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Abstract. Systematic testing, first demonstrated in small, specialized
cases 15 years ago, has matured sufficiently for large-scale systems de-
velopers to begin to put it into practice. With actual deployment come
new, pragmatic challenges to the usefulness of the techniques. In this
paper we are concerned with scaling dynamic partial order reduction, a
key technique for mitigating the state space explosion problem, to very
large clusters. In particular, we present a new approach for distributed
dynamic partial order reduction. Unlike previous work, our approach is
based on a novel exploration algorithm that 1) enables trading space
complexity for parallelism, 2) achieves efficient load-balancing through
time-slicing, 3) provides for fault tolerance, which we consider a manda-
tory aspect of scalability, 4) scales to more than a thousand parallel
workers, and 5) is guaranteed to avoid redundant exploration of overlap-
ping portions of the state space.

1 Introduction
Testing of concurrent programs is challenging because concurrency manifests as
test non-determinism. A traditional approach to address this problem is stress
testing, which repeatedly exercises concurrent operations of the program under
test, hoping that eventually all concurrency scenarios of interest will be covered.

Unfortunately, as the scale of concurrent programs and the heterogeneity of
environments in which these programs are deployed increases, the state space of
possible scenarios explodes and stress testing stops being an effective mechanism
for exercising all scenarios of interest.

To address the increasing complexity of software testing, researchers have
turned their attention to systematic testing [8, 12, 14, 18, 19]. Similar to stress
testing, systematic testing also repeatedly exercises concurrent operations of the
program under test. However, unlike stress testing, systematic testing avoids test
non-determinism by controlling the order in which concurrent operations hap-
pen, exercising different concurrency scenarios across different test executions.
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To push the limits of systematic testing, existing tools combine of stateless
exploration [8] with state space reduction [5, 7, 9] and parallel processing [21].

In this paper, we present a new method for distributed systematic testing
of concurrent programs, which pushes the limits of systematic testing to an
unprecedented scale. Unlike previous work [21], our approach is based on a novel
exploration algorithm that 1) enables trading space complexity for parallelism,
2) achieves load-balancing through time-slicing, 3) provides for fault tolerance,
which we consider a mandatory aspect of scalability, 4) scales to more than a
thousand parallel workers, and 5) is guaranteed to avoid redundant exploration
of overlapping portions of the state space.

The rest of the paper is organized as follows. Section 2 reviews stateless ex-
ploration, state space reduction, and parallel processing. Section 3 presents a
novel exploration algorithm and details its use for distributed systematic test-
ing at scale. Section 4 presents experimental evaluation of the implementation.
Section 5 discusses related work and Section 6 presents the conclusions drawn
from the results presented in this paper.

2 Background

In this section we give an overview of stateless exploration [8], dynamic partial
order reduction (DPOR) [5], and distributed DPOR [21], which represent the
state of the art in scalable systematic testing of concurrent programs.

2.1 Stateless Exploration

Stateless exploration is a technique that targets systematic testing of concurrent
programs. The goal of stateless exploration is to explore the state space of dif-
ferent program states of a concurrent program by systematically enumerating
different total orders in which concurrent events of the program can occur.

To keep track of the exploration progress, stateless exploration abstractly
represents the state space of different program states using an execution tree.
Nodes of the execution tree represent non-deterministic choice points and edges
represent program state transitions. A path from the root of the tree to a leaf then
uniquely encodes a program execution as a sequence of program state transitions.

Abstractly, enumeration of branches of the execution tree corresponds to
enumeration of different sequences of program state transitions. Notably, the
set of explored branches of a partially explored execution tree identifies which
sequences of program state transitions have been explored. Further, assuming
that concurrency is the only source of non-determinism in the program, the
information collected by past executions can be used to generate schedules that
describe in what order to sequence program state transitions of future executions
in order to explore new parts of the execution tree.

Typically, stateless exploration uses depth-first search to explore the execu-
tion tree because of the space-efficient nature of its exploration, which is linear in
the depth of the tree. Further, tools for stateless exploration such as VeriSoft [8]
use partial order reduction (POR) [7] to avoid exploration of equivalent sequences
of program state transitions.



The pseudocode depicted in Algorithm 1 and 2 gives a high-level overview
of stateless exploration. The ExplorePor algorithm maintains an exploration
frontier, represented as a stack of sets of nodes, and uses depth-first search
to explore the execution tree. The PersistentSet(node) function uses static
analysis to identify what subtrees of the execution tree need to be explored.
In particular, it inputs a node of the execution tree and outputs a subset of
the children of this node that need to be explored in order to explore all non-
equivalent sequences of program state transitions of the execution tree. The
details behind the computation of PersistentSet(node) are beyond the scope
of this paper and can be found in Godefroid’s seminal treatment [7]. Note that
our presentation of [8] omits the use of sleep sets [7]. This simplification is made
to achieve consistency with other techniques [5, 21] presented later in this section.

Algorithm 1 ExplorePor(root)

Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier← NewStack
2: Push({root}, frontier)
3: DFS-Por(root, frontier)

Algorithm 2 DFS-Por(node, frontier)

Require: A node node of an execution tree and a reference to a non-empty stack
frontier of sets of nodes such that node ∈ Top(frontier).

Ensure: The node node of the execution tree is explored and the exploration frontier
frontier is updated according to the POR algorithm.

1: remove node from Top(frontier)
2: if PersistentSet(node) 6= ∅ then
3: Push(PersistentSet(node), frontier)
4: for all child ∈ Top(frontier) do
5: navigate execution to child
6: DFS-Por(child, frontier)
7: end for
8: Pop(frontier)
9: end if

2.2 Dynamic Partial Order Reduction

Dynamic partial order reduction (DPOR) is a technique that targets efficient
state space exploration [5, 22]. The goal of DPOR is to further mitigate the
combinatorial explosion of stateless exploration.

The stateless exploration discussed in the previous subsection uses static
analysis to identify which subtrees of the execution tree need to be explored.
However, precise static analysis of complex programs is often costly or infeasible
and results in larger than necessary persistent sets. To address this problem,
DPOR computes persistent sets using dynamic analysis.

When stateless exploration explores an edge of the execution tree, DPOR
computes the happens-before [13] and the independence [7] relations over the



set of program state transitions. These two relations are then used to decide
how to augment the existing exploration frontier.

The pseudocode depicted in Algorithm 3 and 4 gives a high-level overview of
DPOR. The ExploreDpor algorithm maintains an exploration frontier, repre-
sented as a stack of sets of nodes, and uses depth-first search to explore the
execution tree. The UpdateFrontier(frontier,node) function uses dynamic
analysis to identify which subtrees of the execution tree need to be explored.
In particular, the function inputs the current exploration frontier and the cur-
rent node and computes the happens-before and independence relation between
the transitions leading to the current node. This information is then used to in-
fer which nodes need to be further added to the exploration frontier in order to
explore all non-equivalent sequences of program state transitions. Importantly,
the function modifies the exploration frontier in a non-local fashion as it can add
nodes to an arbitrary set of the exploration frontier stack. The details behind
the computation of UpdateFrontier(frontier,node) are beyond the scope of
this paper and can be found in the original paper [5].

Algorithm 3 ExploreDpor(root)

Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier← NewStack
2: Push({root}, frontier)
3: Dfs-Dpor(root, frontier)

Algorithm 4 Dfs-Dpor(node, frontier)

Require: A node node of an execution tree and a reference to a non-empty stack
frontier of sets of nodes such that node ∈ Top(frontier).

Ensure: The node node of the execution tree is explored and the exploration frontier
frontier is updated according to the DPOR algorithm.

1: remove node from Top(frontier)
2: UpdateFrontier(frontier,node)
3: if Children(node) 6= ∅ then
4: child← arbitrary element of Children(node)
5: Push({child}, frontier)
6: for all child ∈ Top(frontier) do
7: navigate execution to child
8: Dfs-Dpor(child, frontier)
9: end for

10: Pop(frontier)
11: end if

2.3 Distributed Dynamic Partial Order Reduction

Distributed DPOR is a technique that targets concurrent stateless exploration.
The goal of distributed DPOR is to offset the combinatorial explosion of possible
permutations of concurrent events through parallel processing.

At a first glance, parallelization of DPOR seems straightforward: assign dif-
ferent parts of the execution tree to different workers and explore the execution



tree concurrently. However, as pointed out by Yang et al. [21], such a paral-
lelization suffers from two problems. First, due to the non-local nature in which
DPOR updates the exploration frontier, different workers may end up exploring
identical parts of the state space. Second, since the sizes of the different parts
of the execution tree are not known in advance, the load-balancing needed to
enable linear speedup is non-trivial.

To address these two problems, Yang et al. [21] proposed two heuristics.
Their first heuristic modifies Flanagan and Godefroid’s lazy addition of nodes
to the exploration frontier [5] so that they add nodes to the exploration frontier
eagerly. As evidenced by their experiments, replacing lazy addition with eager
addition mitigates the problem of redundant exploration of identical parts of the
execution tree by different workers. Their second heuristic assumes the existence
of a centralized load-balancer that workers can contact in case they believe they
have too much work on their hands and would like to offload some of the work.
The centralized load-balancer keeps track of which workers are idle and which
workers are active and facilitates offloading of work from active to idle workers.

3 Scalable Dynamic Partial Order Reduction

While scaling distributed DPOR to a large cluster at Google [15], we have iden-
tified several problems with previous work of Yang et al. [21].

First, at large scale, the algorithm must explicitly cope with the failure of
worker processes or machines. Although Yang et al. suggest how fault tolerance
could be implemented, they do not quantify how their design affects scalability.
Second, although the out-of-band centralized load-balancer of Yang et al. renders
the communication overhead negligible, it precludes features that are enabled by
centralized collection of information such as support for fault tolerance or state
space size estimation. Third, the load-balancing of Yang et al. uses a heuristic
based on a threshold to offload work from active to idle workers. It is likely
that for different programs and different number of workers, different threshold
values should be used. However, Yang et al. provide no insight into the problem
of selecting a good threshold. Fourth, their DPOR modification for avoiding
redundant exploration is a heuristic does not guarantee zero redundancy.

In this section we present an alternative design for distributed DPOR. Our
design is centralized and uses a single master and n workers to explore the exe-
cution tree. Despite its centralized nature, our experiments show that our design
scales to more than a thousand workers. Unlike previous work, our design can
tolerate worker faults, is guaranteed to avoid redundant exploration, and is based
on a novel exploration algorithm that allows 1) trading off space complexity for
parallelism and 2) efficient load-balancing through time-slicing.

3.1 Novel Exploration Algorithm

The key advantage of using depth-first search for the purpose of DPOR is its
favorable space complexity [8]. In fact, experience with systematic testing of
concurrent programs based on stateless exploration [5, 14, 16, 19] suggests that
the bottleneck for stateless exploration is CPU power, and not memory size.



To enable parallel processing, Yang et al. [21] depart from the strict depth-
first search nature of stateless exploration. Instead, the execution tree is explored
using a collection of (possibly overlapping) depth-first searches and the explo-
ration order is determined by a load-balancing heuristic.

To overcome the limitations mentioned above, we have designed a novel ex-
ploration algorithm, called n-partitioned depth-first search, which relaxes the
strict depth-first search nature of DPOR in a controlled manner and, unlike
traditional depth-first search, is amenable to parallelization.

Algorithm 5 ExploreDpor(n, root)

Require: A positive integer n and a root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier← NewSet
2: Insert(Push({root},NewStack), frontier)
3: while Size(frontier) > 0 do
4: Partition(frontier, n)
5: fragment← an arbitrary element of frontier
6: node← an arbitrary element of Top(fragment)
7: Pdfs-Dpor(node, fragment, frontier)
8: if Size(fragment) = 0 then
9: Remove(fragment, frontier)

10: end if
11: end while

Algorithm 6 Partition(frontier, n)

Require: A non-empty set frontier of non-empty stacks of sets of nodes and a positive
integer n such that n ≥ Size(frontier).

Ensure: Size(frontier) = n or ∀fragment ∈ frontier : the number of nodes contained
in fragment is 1.

1: for all fragment ∈ frontier do
2: if Size(frontier) = n then
3: return
4: end if
5: while the number of nodes contained in fragment is greater than 1 and

Size(frontier) < n do
6: node← an arbitrary element of a set contained in fragment
7: remove node from fragment
8: new-fragment← a new frontier fragment for node
9: Insert(new-fragment, frontier)

10: end while
11: end for

For the sake of the presentation, we first present a sequential version of
DPOR based on the n-partitioned depth-first search. The main difference be-
tween depth-first search and n-partitioned depth-first search is that the explo-
ration frontier of the new algorithm is partitioned into up to n frontier fragments
and the new algorithm explores each fragment using a depth-first search inter-
leaving exploration of different fragments.



The pseudocode depicted in Algorithm 5, 6, and 7 gives a high-level overview
of DPOR algorithm based on the n-partitioned depth-first search. The algorithm
maintains an exploration frontier, represented as a set of up to n stacks of sets
of nodes. The elements of the exploration frontier are referred to as fragments
and together they form a partitioning of the exploration frontier. The execution
tree is explored by interleaving depth-first search exploration of frontier frag-
ments. Algorithm 5 implements this idea by repeating two steps – Partition
and Pdfs-Dpor – until the execution tree is fully explored.

Algorithm 7 Pdfs-Dpor(node, fragment, frontier)

Require: A node node of an execution tree, a reference to a non-empty stack fragment
of sets of nodes such that node ∈ Top(fragment), and a reference to a set frontier
of non-empty stacks of sets of nodes.

Ensure: The node node of the execution tree is explored and the fragment fragment
of the exploration frontier is updated according to DPOR.

1: remove node from Top(fragment)
2: UpdateFrontier(frontier, fragment,node)
3: if Children(node) 6= ∅ then
4: child← arbitrary element of Children(node)
5: Push({child}, fragment)
6: navigate execution to child
7: end if
8: pop empty sets from the fragment stack

The Partition step is detailed in Algorithm 6. During the Partition step,
the current frontier is inspected to see whether existing frontier fragments should
be and can be further partitioned. A new frontier fragment should be created
in case there is less than n frontier fragments. A new frontier fragment can be
created if there exists a frontier fragment with at least two nodes.

The Pdfs-Dpor step is detailed in Algorithm 7. The Pdfs-Dpor step is
given one of the frontier fragments and uses depth-first search to explore the
next edge of the subtree induced by the selected frontier fragment (the subtree
that contains all ancestors and descendants of the nodes contained in the selected
frontier fragment). The UpdateFrontier(frontier, fragment,node) function op-
erates in a similar fashion to the UpdateFrontier(frontier,node) function de-
scribed in the previous section. The main distinction is that after the function
identifies which nodes are to be added to the exploration frontier using Flana-
gan and Godefroid’s algorithm [5], these nodes are added to the current frontier
fragment only if they are not already present in some other fragment. This way,
the set of sets of nodes contained in each fragment remains a partitioning of the
exploration frontier – an invariant maintained throughout our exploration that
which helps our design to avoid redundant exploration.

3.2 Parallelization

In this subsection we describe how to efficiently parallelize the above sequential
DPOR design based on n-partitioned depth-first search.



First, observe that the presence or absence of the Partition step in the body
of the main loop of the ExploreDpor function of Algorithm 5 has no effect on
the correctness of the algorithm. This allows us to sequence several Pdfs-Dpor
steps together, which hints at possible distribution of the exploration.

Namely, one could spawn concurrent workers and use them to carry out
sequences of Pdfs-Dpor steps over different frontier fragments. However, a
straightforward implementation of this idea would require synchronization when
concurrent workers access and update the exploration frontier, which is shared
by all workers. The trick to overcome this obstacle to efficient parallelization
is to give each worker a private copy of the execution tree. As pointed out by
Yang et al. [21], such a copy can be concisely represented using the state of the
depth-first search stack of the frontier fragment to be explored.

Algorithm 8 ExploreDistributedDpor(n, budget, root)

Require: A positive integer n, a time budget budget for worker exploration, and a
root node root of an execution tree.

Ensure: The execution tree rooted at the node root is explored.
1: frontier← NewSet
2: Insert(Push(root,NewStack), frontier)
3: while Size(frontier) > 0 do
4: Partition(frontier, n)
5: while exists an idle worker and an unassigned frontier fragment do
6: fragment← an arbitrary unassigned element of frontier
7: Spawn(ExploreLoop, fragment, budget,ExploreCallback)
8: end while
9: wait until signaled by ExploreCallback

10: end while

Algorithm 9 ExploreLoop(fragment, budget)

Require: A non-empty stack fragment of sets of nodes.
Ensure: Explores previously unexplored branches of the subtree induced by the nodes

of fragment until all branches are explored or the timeout expires.
1: start-time← GetTime
2: repeat
3: node← an arbitrary element of Top(fragment)
4: Pdfs-Dpor(node, fragment)
5: current-time← GetTime
6: until current-time− start-time > budget or Size(fragment) = 0

A worker can then repeatedly invoke the Pdfs-Dpor function over (a copy
of) the assigned frontier fragment. Once the worker either completes the explo-
ration of the assigned frontier fragment or it exceeds a time budget allocated
for its exploration, it reports back with the results of the exploration. The ex-
ploration progress can be concisely represented using the original and the final
state of the depth-first search stack of the assigned frontier fragment.

The pseudocode depicted in Algorithm 8 and 9 presents a high-level ap-
proximation of the actual implementation of our distributed DPOR. The imple-
mentation operates with the concept of “fragment assignment”. When a frontier



fragment is created, it is unassigned. Later, a fragment becomes assigned to a par-
ticular worker through the invocation of the Spawn function. When the worker
finishes its exploration, or exhausts the time budget assigned for exploration,
it reports back the results, the fragment assigned to this worker becomes unas-
signed again. The results of worker exploration are mapped back to the “master”
copy of the execution tree using the ExploreCallback callback function. The
time budget for worker exploration is used to achieve load-balancing through
time-slicing. The Partition function behaves identically to the original one,
except for the fact that it partitions unassigned fragments only.

Algorithm 9 presents the pseudocode of the ExploreLoop function, which
is executed by a worker. The Pdfs-Dpor function is identical to the sequential
version of the algorithm. The workers are started through the Spawn function
which creates a private copy of a part of the execution tree. Notably, the copy
contains only the nodes that the worker needs to further the exploration of the
assigned frontier fragment. Structuring the concurrent exploration in this fashion
enables both multi-threaded and multi-process implementations.

Since our goal has been to scale the stateless exploration to thousands of
workers, the scale of clusters available today, our implementation implements
each worker as an RPC server running as a separate process. In such a setting,
the Spawn function issues an asynchronous RPC request that triggers invo-
cation of the ExploreLoop function with the appropriate arguments at the
RPC server of the worker. The response to the RPC request is then handled
asynchronously by the ExploreCallback function, which maps the results of
the worker exploration into the master copy of the execution tree and resumes
execution of the main loop of Algorithm 8.

3.3 Fault Tolerance

As is commonly done in large distributed applications [4, 6], failure of one out
of thousands of nodes must be anticipated and handled gracefully, but failure of
just one particular node is infrequent enough to be dealt with using re-execution.
In accordance with this practice, our design assumes that the master, which is
running the ExploreDistributedDpor function, will not fail. The workers on
the other hand are allowed to fail and the exploration can tolerate such events.

In particular, an RPC request issued by the master to a worker RPC server
uses a deadline to decide whether the worker has failed. The value of the deadline
is set commensurately to the value of the worker time budget.

When the deadline expires without an RPC response arriving, the master
simply assumes that the worker has failed and makes no changes to the fron-
tier fragment originally assigned to the failed worker. The fragment becomes
unassigned again and other workers get a chance to further its exploration.

3.4 Load-balancing

The key to high utilization of the worker fleet is effective load-balancing. To
achieve load-balancing, our design time-slices frontier fragments among available
workers. The availability of frontier fragments is impacted by two factors.



The first factor is the upper bound n on the number of frontier fragments that
the ExploreDistributedDpor creates. This parameter determines the size of
the pool of available work units. The higher this number, the higher the memory
requirements of the master but the higher the opportunity for parallelism. In our
experience, setting n to twice the number of workers worked fairly well. Future
work on dynamic selection of the number of workers might be beneficial if the
impact on the parallelism and memory use can be managed.

The second factor is the size of the time slice used for worker exploration.
Smaller time slices lead to more frequent generation of new fragments but this
elasticity comes at the cost of higher communication overhead. In our initial
design we used a fixed time budget, choosing the value of 10 seconds as a good
compromise for the elasticity vs. communication overhead trade-off. However,
the initial evaluation of our prototype made us realized that a variable time
budget improves worker fleet utilization at large scales.

In particular, we observed that as the number of workers increases, a gap
between the realized and the ideal speed up opens up. Our investigation iden-
tified time periods during the exploration with insufficient number of frontier
fragments to keep all workers busy.
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Fig. 2. With Optimizations

To study this problem, we recorded the number of active workers during the
lifetime of a test. Figure 1 plots this information for one of our test programs
on a configuration with 1, 024 workers and an upper bound of 2, 048 frontier
fragments. The figure is representative of other measurements at such a scale.

One can identify three phases of the exploration. In the first phase, the num-
ber of active workers gradually increases over 100 seconds until there is enough
frontier fragments to keep everyone busy. In the second phase, all workers are
kept busy. In the third phase, the number of active workers gradually decreases
to zero over 100 seconds. Ideally, the first and the third phase should be as short
as possible in order to minimize the inefficiency resulting from not fully utilizing
the available worker fleet.

To this aim, we have developed a technique based on a variable time budget.
In particular, if the exploration is configured to use a time budget b, the master
actually uses fractions of b proportional to the number of active workers. For
example, the first worker will receive a budget of b

n , where n is the number of
workers. When half of the workers are active, the next worker to be assigned
work will receive a budget of b

2 . The scaling of the time budget is intended



to reduce the time before the master gets the opportunity to re-partition and
load-balance and thus to reduce the duration of the first and the third phase.

We implemented this technique and re-ran the our scalability measurements.
For comparison with Figure 1, Figure 2 plots the number of active workers
over time for the optimized implementation. For this test program, the two
techniques reduced the runtime from 655 seconds to 527 seconds. Similar runtime
improvements have been achieved for other test programs.

3.5 Avoiding Redundant Exploration

For clarity of presentation, Algorithm 8 omits a provision that prevents con-
current workers from exploring overlapping portions of the execution tree. This
could happen when two workers make concurrent UpdateFrontier calls and
add identical nodes to their frontier fragment copies.

To avoid this problem, our implementation introduces the concept of “node
ownership”. A worker exclusively owns a node if it is contained in the original
frontier fragment currently assigned to the worker, or is a descendant of a node
that the worker owns. All other nodes are assumed to be shared with other
workers and the node ownership restricts which nodes a worker may explore.

In particular, the depth-first search exploration of a worker is allowed to
operate only over nodes that the worker owns. When it encounters a shared node
during its exploration, the worker terminates its exploration and sends an RPC
response to the master indicating which nodes of the final frontier fragment are
shared. The ExploreCallback function checks which newly discovered shared
nodes are already part of some other frontier fragment. If a newly discovered
node is not part of some other fragment, the node is added to the master copy
of the currently processed frontier fragment (ownership is claimed). Otherwise,
the ownership of the node has been already claimed and the node is not added
to the master copy of the currently processed frontier fragment.

Although this provision could in theory lead to increased communication
overhead and decreased worker fleet utilization, our experiments indicate that
in practice the provision does not affect performance.

4 Evaluation

To evaluate our design, we implemented its prototype on top of ETA [15], a tool
developed at Google used for systematic testing of multi-threaded components
of a cluster management system. These components are written using a library
based on the actors paradigm [1] and the ETA tool is used to systematically enu-
merate different total orders in which messages between actors can be delivered
in order to exercise different concurrency scenarios.

4.1 Experimental Setup

For the purpose of evaluation of our implementation we have used instances
of the three following tests. The Resource(x,y) test is representative of a
class of actor program tests that evaluate interactions of x different users that
acquire and release resources from a pool of y resources. The Store(x,y,z)
test is representative of a class of actor program tests that evaluate interactions



of x users of a distributed key-value store with y front-end nodes and z back-
end nodes. The Scheduling(x) test is representative of a class of actor program
tests that evaluate interactions of x users issuing concurrent scheduling requests.
These tests exercise fundamental functionality of core components of the cluster
management system and are part of the unit test suite of the system.

Unless stated otherwise, each measurement presented in the remainder of this
section presents a run of a complete exploration of the given test and the results
report the mean and the standard deviation of three repetitions of a run. Lastly,
all experiments were carried out on a Google data center using stock hardware
and running each process on a separate virtual machine.

4.2 Faults

First, we evaluated the ability of the implementation to handle worker failures.
Notably, we extended the ETA tool with an option to inject an RPC fault with
a certain probability. When an RPC fault is injected, the master fails to receive
the RPC response from a worker and waits for the RPC to timeout instead.

Our experiments with injected RPC faults have demonstrated that the run-
time increases proportionally to the underlying geometric progression (of re-
peated RPC failures). For example, if each RPC had a 50% chance of failing,
the runtime doubled. Since in actual deployments of ETA, RPC requests fail
with probability well under 1%, our support for fault tolerance is practical.

4.3 Scalability

Next, to measure the scalability of the implementation, we compared the time
needed to complete an exploration by a sequential implementation of DPOR
against the time needed to complete the same exploration by our distributed im-
plementation. We considered configurations with 32, 64, 128, 256, 512, and 1, 024
workers and applied the algorithm to the Resource(6,6), Store(12,3,3), and
Scheduling(10) actor program tests, parameters of which were chosen to stim-
ulate interesting state space sizes.

These experiments were run inside of a dynamically shared cluster; that is,
machines running worker processes are shared with other workloads. The time
budget of each worker exploration was set to 10 seconds and the target number
of frontier fragments was set to twice the number of workers.

The results of Resource(6,6), Store(12,3,3), and Scheduling(10) ex-
periments are presented in Figure 3, Figure 4, and Figure 5 respectively. Due to
the magnitude of the state spaces being explored, the runtime of the sequential
algorithm was extrapolated using a partial run. The figures visualize the speedup
over the extrapolated runtime of the sequential algorithm and compare it to the
ideal speedup. Note that both axes of the graphs are in logarithmic scale.

These results evidence the scalability of our implementation of DPOR at a
large scale. The largest configuration uses 1, 024 workers and our implementation
achieves speedup that ranges between 760× and 920×.

4.4 Theoretical Limits

Finally, we carried out measurements that helped us to evaluate the theoretical
scalability limits of our implementation. The purpose of the section is to project
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Scheduling(10) with concurrent DPOR

Realized
Ideal

Conf Runtime Speedup

32 Workers 17,707s 26×
64 Workers 8,870s 51×
128 Workers 4,468s 102×
256 Workers 2,278s 200×
512 Workers 1,046s 436×
1024 Workers 527s 865×

Fig. 5. For this example, DPOR explores on the order of 3.6 million branches and the
sequential implementation is expected to require 126 hours to finish.

future bottlenecks. To this aim we focused on measuring memory and CPU
requirements of the master.

Memory Requirements: The memory overhead of our implementation is
dominated by the cost to store the master copy of the exploration frontier. To
estimate the overhead, we measured the amount of memory allocated for the
explicitly stored nodes of the execution tree and the exploration frontier data
structures over time. For the Scheduling(10) test on a configuration with 1, 024
workers and an upper bound of 2, 048 frontier fragments, the peak number of the
allocated memory was less than 4MB. This number is representative of results for
other tests at such a scale. Consequently, for the current computer architectures,
the memory requirements scale to millions of workers.



CPU requirements: With 1024 workers and a 10-second time budget, the
master is expected to issue around 100 RPC requests and to process around
100 RPC responses every second. For such a load, the stock hardware running
exclusively the master process experiences peak CPU utilization under 20%.
Consequently, for the current computer architectures, the CPU requirements
scale to around 5, 000 workers. To scale our implementation beyond that, one
can scale the time budget, hardware performance, or optimize the software stack.
For instance, one could replace the single master with a hierarchy of masters.
The performance of our algorithm shows that hierarchical organization is not
needed to scale to the size of state of the art cluster.

5 Related Work

Concurrent state space exploration have been previously studied in the context
of several projects: Inspect [20] is a tool for systematic testing of pthreads C
programs that implements the distributed DPOR [21] discussed in Section 2. Un-
like our work, the Inspect tool does not support fault tolerance, is not guaranteed
to avoid redundant exploration, and has not been demonstrated to scale beyond
64 workers. DeMeter [10] provides a framework for extending existing sequen-
tial model checkers [12, 19] with a parallel and distributed exploration engine.
Similar to our work, the framework focuses on efficient state space exploration
of concurrent programs. Unlike our work, the design has not been thoroughly
described or analyzed and has been demonstrated to scale only up to 32 workers.
Cloud9 [3] is a parallel engine for symbolic execution of sequential programs.
In comparison to our work, the state space being explored is the space of all
possible programs inputs. Systematic enumeration of different program inputs
is an orthogonal problem to the one addressed by this paper. Parallelization of
software verification was also investigated in the context of explicit state space
model checkers in tools such as MurPhi [17], DiVinE [2], or SWARM [11].
Stateful exploration is less common for implementation-level model checkers [8,
15, 19] where storing a program state explicitly becomes prohibitively expensive.

6 Conclusions

This paper presented a technique that improves the state of the art of scalable
techniques for systematic testing of concurrent programs. Our design for dis-
tributed DPOR enables the exploitation of a large-scale cluster for the purpose
of systematic testing. At the core of the design lies a novel exploration algorithm,
n-partitioned depth-first search, which has proven to be essential for scaling our
design to thousands of workers.

Unlike previous work [21], our design provides support for fault tolerance,
a mandatory aspect of scalability, and is guaranteed to avoid redundant explo-
ration of identical parts of the state space by different workers. Further, our
implementation and deployment of a real-world system at scale has demon-
strated that the design achieves almost linear speed up for up to 1, 024 workers.
Lastly, we carried out a theoretical analysis of the design to identify scalability
bottlenecks of the design.
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2. J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel Distributed Model
Checker (Tool paper). In HiBi/PDMC 2010, pages 4–7. IEEE, 2010.

3. S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic execution for
automated real-world software testing. In EuroSys 2011, pages 183–198, 2011.

4. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. BigTable: A distributed storage sys-
tem for structured data. In OSDI 2006, pages 205–218, 2006.

5. C. Flanagan and P. Godefroid. Dynamic Partial Order Reduction for Model Check-
ing Software. SIGPLAN Not., 40(1):110–121, 2005.

6. S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. SIGOPS Oper.
Syst. Rev., 37(5):29–43, 2003.

7. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem. Springer-Verlag, 1996.

8. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In
POPL 1997, pages 174–186. ACM, 1997.

9. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order Reduc-
tion. In SPIN 2007, pages 95–112. Springer-Verlag, 2007.

10. H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. Practical software model
checking via dynamic interface reduction. In SOSP 2011, pages 265–278, New
York, NY, USA, 2011. ACM.

11. Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification Tech-
niques. IEEE Transactions on Software Engineering, 37:845–857, 2011.

12. C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, Death, and the
Critical Transition: Finding Liveness Bugs in Systems Code. In NSDI 2007, 2007.

13. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, 1978.

14. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding
and Reproducing Heisenbugs in Concurrent Programs. In OSDI 2008, pages 267–
280, 2008.

15. J. Simsa, R. Bryant, G. Gibson, and J. Hickey. Efficient Exploratory Testing of
Concurrent Systems. CMU-PDL Technical Report, 113, November 2011.

16. J. Simsa, G. Gibson, and R. Bryant. dBug: Systematic Evaluation of Distributed
Systems. In SSV 2010, 2010.

17. Ulrich Stern and David L. Dill. Parallelizing the MurPhi Verifier. Formal Methods
in System Design, 18(2):117–129, 2001.

18. S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby. ISP: A tool
for model checking MPI programs. In PPoPP 2008, pages 285–286, 2008.

19. J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang,
and L. Zhou. MoDist: Transparent Model Checking of Unmodified Distributed
Systems. In NSDI 2009, pages 213–228, April 2009.

20. Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A Runtime Model Checker for
Multithreaded C Programs. University of Utah Tech. Report, UUCS-08-004, 2008.

21. Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Distributed dynamic
partial order reduction based verification of threaded software. In SPIN 2007,
pages 58–75. Springer-Verlag, 2007.

22. Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Efficient Stateful Dynamic
Partial Order Reduction. In SPIN 2008, pages 288–305. Springer-Verlag, 2008.


