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ABSTRACT
This paper presents ScaleBricks, a new design for building
scalable, clustered network appliances that must “pin” flow
state to a specific handling node without being able to choose
which node that should be. ScaleBricks applies a new, com-
pact lookup structure to route packets directly to the appro-
priate handling node, without incurring the cost of multiple
hops across the internal interconnect. Its lookup structure
is many times smaller than the alternative approach of fully
replicating a forwarding table onto all nodes. As a result,
ScaleBricks is able to improve throughput and latency while
simultaneously increasing the total number of flows that can
be handled by such a cluster. This architecture is effective in
practice: Used to optimize packet forwarding in an existing
commercial LTE-to-Internet gateway, it increases the through-
put of a four-node cluster by 23%, reduces latency by up to
10%, saves memory, and stores up to 5.7x more entries in the
forwarding table.

CCS Concepts
•Networks→Middle boxes / network appliances;

Keywords
network function virtualization; scalability; hashing algo-
rithms

1. INTRODUCTION

Many clustered network appliances require deterministic par-
titioning of a flat key space among a cluster of machines.
When a packet enters the cluster, the ingress node will direct
the packet to its handling node. The handling node maintains
state that is used to process the packet, such as the packet’s
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destination address or the flow to which it belongs. Examples
include carrier-grade NATs, per-flow switching in software-
defined networks (SDNs), and, as we will discuss in the next
section, the cellular network-to-Internet gateway [1] in the
core network of Long-Term Evolution (LTE).

In this paper, we explore a less-examined aspect of scala-
bility for such clustered network appliances: can we create a
design in which the forwarding table (“FIB” or Forwarding
Information Base) that maps flat keys to their corresponding
handling nodes “scales out” alongside throughput and port
count as one adds more nodes to the cluster? And, critically,
can we do so without increasing the amount of traffic that
crosses the internal switching fabric? We ask this question
because in a typical design, such as RouteBricks [13], adding
another node to a cluster does not increase the total number
of keys that the cluster can support; it increases only the total
throughput and number of ports. In this paper, we explore a
design that allows the FIB to continue to scale through 8, 16,
or even 32 nodes, increasing the FIB capacity by up to 5.7x.

We focus on three properties of cluster scaling in this work:
Throughput Scaling. The aggregate throughput of the

cluster scales with the number of cluster servers;
FIB Scaling. The total size of the forwarding table (the

number of supported keys) scales with the number of servers;
and

Update Scaling. The maximum update rate of the FIB
scales with the number of servers.

In all cases, we do not want to scale at the expense of
incurring high latency or higher switching fabric cost. As we
discuss further in Section 3, existing designs do not satisfy
these goals. For example, the typical approach of duplicating
the FIB on all nodes fails to achieve FIB scaling; a distributed
hash design such as used in SEATTLE [22] requires multiple
hops across the fabric.

The contribution of this paper is two-fold. First, we present
the design, implementation, and theoretical underpinning of
an architecture called ScaleBricks that achieves these goals
(Section 3). The core of ScaleBricks is a new data structure
SetSep that represents the mapping from keys to nodes in
an extremely compact manner (Section 4). As a result, each
ingress node is able to forward packets directly to the appro-
priate handling node without needing a full copy of the FIB
at all nodes. This small global information table requires only
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O(logN) bits per key, where N is the number of nodes in the
cluster, enabling positive—though sublinear—FIB scaling for
realistically-sized clusters. We believe this data structure will
prove useful for other applications outside ScaleBricks.

Second, we use ScaleBricks to improve the performance of
a commercial cellular LTE-to-Internet gateway, described in
more detail in the following section. Our prototype shows that
a 4-node ScaleBricks cluster can nearly quadruple the number
of keys managed compared with single node solutions, while
simultaneously improving packet forwarding throughput by
approximately 23% and cutting latency up to 10% (Section 6).

2. DRIVING APPLICATION: CELLULAR
NETWORK-TO-INTERNET GATEWAY

To motivate ScaleBricks, we begin by introducing a concrete
application that can benefit from ScaleBricks: the Internet
gateway used in LTE cellular networks. The central process-
ing component in LTE is termed the “Evolved Packet Core,”
or EPC [1]; Figure 1a shows a simplified view of the EPC
architecture. The following is a high-level description of how
it services mobile devices (“mobiles” from here on); more
details are described in the Internet draft on Service Function
Chaining Use Cases in Mobile Networks [18].

• When an application running on the mobile initiates a
connection, the controller assigns the new connection a
tunnel, called the GTP-U tunnel, and a unique Tunnel
End Point Identifier (TEID).1

• Upstream traffic (from the mobile to the Internet), sends
packets through several middleboxes to the LTE-to-
Internet gateway (the red box in the figures). After
performing administrative functions such as charging
and access control, the gateway decapsulates packets
from the GTP-U tunnel, updates the state associated
with the flow, and sends them to ISP peering routers,
which connect to the Internet.

• Downstream traffic follows a reverse path across the
elements. The LTE-to-Internet gateway processes and
re-encapsulates packets into the tunnels based on the
flow’s TEID. The packets reach the correct base station,
which transmits them to the mobile.

In this paper, we focus our improvements on a
commercially-available software EPC stack from Con-
nectem [10]. This system runs on commodity hardware and
aims to provide a cost-advantaged replacement for proprietary
hardware implementations of the EPC. It provides throughput
scalability by clustering multiple nodes: Figure 1b shows a
4-node EPC cluster. When a new connection is established,
the controller assigns a TEID to the flow and assigns that
flow to one node in the cluster (its handling node). This as-
signment is based on several LTE-specific constraints, such

1For clarity, we have used common terms for the components of the
network. Readers familiar with LTE terminology will recognize that our
“mobile device” is a “UE”; the base station is an “eNodeB”; and the tunnel
from the UE to the eNodeB is a “GTP-U” tunnel.

as geometric proximity (mobile devices from the same re-
gion are assigned to the same node), which prevents us from
modifying it (e.g., forcing hash-based assignment), thereby
requiring deterministic partitioning. It then inserts a mapping
from the 5-tuple flow identifier to the (handling node, TEID)
pair into the cluster forwarding table. Upstream packets from
this flow are directed to the handling node by the aggregation
router. Downstream packets, however, could be received by
any node in the cluster because of limitations in the hard-
ware routers that are outside of our control. For example,
the deployment of an equal-cost multi-path routing (ECMP)
strategy may cause the scenario described above because all
nodes in the cluster will have the same distance to the des-
tination. Because the cluster maintains the state associated
with each flow at its handling node, when the ingress node
receives a downstream packet, it must look up the handling
node and TEID in its forwarding table and forward the packet
appropriately. The handling node then processes the packet
and sends it back over the tunnel to the mobile.

Our goal in this paper is to demonstrate the effectiveness
of ScaleBricks by using it to improve the performance and
scalability of this software-based EPC stack. We chose this
application both because it is commercially important (hard-
ware EPC implementations can cost hundreds of thousands to
millions of dollars), is widely used, and represents an excel-
lent target for scaling using ScaleBricks because of its need
to pin flows to a specific handling node combined with the
requirement of maintaining as little states at each node as
possible (which makes keeping a full per-flow forwarding
table at each node a less viable option). ScaleBricks achieves
these goals without increasing the inter-cluster latency. Com-
pared with alternative designs, this latency reduction could
be important in several scenarios, including communication
between mobile devices and content delivery networks, as
well as other services deployed at edge servers. In this work,
we change only the “Packet Forwarding Engine” of the EPC;
this is the component that is responsible for directing packets
to their appropriate handling node. We leave unchanged the
“Data Plane Engine” that performs the core EPC functions.

3. DESIGN OVERVIEW

In this section, we explain the design choices for ScaleBricks
and compare those choices to representative alternative de-
signs to illustrate why we made those choices. We use the
following terms to describe the cluster architecture:

• Ingress Node: the node where a packet enters the cluster.
• Handling Node: the node where a packet is processed

within the cluster.
• Indirect Node: an intermediate node touched by a packet,

not including its ingress and handling node.
• Lookup Node: If node X stores the forwarding entry

associated with a packet P, X is P’s lookup node. A
packet may have no lookup nodes if the packet has an
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Figure 2: Packet forwarding in different FIB architectures

unknown key, or more than one lookup node if the FIB
entry has been replicated to more than one node.

3.1 Cluster Architecture
Two topologies are classically used for building cluster-based
network functions. The first connects cluster servers directly
to each other, as exemplified by RouteBricks [13]. In such
systems, the servers are connected in a full mesh or a butterfly-
like topology, as shown in Figure 2a. On top of this topology,
load-balancing routing algorithms—e.g., Valiant Load Bal-
ancing (VLB) [32]—guarantee 100% throughput and fairness
without centralized scheduling.

This solution has the advantage that the total bandwidth of
internal links used to construct the full mesh or the butterfly
needs to be only 2× the total external bandwidth; further-
more, these links are fully utilized. The disadvantage of VLB,
however, is that the ingress node must forward each incoming
packet to an intermediate indirect node before it reaches the
handling node. This extra step ensures efficient use of the
aggregate internal bandwidth. Unfortunately, in most cases,

each packet must be processed by three nodes (two hops).
This increases packet processing latency, server load, and
required internal link capacity.

The second class of topologies uses a hardware switch to
connect the cluster nodes (Figures 2b–2d). This topology
offers two attractive properties. First, it allows full utilization
of internal links without increasing the total internal traffic.
To support R Gbps of external bandwidth, a node needs only
R Gbps of aggregate internal bandwidth, instead of the 2R
required by VLB. Second, without an indirect node, packet
latency depends on the hardware switch’s latency instead of
the indirect node. Compared to VLB, a switch-based topology
could reduce latency by 33%.

Interestingly, RouteBricks intentionally rejected this design
option. The authors argued that the cost of four 10 Gbps
switch ports was equal to the cost of one server, and hence
a switched cluster was more expensive than a server-based
cluster. Today, however, the economics of this argument
have changed. New vendors such as Mellanox offer much
cheaper hardware switches. For example, a Mellanox 36 port
40 GbE switch costs roughly $13,000, or ∼$9 / Gbps. This
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is 80% lower than the number reported in the RouteBricks
paper. More importantly, hardware switches are particularly
suitable for building interconnections for the cluster nodes.
Their strengths—high bandwidth, low latency, simple and
clear topology—are well-suited to our requirements; and their
weakness—limited FIB size—is essentially irrelevant with
our approach.

ScaleBricks thus connects servers using a switch. This
topology reduces the internal bandwidth requirement and pro-
vides the opportunity to reduce the packet processing latency.
However, this choice also makes the design of a scalable
forwarding architecture challenging, as explained next.

3.2 FIB Architecture
Given a switch-based cluster topology, the next question is
what forwarding architecture to use. In the simplest design,
each node in the cluster stores a full copy of the entire for-
warding table (Figure 2b). When a packet arrives at its ingress
node, the ingress node performs a FIB lookup to identify the
handling node, and then forwards the packet directly to that
node. (The ingress node thus also serves as the lookup node.)

This simple architecture requires only one hop, unlike VLB.
Unfortunately, the memory required by the globally replicated
FIB increases linearly with the number of nodes in the cluster.
Furthermore, every update must be applied to all nodes in
the cluster, limiting the aggregate FIB update rate to that of a
single server.

An alternative is a hash-partitioned design (Figure 2c). For
an N-node cluster, each node stores only 1/N FIB entries
based on the hash of the keys. The ingress node must forward
arriving packets to the indirect node that has the relevant
portion of the FIB; the indirect node then forwards the packet
to the handling node by looking up in its slice of the FIB.
This approach is nearly perfectly scalable, but reintroduces
the two-hop latency and bandwidth costs of VLB.

In this paper, we present a design that forwards directly
from ingress to handling nodes, but uses substantially less
memory than a typical fully-replicated FIB (Figure 2d). At a
high level, ScaleBricks distributes the entire routing informa-
tion (mapping from flat keys to their corresponding nodes and
other associated values), or “RIB” for short, across the cluster
using a hash-partitioned design. From the RIB, it generates
two structures. First, an extremely compact global lookup
table called the “GPT” or Global Partition Table, that is used
to direct packets to the handling node. The GPT is much
smaller than a conventional, fully-replicated FIB. Second, the
RIB is used to generate FIB entries that are stored only at the
relevant handling nodes, not globally. In the LTE-to-Internet
gateway example, GPT stores the mapping from flow ID to
handling node, while FIB stores the mapping from flow ID to
TEID.

The GPT relies upon two important attributes of switch-
based “middlebox” clusters: First, the total number of nodes
is typically modest—likely under 16 or 32. Second, they
can handle one-sided errors in packet forwarding. Packets

that match a FIB entry must be forwarded to the correct
handling node, but it is acceptable to forward packets with
no corresponding entry to a “wrong” (or random) handling
node, and have the packet be discarded there. This property
is true in the switch-based design: The internal bandwidth
must be sufficient to handle traffic in which all packets are
valid, and so invalid packets can be safely forwarded across
the interconnect.

The Full FIB entries that map keys to handling nodes (along
with, potentially, some additional information) are partitioned
so that each handling node stores the FIB entries that point to
it. If the handling node receives, via its internal links, a packet
with a key that does not exist in its FIB, the input processing
code will report that the key is missing (which can be handled
in an application-specific way). The handling node FIB is
based upon prior work in space-efficient, high-performance
hash tables for read-intensive workloads [34]. We omit in-
depth discussion here because we used the prior design nearly
unchanged, only extending it to handle configurable-sized
values with minimal performance impact.

The Global Partition Table is replicated to every ingress
node. This table maps keys to a lookup/handling node. Be-
cause the GPT is fully replicated, it must be compact to ensure
scalability; otherwise, it would be no better than replicating
the FIB to all nodes. For efficiency, the GPT is based upon a
new data structure with one-sided error. Observing that the
range of possible values (i.e., the number of nodes) in the
GPT is small, using a general-purpose lookup table mapping
arbitrary keys to arbitrary values is unnecessary. Instead, the
GPT’s mapping can be more efficiently viewed as set sepa-
ration: dividing a set of keys into a small number of disjoint
subsets. In this paper, we extend prior work by Fan et al. [15]
to create a fully-functional set separation data structure called
SetSep, and use it at the core of the GPT. SetSep maps each
key to a small set of output values—the lookup/handling node
identifiers—without explicitly storing the keys at all. The
tradeoff is that unknown destinations map to incorrect values;
in other words, the SetSep cannot return a “not found” answer.
This behavior does not harm the correctness of ScaleBricks,
because the lookup node will eventually reject the unknown
key. The advantage, though, is that lookup is very fast and
each entry in the SetSep requires only 2–4 bits per entry for
4-16 servers. Section 4 describes the SetSep data structure in
detail.

RIB Updates are sent to the appropriate RIB partition node
based upon the hash of the key involved. This node generates
new or updated FIB and GPT entries. It then sends the up-
dated FIB entry to the appropriate handling node, and sends
a delta-update for the GPT to all nodes in the cluster. Be-
cause the SetSep data structure used for the GPT groups keys
into independently-updatable sub-blocks, the RIB partition-
ing function depends on how those sub-blocks are partitioned.
Section 4.5 provides further details about RIB partitioning.
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4. SET SEPARATION

The GPT is stored on every node and is consulted once for
each packet that enters the cluster. It must therefore be both
space efficient and extremely fast. To achieve these goals,
and allow ScaleBricks to scale well as a result, we extended
and optimized our previous work on set separation data struc-
tures [15] to provide memory-speed lookups on billions of
entries, while requiring only a few bits per entry. As discussed
in the previous section, the design of SetSep leverages three
properties of ScaleBricks:

• The GPT returns integer values between 0 and N− 1,
where N is the number of servers in the cluster.

• The GPT may return an arbitrary answer when queried
for the handling node of a packet with an unknown desti-
nation key (e.g., an invalid packet). Such packets will be
subsequently dropped or dealt with when the handling
node performs a full FIB lookup.

• GPT lookups are frequent, but updates much less so.
Therefore, a structure with fast lookup but relatively
expensive updates is a reasonable tradeoff.

At a high level, the basic idea in SetSep is to use brute
force computation to find a function that maps each input key
to the correct output (the “set”, here the cluster node index).
Rather than explicitly storing all keys and their associated
values, SetSep stores only indices into families of hash func-
tions that map keys to values, and thereby consumes much
less space than conventional lookup tables. Finding a hash
function that maps each of a large number of input keys to the
correct output value is effectively impossible, so we break the
problem down into smaller pieces. First, we build a high-level
index structure to divide the entire input set into many small
groups. Each group consists of approximately sixteen keys in
our implementation. Then, for each small group, we perform
a brute force search to find a hash function that produces the
correct outputs for each key in the group. The rest of this
section carefully presents these two pieces, in reverse order.

4.1 Binary Separation of Small Sets
We start by focusing on a simple set separation problem:
divide a set of n keys into two disjoint subsets when n is small.
We show how to extend this binary separation scheme to
handle more subsets in Section 4.3.

Searching for SetSep To separate a set of n key-value pairs
(x j,y j), where x j is the key and y j is either “0” or “1”, we
find a hash function f that satisfies f (x j) = y j for j ∈ [0,n).
Such a hash function is discovered by iterating over a hash
function family {Hi(x)} parameterized by i, so Hi(x) is the
i-th hash function in this family. Starting from i = 1, for each
key-value pair (x j,y j), we verify if Hi(x j) = y j is achieved.
If any key x j fails, the current hash function Hi is rejected,
and the next hash function Hi+1 is tested on all n keys again
(including these keys that passed Hi). In other words, we
use brute force to find a suitable hash function. As shown

later, this search can complete very rapidly for small n and an
appropriate hash function family.

Once a hash function Hi that works for all n keys is found,
its index parameter i is stored. We choose some maximum
stopping value I, so that if no hash function succeeds for i≤ I,
a fallback mechanism is triggered to handle this set (e.g., store
the keys explicitly in a separate, small hash table).

Storing SetSep For each group, the index i of the successful
hash function is stored using a suitable variable-length encod-
ing. As shown in the next paragraph, ideally, the expected
space required from this approach is near optimal (1 bit per
key). In practice, however, storing a variable length integer
adds some overhead, as do various algorithmic optimizations
we use to speed construction. Our implementation therefore
consumes about 1.5 bits per key.

Why SetSep Saves Space Let us optimistically assume our
hash functions produce fully random hash values. The prob-
ability a hash function Hi maps one key to the correct bi-
nary value is 1/2, and the probability all n keys are properly
mapped is p = (1/2)n. Thus, the number of tested functions
(i.e., the index i stored) is a random variable with a Geometric
distribution, with entropy

−(1− p) log2(1− p)− p log2 p
p

≈− log2 p = n (1)

Eq. (1) indicates that storing a function for binary set sepa-
ration of n keys requires n bits on average (or 1 bit per key),
which is independent of the key size.

Insights: The space required to store SetSep approximately
equals the total number of bits used by the values; the keys
do not consume space. This is the source of both SetSep’s
strength (extreme memory efficiency) and its weakness (re-
turning arbitrary results for keys that are not in the set).

Practically Generating the Hash Functions A simple but
inefficient approach that creates the hash function family
{Hi(x)} is to concatenate the bits of i and x as the input to a
strong hash function. This approach provides independence
across Hi, but requires computing an expensive new hash
value for each i during the iteration.

Instead of this expensive approach, we draw inspiration
from theoretical results that two hash functions can suffi-
ciently simulate additional hash functions [23]. Therefore,
we first compute two approximately independent hash func-
tions of the key, G1 and G2, using standard hashing methods.
We then compute the remaining hash functions as linear com-
binations of these two. Thus, our parameterized hash function
family to produce random bits is constructed by

Hi(x) = G1(x)+ i ·G2(x)

where G1(x) and G2(x) are both unsigned integers. In prac-
tice, only the most significant bit(s) from the summation
result are used in the output, because our approach of gener-
ating parameterized hash function family will have shorter
period if the least significant bits are used instead of the most
significant bits.
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Both hash computation and searching are fast using this
mechanism: Hi can be computed directly using one multipli-
cation and one addition. Furthermore, the hash family can be
iterated using only one addition to get the value of Hi+1(x)
from the previous result of Hi(x).

The hash functions described above are theoretically weak:
they lack sufficient independence, and as such are more likely
than “random” hash functions to fail to find a suitable map-
ping. Empirically, however, we observe that this approach
fails only once every few billion keys. The fallback mecha-
nism of looking the keys up in a separate, small table handles
such failures.

4.2 Trading Space for Faster Construction

One problem with this basic design is the exponential growth
of the number of iterations to find a hash function mapping n
input items to their correct binary values. We must test and re-
ject 2n hash functions on average. By trading a small amount
of extra space (roughly 5% compared to the achievable lower
bound), SetSep optimizes the construction to be an order of
magnitude faster.

Instead of generating the possible output value for x using
the hash function Hi(x) directly, SetSep adds an array of m
bits (m≥ 2) and makes Hi(x) map each input x to one of the
m bits in the array. In other words, the output value for x
is the bit stored in bitarray[Hi(x)] rather than Hi(x). To
construct the bit array, at the beginning of the iteration testing
hash function Hi(x), all bits in the array are marked “not
taken.” For each key-value pair (x j,y j), if Hi(x j) points to
a bit that is still “not taken,” we set the bit to y j and mark it
as “taken.” If the bit is marked as “taken,” we check if the
value of the bit in the array matches y j. If so, the current
hash function is still good and can proceed to the next key.
Otherwise, we reject the current hash function, switch to the
next hash function Hi+1, re-initialize the bit array, and start
testing from the first key. Intuitively, with more “buckets” for
the keys to fall in, there are fewer collisions, increasing the
odds of success. Thus, adding this bit array greatly improves
the chance of finding a working hash function.

Space vs. Speed Storing the bit array adds m bits of storage
overhead, but it speeds up the search to find a suitable hash
function and correspondingly reduces the number of bits
needed to store i—since each hash function has a greater
probability of success, i will be smaller on average. Figure 3a
shows the tradeoff between the space and construction speed
for a SetSep of n= 16 keys while varying the bit array size (m)
from 2 to 30. Increasing the size of the bit array dramatically
reduces the number of iterations needed. It requires more than
10,000 hash functions on average when m = 2; this improves
by 10× when m = 6, and when m≥ 12, it needs (on average)
fewer than 100 trials, i.e., it is 100× faster.

Figure 3b presents analytical results for the total space (i.e.,
bits required to store the index i plus the m bits of the array)
for this SetSep. The total space cost is almost an increasing

function of m. The minimum space is 16 bits, but even when
m = 12, the total space cost is only about 20 bits. (This is less
than 16+12 = 28 bits, because of the reduction in the space
required to store i.)

Insights: Trading a little space efficiency (e.g., spending
20 bits for every 16 keys rather than 16 bits) improves con-
struction speed by 100×.

Representing the SetSep. In light of the above result, we
choose to represent the SetSep using a fixed 24-bit represen-
tation per group in our implementation, with up to 16 bits to
represent the hash index and m = 8. This yields 1.5 bits per
key on average. (We show the effect of the choice m later in
the paper.) Although we could use less space, this choice
provides fast construction while ensuring that fewer than 1
in 1 million groups must be stored in the external table, and
provides for fast, well-aligned access to the data.

4.3 Representing Non-Boolean Values

We have described the construction for two disjoint subsets
(two possible values). For V > 2 different subsets, a trivial
extension is to look for one hash function that outputs the
right value in {1, . . . ,V} for each key. However, this approach
is not practical because it must try O(V n) hash functions on
average. Even when n = 16 and V = 4, in the worst case, it
could be 65536 times slower than V = 2.

We instead search for log2 V hash functions, where the j-th
hash function is responsible for generating the j-th bit of the
final mapping value. As an example, assume we want to
construct a mapping to a value in {0,1,2,3} from a given set
of size 2. If the final mapping is (“foo”, 012) and (“bar”, 102),
we look for two hash functions so that the first hash function
maps “foo” to 0 and “bar” to 1, and the second hash function
hashes “foo” to 1 and “bar” to 0. The expected total number
of iterations to construct a final mapping is then log2 V ·2n,
which scales linearly with the number of bits to represent a
value. Figure 4 compares the number of iterations needed
to build a separation of 4 subsets by searching for one hash
function mapping to {0,1,2,3} or two hash functions mapping
to {0,1} respectively. Splitting the value bits is orders of
magnitude faster.

4.4 Scaling to Billions of Items

The basic idea of efficiently scaling SetSep to store mappings
for millions or billions of keys, as noted above, is to first
partition the entire set into many small groups, here of roughly
16 keys each. Then, for each group of keys, we find and store
a hash function that generates the correct values using the
techniques described above. Therefore, two properties are
critical for the scheme that maps a key to a group:

• The mapping must ensure low variance in group size.
Although a small load imbalance is acceptable, even
slightly larger groups require much longer to find a suit-
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able hash function using brute-force search because the
time grows exponentially in the group size.

• The mapping should add little space. The per-group
SetSep itself is only a few bits per key, and the partition-
ing scheme should preserve the overall space efficiency.

Conventional Solutions That Do Not Work Well To cal-
culate the group ID of a given key, one obvious way is to
compute a hash of this key modulo the total number of
groups. This approach is simple to implement, and does
not require storing any additional information; unfortunately,
some groups will be significantly more loaded than the aver-
age group even with a strong hash function [29]. Our exper-
iments show that when 16 million keys are partitioned into
1 million groups using even a cryptographic hash function,
the most loaded group typically contains more than 40 keys
vs. the average group size of 16 keys; this matches the corre-
sponding theory. Finding hash functions via brute force for
such large groups is impractical.

An alternative solution is to sort all keys and assign every
n consecutive keys to one group. This approach ensures that
every group has exactly sixteen keys. Unfortunately, it has
several serious limitations: (1) it requires storing the full keys,
or at least key fragments on the boundary of each group, as
an index; (2) it requires a binary search on lookup to locate a
given key’s group; and (3) update is expensive.

Our Solution: Two-Level Hashing. SetSep uses a novel
two-level hashing scheme that nearly uniformly distributes
billions of keys across groups, at a constant storage cost of
0.5 bits per key. The first level maps keys to buckets with
a small average size—smaller than our target group size of

sixteen—using simple direct hashing. These buckets will
have the aforementioned huge load variance. To address this
problem, at the second level, we assign buckets to groups
with the aim of minimizing the maximum load on any group.
The storage cost of this scheme, therefore, is the bits required
to store the group choice for each bucket.

Figure 5 shows this process. Each first-level bucket has an
average size of 4 keys but the variance is high: some buckets
could be empty, while some may contain ten or more keys.
However, across a longer range of small buckets, the average
number of stored keys has less variance. For 256 buckets,
there are 1024 keys on average. We therefore take consecutive
blocks of 256 buckets and call them a 1024-key-block. We
then map these blocks to 64 groups of average size 16.

Within the block of 256 buckets, each bucket is mapped
to one of four different “candidate” groups. We pre-assigned
candidate groups for each bucket in a way that each group
has the same number of associated buckets. These choices
are denoted by the arrow from bucket to groups in Figure 5.
All keys in the small bucket will map to one of these four
candidate groups. Therefore, the only information that SetSep
needs to store is the bucket-to-group mapping (a number in
{0,1,2,3} indicating which candidate group was chosen).

The effectiveness of this bucket-to-group mapping is impor-
tant to the performance of SetSep, since as we have explained
more balanced groups make it easier to find suitable hash
functions for all groups. Ideally, we would like to assign
the same number of keys to each group. However, finding
such an assignment corresponds to an NP-hard variant of the
knapsack problem. Therefore, we use a greedy algorithm to
balance keys across groups. We first sort all the buckets in
descending order by size. Starting from the largest bucket, we
assign each bucket to one of the candidate groups. For each
bucket, we pick the candidate group with the fewest keys. If
more than one group has the same least number of keys, a
random group from this set is picked. We repeat this process
until all the buckets have been assigned, yielding a valid as-
signment. In fact, we run this randomized algorithm several
times per block and choose the best assignment among the
runs. To lookup a key x, we first calculate the key’s bucket
ID by hashing. Then, given this bucket ID, we look up the
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stored choice number to calculate which group this key be-
longs to. Each bucket has 4 keys on average, and spends 2
bits to encode its choice. So on average, two-level hashing
costs 0.5 bits per key, but provides much better load balance
than direct hashing. When partitioning 16 million keys into
1 million groups, the most loaded group usually has 21 keys,
compared to more than 40 for direct hashing.

4.5 Scalable Update
Allowing lookups without storing keys is the primary reason
SetSep is so compact. The original construction and updates,
however, require the full key/value pairs to recompute SetSep.
In ScaleBricks, this information comprises the RIB, where
keys are destination addresses and values are the correspond-
ing handling nodes.

To provide scalability for the RIB size (e.g., the number
of flows that the EPC can keep track of) and update rate,
ScaleBricks uses a partitioned SetSep construction and update
scheme. The RIB entries are partitioned using a hash of the
key, so that keys in the same 1024-key-block are stored in the
same node. For construction, each node computes only its
portion of SetSep, and then exchanges the produced result
with all the other nodes. When updating a key k, only the node
responsible for k recomputes the group that k belongs to, and
then broadcasts the result to other nodes. Because applying
a delta-update on the other nodes requires only a memory
copy (the delta is usually tens of bits), this approach allows
ScaleBricks to scale the update rate with the number of nodes.
To allow high-performance reads with safe in-place updates,
techniques analogous to those proposed in CuckooSwitch [34]
and MemC3 [14] could be applied, although we have not
designed such a mechanism yet.

5. IMPLEMENTATION / OPTIMIZATIONS

ScaleBricks is implemented in C. It uses Intel’s Data Plane
Development Kit (DPDK) for x86 platforms [21] as a fast
user-space packet I/O engine.

5.1 Global Partition Table using SetSep
SetSep uses several optimizations to improve performance.

Efficient Use of Memory Bandwidth and CPU Cycles Se-
quentially issuing memory fetches one at a time cannot satu-
rate the bandwidth between CPU and memory. ScaleBricks
instead uses batched lookups and prefetching [27, 34] (Algo-
rithm 1). Each lookup request is divided into three stages and
a subsequent stage accesses a memory location determined
by its previous stage. Immediately fetching these memory
locations would stall CPU pipelines for many cycles while
waiting for the load instruction to complete. Instead, our algo-
rithm first issues a prefetch instruction for a set of addresses,
which causes the CPU to start loading the data from these
addresses into cache. Then, at the beginning of the next stage,

Algorithm 1: Batched SetSep lookup with prefetching
BatchedLookup(keys[1..n])
begin

for i← 1 to n do
bucketID[i]← keys[i]’s bucket ID
prefetch(bucketIDToGroupID[bucketID[i]])

for i← 1 to n do
groupID[i]← bucketIDToGroupID[bucketID[i]]
prefetch(groupInfoArray[groupID[i]])

for i← 1 to n do
groupInfo← groupInfoArray[groupID[i]]
values[i]← LookupSingleKey(groupInfo, keys[i])

return values[1..n]

it executes normal reads at those prefetched addresses. These
loads are then likely to hit in L1/L2 cache and thus complete
much faster. Prefetching significantly improves efficiency:
Section 6 shows that with appropriate batch sizes, this op-
timization improves microbenchmark lookup throughput of
SetSep by up to 1.8×.

Hardware Accelerated Construction Constructing SetSep
is amenable to parallelization: Each group of keys can be
computed independently, and within a group, the computation
of the hash function across the sixteen keys can be parallelized
using SIMD. In this work, we only explore using multiple
hardware threads across groups, which provides sufficiently
fast construction for our application. We plan to evaluate the
SIMD and GPU-derived speedups in future work.

5.2 Partial FIB using Cuckoo Hashing

Each node in the cluster has a slice of the FIB to provide an ex-
act mapping from keys to application-specific data. In Scale-
Bricks, this table is implemented using concurrent cuckoo
hashing [34], which achieves high occupancy and line-rate
lookup performance for read-intensive workloads.

CuckooSwitch [34] used a concurrent cuckoo hash table to
build a FIB that maps MAC addresses to output ports. That
prior work was optimized to fetch the entire key-value pair in
a single cache line read and thus stored values adjacent to their
keys. Our target application of ScaleBricks, however, requires
storing arbitrarily large application-specific data about each
key (instead of a single output port as in CuckooSwitch). We
therefore apply the following optimization.

When the table is initialized at run-time, the value size is
fixed for all entries based on the application requirements.
We assign each slot in the cuckoo hash table a logical “slot
number.” Instead of storing key/value pairs in an interleaved
form, we create a separate value array in which the k-th
element is the value associated with the k-th slot in the hash
table. To lookup the value of a key, we simply index into
the value array at the position corresponding to the key’s slot
number in the hash table. When moving a key from one slot
to another during insertion, we need to move the value as well.
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The apparent drawback of this approach is an extra memory
read during lookup. In practice, however, as we will show in
the evaluation, this extra memory read has minimal impact
on the lookup throughput.

6. EVALUATION

Our evaluation addresses three questions:

1. How fast can we construct and lookup with SetSep?
2. How does moving to ScaleBricks improve the through-

put of the Packet Forwarding Engine of the LTE Evolved
Packet Core? What limitations does it add?

3. How does ScaleBricks scale with the number of servers?

We omit the evaluation of the cuckoo hashing-based FIB;
prior work has demonstrated that the table is fast enough to
serve over 300 million lookups per second [34].

6.1 Micro-Benchmark: SetSep
This section presents micro-benchmark results for SetSep
construction and lookup performance on modern hardware.

These micro-benchmarks are conducted on a moderately
fast dual-socket server with two Intel Xeon E5-2680 CPUs
(HT disabled), each with a 20 MiB L3 cache. The machine
has 64 GiB of DDR3 RAM.

6.1.1 Construction

The construction speed of SetSep depends primarily on three
parameters:

• The number of bits to store the hash index and to store
the bit-array in each group;

• The number of possible values or sets; and
• The number of threads used to parallelize construction.

The first experiments measure the construction rate of
SetSep with different parameter combinations. The per-thread
construction rate (or throughput) is nearly constant; construc-
tion time increases linearly with the number of keys and
decreases linearly with the number of concurrent threads.
Table 1 shows results for 64 M keys.

The first group of results shows a modest tradeoff between
(single-threaded) construction speed and memory efficiency:
Using a “16+8” SetSep (where 16 bits are allocated to the
hash function index and 8 bits to the bit array) has the slowest
construction speed but almost never needs to use the fallback
table, which improves both query performance and memory
efficiency. “16+16” SetSep also has low fallback ratio, but
consumes more space. We therefore use 16+8 for the remain-
ing experiments in this paper. Its speed, 1

2 million keys per
second per core, is adequate for the read-intensive workloads
we target.

Increasing the value size imposes little construction over-
head. The results in practice are even better than linear scaling
because we optimized our implementation as follows: as we

iterate the hash function, we test the function for each value
bit across the different keys in the group before moving on
to the next hash function in the hash function family. As a
result, we perform less work than searching hash functions
for each value bit one at a time. In addition, storing larger
values further amortizes the 0.5 bits of overhead added by the
first-level key-to-group mapping.

Summary The core SetSep data structure construction speed
is fast enough for a variety of important applications in which
the read rate is larger than the (already high) update rate that
SetSep can handle. ScaleBricks uses SetSep for its global
partition tables, which fall into this category.

6.1.2 Lookup

Figure 7 shows the local lookup throughput of SetSep for
different numbers of FIB entries (keys). In addition, given a
FIB size, this figure also compares SetSep performance with
different batch sizes as discussed in Section 5, varying from 1
(no batching) to 32 (the maximum packet batch size provided
by DPDK). All lookup experiments use 2-bit values, a “16+8”
configuration, and 16 threads.

These lookup micro-benchmarks provide three insights.
First, batching generally increases the lookup performance of
SetSep. When the batch size is increased to 17, the lookup
throughput is ∼520 Mops (million operations per second)
even with 64 million keys; batch sizes larger than 17 do
not further improve performance. Second, as the number
of FIB entries increases from 32 million to 64 million, the
performance drops dramatically. This occurs because the
64 million entry, 2-bit SetSep exceeds the size of L3 cache,
occupying 28 MiB of memory. Third, for small FIBs (e.g.,
500 K entries), lookup performance is actually higher without
batching. This too arises from caching: These small structures
fit entirely in L3 or even L2 cache, where the access latency
is low enough that large batches are not required, but merely
increase register pressure.

Summary ScaleBricks batches for all table sizes to ensure
fast-enough lookup performance regardless of the number of
entries. Because DPDK receives packets in batches, Scale-
Bricks handles incoming packets using the dynamic batching
policy from CuckooSwitch [34]: instead of having a fixed
batch size, when a CPU core receives a batch of packets
from DPDK, ScaleBricks looks up the entire batch in SetSep.
Therefore, the batch size of SetSep adjusts semi-automatically
to the offered load.

6.2 Macro-Benchmark: ScaleBricks Cluster

As a concrete application, we optimized the Packet Forward-
ing Engine of Connectem’s EPC stack by migrating it to
ScaleBricks. Importantly, the stack already used the Intel
DPDK, so structural changes were small. For context, the
Packet Forwarding Engine typically runs on three of the cores
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Construction Fallback Total Bits/
Construction setting throughput ratio size key
x+ y bits to store a hash function, x-bit hash function index and y-bit array

16+8 1-bit value 1 thread 0.54 Mkeys/sec 0.00% 16.00 MB 2.00
8+16 1-bit value 1 thread 2.42 Mkeys/sec 1.15% 16.64 MB 2.08
16+16 1-bit value 1 thread 2.47 Mkeys/sec 0.00% 20.00 MB 2.50

increasing the value size
16+8 2-bit value 1 thread 0.24 Mkeys/sec 0.00% 28.00 MB 3.50
16+8 3-bit value 1 thread 0.18 Mkeys/sec 0.00% 40.00 MB 5.00
16+8 4-bit value 1 thread 0.14 Mkeys/sec 0.00% 52.00 MB 6.50

using multiple threads to generate
16+8 1-bit value 2 threads 0.93 Mkeys/sec 0.00% 16.00 MB 2.00
16+8 1-bit value 4 threads 1.56 Mkeys/sec 0.00% 16.00 MB 2.00
16+8 1-bit value 8 threads 2.28 Mkeys/sec 0.00% 16.00 MB 2.00
16+8 1-bit value 16 threads 2.97 Mkeys/sec 0.00% 16.00 MB 2.00

Table 1: Construction throughput of SetSep for 64 M keys with different settings
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Figure 7: Local lookup throughput of SetSep (GPT)

in each node in the EPC cluster. The initial system was bal-
anced to handle smaller numbers of flows, but the total system
throughput drops when the number of flows (and thus the size
of the FIB) grows larger. Thus, while we focus here on just
the PFE throughput, improvements to the PFE do improve
the total system throughput.

We measure PFE performance using 4 dual-socket servers,
each with two Intel Xeon E5-2697 v2 CPUs running at 2.70
GHz, each with a 30 MiB L3 cache. Each machine has 128
GiB DDR3 RAM and two dual-port Intel 82599ES 10GbE
NICs.

Each server uses three of its four 10Gb ports: one as the
interface to the Internet, one as the interface to the base sta-
tions, and the other as the interconnect interface. Each port
is attached to one core on CPU socket 0, using three cores
in total. For all the experiments, we pre-populate the system
with a number of static tunnels. As discussed in Section 2,
only downstream (Internet to mobile device) packets require
inter-cluster forwarding; therefore, the core assigned to han-
dle the interface connected to the base stations is not used in
our experiments. We simulate the downstream traffic using a
Spirent SPT-N11U Ethernet testing platform [31]. Figure 6
depicts the configuration for the benchmark.
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Figure 8: Single node packet forwarding throughput us-
ing 30 MiB L3 cache

The forwarding engine originally implemented its FIB us-
ing a chaining hash table, the performance of which drops
dramatically as the number of tunnels increases. To evaluate
the benefits of ScaleBricks, we replace the original imple-
mentation with two alternative hash table designs—DPDK’s
rte_hash and our extended cuckoo hash table. Figure 8
shows the single node packet forwarding throughput using
these hash tables, with and without ScaleBricks. Without
ScaleBricks means full duplication, as depicted in Figure 2b.

Both the hash table and use of the SetSep GPT improve
throughput measurably for the PFE. Even though our ex-
tended cuckoo hash table requires one additional memory read
compared to the original design [34], it improves throughput
by 50% over the DPDK’s rte_hash. More key to this work,
ScaleBricks improves the single node throughput by up to
20% and 22% within systems using rte_hash and extended
cuckoo hash table, respectively. Two major factors contribute
to this performance improvement. First, reducing the number
of entries hosted by each node means smaller hash tables. In
this experiment, hash table size is reduced by up to 75%. The
smaller table allows many more of the table entries to fit in L3
cache, substantially increasing througput. Second, without
ScaleBricks, all the packets coming from the traffic gener-
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ator are looked up by the core handling that port. We refer
to this core as the “external core.” The core processing the
traffic received over the internal switch (the “internal core”),
however, is mostly idle. In ScaleBricks, the external core on
each server performs the global partition table lookup for all
the packets, plus the hash table lookup for only those packets
belonging to flows that are handled by that same server. The
load is therefore more balanced, as the internal cores also
perform a hash lookup, but in a smaller table. These two
effects combine to improve the throughput and core utiliza-
tion substantially. Although alternative designs might make
better use of the idle cycles by multiplexing packet I/O and
hash lookups on the internal cores, such designs—if they
exist—are likely complex and introduce non-trivial overhead
to switch between internal and external functionality on the
internal core.

Throughput with Smaller Cache The EPC forwarding en-
gine shares the CPU cache with other applications. To evalu-
ate the throughput of ScaleBricks under such circumstances,
we launch a bubble thread on a separate core to consume half
of the L3 cache. Figure 9 shows the performance of different
hash tables, with and without ScaleBricks, when there is only
15MiB of L3 cache available. Comparing with the results
shown in Figure 8, the throughput of all tables drop with the
reduced cache, but the relative benefits of ScaleBricks remain.

Latency We measure the end-to-end packet forwarding la-
tency of six different approaches using Spirent SPT-N11U’s

RFC 2544 [6] benchmark tool. We create 1 M static tun-
nels for the latency test. Two interesting observations stand
out from the average latency results reported in Figure 10.
First, compared to the baseline, ScaleBricks reduces the av-
erage latency by up to 10%. We believe that ScaleBricks is
able to service more of the lookups from cache because of
the smaller table size, thereby reducing the memory access
latency. Second, compared with the hash partitioning, the
latency of ScaleBricks is lower by up to 34%. This matches
our expectation. In summary, ScaleBricks improves the end-
to-end latency via faster memory access and/or eliminating
the extra inter-cluster hop.

Update Rate We measure the update rate of ScaleBricks as
follows: a single CPU core can handle 60 K updates/sec.
Using a decentralized update protocol allows ScaleBricks to
distribute updates to all the nodes in a cluster. In a 4-node
ScaleBricks cluster, using one dedicated core on each server
provides an aggregated rate of 240 K updates/sec. Because
the update is essentially parallelizable, by adding more CPU
cores, we can achieve higher update rate if necessary.

6.3 Scalability of ScaleBricks

Compared to naive FIB duplication, ScaleBricks provides a
practical leap in scaling by using a compact representation for
the information that must be replicated on all nodes. To put
its contributions in perspective, it is useful to compare to both
FIB duplication and to two-hop FIB partitioning. Recall that
FIB duplication and ScaleBricks require only a single hop
across the internal switch fabric. Two-hop FIB partitioning,
in contrast, incurs higher forwarding cost, but achieves true
linear FIB scaling, which ScaleBricks does not.

Although SetSep is compact, its size (i.e., bits per entry)
does increase slowly with the number of nodes in the cluster.
This creates a scaling tension. At first, ScaleBricks scales
almost linearly: for n nodes, each must store only F

n of the F
total FIB entries. But those FIB entries are large—perhaps
64 or 128 bits each. In contrast, the GPT must store all F
entries on each node, but using only F logn bits. At first,
logn is very small, and so the GPT is much smaller than
the original FIB. But as n increases and more entries are
added to the FIB, the GPT size begins to grow, and after
32 nodes, adding more servers actually decreases the total
number of FIB entries that can be handled. Analytically, the
total number of 64-bit FIB entries that can be stored in an n-
node cluster scales as Mn/(64+(0.5+1.5logn)n), where M
is the memory capacity per node. As a result, a ScaleBricks
cluster can scale up to handle 5.7 times more FIB entries
compared with a cluster using full FIB duplication.

Assuming each server uses 16 MiB of memory, Figure 11
shows analytically the total forwarding entries enabled using
full FIB duplication, ScaleBricks, and hash partitioning, for
clusters from 1 to 32 servers. ScaleBricks scales better when
FIB entries are larger than 64 bits because the total number
of FIB entries as well as the size of GPT will decrease.
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As both intuition suggests and the figure shows, traditional
FIB duplication does not scale: The ensemble supports only
as many FIB entries as a single node does. In contrast, hash
partitioning of the FIB scales linearly, but at an extra forward-
ing cost. In ScaleBricks, the number of FIB entries that can
be handled scales nearly linearly for a small number of nodes.

7. DISCUSSION

Skewed Forwarding Table Distribution ScaleBricks as-
sumes the assignment of keys to handling nodes is not under
its control; in the case of EPC, a separate controller assigns
flows to handling nodes. If the assignment is skewed, some
nodes must handle a disproportionately larger number of
flows. In such a case, hash partitioning provides linear scal-
ability (at the cost of one more hop) because it evenly dis-
tributes the FIB across intermediate lookup/indirect nodes.
ScaleBricks, however, uses a combined lookup/handling node,
so the FIB partitioning is skewed according to the handling
node of each entry. In the ideal case, when each node has the
same number of FIB entries, ScaleBricks scales well to up
to 8 servers, as we have shown in the evaluation. However,
when the distribution of the FIB entries is skewed, Scale-
Bricks can no longer achieve this scalability. The tradeoff
between scalability and latency is fundamental, and Scale-
Bricks achieves near-optimal scalability with minimal latency
(switching hops).

Isolation of Failure In general, ScaleBricks exhibits better
failure tolerance properties than hash-partitioned clusters by
providing failure isolation—when a server fails, the network
communication from/to other servers can continue. This
isolation comes from the fate sharing between each server
and partial FIB hosted by itself. In a hash-partitioned cluster,
however, one failing node could cause forwarding errors for
the keys for which the node serves as a lookup node, even if
these keys are not handled by the failing node itself.

More Applications ScaleBricks helps improve the perfor-
mance of stateful, clustered network appliances which assign
flows to their specific handling nodes without being able to
control the assignment. We demonstrated the usefulness of
ScaleBricks by using the LTE-to-Internet gateway as a driving

application, and we are currently seeking for more applica-
tions that can benefit from ScaleBricks.

8. RELATED WORK

Conventional Solutions for Global Partition Table There
is a wealth of related work on building efficient dictionaries
mapping keys to values.

Standard hash tables cannot provide the space and perfor-
mance we require. Typically, they store keys or fingerprints
of keys to resolve collisions, where multiple keys land in the
same hash table bucket. Storing keys is space-prohibitive
for our application. To reduce the effect of collisions, hash
tables typically allocate more entries than the number of el-
ements they plan to store. Simple hashing schemes such
as linear probing start to develop performance issues once
highly loaded (70–90%, depending on the implementation).
Multiple-choice based hashing schemes such as cuckoo hash-
ing [30] or d-left hashing [28] can achieve occupancies greater
than 90%, but must manage collisions and deal with perfor-
mance issues from using multiple choices.

Perfect Hashing schemes try to find an injective mapping
onto a table of m entries for n (n≤ m) distinct items from a
larger universe. Seminal early work in the area includes [12,
17, 16], Fredman and Komlós [16], and such work refers to
set separating families of hash functions. More recent work
on attempting to design perfect hash functions for on-chip
memory [26] is most similar to ours. Our approach uses both
less space and fewer memory accesses.

Perfect hashing data structures can be compressed; for ex-
ample, both ECT [25], as used in SILT [24], and CHD [3] use
fewer than 2.5 bits per key to store the index.2 However, these
schemes must also store the value associated with each key.
Nor do these compressed implementations of perfect hashing
provide sufficient lookup throughput. ECT is optimized for
indexing data in external storage such as SSDs, and its lookup
latency is one to seven microseconds per lookup; CHD is
faster, but remains several times slower than our solution.

Bloom Filters [4] are a compact probabilistic data struc-
ture used to represent a set of elements for set-membership
tests, with many applications [7]. They achieve high space
efficiency by allowing false positives.

Bloom filters and variants have been proposed for set sep-
aration. For example, BUFFALO [33] attempts to scale the
forwarding table of a network switch. It does so by looking
up the destination address in a sequence of Bloom filters, one
per outgoing port. However, this approach to set separation
is inefficient. A query may see positive results from multi-
ple Bloom filters, and the system must resolve these false
positives. SetSep is also more space efficient. Finally, up-
dating the Bloom filter to change the mapping of an address
from port x to port y is expensive, because it must rebuild
the filter to delete a single item, or use additional structure

2The information theoretical lower bound for minimal perfect hashing is
approximately 1.44 bits per key.
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(such as counting Bloom filters). Bloomier filters [9] provide
an alternative approach; the value associated with a key is
the exclusive-or of values set in multiple hash table locations
determined by the key. Approximate concurrent state ma-
chines [5] similarly provide an alternative structure based on
multiple choice hashing for efficiently representing partial
functions. Our approach is again more scalable than these
approaches.

Fast Software Routers and Switches RouteBricks [13]
demonstrated that a commodity server can forward 64-byte
IPv4 packets at 19 Mpps by batching packet I/O and paralleliz-
ing packet processing on modern multi-core CPUs and multi-
queue NICs. PacketShader [20] exploits the parallelism and
memory bandwidth of GPUs to provide fast IPv4 and IPv6
forwarding. ScaleBricks similarly exploits modern CPUs by
performing batched table lookups that make more efficient
use of memory bandwidth and reduce CPU cycles.

Scaling Forwarding Tables Bloom filters [4] have been
used to improve memory-efficiency in packet forwarding
engines. Dharmapurikar et al. [11] deployed Bloom filters
to determine which hash table to use for a packet’s next hop.
Their scheme often requires additional hash table probes per
address lookup on false positives returned by the Bloom filters.
BUFFALO has a similar goal, as noted above.

CuckooSwitch [34] scales the forwarding table of a single
node. ScaleBricks adopts CuckooSwitch’s per-node FIB de-
sign, but it could use any efficient FIB. The contribution of
ScaleBricks is, instead, the use of SetSep to build a global
partition table that is divided across switch cluster nodes and
helps forward incoming packets to the handling node in a
single hop.

Flat Address Routing Flat addresses enable simple network
topology and easy manageability of enterprise and datacen-
ter networks (e.g., SEATTLE [22]) as well as straightfor-
ward support for wide-area mobility (e.g., ROFL [8], AIP [2],
XIA [19]). ScaleBricks provides a new, scalable implementa-
tion option for such flat designs.

9. CONCLUSION

ScaleBricks is a new mechanism for helping to “scale up”
clustered network applications. Its core contribution is the de-
sign and implementation of a new data structure, SetSep, for
compactly storing the mapping from keys, such as flow IDs
or flat addresses, to values, such as the node ID that should
handle that flow. To make this structure practical, ScaleBricks
provides efficient mechanisms for partitioning the full for-
warding state around a cluster and constructing and updating
its SetSep-based global partitioning table. SetSep requires
only 3.5 bits/key to store a mapping from arbitrary keys to
2-bit values, and provides extremely fast lookups. Scale-
Bricks is an effective technique for practical applications, and
moving to it improved the packet forwarding throughput of a

4-node LTE-to-packet network gateway by 23% and cut its
latency up to 10%.
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