion, that provides two abstractions Ð barrier-synchronization
and producer-consumer Ð through ZooKeeper. We added
four new parameters to the workload parameter Þle: a status
ßag, the ZooKeeper server address, a barrier-sync variable,
and the size of the client coordination group. The status ßag
checks whether coordination is needed among the clients.
Each coordination instance has a unique barrier-sync vari-
able to track the number of processes entering or leaving a
barrier. ZooKeeper uses a hierarchical namespace for syn-
chronization and, for each barrier-sync variable speciÞed by
YCSB++, creates a corresponding ÒbarrierÓ directory in its
namespace. Whenever a newYCSB++ client starts, it
joins the barrier by contacting the ZooKeeper server that
in turn creates a new entry, corresponding to the clientÕs
identiÞer, in the barrier directory. The number of entries
in a barrier directory indicates the number of clients that
have joined the barrier. If all the clients have joined the
barrier, ZooKeeper sends these clients a callback message
to start executing the benchmark; if not, YCSB++ clients
block and wait for more clients to join. After the test (or
one phase) completes,YCSB++ clients notify ZooKeeper
about leaving the barrier.

2.3.2 Weak consistency
Table stores provide high throughput and high availabil-

ity by eliminating expensive features, particularly the strong
ACID transactional guarantees found in traditional rela-
tional databases. Based on theCAP theorem, some table
stores tolerate network Partitions and provide high Availability
by giving up on strong Consistency guarantees [7, 22]. Sys-
tems may o!er ÒlooseÓ or ÒweakÓ consistency semantics, such
as eventual consistency [17, 50], in which acknowledged changes
are not seen by other clients for signiÞcant time delays. This
lag in change visibility may introduce challenges that pro-
grammers may need to explicitly handle in their applications
(i.e., coping with possibly stale data). YCSB++ measures
the time lag from one client completing an insert until a
di!erent client can successfully observe the value.

To evaluate this time to consistency, YCSB++ uses asyn-
chronous directed coordination between multiple clients en-
abled by the producer-consumer abstraction in the afore-
mentioned ZKCoordination module. YCSB++ clients in-
terested in benchmarking weak consistency specify three
properties in the workload parameter Þle: a status ßag to



check if a client is a producer or a consumer, the ZooKeeper
server address, and a reference to a shared queue data-
structure in ZooKeeper. Synchronized access to this queue
is provided by ZooKeeper: for each queue, ZooKeeper cre-
ates a directory in its hierarchical namespace and adds (or
removes) a Þle in this directory for every key inserted in
(or deleted from) the queue. Clients that insert or update
records are ÒproducersÓ who add keys of recently inserted
records in the ZooKeeper queue. The ÒconsumerÓ clients
register a callback on this queue at start-up. On receiving
a notiÞcation from ZooKeeper about new elements, Òcon-
sumersÓ remove a key from the queue then read it from the
table store. If the attempt to read this key fails, the Òcon-
sumerÓ will put the key back on the queue and try read-
ing the next available key. Excessive use of ZooKeeper for
inter-client coordination may a!ect the performance of the
benchmark; we avoid this issue by sampling a small fraction
(1%) of the inserted keys for read-after-write measurements.
The Òread-after-writeÓ time lag for key K is the di!erence
from the time a ÒconsumerÓ Þrst tries to read the new key
until the Þrst time it successfully reads that key from the ta-
ble store server; we only report the lag for keys that needed
more than one read attempt. We did not measure the time
from ÒproducerÓ write to ÒconsumerÕ read in order to avoid
cluster-wide clock synchronization challenges.

2.3.3 Table pre-splitting for fast ingest
Recall that both HBase and Accumulo distribute a ta-

ble over multiple tablets. Because these stores use B-tree
indices, each tablet has a key range associated with it and
this range changes when a tablet overßows to split into two
tablets. These split operations limit the performance of
ingest-intensive workloads because table store implementa-
tions lock a tablet during splits and migrate a large amount
of data from one tablet server to another on a di!erent ma-
chine. During this migration, servers refuse any operation
(including reads) addressed to the tablet undergoing a split
(until it Þnishes). One way to reduce this splitting overhead
is to split a table when it is empty or small into multiple
key ranges based on a priori knowledge, such as key distri-
butions, of the workload; we call this pre-splitting the table.

YCSB++ adds to the DB clients module a pre-split func-
tion that takes split points as input and invokes the servers
to pre-split a table. To enable pre-splits in a benchmark,
YCSB++ adds a new property in the workload parameter
Þles that can specify either a list of variable-size ranges in
the key space or a number of Þxed-size partitions to divide
the key space.

2.3.4 Bulk loading using Hadoop
To e"ciently add massive data-sets, various table stores

rely on specialized, high-throughput tools and interfaces [28].
In addition to the normal insert operations, YCSB++ sup-
ports the use of these specialized bulk load mechanisms.
YCSB++ invokes an external tool that directly processes
the incoming data, stores it in an on-disk format native to
the table store, and notiÞes the servers about the existence
of the new and properly formatted Þles through an im-
port() API call. Table store servers make the newly loaded
data-set available after successfully updating internal data-
structures.

Developers can create bulk loader adaptors for particular
table stores by providing speciÞc implementations for two

YCSB++ components: data transformation and import op-
eration adaptors. For the data transformation component,
YCSB++ expects a Hadoop application for partitioning,
potentially sorting, and storing the data in the appropri-
ate format. The implementation of the import operation
loads the formatted data using the speciÞc interface for the
particular table store. YCSB++ also implements a generic
Hadoop data generator for bulk load benchmarks that can be
extended and adapted to a particular store by implementing
the corresponding output format adaptor in the tool.

2.3.5 Server-side filtering
Server-side Þltering o#oads compute from the client to the

server, possibly reducing the amount of data transmitted
over the network and amount of data fetched from disk.
In order to reduce the amount of data fetched from disk,
YCSB++ includes the ability to break columns into locality
groups. Since locality groups are often stored in separate
Þles by tables stores, Þlters that test and return data from
only some locality groups do less work [48]. YCSB++ takes
a workload parameter causing each column to be treated as
a single locality group.

There are a wide range of server-side Þlters that could
be supported and scalable table stores Þltering implementa-
tions are often not as expressive as SQL. ForYCSB++ we
deÞne four server-side Þlters, exploiting regular expressions
for ÒpatternÓ parameters, that are signiÞcantly di!erent and
are supported in both HBase and Accumulo. The Þrst Þlter
returns the entire row if the value of the rowÕs key matches
a speciÞed pattern, the second Þlter returns the entire row
if the value of the rowÕs entry for a speciÞed column name
matches a speciÞed pattern, the third Þlter returns the rowÕs
key and the { column name, cell value} tuple where column
name matches a speciÞed pattern, and the fourth Þlter re-
turns the rowÕs key and the{ column name, cell value} tuple
where any columnÕs entry value matches a speciÞed pattern.

Each table storeÕs DB client implements these four Þlters
in whatever manner is best supported by the table store
under test. That is, if the table store does not have an API
capable of function shipping the Þlter to the server, it could
fetch all possibly matching data and implement the Þlter in
the DB client.

2.3.6 Access control
Table stores support di!erent types of access control mech-

anisms, including none at all, checks applied at the level of
the entire table, checks applied conditionally to each col-
umn, column family or locality group, or checks applied to
every cell. Checks applied only to the entire table or spe-
ciÞc column sets are said to be schema-level access controls,
while checks applied to every cell are said to be cell-level ac-
cess controls. HBase developers are working on schema-level
access control, although the main release of Hbase has no se-
curity [30]. Accumulo implements both, using schema-level
access control on all accesses and cell-level access controls on
read accesses.

YCSB++ supports tests that specify credentials for each
operation and access control lists (ACLs) to be attached to
schema or cells. The DB client code for each table store im-
plements operations speciÞc to a credential used or an ACL
set in the manner best suited to that table store. The goal
of YCSB++ access control tests is to evaluate the perfor-
mance consequences of using access control; our tests ex-
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Figure 3: An example of combining di!erent logical aggre-
gates in Otus graphs.

aggerate the use of ACLs relative to table data to make
performance trends more noticeable, not because we believe
that this heavy use of ACLs is common.

2.4 Performance monitoring in YCSB++
There are many tools for cluster-wide monitoring and vi-

sualization such as Ganglia [37], Collectd [13], and Munin
[39]. These tools are designed for large scale data gather-
ing, transport, and visualization. They make it easy to view
application-agnostic metrics, such as aggregate CPU load
in a cluster, but they lack support for application-speciÞc
performance monitoring and analysis. For example, virtual
memory statistics for the sum of all processes running on a
node or cluster are typically recorded, but we think a more
useful approach is to report aggregate memory usage of a
MapReduce task separate from that used by tablet servers,
HDFS data servers and other non-related processes.

YCSB++ uses a custom monitoring tool, called Otus
[41], that was built on top of Ganglia. Otus runs a dae-
mon process on each cluster node that periodically collects
metrics from the nodeÕs OS, from di!erent table store com-
ponents such as tablet servers and HDFS data nodes, and
from YCSB++ itself. All collected metrics are stored in
a central repository; users can process and analyze the col-
lected data using a tailored web-based visualization system.

In Otus, OS-level resource utilization for individual pro-
cesses is obtained from the Linux /proc Þle system; these
metrics include per-process CPU usage, memory usage, and
disk and network I/O activities. By inspecting command-
line invocation data from /proc and aggregating stats for
process groups derived from other invocations, Otus di!er-
entiates logical functions in a node. Table store related met-
rics, such as the number of tablets and store Þles, are ex-
tracted directly from the table store services to provide in-
formation about the inner workings of these systems. Otus
can currently extract metrics from HBase and Accumulo,
and adding support for another table store involves writing
Python scripts to extract the desired metrics in whatever
manner that table store uses to dynamically report metrics
[41]. We also extended theYCSB++ stats module to peri-
odically send (using UDP) performance metrics to Otus.

By storing the collected data in a central repository and
providing a ßexible web interface to access the benchmark

data, users can obtain and correlate Þne-grained time se-
ries information of di!erent metrics coming from di!erent
service layers and within a service. Figure 3 shows a sam-
ple output from Otus that combines simultaneous display of
three metrics collected during an experiment: HDFS data
node CPU utilization, tablet server CPU utilization and the
number of store Þles in the system.

3. ANALYSIS
All our experiments are performed on sub-clusters of the

64-node ÒOpenCloudÓ cluster at CMU. Each node has a 2.8
GHz dual quad core CPU, 16 GB RAM, 10 Gbps Ethernet
NIC and four Seagate 7200 RPM SATA disk drives. These
machines were drawn from two racks of 32 nodes each with
an Arista 7148S top-of-the-rack switch. Both rack switches
are connected to an Force10 4810 head-end switch using six
10 Gbps uplinks each. Each node was running Debian Lenny
2.6.32-5 Linux distribution with the XFS Þle system man-
aging the test disks.

Our experiments were performed using Hadoop-0.20.1 (that
includes HDFS) and HBase-0.90.2 which use the Java SE
Runtime 1.6.0. HDFS was conÞgured with a single dedi-
cated metadata server and 6 data servers. Both HBase and
Accumulo were running on this HDFS conÞguration with
one master and 6 region servers Ð a conÞguration similar to
the original YCSB paper. [14]. The test data in these ta-
ble stores was stored in table that used the default YCSB
schema where each row is 1 KB in size and comprises of
ten columns of 100 bytes each; this schema was used for all
experiments except server-side Þltering (in Section 3.5) and
access control (in Section 3.6).

The rest of this section shows howYCSB++ was used to
study the performance behavior of advanced functionality in
HBase andAccumulo. We use the Otus performance mon-
itor (Section 2.4) to understand the observed performance
of all software and hardware components in the cluster.

3.1 Effect of batch writing
Both HBase and Accumulo coalesce application writes

in a client-side bu!er before sending them to a server be-
cause batching multiple writes together improves the write
throughput by avoiding a round-trip latency in sending each
write to the server. To understand the beneÞts of batching
for di!erent write bu!er sizes, we conÞgure two 6-node clus-
ters, one for HBase and other for Accumulo, that are both
layered on an HDFS instance. We use 6 separate machines
as YCSB++ clients that insert 9 million rows each in a
single table; the YCSB++ clients for Accumulo use 50
threads each, while the YCSB++ clients for HBase use 4
threads each.2

Figure 4 shows the insert throughput (measured as the
number of rows inserted per second) with four di!erent batch
sizes. All numbers are an average of two runs with negligible
variance. Results are most dramatic for Accumulo, where
more than a factor of two increase in insert throughput can
be obtained with larger write batching, but HBase also sees
almost a factor of two increase with large batch size when
the o!ered load from the client is large.

Graphs like Figure 4 are useful to the developers of a ta-

2HBase, when conÞgured with 50 threads per client, was
unable to complete the test successfully without crashing
any server during the test.
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Figure 4: E!ect of batch size on insert rate in a 6-node
HBase and Accumulo cluster.

ble store both to conÞrm that a mechanism such as batch
writing achieves greater insert throughput and to point out
where other e!ects impact the desired result. For example,
HBase with 10KB batches sees lower throughput at higher
o!ered load and Accumulo with 1 client and 50 threads
aggregate sees slightly decreasing throughput with larger
batches. Figure 5 begins to shed light on the latter situ-
ation; 9 million inserts of 1 KB rows in batches of 10 KB
(10 rows) to 10 MB (10,000 rows) fully saturates the client
most of the time, so little throughput can be gained from
more e"ciency in the server or lower per insert latency. In
fact, the two periods of signiÞcant decrease in utilization in
the client suggests looking more deeply at non-continuous
processes in the server (such as tablet splitting and major
compactions of store Þles, which, for example, are seen to
be large sources of slowdown in Section 3.4).

Consider the most signiÞcant throughout change in Figure
4, Accumulo with high o!ered load sees its throughout
increase from near 20,000 rows per second to over 40,000
rows per second when the batch size goes from 10 KB to
100 KB then sees only small increases for larger batches.
Figures 6 shows how the server CPU utilization with 100
KB batches is approaching saturation, reducing the beneÞt
of larger batches from both increasing the client e"ciency
at generating load and increasing the server e"ciency at
processing load to only increasing throughput with increased
server e"ciency.

3.2 Weak consistency due to batch writing
Although batching improves throughput, it has an impor-

tant side-e!ect: data inconsistency. Even for table stores
like HBase and Accumulo that support strong consistency,
newly written objects are locally bu!ered and are not sent
to the server until the bu!er is full or a time-out on the
bu!er expires. Such delayed writes can violate the read-
after-write consistency expected by many applications, i.e.
a client, who is notiÞed by another client that some write
has been completed, may fail to read the data written by
that operation.

We evaluate the cost of batch writing using the producer-
consumer abstraction in YCSB++ with a 2-client setup.
Client C1 inserts 1 million rows in an empty table, ran-
domly selects 1% of these inserts and enqueues them at the
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Figure 6: Six Accumulo servers begin to saturate when
300 threads (spread on six clients) insert records at maxi-
mum speed using a 100 KB batch bu!er (Figure 4).

ZooKeeper server. The second clientC2 dequeues keys in-
serted in the ZooKeeper queue and attempts to read the
rows associated with those keys. We estimate the Òread-
after-writeÓ time lag as the time di!erence between when
C2 Þrst attempts to read a key and when it Þrst successfully
reads that key. This under-estimates by the time from write
at C1 to dequeue atC2 and over-estimates by the time in the
ZooKeeper queue of the last unsuccessful read, but neither
of these should be more than a few milliseconds.

Figure 7 shows a cumulative distribution of the estimated
time lag observed by client C2 for di!erent batch sizes. This
data excludes the (zero) time lag of keys that are read suc-
cessfully the Þrst time C2 tries to do so. Out of the 10,000
keys that C2 tries to read, less than 1% keys experience a
non-zero lag when using a 10 KB batch in both HBase and
Accumulo. The fraction of keys that experience a non-zero
lag increases with larger batch sizes: 1.2% and 7.4% of the
keys experience a lag for a 100 KB batch size inAccumulo
and HBase respectively, 14% and 17% for a 1 MB batch size,
and 33% and 23% for a 10 MB batch size. This fraction of
keys that see non-zero lag increases with batch size because
smaller batches Þll up more quickly and are ßushed to the
server more often, while larger batches take longer to Þll and
are ßushed less often.

For the developer or administrator of the table store, these
tests give insight into the expected scale of delayed creates.
For the smallest batch size (10 KB), HBase has a median lag
of 100 ms and a maximum lag of 150 seconds, whileAccu-
mulo has an order of magnitude higher median (about 900
ms) and an order of magnitude lower maximum lag (about
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10 seconds). However, the time lag for both table stores is
similar for all larger batch sizes; the largest batch size (10
MB), for example, has a median lag of approximately 140
seconds and a maximum lag of approximately 200 seconds
for both HBase and Accumulo.

For programmers of services that use table stores, it is
important to observe that large batches may cause some
keys to be visible more than 100 seconds after they were
written by other clients. That is, with large batched writes,
programmers must be prepared to cope with read-after-write
time lags in the order of minutes.

3.3 Table pre-splitting
Both HBase and Accumulo rely on a distributed B-tree

that grows incrementally by splitting its leaf nodes (tablets)
as the table grows. Because throughput degrades during
tablet splits, these table stores provide an alternate interface
to pre-split a table before it has much data. The goal for
pre-splitting is (1) to migrate less data during ingest phase,
and (2) to engage more tablet servers earlier on in an ingest-
heavy workload.

We extended YCSB++Õs DB client API to o!er an inter-
face to pre-split a key range into N equal sub-ranges. The
idea is that N predicts the future size of the tablets cov-
ering the key range in question. If N is too small, extra
splits beyond the pre-splits will be done and not all tablet
servers will be engaged early in the ingest work. If N is too
large, tablets and their minor compactions will be numerous
and small, leading to complex interactions with the major
compaction policies.

Accumulo has a general interface for synchronously pre-
splitting the tablets covering a range at speciÞc key val-
ues. This is fast because multiple tablets in Accumulo can
share the same (immutable) store Þles. In HBase, tablet
pre-splitting is deferred until the next major compaction
on that tablet, and then the tablet is divided into exactly
two new tablets, optimizing the work of splitting and major
compaction together. Unfortunately, when the YCSB++
DB client code invokes many pre-splits in HBase and the
corresponding major compactions, which is an uncommon
workload for HBase, it becomes unstable. The results in
this section are all taken from Accumulo experiments.

Phase Phase Name Workload

(1) Pre-load Pre-load 6 million rows with keys
uniform in range [0, 12 ! 109 ]

(2) Pre-split Pre-split the key range [0, 72 !
106 ] into fixed-size partitions

(3) Load Load 48 million rows with keys
uniform in range [0, 72 ! 106 ]

(4) R/U Measurement 1 50% read and 50% update oper-
ations for 4 minutes with target
throughput of 600 ops/sec (light
load)

(5) Pause Sleep for 5 minutes
(6) R/U Measurement 2 Same as Phase (4)

Table 2: Six-phase experiment used to study the e!ects of
pre-splitting in HBase and Accumulo.

It is tempting to evaluate ingest speed by the time un-
til the last client returns from submitting the last row to
the table store, but this underestimates the churn the table
store may continue to experience as it splits and compacts
tablets after the clients think ingest is complete. One way
to measure this churn is through a light load of query and
update operations after the inserts are done; YCSB++ en-
ables this through multiple phase tests, using its multi-client
coordination techniques to synchronize all client threads on
the current phase.

The six phases used in our pre-split experiments are de-
scribed in Table 2. Phase (5) is a 300 second idle period de-
signed to encourage a table store waiting for an idle period
to do its pending work, so phase (6) repeats the light query
and update load to expose the impact of such pending work.
In these experiments, we use threeYCSB++ clients and re-
duce the main memory each tablet server uses for memstore
to 1 GB to engage compaction work more frequently.

Figure 8 shows the duration of Phase (1), which loads
6 million rows with keys in the [0 , 12 ! 109] range into an
empty table, and Phase (3), which loads 48 million rows with
keys in the [0, 72 ! 106] range into a table that is pre-split
(in Phase (2)) into di!erent numbers of Þxed-size partitions.
This Þgure reports theÒslowestÓand theÒfastestÓcompletion
times of the three YCSB++ clients used for this experiment.
After pre-splitting the key range [0 , 72 ! 106] into 17 equal-
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sized partitions the duration of Phase (1) is reduced from
from about 1,800 seconds to 1,600 seconds, and after pre-
splitting it into 143 or more partitions the duration reduces
even further to about 1,500 seconds Ð a 20% improvement
in completion time. Pre-splitting the [0 , 72! 106] key range
into less than 143 tablets does not inhibit most further splits
because the split threshold is 256 MB in store Þles. But
as little as 17 pre-splits ensures that all tablet servers are
engaged during the subsequent insert phases.

The duration of insert phases is only part of the e!ort
expended by table stores. Phases (4), (5) and (6) explore
the behavior after the insert phases. In Phase (6), read la-
tencies are all about 7-10 ms. However, read latency for op-
erations in Phase (4), which happens immediately after the
table attains 54 million rows, is dependent on compactions
happening concurrently in the table store. Figure 9 shows
the behavior during Phase (4) for the case when the range
[0, 72 ! 106] is pre-split into 143 equal-size ranges; this Þg-
ure plots read latency with the number of compaction op-
erations on the tablet servers (collected by the Otus per-
formance monitor). In the Þrst 60 seconds of this measure-
ment phase, the read latency is always more than 500 ms
and as high as 1,500 ms. These slow operations correlate
with a large number of major compactions that keep tablet
servers busy. As the measurement phase progresses and the
compactions that the tablet servers want to do complete,
read latencies start to decrease. After about 200 seconds,
when the tablet servers are no longer performing any com-
pactions, monitored read operations are taking about 7 ms,
which corresponds to our observed read latencies for opera-
tions performed much later in Phase (6). This large variance
in response time suggest that the policies and mechanisms
of compactions, like defragmentation and cleaning in log-
structured Þle systems [44], is important future work for
table store developers.

3.4 Bulk loading using Hadoop
YCSB++ uses an external Hadoop/MapReduce (MR)

tool to benchmark bulk inserts in HBase and Accumulo.
Similar to the previous section on pre-splitting tables, we
analyze the performance of bulk insertions using an eight-
phase experiment shown in Table 3. The big di!erence be-
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Phase Phase Name Workload

(1) MR Pre-load Format 6 million rows with uni-
form key distribution into the ta-
ble store native format using a
Hadoop/MapReduce job

(2) Pre-load import Import the on-disk data files
(created in the previous phase)
into an empty table in the table
store

(3) R/U Measurement 1 50% read and 50% update oper-
ations for 5 minutes with target
throughput of 600 ops/sec

(4) MR Load Format 48 million new rows with
uniform key distribution into the
table store native format using a
Hadoop/MapReduce job

(5) Load import Import the on-disk data files
(created in the previous phase)
into the table created in Phase
(2)

(6) R/U Measurement 2 Same as Phase (3)
(7) Pause Sleep for 5 minutes
(8) R/U Measurement 3 Same as Phase (3)

Table 3: Eight-phase experiment used to understand bulk
loading in HBase and Accumulo.

tween the experiments of Section 3.3 and those in this sec-
tion is the replacement of an iterative call to insert one row
many times with a MapReduce job that formats all data
to be inserted into a native format, stored as on-disk store
Þles, and one call to adopt these store Þles in a table in the
store. For both HBase and Accumulo, our formatting tool
generated store Þles for 36 tablets, enough to reliably load
balance work to 6 tablet servers, but for HBase, a limit on
the size of the native store Þles to be imported led us to
generate 8 store Þles per tablet.

For both table stores, the time to format a bulk load is
much faster than the time to insert one row at a time; this
is observed from comparing the durations in Figure 8 to du-
rations from start to P2 and from end of P3 to end of P5 in
Figure 11. And since the adoption of native store Þles is also
very fast, more interesting issues are observed in the mea-
surement phases. Figure 10 shows the read latencies during
all three measurement phases in this eight-phase experiment
and Figure 11 reports the number of store Þles, tablets and
compactions across all phases, but we distinctly highlight
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Figure 11: Measuring the number of store Þles, tablets and concurrent compactions relative to the ends of Phase (2),
Phase(3), Phase (5) and Phase (8) during our eight-phase bulk load experiments.

the end of Phase (2), (3), (5) and (8). All experiments were
run three times. For Accumulo all three runs were similar
and one run in shown in the graphs. For HBase two runs
were similar and one very di!erent; we show one of each.

The two di!erent types of runs experienced when using
HBase are shown in Figure 10 and 11, (a) when HBase de-
cides to split during the run, or (b) when HBase does not
do any splits during the run. Figure 11(b) conÞrms that
splits and compactions are not happening in this run and
the read response times are constant and low (20-30 ms af-
ter all data has been loaded). In fact, all the data is attached
to the same tablet and served by one tablet server. Splits
induce a lot of work and interference with the measurement
workload, so the Y-axes of Figures 10(a) and on the right in
Figure 11(a) change by more than an order of magnitude.
The read response time immediately after all data has been
inserted peaks at 5,000 ms and does not drop below 100
ms until about 12 minutes after the insertion is complete.
One might conclude that the insertion takes at least 12 min-
utes longer than just building and inserting the store Þles,
or close to 25 minutes, almost as long the fastest pre-split
experimentÕs insertion and post-insertion compactions took
(in Section 3.3).

When this test is run on the Accumulo table store, split-
ting and compacting is more aggressive and consistent. The
interference to read response time is larger in the Þrst mea-
surement phase, but by 3 minutes into the second measure-
ment phase, the splitting and compaction is done, allowing
the entire load to be complete in less than one-third of the
time of HBase run experiencing splits. This experiment em-

phasizes the importance of the policies managing splits and
compactions to performance.

3.5 Server-side Þltering
By default, read or scan operations in YCSB return all the

columns associated with the respective row(s). For a large
table with thousands of columns, clients may get much more
data (than what they are interested in) resulting in high data
processing and network transfer overheads. Filtering at the
tablet servers helps minimize this overhead by not returning
irrelevant data to the client.

To understand the e!ectiveness of server-side Þltering, we
use aYCSB++ test to create a data-set that has 100 times
more data per row than the data-set used in prior tests: each
row has 10 times as many cells (total of 100 cells) and each
cell is 10 times larger in size (total of 1 KB). Moreover, each
column has a dedicated locality group. This testÕs workload
issues scan requests for one cell from each of 1, 10, 100,
or 1000 rows at a randomly selected row key (this is the
third type of Þlter described in Section 2.3.5 that returns
the rowÕs key and the{ column name, cell value} tuple).
We refer to these values as the Òscan lengthÓ and report
the client-perceived scan throughput in terms of number of
rows received by the client every second. All results in this
section are computed as an average of three runs and have
very small variance.

Figure 12 shows that server-side Þltering in Accumulo
drastically improves client throughput only for a scan length
of 1,000 rows. In fact, for all smaller scan-lengths, Þltering
performs much worse than without server-side Þltering Ð a
phenomenon that arises from AccumuloÕs scan implemen-
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Figure 12: Performance of server-side Þltering in Accu-
mulo for varying scan lengths in terms of rows.
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Figure 13: Performance of server-side Þltering in HBase
for varying scan lengths.

tation. Accumulo uses ascanner object to return results
of a scan operation. A scanner object, by default, can hold
1,000 rows. An Accumulo tablet server returns a scan-
ner object to the client only when the object is Þlled (1,000
rows). Consequently, even if a scan request wants only a
single row, which is the case for scan length 1 in Figure 12,
the tablet servers will continue to scan table data until the
scanner object is Þlled. As a result, server-side Þltering ex-
acerbates load on the servers, especially for scan lengths of 1
and 10 rows, because the server has to read and Þlter more
rows to Þll the single scanner object that was requested.

Instead of using scanner objects with the default size,
we modiÞed AccumuloÕs DB client API in YCSB++ to
allow our test to size scanner objects to the expected scan
length. This modiÞcation, titled in Figure 12 as ÒÞltered
(bu!er scaled)Ó, decreases the unneeded scanning load on the
servers and results in a signiÞcant improvement for smaller
scan lengths of 1 and 10 rows.

We repeat this experiment to study server-side Þltering
in HBase. Figure 13 shows that HBase, similar to Accu-
mulo, does not beneÞt from server-side Þltering when scan
lengths are smaller than 100 rows, but Þltering improves the
throughput by 10 times for scan length of 1,000 rows. We
also observe that HBase does not require batch size manip-
ulation because it performs less aggressive prefetching than
Accumulo.

3.6 Benchmarking access control
Because onlyAccumulo supports Þne grained access con-

Attributes of each cell Attribute size
Row Key 12 bytes
Column family 3 bytes
Column 6 bytes
ACL 100 bytes
Value 2 bytes
Timestamp 8 bytes

Table 4: Sizes of attributes associated with each cell used
for ACL benchmarking.

trol, we could not perform a comparison with HBase. 3 How-
ever, YCSB++ enables testing of the costs associated with
Þne-grained access control inAccumulo.

Although Þne-grained mechanisms like cell-level access con-
trol provide great ßexibility for data security, they come at
the cost of additional performance overhead: the Þrst over-
head stems from higher disk and network tra"c for each
access and the second overhead stems from computationally
verifying credentials on each access. Both of these overheads
are dependent on the size of the ACLs in terms of number
of users and groups.

Although Accumulo contains optimizations for ACLs that
are frequently reused, we setup experiments to benchmark
the worst-case performance by using a unique ACL for each
key and by making the size of the ACL three times larger
than the rest of the cell itself, as shown in Table 4. For this
experiment, we use two benchmarks Ð an insert workload
that writes 48 million single-cell rows in an empty table and
a scan workload that scans 320 million rows. Two di!er-
ent client conÞgurations Ð one with a single client with 100
threads and other with six clients with 16 threads each Ð
generate load on a 6-nodeAccumulo cluster. We report
an average of three runs (and standard deviation) for each
conÞguration.

Figure 14 shows the insert throughput, measured as the
number of rows inserted per second, for di!erent numbers
of entries in each ACL (while the total size of the ACLs is
constant). A value of zero entries means that no security
was used. When the workload uses a single client with 100
threads, we observe that the throughput decreases with in-
creasing number of entries in each ACL: in comparison to
not using any access control, throughput drops by 24% with
4 entries in the ACL and by as much as 47% with an 11-entry
ACL. This happens because the singleYCSB++ client is
running at almost 100% CPU utilization (as shown in Fig-
ure 15) and increasing the number of entries in each ACL
leads to increased computation overhead. However, using
six YCSB++ clients with 16 threads each, reduces the in-
sert throughput only by about 10%, even when there are 11
entries in the ACL.

Figure 16 shows the scan throughput, measured as the
number of rows scanned per second, for varying number of
entries in each ACL. Unlike the insert throughput, we ob-
serve that the scan throughput is not a!ected by using dif-
ferent client conÞgurations. However, in both cases, the scan
throughput drops by about 45% once Þne-grained ACLs are
invoked and remains same for di!erent number of entries in
an ACL. In Figure 17, Otus performance monitoring shows
that this degradation results from a four-fold increase in the
amount on data sent from the Accumulo tablet servers to

3HBase plans to add security in future releases [30]
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Figure 14: Insert throughput decreases with increasing
number of ACL clauses when the CPU is a limiting resource.
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Figure 15: Single YCSB++ client inserting records is
CPU limited resulting in lower throughput as the numbers
of entries in each access control list increases.

the clients, even though the clients do not always have use
for the ACLs after they are allowed data access.4 In these
experiments, we see that extremely complex Þne-grained ac-
cess controls can impact performance signiÞcantly butÒonlyÓ
by a factor of two.

4. RELATED WORK
To the best of our knowledge, this is the Þrst work to

propose systematic benchmarking techniques for advanced
functionality in table stores. All advanced features of ta-
ble stores discussed in this paper are inspired by decades of
research and implementation in traditional databases. We
focus this section on work in scalable and distributed table
stores.

Weak consistency: Various studies have measured the per-
formance impact of weaker consistency semantics used by
di!erent table stores and service providers [34, 51]. Using
a Þrst read-after-write measurement similar to YCSB++,
one study has found that 40% of reads return inconsistent
results when issued right after a write [34]. Other studies
found that Amazon SimpleDBÕs eventually consistent model
may cause users to experience stale reads and inter-item in-
consistencies [36, 51]. Unlike our approach which measures
the time to the Þrst successful read, the SimpleDB study
also checked if subsequent reads returned stale values [51].
In contrast to SimpleDBÕs eventual consistency which stems

4Some users ofAccumulo use ACLs to convey interesting
information to the reader.
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Figure 17: SigniÞcantly more bytes are sent from Accu-
mulo servers to YCSB++ clients while scanning records
with access control lists.

from divergent replicas, both HBase and Accumulo expe-
rience weak consistency only when batch writing is enabled
at the clients. Orthogonal approaches to understand weak
consistency include theoretical models [31] and algorithmic
properties [4, 19].

Ingest-intensive optimizations: The use of an external
Hadoop job to format and store massive data-sets in a native
tabular form understood by the table store servers has been
exploited for HBase [5, 28]. An alternate approach adopted
by the PNUTS system is to use an optimization-based plan-
ning phase before inserting the data [47]. This phase allows
the system to gather statistics about the data-set that may
lead to e"cient splitting and balancing. Such an approach
could be used to complement the Hadoop-based bulk load
tool used in YCSB++.

Server-side filtering: Function shipping in databases has
long been used in parallel database [18] and this idea has ap-
peared in active disks (in a single-node setting) [42], MapRe-
duce (in cloud computing) [16] and key-value stores (in wide-
area networks) [21]. Because the Hadoop/MapReduce frame-
work is built on the premise of collocating compute and
data, both HBase and BigTable have proposed the use of co-
processors to allow application level code to run on the tablet
servers [8, 15, 32, 40]. TheYCSB++ approach to testing
server-side Þltering focuses on regular expression based Þl-
ters rather than the general abstractions proposed by HBase
[32, 40].



Voldemort Key-Value Store [3] Apache Cassandra [1] MongoDB [2]

Weak con-
sistency

Eventual consistency semantics re-
sulting from divergent replicas

Eventual consistency semantics
resulting from divergent replicas

Default mode: strong data con-
sistency (can support weak con-
sistency for high performance)

Bulk load-
ing

No support for bulk loading Provides an interface for bypass-
ing the RPC marshalling pro-
cess and directly bulk loading into
CassandraÕs memtable format [9]

Custom bulk-load commands to
import data from di!erent Þle
formats; no API support to di-
rectly create MongoDB data Þles

Table pre-
splitting

Uses consistent hashing-based data
partitioning that randomly pre-
splits hash ranges across all server
nodes (in ana priori manner); users
cannot control this partitioning

Allows an pre-splitting ranges us-
ing di!erent partitioner modes
(using both the key and the hash
of the key); but to avoid hot-spots,
the node tokens may need to be
constantly adjusted

Allows pre-splitting based on a
continuous key-range, followed
by load-balancing the pre-split
ranges

Server-
side filter-
ing

Simple key-value data model with
no Þltering support

Filtering based on column names
and key values; no support for
user-deÞned matching for value-
based Þltering

Enables SQL-style ÒwhereÓ
clause Þltering on the servers

Fine-
grained
ACLs

No access control support Extensible authorization to con-
trol read/writes to a column fam-
ily (no cell-level ACLs [10])

No access control support (only
simple user authentication for
the DB)

Table 5: Applicability of YCSB++ extensions for other scalable stores supported by the original YCSB distribution [14].

5. CONCLUSION AND FUTURE WORK
Scalable table stores started with simple data models,

lightweight semantics and limited functionality. Today, they
feature a variety of performance optimizations, such as batch
write-behind, tablet pre-split, bulk loading, and server-side
Þltering, as well as enhanced functionality, such as per-cell
access control. Coupled with complex deferring and asyn-
chronous online re-balancing policies, these optimizations
have performance implications that are neither assured nor
simple to understand, and yet are important to the goals of
high ingest rate, secure scalable table stores.

Benchmarking tools like YCSB [14] help with basic, single-
phase workload testing of the core create-read-update-delete
interfaces, but lack support for benchmarking and perfor-
mance debugging advanced features. In this work, we ex-
tended YCSBÕs modular framework to integrate support for
advanced feature testing. Our tool, called YCSB++, is a
distributed multi-phase YCSB with an extended abstract ta-
ble API for pre-splitting, bulk loading, server side Þltering,
and applying cell-level access control lists.

For more e!ective performance debugging, YCSB++ ex-
poses its internal statistics to an external monitor, like Otus,
where they are correlated with statistics from the table store
under test and system services like Þle systems and MapRe-
duce job control. Collectively comparing metrics of inter-
nal behaviors of the table store (such as compactions), the
benchmark phases, and the network and CPU usage of each
service, yields a powerful tool for understanding and improv-
ing scalable table store systems.

Although we evaluated YCSB++ with only two table
stores, HBase andAccumulo, which have multi-dimensional
distributed sorted map structures, we believe that YCSB++

can be used to test other table stores as well. Table 5 shows
the applicability of di!erent YCSB++ extensions to three
other table stores, Voldemort, Cassandra and MongoDB,
that were originally supported by YCSB.

Testing weak consistency is one feature that is impor-
tant for all three table stores. Although weak consistency
in HBase and Accumulo stems from client-side bu!ering,
we were able to adapt YCSB++ to measure the read-after-
write time lag for Voldemort and Cassandra where eventual,
weak consistency can result from divergent replicas. Some
features like table pre-splitting and Þne-grained access con-
trol are not common; for example, pre-splitting is relevant
only if the underlying distributed index supports incremen-
tal growth.

YCSB++ is publicly available under the Apache License
at http://www.pdl.cmu.edu/ycsb++/ for researchers and de-
velopers to use it to benchmark their table store deployments
and extend it to facilitate testing of other advanced features.
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