
Distributed Metadata and Streaming Data Indexing as
Scalable Filesystem Services

Qing Zheng

CMU-CS-21-103

February 2021

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:

Garth Gibson (Co-Chair)

George Amvrosiadis (Co-Chair)

Gregory Ganger

Bradley Settlemyer (Los Alamos National Laboratory)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Copyright (c) 2021 Qing Zheng

This work is licensed under a Creative Commons

“Attribution-NonCommercial-NoDerivatives 4.0 International” license.

This research was sponsored by the Los Alamos National Lab’s Institute for Reliable High Performance Information

Technology (DE-AC52-06NA25396/394903), the U.S. Dept of Energy’s Advanced Scientific Computing Research

(DE-SC0015234), the U.S. National Science Foundation’s Parallel Reconfigurable Observational Environment (1042543),

the New Mexico Consortium, and the Parallel Data Lab at Carnegie Mellon University. The views and the conclusions are

those of the author and do not necessarily represent the opinions of the sponsoring organizations, agencies, or U.S. Government.



This work is licensed under a Creative Commons “Attribution-NonCommercial-

NoDerivatives 4.0 International” license.

Keywords: High-performance computing, Distributed storage, File system metadata, Data indexing

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


Abstract

As people build larger and more powerful supercomputers, the sheer size of future machines will bring

unprecedented levels of concurrency. For applications that write one file per process, increased concurrency

will cause more files to be accessed simultaneously and this requires the metadata information of these files

to be managed more efficiently. An important factor preventing existing HPC filesystems from being able to

more efficiently absorb filesystem metadata mutations is the continued use of a single, globally consistent

filesystem namespace to serve all applications running on a single computing environment. Having a shared

filesystem namespace accessible from anywhere in a computing environment has many welcome benefits,

but it increases each application process’s communication with the filesystem’s metadata servers for ordering

concurrent filesystem metadata changes. This is especially the case when all the metadata synchronization and

serialization work is coordinated by a small, fixed set of filesystem metadata servers as we see in many HPC

platforms today. Since scientific applications are typically non-interactive batch programs, the first theme of this

thesis is about taking advantage of knowledge about the system and scientific applications to drastically reduce,

and in extreme cases, remove unnecessary filesystem metadata synchronization and serialization, enabling HPC

applications to better enjoy the increasing level of concurrency in future HPC platforms.

While overcoming filesystem metadata bottlenecks during simulation I/O is important, achieving efficient

analysis of large-scale simulation output is another important enabler for fast scientific discovery. With future

machines, simulation output will only become larger and more detailed than it is today. To prevent analysis

queries from experiencing excessive I/O delays, the simulation’s output must be carefully reorganized for efficient

retrieval. Data reorganization is necessary because simulation output is not always written in the optimal order

for analysis queries. Data reorganization can be prohibitively time-consuming when its process requires data

to be readback from storage in large volumes. The second theme of this thesis is about leveraging idle CPU

cycles on the compute nodes of an application to perform data reorganization and indexing, enabling data to be

transformed to a read-optimized format without undergoing expensive readbacks.
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For decades high performance computing (HPC) applications have been

technology leaders in utilization of massive concurrency, in no small

part because they have not made all their memory store operations to

be immediately visible to the next load operations invoked anywhere

in the computing cluster. Instead, HPC applications run on distributed

memory and use software components that provide only the consistency

and synchronization needed for the task at hand. Unfortunately, while

HPC applications communicate their in-memory state on an as-needed

basis, their persistent state, stored as files and accessed through a shared

underlying parallel filesystem service, is still globally synchronized even for

the world’s largest computing clusters — files created by one application

process thread are immediately visible to any other process thread in

a computing cluster. Alas, sequentially ordered, fully consistent for all

accesses across all nodes, with dedicated servers in charge of all the

heavy lifting, today’s parallel filesystems are old-fashioned system services

invented for single-core machines 50 years ago but forced to scale as rapidly

as today’s parallel computing machines. This is too difficult, and leads to

performance bottlenecks that increasingly defeat massive parallelism.

To change this, this dissertation re-imagines the roles filesystems play in

delivering performance and services to applications and presents new

ways of providing filesystem and data processing capabilities on modern

HPC platforms. First, today’s filesystem clients synchronize too much with

their servers for metadata reads and writes. We show deep relaxation

of filesystem metadata synchronization and serialization through client

logging and selective merging of filesystem metadata changes on an as-

needed basis. Second, modern filesystems achieve scaling primarily by

dynamic namespace partitioning over multiple dedicated metadata servers.

Filesystem metadata performance is a function of, and thus fundamentally

limited by, the amount of compute resources that are dedicated to servers.

We show dynamic instantiation of filesystem metadata control and process-

ing functions over client compute cores, enabling highly agile scaling of

filesystem metadata performance beyond a fixed set of dedicated servers.

Finally, an important reason applications write data to storage is that they



Chapter 1 Introduction

Modern HPC Clusters

Compute Nodes
(10,000 nodes) Storage Nodes

(100 nodes)

FS Metadata

Nodes
(1 or more nodes)

Login Nodes
(10 nodes)

Figure 1.1: Anatomy of a typical comput-
ing cluster in HPC environments made up
of compute nodes, storage nodes, filesys-
tem (FS) metadata nodes, and login nodes.
Scientific jobs run on compute nodes. A par-
allel filesystem provides shared underlying
storage for all jobs. It uses the computing
cluster’s storage nodes for scalable I/O and
its dedicated metadata nodes for filesystem
metadata management. Scientists access a
computing cluster through its login nodes,
where scientists compile code, submit jobs,
and manage their files. The best perfor-
mance is achieved when work is spread
across all job compute nodes and there are
as few synchronization and inter-process
communication activities as possible both
across jobs and within a job.

can later query the data for insights. Efficient query performance has largely

relied on post data processing, which reads back the data written by the

application and re-writes it in a format that is optimized for the queries.

We show scalable streaming data processing with rich filesystem directory

types that transforms data to a read-optimized format as an application

writes it to storage, preventing the potentially massive data movement and

rewriting caused by today’s post data processing steps.

The end result: a drastic reduction of modern parallel filesystems to plain

object stores, and on top of it applications independently instantiate per-

application client services for scalable filesystem and data management.

There need not be a global filesystem namespace. Instead, applications

communicate only when they need to and communication is done primarily

through immutable log objects stored in the shared underlying object store

for maximal concurrency. At the same time, filesystem metadata processing

need not be limited to dedicated servers and query acceleration need not be

deferred to post processing. Abundant compute resources available on job-

running compute nodes are dynamically utilized for scaling storage services

overcoming limitations and bottlenecks at dedicated servers. Streaming

processing data as it is written using these abundant resources further

allows queries to be accelerated without sacrificing write performance.

To better understand why big alterations of today’s parallel filesystems

are needed, in the rest of this chapter we look at the components that

make up today’s HPC platforms and how HPC applications run on these

platforms. We then explain why conventional parallel filesystem designs

and data processing techniques are unable to keep up with the growing

2
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1: Here, global refers to the fact that the

namespace is shared by all applications and

can be accessed from any compute node in

a computing cluster.

scale of today’s scientific computation. Finally, we list contributions of this

dissertation and present its outline.

1.1 Today’s HPC Computers

Key Information

1. Modern HPC computers separate compute from storage, forming

a disaggregated cluster architecture unlike many big data or cloud

data centers which tend to co-locate compute and storage in the same

node for cost-effective high bandwidth;

2. Today a distributed parallel filesystem service manages the storage of

an HPC computer, providing a global, strongly consistent filesystem

namespace that is shared by all applications in a computing cluster;

3. The best way to utilize an HPC computer is to keep all of its com-

pute cores busy, which makes reducing global synchronization and

increasing I/O efficiency on compute nodes important.

From the early Cray machines [1] in the 1970s to modern supercomputers,

HPC systems are long known for their remarkable performance. Today, the

world’s fastest are capable of hundreds of thousands of teraflops [2]. These

large computers are used for a variety of computationally intensive tasks

and play an important role in modern scientific discovery [3, 4].

To deliver high performance, modern HPC machines are built as massively

parallel computing clusters [5]. A cluster consists primarily of compute

nodes, with dedicated storage forming a disaggregated compute and

storage architecture [6] as we show in Figure 1.1. Scientific applications run

on compute nodes. A distributed parallel filesystem service [7–9] manages

the storage. It provides a global filesystem namespace1 through which

applications can store and communicate information as named data files.

Files stored in the parallel filesystem remain in existence until their explicit

destruction by a user command. On top of that, a data retention policy

governs the maximum lifespan of data in the filesystem [10]. Once this

maximum is reached, data is typically moved to a longer-term storage

space for nearline or offline access [11, 12]. In this dissertation, we focus

rather on managing files for online access.

3
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Storage

Nodes

FS Metadata

Compute

Nodes

Login Nodes

Compute

Nodes

Login Nodes

Cluster 1 Cluster 2

Parallel FS

Figure 1.2: An example where two comput-
ing clusters share a parallel filesystem.

Root

Dir

Dir1 Dir2

File1 File2 Dir3

Figure 1.3: An example filesystem names-
pace consisting of 4 directories (including
1 special root directory) and 2 regular files.
When multiple metadata servers serve a
filesystem, they typically each manage a
partition of the filesystem’s namespace.

One reason HPC separates compute from storage is that this can better

isolates the failure domain of compute from that of storage [10, 13]. As

a result, application jobs running on compute nodes are able to use

checkpoint/restart [14, 15] to achieve fault tolerance while the underlying

storage uses RAID [16] to recover from disk failures [17].

Decoupling compute from storage also improves system manageability.

This is done by allowing storage nodes to have a separate network and to

run a different operating system than that of those compute nodes. As a

result, site administrators are able to launch maintenance operations on

storage nodes without impacting user jobs [18]. At the same time, it is much

simpler for multiple computing clusters to share storage, as the example

we show in Figure 1.2.

Today, the parallel filesystem that manages the storage consists of three

key components: a) filesystem clients that run on compute nodes, b) object

storage servers that run on storage nodes, and c) filesystem metadata

servers that run on dedicated filesystem metadata server nodes [19–21].

A filesystem manages a collection of files. These files are organized into

directories [22, 23], forming a hierarchical tree-like structure as Figure 1.3

shows that is known as the filesystem’s namespace. Each file created in the

filesystem has a record stored in a metadata server for information of the

file. A filesystem may use one or more metadata servers. When multiple

metadata servers are used, each metadata server typically manages a

partition of the filesystem’s namespace [24–27].

Unlike file metadata, file data is stored separately as one or more data

objects in the filesystem’s object storage servers [8, 28, 29]. To read or write a

file, a filesystem client first communicates with a metadata server to obtain

information on the file’s data objects. The client then goes to the right object

storage servers for data of the file. Modern parallel filesystems tend to be

strongly consistent in metadata operations. Files created by one client in the

filesystem are immediately visible to all clients in the computing cluster.

With today’s HPC computers being massively parallel computing clusters,

success in HPC depends heavily on utilization of massive concurrency.

The best performance is achieved when work is spread across all available

compute cores with as little global synchronization and as few I/O delays on

compute nodes as possible. Unfortunately, by mandating a global filesystem

namespace and dedicated servers to provide all services, existing HPC

storage and parallel filesystem designs are preventing applications from
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fully achieving this goal. This dissertation sets out to address this problem.

We explain more in Section 1.3 and Section 1.4.

In addition to the compute, storage, and filesystem metadata server nodes,

a small number of login nodes are provided per cluster for scientists to

access the computing cluster from a remote network. Scientists use these

nodes to manage code, write scripts, and submit jobs as Section 1.2 now

discusses.

1.2 Today’s HPC Applications

Key Information

1. HPC consists primarily of non-interactive batch applications. They

form a fixed number of workflow types;

2. HPC workflows tend to have much relaxed consistency requirements

than an interactive application. However, it is for those interactive ap-

plications that today’s distributed filesystem metadata is optimized;

3. Knowledge about HPC systems and their workflows can be leveraged

to reduce filesystem metadata synchronization and serialization and

to enable more efficient use of client compute resources for higher,

more scalable performance.

While it may be taken for granted that modern parallel filesystems were

designed, from day one, to be optimal for the scientific applications that

we run on HPC platforms, this was not entirely true. Parallel filesystems

are defined by their concurrent access to file data [8, 28, 29]. But for

metadata, modern parallel filesystems remain a serial service: all metadata

operations are globally serialized [7, 9], and then written to a single write-

ahead log. Global serialization results in a strongly-consistent filesystem

namespace. It ensures that all clients see a single filesystem history and that

updates made by one client are immediately visible to all clients. However,

global serialization was not developed with today’s massively-parallel

computing environments in mind. Instead, it was largely a legacy from

the early filesystems that served single core machines 50 years ago when

the most important application for the filesystem was to enable a small

group of computer scientists to interactively edit their text files in a shared

programming environment [23]. Modern HPC platforms feature far more
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2. 

Simulation

3. Post

Processing
4. Analysis

User

Config

Input

Deck

Time-

step 

Dataset

Analysis

Dataset

Check

points

Figure 1.4: Illustration of a typical scien-
tific simulation workflow. It starts with set-
ting up the simultation’s input deck ac-
cording to user configuration. This is then
followed by the actual simulation which
reads the input deck for initialization and
then runs in timesteps resulting in a se-
ries of timestep dumps. Before analysis,
these timestep dumps are down-sampled
and post-processed to form a separate anal-
ysis dataset. Scientists then run queries
against this analysis dataset to obtain in-
sights. Large-scale simulations may require
the use of an entire cluster machine. For
fault tolerance, simulations periodically
write checkpoints of their in-memory state
for failure recovery.

than 1 cores and has a significantly larger number of concurrent users. At the

same time, modern scientific applications use filesystems much differently

than human editing and sharing their text files. In this section, we show

how scientific applications run on modern HPC platforms. In the next

section, we show why radical changes of today’s parallel filesystems are

needed for future larger scale scientific computation and data processing.

Scientific applications are typically run by scientists as part of a larger

workflow [13]. Before being able to run workflows, a scientist must be

associated with an allocation, which grants the scientist permissions to

access a computing cluster and the cluster’s shared underlying filesystem.

To submit a workflow to run in a computing cluster, a scientist is expected to

prepare a batch script specifying the programs and the amount of compute

resources needed to run the workflow. The scientist then submits the batch

script to a job queue. A workload manager monitors the queue and is

responsible for launching the job when resources become available.

Multiple independent workflows may run in a computing cluster simul-

taneously. In such cases, each workflow typically owns a disjoint set of

compute nodes in the computing cluster.

Based on their execution patterns, we categorize today’s scientific workflows

into: (1) simulations, (2) high-throughput computing workflows, and (3)

uncertainty quantification workflows. Understanding how these workflows

operate helps us reassess, from a modern scientific application’s perspective,

what is important and what is not for a parallel filesystem, and provides

6



Chapter 1 Introduction

2. A DAG of Data-Dependent

Analysis Steps

A workflow task is scheduled per input data subset and per 

analysis step
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3. Final 

Analysis
Input 

Source

Result
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Result
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Result
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Step 1

Step 
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Step 
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Figure 1.5: Illustration of an example high-
throughput computing (HTC) workflow
characterized by running as many as tasks
as possible in parallel according to a di-
rected acyclic analysis graph under the co-
ordination of Workflow Management Soft-
ware (WMS). Such a workflow typically
starts with setting up an input data source
and then initializing a workflow manager
for scheduling tasks within the workflow.
Input data for the workflow typically comes
from an external scientific experiment or
instrument which periodically sends data
(an image, a chemical molecule, a genome
segment) for HTC. Each data subset is pro-
cessed through a DAG of analysis steps. A
task is scheduled whenever a step needs
to be invoked on a subset of data. A final
analysis stage aggregates results from all
data subsets and generates the final analysis
output.

us with insights for more scalable filesystem designs in the context of

high-performance scientific computing. We start with simulations.

Simulation Workflows are an important form of scientific computing.

They are marked by using up to an entire computing cluster to

run a single, long-running simulation through a parallel program.

Typically, a multi-dimensional mesh is simulated. Each simulation

process manages a disjoint mesh space. Simulations run in timesteps.

Every few timesteps the simulation stops and the current simulation

state is saved to storage. A simulation ends with a series of timestep

dumps, which are then queried by the scientists for insights. To

ensure high query performance, real-world simulations are often

followed by a post-processing step that transforms the simulation

timestep data to a read-optimized format for fast queries. Figure 1.4

shows the overall workflow process. For fault tolerance, simulations

periodically write checkpoints of their in-memory state for failure

recovery. The job of a parallel filesystem is to quickly absorb the

timestep and the checkpoint data — potentially in the form of a

massive amount of files — that the simulation generates during a

run and to facilitate fast transformation of simulation timestep data

for efficient post-simulation data analysis (post-analysis).

High-Throughput Computing (HTC) Workflows are another important

form of scientific computing. As we show in Figure 1.5, they are

marked by running a large number of small tasks in parallel to apply

7
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Figure 1.6: Illustration of an example Uncer-
tainty Quantification (UQ) workflow char-
acterized by running an ensemble of #

simulations (# = 3 in this example) with
each simulation using a slightly different in-
put deck. Simulations run in the same way
as we showed in Figure 1.4 within an ensem-
ble. An ensemble management tool is used
for simulation instantiation and failure re-
covery. Multiple member simulations may
run as a single parallel program or as sepa-
rate programs depending on UQ software
implementation and resource availability.
A final analysis stage collects results from
all member simulations and performs the
final analysis computation.

a Directed Acyclic Graph (DAG) of analysis steps to a certain input

data source. This input data source is typically an external scientific

experiment or instrument which periodically generates data (an

image, a chemical molecule, a genome segment) for HTC. Typically,

a workflow task is scheduled whenever an analysis step needs to

be invoked on a data subset. A final analysis stage concludes the

workflow by aggregating results from all data subsets and computing

the final output. Unlike simulation workflows that use checkpoints,

HTC achieves fault tolerance typically by rerunning a task when it fails.

A workflow manager is launched at the beginning of a workflow for

task scheduling and error handling. The job of a parallel filesystem

is to facilitate massively parallel data processing by minimizing

the synchronization and serialization among workflow tasks and to

provide fast data access within each task.

Uncertainty Quantification (UQ) can be viewed as a combination of HTC

and simulation workflows. As Figure 1.6 shows, UQ workflows are

marked by running an ensemble of simulations in parallel for para-

metric analysis. A final analysis stage ends a workflow. It combines

results from all ensemble members and produces the final analysis

output. Depending on UQ software implementation and resource

availability, multiple UQ simulations may run as a single parallel

program or as separate programs. The job of a parallel filesystem

is to enable fast data capture for each member simulation and to

facilitate fast transformation of simulation timestep data for efficient

post ensemble data analysis.

Based on knowledge of how today’s HPC workflows run, we consider the

following workflow properties to be important when rethinking parallel

8
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filesystems for modern scientific computing as we now discuss.

Disjoint Access. Different workflows tend to access disjoint sets of data

and do not usually communicate with each other. This indicates the

possibility of using physically separated filesystems to serve different

workflows to minimize interference while maximizing performance.

Sequential Sharing. Within a workflow, data tends to be shared sequen-

tially across different workflow steps. That is, typically, one workflow

step writes a dataset, closes all the files, and ends. Then, another fol-

lowup workflow step starts, opens all the files, and reads the dataset.

This indicates the possibility of decreasing the frequency of filesystem

synchronization and serialization. For example, a filesystem may

defer applying filesystem namespace changes in the form of deep

client logging until these changes are accessed by a followup reader

program which then causes all these changes to be bulk applied.

Mostly Self-Coordinated. Within a workflow step, the processes tend to

know each other and do not usually require the filesystem to achieve

synchronization. For example, the processes of a parallel simulation

job may be programmed to mechanically generate unique filenames

beneath a parent directory and therefore do not require the filesystem

to synchronously act as an arbitrator for settling competing file creates.

This indicates the possibility of delaying filesystem integrity checks

for less synchronization and improved parallelism while not risking

losing a potentially large amount of application work.

Known Readers. Scientific workflows tend to conclude with an analysis

step that runs queries against the data generated by previous steps.

In many scenarios, while these queries may be launched in an ad-hoc

manner, they tend to access data in a pattern that is known to the

early steps of a workflow. This indicates the possibility of combining

data capturing and post-processing into a single step in early stages

of a workflow so that analyzing data no longer first requires reading

back data for post-processing. As an example, a filesystem may be

configured to dynamically transform data to a read-optimized format

utilizing the compute power at the client side when a workflow step

writes data for subsequent analysis.

Having showed the components that make up today’s HPC platforms,

reviewed how modern scientific workflows run on these platforms, and
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discussed what parallel filesystems could look like from a modern scientific

application’s point of view, in the next section we explain why radical

changes of today’s parallel filesystems are needed and how modern parallel

filesystems and modern HPC storage can be re-imagined for future larger

scale scientific applications and computing environments.

1.3 Drivers for Changes

The need for immense and rapidly increasing scale in scientific computation

drives the need for rapidly increasing scale in storage for scientific data

processing. Three factors motivate our re-invention of modern parallel

filesystems and modern HPC storage for more scalable performance: (1)

the high cost of global serialization for strong consistency in modern

HPC environments, (2) the incompetence of the current state-of-the-art for

scalable query acceleration on small data, and (3) the severe performance

bottleneck caused by today’s parallel filesystem servers.

Global Serialization. Scientific applications achieve the best performance

when they spend most of their compute time performing compu-

tation. However, communication in storage systems is preventing

applications from achieving this goal. Modern parallel filesystems

such as Lustre [30] and GPFS [7] ensure strong consistency in filesys-

tem namespace updates. They do so by using distributed locking

[31] to maintain global synchronization at all times. That is, even

though modern HPC platforms are frequently made up of hundreds

of thousands of processor cores [32], every filesystem namespace

mutation invoked by any process in a computing cluster will be

globally synchronized and serialized with respect to all namespace

mutations invoked by any other process in that cluster. This is too

costly, and often unnecessary [33, 34]. Modern database research

has declared this to be unscalable without relaxing transactional

properties and requiring applications to understand and limit their

transactions to the physical partitioning of a database [35]. As we

further increase the size of our computers [36–38], it is imperative

for parallel filesystems to be able to take advantage of knowledge

from scientific applications to decrease the frequency and scope

of metadata synchronization and enable performance that would

otherwise be impossible due to global serialization.

10



Chapter 1 Introduction

Limitation of the Current State-of-the-Art. Analysis of large-scale simu-

lation output is a core element of scientific inquiry. Over the years,

advances in storage and network hardware and systems software

have been instrumental in mitigating the effect of I/O bottlenecks

in HPC environments. Still, many scientific applications that deal

with small data or small files are limited by the ability of both the

hardware and the software to handle such workloads efficiently.

This problem will be exacerbated with exascale computers, which

will allow scientific applications to run simulations at even larger

scales and finer granularity levels. Worse, scientific data is typically

persisted out of order, creating the need to budget time and resources

for a costly, massive sorting operation in the form of post processing

to speed up the queries at the final data analysis stage of a scientific

workflow [13, 39–41]. As the gap between compute and I/O will

further widen in future HPC environments [10, 42, 43], the cost of

reading back data — especially from a slow storage tier — for sorting

will only increase. It is therefore crucial to be able to speed up queries

in new ways that minimize readback and that better help scientists

leverage the massive amounts of small information they generate to

derive insights.

Filesystem Server Bottlenecks. Modern parallel filesystems are made up

of dedicated storage servers that handle data operations and ded-

icated metadata servers for filesystem metadata processing [8, 19].

Unfortunately, today these dedicated servers have become increas-

ingly a performance bottleneck. First, due to limited compute and

memory resources on dedicated parallel filesystem storage servers,

complex storage software stacks providing data compression, in-

dexing, and analytics have been increasingly unable to utilize all of

the underlying device performance on emerging HPC systems. At

the same time, dedicated parallel filesystem metadata servers have

been increasingly unable to promptly absorb the bursty metadata

load created by today’s metadata-intensive scientific applications [42,

44–46]. It is possible to hide the processing delay associated with

these dedicated servers through asynchronous processing [47–49].

However, in cases where the data needs to be immediately available

for queries or when the data must be stable on disk prior to applica-

tion completion, the time required for these operations will have to

be amortized immediately. When the server CPU cycles and memory

resources are insufficient for the demand of the incoming workload,

it is then critical for parallel filesystems to find a way to leverage

11
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the processing power and bandwidth of other parts of the system to

make up the difference, more effectively shielding applications from

the bottleneck and resource limitations of their dedicated servers.

When reimagining parallel filesystems and HPC storage in general, the

need for a deep relaxation of global serialization for parallel filesystem

metadata management, for new ways of accelerating small data queries,

and for a more drastic decoupling of scientific application from the un-

derlying filesystem server bottlenecks can be combined. First, parallel

filesystems can be provided as a lightweight storage service that is dynam-

ically instantiated on the compute nodes of a scientific workflow, taking

advantage of the workflow’s own initiative to flexibly assign compute and

bandwidth resources for high-performance filesystem metadata processing

and query acceleration while fully utilizing the underlying storage media

to prevent bottlenecks. At the same time, scientific workflows can leverage

a more lightweight filesystem to more efficiently orchestrate their data and

metadata activities, streaming packing and cataloging their data for fast

subsequent inquiry with minimum readback while performing only the

filesystem namespace synchronization and serialization that are needed

for the task at hand.

1.4 Summary of Work and Contributions

Thesis Statement

Parallel filesystems can keep up with the rapidly increasing scale of

modern scientific computation when they (a) decrease the frequency of

metadata synchronization according to application knowledge, (b) stop

integrating all namespace changes into a single, globally shared filesys-

tem namespace, and (c) re-invent themselves as non-dedicated client

services that are dynamically instantiated on job compute nodes for scal-

able streaming data processing and filesystem namespace management

on top of a shared underlying object store.

To defend this statement, this thesis presents the following pieces of work.

We show that LSM-Trees can be leveraged to enable efficient logging and

deferring of client namespace changes for scalable filesystem metadata

write performance. Prior work has showed the effectiveness of LSM-Trees

in parallel filesystem metadata management at the servers [26, 50, 51].

12
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In this thesis, we extend the use of LSM-Trees to client-side metadata

processing for fast metadata writeback caching and bulk insertion. Clients

execute metadata operations and log the resulting namespace mutations

in LSM-Tree table files stored in shared underlying storage for writeback

caching. We show that these client logged mutations can be efficiently

integrated with one big log append operation — that we call bulk insertion

— at the server for scalable metadata write performance. Bulk insertion

requires all clients and servers to agree on the format of their tables and

there is a way to verify delayed changes and a way to resolve conflicts.

Verification of delayed changes may be unneeded if changes are delayed

with locks and filesystem integrity is checked synchronously (Chapter

2). However, the best performance is achieved when changes are delayed

without locks (Chapter 3) and the filesystem no longer requires all changes

to be integrated into a single, globally shared filesystem namespace —

applications merge changes only when they need to (Chapter 4).

We show that the relaxed consistency requirements of modern scientific

workflows can be used to defer metadata synchronization for increased

parallelism. Modern parallel filesystems are designed for a worst-case

scenario in which applications rely on a strongly consistent filesystem to

achieve synchronization. However, this is often overkill for HPC applica-

tions, which tend to seek synchronization out side of the filesystem and

may not need to observe each other’s namespace updates immediately.

In this thesis, we show that it is possible for parallel filesystems to take

advantage of this property by not immediately integrating every filesystem

metadata mutation as soon as a client executes it. Instead, they defer it

through deep client metadata writeback caching and bulk insertion as

informed by application programs. While we see significant performance

gains when deferred metadata synchronization is restricted to locked empty

subtrees (Chapter 2), this thesis explores bolder designs in which meta-

data synchronization is deferred through logging against coarse-grained

public filesystem snapshots for maximum performance and parallelism.

To efficiently merge delayed changes, we discuss using client-constructed

correctness proofs to speed up the verification process during client meta-

data bulk insertion (Chapter 3). However, the ultimate reduction of parallel

filesystem metadata synchronization comes from a complete relaxation of

global serialization, in which client logged mutations are only on-demand

merged at the beginning of a scientific pipeline with unrelated pipelines

never having to communicate — their metadata synchronization is deferred

forever (Chapter 4).

13
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We show that non-dedicated client compute resources can be utilized for

scalable absorption of bursty filesystem metadata workloads. Modern

parallel filesystem metadata performance requires dynamically partition-

ing the filesystem namespace over multiple filesystem metadata servers to

achieve scalability [26, 27]. But even with a scalable namespace partitioning

scheme, potentially a significant number of dedicated metadata servers

may be needed in order for the system to be ready for an envisioned peak

metadata demand. Performing such planning and calculation of in modern

HPC environments is becoming increasingly inconvenient. In this thesis, we

explore the use of non-dedicated client compute resources to scale parallel

filesystem metadata performance by dynamically offloading filesystem

metadata processing functions to clients. The simplest form of such offload-

ing is deep client metadata writeback caching, in which a filesystem client

process obtains capability to execute filesystem metadata operations and to

format changes as metadata mutation logs (Chapter 2 and Chapter 3). When

delayed client changes must be merged, it is possible to extend the use of

client compute power to the pre-computation of correctness proofs for fast

server verification of delayed client changes and bottleneck prevention at

dedicated metadata servers (Chapter 3). Nevertheless, the potential of client

offloading is best observed when the whole parallel filesystem is reduced

to a simple object store that serves the filesystem’s data plane, with the rest

of the filesystem — the filesystem’s metadata plane — entirely provided

as client services dynamically instantiated on application compute nodes

and providing only the namespace synchronization and serialization that

are needed for the task at hand — such a design completely decouples

application metadata performance from the performance of the underlying

storage system in handling metadata-intensive workloads (Chapter 4).

Finally, we show that knowledge of scientific workflows can be taken ad-

vantage of to process data early in a scientific pipeline for fast post-hoc

data analysis without requiring post data processing. Scientific applica-

tions perform data analysis by writing data to storage and then running

queries against the data [13]. As data is not necessarily written in a format

that is optimized for the queries, a post-processing step is often inserted af-

ter the writes, transforming data to a read-optimized format before analysis

takes place. Post-processing can significantly improve query performance,

but the need to read back a potentially massive amount of data from

storage is rendering it increasingly prohibitive as data size grows. While

the high cost of post-processing is not new to the HPC community, in

this thesis we show a new way of addressing this drawback — Indexed

Massive Directories (IMDs) — in which the storage writeback buffers and

14
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2: In the form of compute resources.

the CPU cycles available on the compute nodes of the writer application are

harvested for streaming data processing, which dynamically transforms

data to a read-optimized format as the writer application writes it to storage:

no post-processing is then needed as long as the data access pattern of

the queries is known at data write time (Chapter 5). IMDs demonstrate

a new way of providing data acceleration capabilities in modern HPC

environments. Unlike emerging storage designs in which dedicated com-

pute resources near data at rest are leveraged to speed up data analysis,

in IMDs the acceleration takes place at the source of a data pipeline in a

streaming manner and available compute resources on the main computing

platform of an HPC cluster are harvested to perform the data acceleration

computation.

The invention of IMDs completes our repicturing of the future HPC

storage landscape: a plain object store serving as shared underlying storage

and on top of it dynamically instantiated client services providing rich

filesystem and data acceleration functions taking advantage of application

knowledge and scalable client compute resources to unlock performance

that is unattainable with today’s monolithic storage solutions.

This thesis makes the following contributions.

◮ A new form of parallel filesystem client metadata writeback caching in

which appendable LSM-Tree data structures are leveraged for efficient

logging and deferring of client namespace changes beneath a locked

empty subtree (Chapter 2);

◮ A client-funded2 parallel filesystem metadata design, BatchFS, in which

application compute resources are leveraged for massively parallel

filesystem metadata processing on top of immutable filesystem snap-

shots with client namespace changes optimistically logged for deferred

verification upon job completion (Chapter 3);

◮ The use of client-constructed correctness proofs for speeding up server

verification of delayed client namespace changes (Chapter 3);

◮ The use of dynamically instantiated VMs as auxiliary metadata servers

for scalable handling of delayed client changes preventing bottlenecks

at dedicated metadata servers (Chapter 3);

◮ A no-ground-truth parallel filesystem metadata design, DeltaFS, in
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3: No write amplification.

which application filesystem namespaces are dynamically composed

on an as-needed basis with unrelated applications never having to com-

municate and being forced to undergo unnecessary global serialization

(Chapter 4);

◮ The reduction of parallel filesystem metadata to only client middleware

that is dynamically instantiated on top of a shared underlying object

store for scalable performance beyond a fixed set of dedicated server

machines and a full decoupling of application metadata performance

from the performance of the underlying storage platform in handling

metadata-intensive workloads (Chapter 4);

◮ The use of filesystem snapshot registries and Internet-style search

engines as a new paradigm for sequential data sharing among related

scientific applications on HPC platforms (Chapter 4);

◮ A novel query acceleration mechanism, Indexed Massive Directories

(IMDs), in which available compute and storage writeback buffer re-

sources on job compute nodes are harvested for stream processing,

dynamically reorganizing data to a query-optimized format as an appli-

cation writes it to storage (Chapter 5);

◮ The use of aggressive data partitioning and filtering as a write-once3,

readback-free alternative to popular data indexing mechanisms such as

LSM-Trees for sequential-write, random-reads problems (Chapter 5);

1.5 Thesis Outline

The rest of this thesis is structured as follows.

In Chapter 2, we review our prior work, IndexFS, and propose a new

client metadata writeback caching and bulk insertion mechanism that

takes advantage of the log-structured metadata representation of IndexFS

to enable efficient logging and deferring of client namespace changes.

Our work on IndexFS extends the benefits of a log-structured filesystem

to client-side metadata processing and demonstrates the importance of

decreasing the frequency of metadata synchronization and serialization in

parallel filesystems for scalable performance.
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In Chapter 3, we study a more aggressive form of logging and deferring —

BatchFS — in which application clients obtain capabilities to locally execute

filesystem metadata operations and to log changes in shared storage by

attaching to a filesystem snapshot at program startup and later bulk

inserting all their changes at program completion for deferred verification

and integration. While BatchFS strives to handle delayed changes in a

scalable and efficient manner, its development exemplifies the inevitable

cost of maintaining even an asynchronously updated global filesystem

namespace in a large computing cluster. This leads us to develop a parallel

filesystem that simply does not use a global filesystem namespace and is

completely free of global serialization.

In Chapter 4, we present a no ground truth parallel filesystem design —

DeltaFS — that does not require global serialization and does not use any

dedicated metadata servers. Instead, a parallel job instantiates a filesystem

namespace service in client middleware that operates on only scalable

object storage and communicates with other jobs by sharing or publishing

namespace snapshots. DeltaFS demonstrates a new paradigm of providing

filesystem namespace services on shared storage. While being an extreme

design, DeltaFS maximizes the use of application knowledge and scalable

client compute resources to attain high performance and best exposes the

inherent concurrency in modern HPC environments.

In Chapter 5, we move our attention from parallel filesystem metadata

management to the data path where scientific workflows write data for

later analysis. We propose Indexed Massive Directories (IMDs) as a new

way for scientists to speed up their post-hoc data analysis queries. IMDs

take advantage of the available compute resources of a parallel scientific

workflow stage and dynamically reorganize data for fast subsequent reads

as data is written to storage. By making previously intractable problems

possible [52], our work on IMDs is another evidence of the effectiveness

of using application knowledge and scalable client compute resources to

attain high performance in modern HPC environments. The combined

creation of IndexFS [26], BatchFS [33], DeltaFS [34], and IMDs [53–56]

constitutes the full picture of our re-invention of scalable HPC storage.

With these, we conclude and discuss future work in Chapter 6.

17



Client Metadata Bulk Insertion 2

2.1 Background . . . . . . . . . . . . . . 18

2.2 Bulk Insertion Protocol . . . . . . 25

2.3 Evaluation . . . . . . . . . . . . . . 27

2.4 Related Work . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . 31

The evolution of distributed filesystem metadata has been a process of

decoupling. In this thesis, our journey of decoupling starts with extending

today’s client metadata writeback caching mechanisms to take advantage

of the log-structured filesystem metadata representation and bulk insertion

capabilities in emerging filesystem metadata designs. Our approach, named

Client Metadata Bulk Insertion, enables a set of lock-holding filesystem

clients to securely log namespace changes in shared storage and then

bulk apply all their changes in one big log append step. Client Metadata

Bulk Insertion drastically decreases the frequency of filesystem metadata

synchronization and serialization, enabling a filesystem to quickly absorb

a large amount filesystem metadata writes with minimum application

communication. At the same time, the development of this technique

lays the groundwork for more aggressive levels of logging and deferring

for parallel filesystem metadata management which we explore in later

chapters of this thesis.

The rest of this chapter is structured as follows. In Section 2.1, we discuss

the salient features of our prior work, IndexFS, upon which our client

metadata bulk insertion technique is built. In Section 2.2, we present the

design of our technique. Section 2.3 reports experimental results. We show

related work in Section 2.4 and summarize in Section 2.5.

2.1 Background: The IndexFS Filesystem

IndexFS [26] is a scalable parallel filesystem whose metadata is partitioned

for load balancing across multiple servers. Our client metadata bulk

insertion technique is based upon the IndexFS design to take advantage

of its log-structured filesystem metadata representation and its metadata

bulk insertion capability. To manage metadata information, IndexFS uses a

log format derived from TableFS [51] in which each file or directory has an

associated row in a table constructed with the LevelDB [57] realization of

a Log-Structured Merge (LSM) Tree [58]. A modified LevelDB is used to
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Figure 2.1: IndexFS is middleware layered
on top of an existing cluster filesystem de-
ployment to improve metadata and small
file operation efficiency. It reuses the data
path of the underlying filesystem and packs
directory entries, file attributes and small
file data into large immutable files that are
stored in the underlying filesystem.

enable direct insertion of native LevelDB table files to a LevelDB instance.

In this section, we present an overview of this scalable filesystem.

A Server Middleware Design. IndexFS is middleware inserted into

existing deployments of parallel filesystems to improve the metadata

efficiency of the base filesystem while maintaining high I/O bandwidth

for data transfers. Figure 2.1 depicts the overall design of the filesystem.

IndexFS uses a client-server architecture.

IndexFS Clients. Applications interact with IndexFS through a library

directly linked into the application, through the FUSE user-level filesystem,

or through a module in a common library such as MPI-IO [59]. The

client-side code redirects application file operations to the appropriate

destination according to the types of operations. All metadata requests

(e.g. create() and mkdir()), and data requests on small files (e.g. read()

and write()), are handled by the metadata indexing module that sends

these requests to the appropriate IndexFS server. For all data operations

on large size files, the client code redirects read requests directly to the

underlying cluster filesystem to take full advantage of data I/O bandwidth.

A newly created, but growing file may be transparently reopened in the

underlying filesystem by the client module. While a large file is reopened

in the underlying filesystem for write, some of its attributes (e.g., file size

and last access time) may change relative to IndexFS’s per-open copy of the

attributes. The IndexFS server will capture these changes on file close on

the metadata path. IndexFS clients employ caches to enhance performance

for frequently accessed metadata such as directory entry, directory server
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mapping, and subtree for bulk-insertion. Details about these caches will be

discussed in later sections.

IndexFS Servers. IndexFS employs a layered architecture derived from

TableFS [51] and similar to BigTable [60]. Each server manages a non-

overlapping portion of filesystem metadata, and packs metadata and small

file data into large flat files stored in the underlying shared distributed

filesystem.

Filesystem metadata is distributed across servers at the granularity of a

subset of a directory’s entries. Large directories are incrementally parti-

tioned using an algorithm called GIGA+ [61] when their size exceeds a

threshold. The module that packs metadata and small file data into large

immutable sorted files uses a data structure called a LSM-Tree [58]. Since

LSM-Trees convert random updates into sequential writes, they greatly

improve performance for metadata creation intensive workloads. For dura-

bility, IndexFS relies on the underlying distributed filesystem to replicate

LSM-Tree’s data files and write-ahead logs to achieve fault tolerance.

Dynamic Namespace Partitioning. IndexFS uses a dynamic namespace

partitioning policy to distribute both directories and directory entries

across all metadata servers. Unlike previous works [24, 25] that partition

file system namespace based on a collection of directories that form a sub-

tree, our namespace partitioning works at the directory subset granularity.

Figure 2.2 shows an example of distributing a file system tree to four

IndexFS metadata servers. Each directory is assigned to an initial metadata

server when it is created. The directory entries of all files in that directory

are initially stored in the same server. This works well for small directories

(e.g. 90% of file system directories have fewer than 128 entries in many

cluster file system instances [62]) since storing directory entries together

can preserve locality for scan operations such as readdir(). The initial

server assignment of a directory can be done through random server

selection. To further reduce the variance in the number of directory entries

stored in metadata servers, we also adapt the power of two choices load

balancing technique [63] to the initial server assignment. The power of

two choices technique assigns each directory by probing two random

servers and placing the directory on the server with fewer stored directory

entries. To reduce the number of probes, the metadata server can cache the

number of directories store on each server, and update these numbers less
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Figure 2.2: The figure shows how IndexFS
distributes a file system directory tree
evenly into four metadata servers. Path
traversal makes some directories (e.g. root
directory) more frequently accessed than
others. Thus state-less directory caching is
used to mitigate these hot spots.

frequently.

For the few directories that grow to a very large number of entries, IndexFS

uses the GIGA+ binary splitting technique to distribute directory entries

over multiple servers [61]. Each directory entry is hashed to uniformly map

it into a large hash-space that is range partitioned. GIGA+ incrementally

splits a directory in proportion to its size: a directory starts small, on a single

server that manages its entire hash-range. As the directory grows, GIGA+

splits the hash-range into halves and assigns the second half of the hash-

range to another metadata server. As these hash-ranges gain more directory

entries, they can be further split until the directory expands to use all

metadata servers. This splitting stops after the distributed directory is well

balanced on all servers. IndexFS servers and clients maintain a partition-to-

server mapping to locate entries of distributed directories. These mappings

are inconsistently cached at the clients to avoid cache consistency traffic;

stale mappings are corrected by any server inappropriately accessed.

Log-Structured Metadata Representation. The IndexFS metadata stor-

age backend implements a modified version of LSM-tree [58] to pack

metadata and small files into megabyte or larger chunks in the underlying

cluster file system. LevelDB provides a simple key-value store interface,

supporting point queries and range queries. LevelDB, by default, accumu-

lates the most recent changes inside an in-memory buffer and appends

change to a write-ahead log for fault tolerance. When the total size of the

changes to the in-memory buffer exceeds a threshold (e.g. 16 MB), these

changed entries are sorted, indexed, and written to disk as an immutable

file called an SSTable (sorted string table) [60]. These entries may then be

candidates for LRU replacement in the in-memory buffer and reloaded later

by searching SSTables on disk, until the first match occurs (the SSTables are
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key Parent directory ID, Hash(Name)

value Name, Attributes, Mapping|File Data|File Link

Table 2.1: The schema of keys and values
used by IndexFS.

searched most recent to oldest). The number of SSTables that need to be

searched is reduced by maintaining the minimum and maximum key value

and a Bloom filter[64] on each. However, over time, the cost of finding a

LevelDB record not in memory increases. Compaction is the process of

combining multiple overlapping range SSTables into a number of disjoint

range SSTables by merge sort. Compaction is used to decrease the number

of SSTables that might share any record, to increase the sequentiality of

data stored in SSTables, and reclaim deleted or overwritten entries. We now

discuss how IndexFS uses LevelDB to store metadata. We also describe the

modifications we made to LevelDB to support directory splitting and bulk

insertion.

Table Schema. Similar to our prior work in TableFS [51], IndexFS embeds

i-node attributes and small files with directory entries and stores them

into one LSM-Tree with an entry for each file and directory. The design of

using an LSM-Tree to implement local file system operations is covered in

TableFS [51], so here we only discuss the design details relevant to IndexFS.

To translate the hierarchical structure of the file system namespace into

key-value pairs, a 192-bit key is chosen to consist of the 64-bit i-node

number of a entry’s parent directory and a 128-bit hash value of its filename

string (final component of its pathname), as shown in Table 2.1. The value

of an entry contains the file’s full path name and i-node attributes, such

as i-node number, ownership, access mode, file size, timestamps (struct

stat in POSIX). For smaller files whose size is less than T (defaulting to

64KB) the value field also embeds the file’s data. For large files, the file

data field in a file row of the table is replaced by a symbolic link pointing

to the actual file object in the underlying distributed file system. The

advantage of embedding small file data is to reduce random disk reads for

lookup operations like getattr() and read() for small files, i.e. when the

users’ working set cannot be fully cached in memory. However, this brings

additional overhead to compaction processes since embedding increases

the data volume processed by each compaction.

The log file stores all file and directory attributes such as i-node number,

ownership, access mode, file size, timestamps (struct stat in Linux). For

small files with size less than ) (defaulting to 64KB), the file’s data is also

appended into the log file. For large files, only the symbolic link that points
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to the actual file object in the underlying file system is kept in the log file.

Column-Style Table for Faster Insertion. Some applications such as

check-pointing prefer fast insertion performance or fast pathname lookup

rather than fast directory list performance. To adapt for such applications,

IndexFS supports a second table schema called Column-Style that speeds

up the throughput of insertion, modification, and single entry lookup.

As shown in Figure 2.3, IndexFS’s column-style schema adds a second

index table sorted on the same key, stores only the final pathname com-

ponent string, permissions and a pointer to the corresponding record

in the full table. Like a secondary index, this table is smaller than the

full table, so it caches better and its compactions are less frequent. It can

also satisfy lookup() and readdir() accesses, the most important non-

mutation metadata accesses, without reference to the full table. With these

read-only accesses satisfied in the smaller, more cacheable table, IndexFS

eliminates the compaction overhead in the full table by treating it as a set of

logs and rarely, if ever, compacting the full table. Eliminating compaction

speeds up insertion intensive workloads significantly. Moreover, because

the index table contains a pointer (log ID and offset in this immutable log

file), and because each mutation of a directory entry or its embedded data

rewrites the entire row of the full table, there will only be one disk read if a

non-mutation access is not satisfied in the index table, speeding up single

file metadata accesses that miss in cache relative to the standard LevelDB

multiple level search. The disadvantage of this approach is that the full

table, as a collection of uncompacted log files, will not be in sorted order

on disk, so scans that cannot be satisfied in the index table will be more

expensive. Cleaning of unreferenced rows in the full table and resorting by

primary key (if needed at all) can be done by a background defragmentation

service. This service would write new logs and add replacement entries

into the index table before deleting the original logs.

Partition Splitting and Migration. To effectively integrate the dynamic

namespace distribution mechanism with our on-disk metadata represen-

tation, we have modified LevelDB to support splitting and migrating

directory partitions as required by GIGA+.

The file system metadata, including GIGA+ directory partitions and their

directory entries are stored in LevelDB as a set of immutable files (SSTable

23



Chapter 2 Client Metadata Bulk Insertion

key,path,attributes,small file!

...!

...!

key,path,attributes,small file!

...!

key! path, perm,è!

key! path, perm,è!

key! …!

….!

 Log Files!

le
x
ic

o
g

ra
p

h
ic

a
l 
o

rd
e

r!

c
h

ro
n

o
lo

g
ic

a
l 
o

rd
e

r!

 Index Files !

Figure 2.3: Column-style stores index and
log tables separately. Index tables are kept
in LevelDB which contains frequently ac-
cessed attributes for file lookups and the
pointer to the location of full file metadata
in the log file.

files) in a server specific directory in the underlying distributed file system.

Each metadata indexing server process splits a large partition% on into itself

and another hash partition %′ which is managed by a different server; this

split involves migrating approximately half the entries from old partition

% to the new partition %′ on another server. During splitting, the partition

in migration is locked against client for simplification. We explored several

ways to perform this cross-server partition split.

A straightforward solution would be to perform a range scan on partition

%, and remove about half the entries (that will be migrated to the new

partition %′) from %. All removed entries would then be batched together

and sent in a large RPC message to the server that will manage partition %′.

The split receiver would insert each key in the batch into its own LevelDB

instance. While simplicity of this solution makes it attractive, it is slow in

practice and vulnerable to failures during splitting.

IndexFS uses a faster and safer technique for splitting a directory partition

than is used by GIGA+. The immutability of SSTables in LevelDB makes

a fast bulk insert possible – an SSTable whose range does not overlap

any part of a current LSM-Tree can be added to LevelDB (as another

file at level 0) without its data being pushed through the write-ahead

log, in-memory cache, or compaction process. To take advantage of this

opportunity, we extended LevelDB to support a three-phase directory

partition split operation:

◮ Phase 1: The server initiating the split locks the directory (range) and

then performs a range scan on its LevelDB instance to find all entries

in the hash-range that needs to be moved to another server. Instead

of packing these into an RPC message, the results of this scan are

written in SSTable format to a file in the underlying distributed file

system.
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◮ Phase 2: The split initiator sends the split receiver the path to the

SSTable-format split file in small RPC message. Since this file is stored

in shared storage, the split receiver directly inserts it as a symbolic

link into its LevelDB tree structure without actually copying the file.

The insertion of the file into the split receiver is the commit part of

the split transaction.

◮ Phase 3: The final step is a clean-up phase: after the split receiver

completes the bulk insert operation, it notifies the initiator, who

deletes the migrated key-range from its LevelDB instance, unlocks

the range, and begins responding to clients with a redirection.

For Column-Style storage schema, only index tables need to be extracted

and bulk inserted into the split receiver. Data files, stored in the underlying

shared distributed file systems can be accessed by any metadata server.

In our current implementation there is a dedicated background thread

that maintains a queue of splitting tasks to throttle directory splitting to

only one split at a time to reduce the performance impact on concurrent

metadata operations.

2.2 Bulk Insertion Protocol

Motivation. Unfortunately, even with scalable metadata partitioning and

efficient on-disk metadata representation, the IndexFS metadata server can

only achieve about 10,000 file creates per second. This rate is dwarfed by the

speed of non-server based systems such as the small file mode of the Parallel

Log Structured Filesystem (PLFS) which is report to achieve a million file

creates per second per server [44]. Inspired by the metadata client caching

and bulk insertion techniques we used for directory splitting, IndexFS

implements write back caching at the client for creation of currently non-

existent directory subtrees. This technique may be viewed as an extension of

Lustre’s directory callbacks [30]. By using bulk insertion, IndexFS matches

PLFS’s create performance and achieves better lookup performance.

Since metadata in IndexFS is physically stored as SSTables, IndexFS clients

can complete creation locally if the file is known to be new and later bulk

insert all the file creation operations into IndexFS using a single SSTable

insertion. This eliminates the one RPC per file create overhead in IndexFS

allowing new file to be created much faster and enabling total throughput to
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scale linearly with the number of clients instead of the number of servers.

Protocol Design. To enable this technique, each IndexFS client is equipped

with an embedded metadata storage backend, which can perform local

metadata operations and spill SSTables to the underlying shared file sys-

tem. As IndexFS servers are already capable of merging external SSTables,

support at the server-side is straightforward.

Although client-side writeback caching of metadata can deliver ultra high

throughput to support efficient bulk insertion, global file system seman-

tics may no longer be guaranteed without server-side coordination. For

example, if the client-side creation code fails to ensure that permissions

are enforced, the IndexFS server can detect this as it first parses an SSTable

bulk-inserted by a client. Although file system rules are ultimately en-

forced, error status and rejected creates will not be delivered back to the

corresponding application code at the open() call site and will more likely

remain somewhat undetected in error logs. Quota control for the space

used by metadata will be similarly impacted, while data writes directly to

the underlying file system can still be appropriately growth limited.

IndexFS extends its lease-based cache consistent protocol to provide ex-

pected global semantics. IndexFS client wanting to use bulk insertion to

speed up the creation of new subtrees, issues a mkdir() with a special flag

“LOCALIZE", which causes an IndexFS server to create the directory and

return it with a renewable lease. During lease period, all files (or subdi-

rectories) created inside such directories will be exclusively served and

recorded by the client itself with high throughput. Before the lease expires,

the IndexFS client must return the corresponding subtree to the server, in

the form of an SSTable, through the underlying cluster file system. After

the lease expires, all bulk inserted directory entries will become visible to

all other clients. While the best creation performance will be achieved if the

IndexFS client renews its lease many times, it may not delay bulk insertion

arbitrarily. When another client is waiting for access to the localzied subtree,

the IndexFS server may deny a lease renewal so that the client needs to

complete its remaining bulk inserts quickly. If multiple clients want to

localize file creates inside the same directory, IndexFS mkdir() can take

a “SHARED_LOCALIZE" flag, and conflicting bulk inserts will be resolved at

the servers later. As bulk insertion cannot help data intensive workloads,

IndexFS clients automatically “expire" leases once such an IO pattern is

detected.
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Figure 2.4: Contribution of optimizations
to bulk insertion performance on top of
PVFS. Optimizations are cumulative.

Inside a localized directory, an application is able to perform all metadata

operations, not just mknod(). rename() is supported locally but can only

move files within the localized directory. Any operation not compatible

with localized directories can be executed if the directory is bulk inserted

and its lease expired.

IndexFS bulk insertion clients choose fault tolerance levels according to the

needs of the task at hand. To reach the highest throughput, write ahead

log can be disabled and all client-side SSTables can be stored in RAM.

However, all local metadata will get lost if that application crashes. To get

maximum durabilty, on the other hand, both write ahead log and SSTables

should be persisted in the underlying cluster file system, which maintains

replications for each single object.

2.3 Evaluation

Our experiment investigates four optimizations contributing to the bulk

insertion performance. We break down the performance difference between

the base server-side execution and the client-side bulk insertion, using the

following configurations:

◮ IndexFS Baseline is the base server-executed operation with syn-

chronous write-ahead logging in the server;

◮ +Async enables asynchronous logging (4KB buffer) in the server,
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increasing the number of recent operation vulnerable to server failure;

◮ +Bulk enables client-side bulk insertion to avoid RPC overhead with

asynchronous client side write ahead logging;

◮ +Column-Style enables Column-Style storage schema in client-side

when the client builds SSTables;

◮ +Large Buffer uses a larger buffer (64KB) for write-ahead logging,

increasing the number of recent operation vulnerable to server failure.

All experiments are run with 64 machines in the first cluster each hosting 2

clients and 1 server process. The workload we use is the mdtest benchmark.

We compare the performance of IndexFS with PVFS, where IndexFS is

layered on top of PVFS. To test IndexFS in synchronous mode, 16 clients per

server are used, a load high enough to benefit from group committing. And

PVFS is mounted on Ext3 under IndexFS, and on tmpfs when we compare

to it, to bias against IndexFS. Figure 2.4 shows the performance results. In

general, combining all optimizations improves file creation performance

by 113x compared to original PVFS mounted on tmpfs, and improves

file lookup performance by 8x. Asynchronous write-ahead logging can

bring 13x improvement to file creation by buffering 4KB of updates before

writing. Bulk insertion avoids overheads per-operation RPC to the server

and compaction in the server, which brings another 3x improvement.

Using a Column-Style storage schema in the client helps with both file

creation and lookup performance since the memory index caches well. The

improvement to file creation speed provided by enlarging the write-head

log buffer increases sub-linearly because it does not reduce the disk traffic

caused by building and writing SSTables.

2.4 Related Work

In this section, prior work related to metadata services in modern dis-

tributed filesystems and optimization techniques for high-performance

metadata is discussed.

Namespace Distribution. The Panasas filesystem [8] uses a coarse-grained

namespace distribution by assigning a subtree (called a volume) to each
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metadata server (called a direct blade). PVFS[29] is more fine-grained: it

spreads different directories, even those in the same subtree, on different

metadata servers. The Ceph FS [24] dynamically distributes the filesys-

tem namespace based on server loads on collections of directories. The

distributed directory service [25] in the Farsite filesystem [65] uses a tree-

structured file identifiers for each file. It partitions the metadata based on

the prefix of file identifiers, which simplifies the implementation of rename

operations. The Giraffa filesystem [66] builds its metadata service on top of

a distributed key value store, HBase [67]. It uses full pathnames as the key

for file metadata by default, and relies on HBase to achieve load balancing

on directory entries, which suffers the hot directory entries problem that

IndexFS fixes. Lustre [30] mostly uses one special machine for all metadata,

and is developing a distributed metadata implementation. The IBM GPFS

filesystem [7] is a symmetric client-as-server filesystem which distributes

mutation of metadata on shared network storage provided the workload

on each client is different and does not share the same directories.

Metadata Caching. For most traditional filesystems, including Panasas

[8], Lustre [9], GPFS [7], and Ceph [24], clients employ a name space

cache and attribute cache for lookup and getattr operations to speed up

path traversal. Most distributed filesystems use cache coherent protocols

with which parallel jobs in large systems suffer cache invalidation storms,

causing Panasas and Lustre to disable caching dynamically. PVFS, like

IndexFS, uses fixed-duration timeout (100 ms) on all cached entries, but

PVFS metadata servers do not block mutation of a leased duration entry.

Lustre offers two modes of metadata caching depending on different

metadata access patterns [30]. One is a writeback metadata caching that

allows clients to access a subtree locally via a journal on the client’s disk.

This mode is similar to bulk insertion used in IndexFS, but IndexFS clients

replicate the metadata in the underlying distributed filesystem instead

of the client’s local disk enabling failover to a remote metadata server.

Another mode offered by Lustre and Panasas is to sometimes execute all

metadata operations on the server side without any client cache, especially

during highly concurrent accesses. Farsite [25] employs the field-level

leases and a mechanism called a disjunctive lease to reduce false sharing of

metadata across clients and mitigate metadata hotspots. This mechanism is

complementary to our approach. However, it maintains more states about

the owner of the lease at the server in order to later invalidate the lease.
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Large Directories Support. A few cluster filesystems have added support

for distributing large directories, but most spread out the directories of a

large namespace. A beta release of OrangeFS, a commercially supported

PVFS distribution, uses a simplified version of GIGA+ [61] to distribute

large directories on several metadata servers [68]. Ceph uses an adaptive

partitioning technique for distributing its metadata and directories on

multiple metadata servers [24]. IBM GPFS uses extensible hashing to

distribute directories on different disks on a shared disk subsystem and

allows any client to lock blocks of disk storage [7]. Shared directory inserts

by multiple clients are very slow in GPFS because of lock contention, and

it only delivers high read-only directory read performance when directory

blocks are cached on all readers [61].

Metadata On-Disk Layout. A novel aspect of IndexFS is the use of

log-structured, indexed single-node metadata representation for faster

metadata performance. Several recent efforts have focused on improving

external indexing data-structures, such as bLSM trees [69], Stratified B-trees

[70], Fractal Trees [70], and VT-trees [71]. bLSM trees schedule compaction

to bound latency variance on insertion operations. VT-trees [71] exploit the

sequentiality in the workload by adding another indirection to avoid merge

sorting all aged SSTables during compaction. Stratified B-trees provides a

compact on-disk representation to support snapshots. TokuFS [72], similar

to TableFS [51], stores both filesystem metadata and data blocks into a fractal

tree which utilizes additional on-disk indices called the fractal cascading

index. Spyglass [73] partitions namespace metadata into smaller KD-trees

that fit in RAM so that namespace metadata can be searched in multiple

dimensions. However, their implementation avoids tree compaction, which

is often required; comparing its performance against other write-optimized

index is unclear.

Small Files Access Optimization. Previous work [74] proposed several

techniques to improve small-file access in PVFS. For example, stuffing file

content within inode, coalescing metadata commits and prefetching small

file data during getattr() speed up for small file workloads. These tech-

niques have been adopted in our implementation of IndexFS. Facebook’s

Haystack [75] uses a log-structured approach and holds the entire metadata

index in memory to serve workloads with bounded tail latency.

30



Chapter 2 Client Metadata Bulk Insertion

Bulk Loading Optimization. Considerable work has been done to add

bulk loading capability to new shared nothing key value databases. PNUTS

[76] has bulk insertion of range-partitioned tables. It attempts to optimize

data movement between machines and reduce transfer time by adding a

planning phase to gather statistics and automatically tune the system for

future incoming workloads. The distributed key-value database Voldemort

[77] like IndexFS, partitions bulk-loaded data into index files and data files.

However, it utilizes offline MapReduce jobs to construct the indices before

bulk loading. Other databases such as HBase [67] use a similar approach

to bulk load data.

2.5 Summary

While dynamic namespace partitioning enables IndexFS to scale beyond

a single metadata server, the client metadata bulk insertion technique

discussed in this chapter further boosts IndexFS’s metadata performance

by another order of magnitude. Our work on extending IndexFS shows the

importance of decreasing the frequency of filesystem metadata synchroniza-

tion and serialization for parallel filesystem metadata management. Our

work also demonstrates the effectiveness of utilization of a log-structured

metadata representation for new ways of client metadata writeback caching

that are more efficient compared with the current state-of-the-art. The idea

of deep metadata logging and deferring is further extended in later chapters

of this thesis to enable more scalable parallel filesystem metadata designs,

namely the client-funded filesystem metadata design of BatchFS and the

no-ground-truth filesystem metadata design of DeltaFS, as we discuss in

Chapter 3 and Chapter 4.
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Modern parallel filesystems are designed for a worst-case scenario in

which applications rely on a strongly consistent filesystem to achieve

synchronization. However, this is often overkill for HPC applications,

which tend to seek synchronization out side of the filesystem and may

not need to observe each other’s namespace updates immediately. In this

chapter, we describe a client-funded filesystem metadata design, BatchFS,

that optimistically assigns metadata processing capabilities to filesystem

clients if they are willing to take advantage of a relaxed consistency model

to reduce the frequency of global serialization and increase parallelism.

In BatchFS, a filesystem client obtains capability to handle its own filesystem

metadata operations by entering into a special batch mode. Each batch

client sees a snapshot of a filesystem. All filesystem metadata mutations

executed by the client are optimistically logged for later verification and bulk

insertion. To handle deferred verification in a scalable and secure manner,

BatchFS clients construct proofs of the correctness of their mutations.

Dynamically instantiated server VM processes validate these proofs and

apply client mutations in one bulk insertion.

BatchFS extends on the client metadata bulk insertion technique we pre-

sented in Chapter 2. While our previous technique restricted the logging

and deferring of namespace changes to newly created subtrees and locked

out non-cooperating processes from seeing the newly created subtrees,

BatchFS undertakes a bolder idea in which namespace synchronization is

deferred without locks.

BatchFS provides important insights on new ways of providing filesys-

tem metadata processing capabilities on modern HPC platforms. On the

one hand, BatchFS demonstrates the effectiveness of utilizing application

knowledge and non-dedicated client compute resources to scale filesystem

metadata performance. On the other hand, BatchFS shows the inevitable

cost of maintaining one globally serialized filesystem namespace in a large

computing cluster. These insights encouraged us to develop deeper levels

of decoupling that more completely free applications from the burden of
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global filesystem metadata synchronization and serialization, which we

show in Chapter 4.

The rest of this chapter is structured as follows. In Section 3.1, we show the

motivation behind BatchFS. In Section 3.2, we present the BatchFS design.

Section 3.3 reports experimental results. We show related work in Section

3.4 and summarize in Section 3.5.

3.1 Motivation

Filesystems define the interface between applications and the underlying

storage provider. Unlike local filesystems that sit directly upon a block

device, most parallel filesystems have adopted a layered architecture

characterized by a dedicated metadata service layer backed by an object

storage infrastructure serving as the persistence layer for both file data and

filesystem metadata [19, 24]. With namespace management decoupled from

the data path, filesystem clients are able to stream data directly through

individual object storage servers in a scale-out manner, allowing these

backend servers to better utilize available hardware resources and maximize

I/O bandwidth. Unfortunately, since filesystem clients are required to

perform namespace lookups and undergo semantic checks before they can

access file contents through the data path, metadata intensive workloads

can still bottleneck at the filesystem metadata layer, which is typically

designed as a centralized metadata server for ease of implementation [20,

21].

To alleviate this bottleneck, modern filesystems have been rebuilding their

control planes with multiple metadata servers [7, 8, 29] featuring tech-

niques ranging from static namespace sharding or federation, to dynamic

namespace partitioning. In addition, some of these filesystems are able

to perform directory splitting under different heuristics, representing dif-

ferent design trade-offs and facilitating fine-grained parallelism on their

metadata paths [26, 27, 61]. Notwithstanding a multi-server architecture,

client-side metadata throughput can often be throttled by lock contention

on common directories, server-side transaction ordering, and RPC over-

head, let alone other common performance issues such as load imbalance

and skewed access patterns. As exascale data centers are starting to emerge,

it can become even more challenging to achieve a scale-out filesystem for

metadata-hungry applications.
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1: Metadata servers are generally allocated

entire machines because their in-memory

state will consume all available resources.

2: These data structures collectively repre-

sent a set of metadata mutation logs that are

carefully grouped by common ACL settings

in order to ensure high-level data privacy.

3: Applications anticipating or experienc-

ing substantial interference from other non-

cooperating processes can fall back to syn-

chronous (but potentially slow) access on

dedicated metadata servers.

A filesystem control plane consisting of multiple dedicated metadata

servers is limited by the maximum metadata performance that this number

of machines is able to deliver1. In order to better accommodate metadata-

heavy massive-scale parallel HPC workloads, we propose a client-driven

filesystem metadata architecture that allows applications to handle their

own metadata operations locally mostly without server intervention. Unlike

existing filesystems that dedicate metadata server processes and machines

to coordinate every metadata request in a centralized way, our filesystem

can avoid inefficient RPC overheads and safeguards applications from

unnecessary resource contention at the server side, effectively allowing the

system to scale beyond a fixed sized control plane.

In addition, many filesystems are designed for a worst-case scenario where

applications rely on a strongly consistent filesystem to synchronize with

each other. However, this is often overkill for batch applications, which

are usually carefully programmed to perform tasks cooperatively with

little external coordination. Our client-driven filesystem design exploits

this opportunity and uses a relaxed consistency model to manage batch

application metadata.

We envision a better filesystem interface that can adapt to coordinated

metadata access by providing options for applications to batch metadata

operations and delay semantic checks, allowing cooperating clients to pay

for synchronization only when it is indeed necessary. Applications obtain

capabilities to locally process namespace operations by linking to a user-

level library filesystem, which enjoys direct access to filesystem metadata

represented as a set of log-structured table-based data structures2 stored in

a shared underlying persistence layer [26, 51, 72, 78, 79]. Each job operates

upon a filesystem snapshot and self-manages its namespace. By reusing

server-side logic, applications are able to encode metadata mutations

directly into on-disk metadata representations (as well as write-ahead log

entries). When synchronization is eventually needed, a client process can

submit its modified filesystem image to the global master image in order

to merge updates. Part of this design, known as metadata bulk insertion,

along with the efficient underlying on-disk metadata representation, has

been implemented in our previous work, IndexFS [26].

To secure global namespace semantics in a decentralized filesystem meta-

data layer, optimistic server-side namespace verification is used to establish

a total order for all legitimate metadata operations bulk inserted by batch

applications3 In order for this to work in a scalable way, we introduce auxil-
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4: We focus on high-level namespace in-

tegrity, which is stronger than the low-level

data integrity that is secured by the under-

lying storage infrastructure.

iary metadata servers, which are temporary daemon processes running on

client resources with root privileges. Guarded by trusted virtual machines,

these worker servers are responsible for verifying untrusted client-side

filesystem mutations and committing them into the global master image.

In addition, we envision an efficient mechanism for clients to pre-compute

proofs of the correctness of their filesystem mutations. With these proofs,

server-side namespace verification may be effectively simplified as a process

of proof validation4.

By reorganizing the filesystem control plane into a set of decoupled and

client-based metadata processing endpoints, we envision a highly scalable

filesystem metadata architecture, BatchFS, which extends our previous

work, IndexFS [26]. IndexFS features a log-structured on-disk metadata

representation and a simplified implementation of metadata bulk insertion.

BatchFS makes the following contributions: 1) a re-designed filesystem

control plane harnessing client resources to achieve scalability, 2) deferred

namespace synchronization enabled by efficient filesystem snapshots and

fast metadata bulk insertion, 3) optimistic server-side metadata verification

enabled by client-generated proofs, and 4) weak filesystem semantics

targeting batch (or cooperating) applications.

3.2 System Design

In general, interaction among a set of processes comes in two forms: 1)

interaction among the processes of an integrated job or framework, and

2) interaction between unrelated jobs or systems, which, unfortunately,

specifically use the file system as a synchronization platform. We refer to

file system clients that demonstrate the former kind of interaction as batch

clients, and the latter as interactive clients or non-cooperating clients.

Assumptions. In designing BatchFS, we have been guided by common

metadata access patterns and execution environments shared by batch

applications in HPC data centers.

◮ Batch workloads usually only access a pre-constructed set of files

for input, and normally generate their output files in a way that

deterministically avoids name conflicts.
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◮ Batch workloads are characterized by a natural preference for high

throughput as opposed to low latency. Few place stringent response

time requirements on individual metadata requests, provided overall

throughput is high enough.

◮ Files generated by batch jobs rarely get accessed until after these

batch jobs have completed execution. There is a special case, however,

for job owners monitoring output files in order to enable online user

steering and fast detection of wasted resources; we will deal with

this case separately.

◮ Batch jobs normally protect themselves against failures by stop-

and-copy checkpointing, backing up their in-memory state into an

underlying cluster file system before moving to the next stage. In this

paper, we focus on one-file-per-process (N-N) checkpointing because

one-file-per-job (N-1) checkpointing can be transformed into N-N

checkpointing using a user-space translation layer such as PLFS [44].

◮ Most HPC data centers are equipped with dedicated storage infras-

tructures hosting large-scale cluster file systems, which are optimized

for maximum data bandwidth but often lack a scalable metadata

path [42].

Interfaces. BatchFS targets the standard POSIX API. Applications in-

voke BatchFS routines with BatchFS’s client-side user library or indirectly

through FUSE or MPI-IO [59]. Like its predecessor, IndexFS [26], BatchFS

handles namespace related operations but redirects all data requests to a

specific underlying storage infrastructure, which holds both file contents

and namespace metadata images generated by BatchFS. Different from

IndexFS, BatchFS allows its clients to dynamically select between different

namespace synchronization modes. This, along with its new consistency

model, is discussed further later in this section.

Architecture. A BatchFS cluster is organized as a metadata control plane

layered on top of a scalable storage infrastructure serving as the underlying

data plane. Rather than only having a fixed set of dedicated metadata servers

like the original IndexFS, BatchFS’s unique control plane features three

different types of metadata processing engines: Primary Metadata Servers,

Auxiliary Metadata Servers, and Private Metadata Servers, illustrated in
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Underlying Storage Infrastructure (e.g. Parallel File System)
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Figure 3.1: BatchFS is designed as file sys-
tem metadata middleware layered on top
of an existing cluster file system or an object
storage platform exposing a flat namespace,
which allows BatchFS to reuse the data
path offered by these underlying storage
substrates already optimized and tuned for
maximum bandwidth. BatchFS features a
client-driven metadata architecture that can
shift server computation to client machines
to achieve highly agile scalability.

5: While some file systems, like IndexFS,

can add additional dedicated servers, this

is a slow, physical provisioning action done

by an administrator. We consider this non-

scalable because it is so slow and unlikely

to be triggered by the needs of specific jobs.

Figure 3.1.

Primary metadata servers are dedicated servers running on dedicated

server nodes. These non-scaling5 servers collectively manage the master

image of the file system, with each server hosting a non-overlapping set of

directory partitions [26, 61]. Interactive clients communicate with primary

metadata servers to update the namespace synchronously, obtaining a

latest view of the global namespace, albeit without scalable performance.

Both auxiliary and private metadata servers are designed to be temporary

metadata processing entities that run on-demand using client resources.

We call these Client-Funded Metadata Servers. BatchFS library code linked

into each application constitutes a private metadata server, which can be

viewed as a full-fledged but untrusted metadata server associated with a

file system snapshot and subject to access control provided synchronously

by the underlying scalable data plane. These embedded metadata servers

enable batch clients to access and modify their private namespaces locally

without contacting any primary metadata servers, until they want their

local mutations to be visible to non-cooperating jobs.

Auxiliary metadata servers are trusted daemon processes responsible for

merging client-side namespace mutations into the global master image.

Outsourcing this potentially heavy computation to auxiliary metadata

servers shields primary metadata servers from becoming a performance

bottleneck, and leads to better utilization of the underlying system.
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6: This means a client with permission to

read a directory must also be allowed to

read the attributes (and embedded file data,

if any) of the files under that directory.

Metadata Representation. In IndexFS, the global file system namespace

is represented by a set of large directory entry tables with embedded

inodes and possibly embedded file contents as well. Each file is mapped

to a unique row inside the table. When flushed to disk, each table will

be transformed into a set of log-structured table-based data structures

formatted as SSTables (Sorted String Table). SSTables [57] are immutable

data containers that are partially ordered so that newer table entries

always supersede older ones. SSTable serves as the physical format for

metadata migration and bulk insertion [26, 51]. In addition, a tree of

SSTables form a file system snapshot. BatchFS extends IndexFS and inherits

its efficient metadata processing engine to support high-performance

metadata mutation, migration, and bulk insertion.

As a new feature, BatchFS allows batch clients to request snapshots (col-

lections of SSTables) of the current file system image, which they can use

to establish a private copy of the snapshot namespace. SSTables no longer

referenced in any file system snapshot can be safely discarded. In addition,

files marked deleted in all SSTables can be purged from the underlying

storage infrastructure without leaving null pointers.

To generate a snapshot for a requesting client, a primary metadata server

performs an in-memory cache flush and sends the client a manifest that

lists all SSTables comprising the current file system image. To prohibit a

malicious client from accessing restricted data by scanning an entire file

system snapshot inappropriately, BatchFS generates separate SSTables for

each user-group combination so that every file referred in an SSTable has

the same permission bits6. This way, high-level access control can be directly

enforced by the underlying storage infrastructure. Note that this is designed

for environments with simple ACL practices, which we expect in most HPC

data centers. Similarly, user quota control is also synchronously enforced

by the underlying storage infrastructure. For ease of implementation, quota

management may only apply to file data, as the size of metadata is almost

always dwarfed by the size of data in the file system as a whole.

Consistency Model. BatchFS features a relaxed consistency model target-

ing HPC applications. BatchFS clients associated with different snapshots of

the file system can observe distinct namespaces. Interactive clients commu-

nicating with non-scaling primary metadata servers are kept in sync with

the master image of the file system, which reflects all committed operations

executed at the global namespace. Any individual metadata operation
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7: This verification and commit process

can be delayed (potentially forever) until

the first non-cooperating access, or delayed

verification may be processed in the back-

ground in order to reduce (eventual) access

latency.

accepted by a primary metadata server is immediately committed, with its

consequence immediately becoming visible to all subsequent file system

calls and snapshots. On the other hand, batch workloads associated with

local private metadata servers are logically disconnected from primary

metadata servers. In fact, each batch client operates within its own file

system image that originates from a specific snapshot of the master image.

Metadata operations accepted by a private metadata server are immediately

executed in the private namespace albeit remain uncommitted and invisible

to other parallel file system clients, until an auxiliary server validates and

publishes these changes.

Initially, BatchFS clients act as interactive clients, transmitting every meta-

data operation to a primary metadata server for global execution. Batch

applications wishing to exploit BatchFS’s fast asynchronous metadata

interface explicitly call BatchFS to establish their own private namespaces,

converting themselves to batch execution mode (possibly for only a subtree

of the overall namespace). BatchFS clients can switch back to the original

synchronous execution mode whenever server coordination is needed.

This entails closing the current private namespace, flushing changes to the

underlying storage infrastructure, starting a new auxiliary metadata server,

and asking it to merge the corresponding namespace mutations into the

global file system image. We expect most batch applications to stay in batch

execution mode until they complete a checkpoint or terminate.

Namespace Verification. To protect namespace integrity in the presence

of untrusted clients, changes to a client namespace must be verified by an

auxiliary metadata server before being inserted into the global namespace7.

In BatchFS, any client namespace re-producible from a legal sequence of

file system operations is considered a legitimate candidate for namespace

merging. Unfortunately, in practice, it could be hard for an auxiliary

metadata server to guess the valid operation sequence that happens to

yield a given client namespace. To resolve this problem, BatchFS requires

every client to submit, in addition to the resulting namespace changes, a

proof of the correctness of its namespace mutations. As such, an auxiliary

metadata server should be able to efficiently verify a client namespace by

validating its associated proof.

A proof can be easy to construct, but unnecessarily large, if it is provided

directly as the original sequence of operations executed at the client side.

With such a proof, an auxiliary metadata server can perform checks simply
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by re-executing those operations and comparing results. To reduce the proof

size, clients can reorder and merge commutative and associative file system

operations. This leads to reduced verification computation, allowing client

mutations to be checked faster. In the extreme, we envision a logic-based

namespace certification process where clients provide formal proofs that

their namespace changes respect the file system’s semantics. An auxiliary

metadata server could validate these proofs without re-executing any file

system operations, without using cryptography, and without consulting

any external trusted entities. Once the validation succeeds, the associated

namespace can be safely trusted and accepted. We refer to this as self-

provable metadata representation, inspired by similar techniques in other

contexts [80, 81].

Optimistic Concurrency Control. To reconcile conflicts between global

file system semantics and asynchronous namespace management, BatchFS

employs optimistic concurrency control [82] commonly seen in database

systems to order metadata operations. That is, clients do not do two-phase

locking; they optimistically assume there will be no conflict. However,

instead of using the generic notion of read/write set to verify its transactions,

BatchFS applies file system semantics to verify namespace integrity and

consistency. For example, a file creation can be reordered with a chmod

if it is compatible with both the before and after permissions [83]. This

resists a batch of file system operations from being unnecessarily rejected.

In addition, different from a traditional database, BatchFS allows a batch

of client-side namespace mutations to fail partially during the verification

phase and does not necessarily roll back the whole transaction. This avoids

a minor infraction from destroying a potentially large amount of work.

Rejected namespace mutation notifications are available to users in external

logs and associated files may be retained with mechanically modified

names by BatchFS for users to resolve conflicts later.

Adaptation of Job Monitoring Programs. BatchFS’s design is in part

motivated by the compatibility of a relaxed consistency model with batch

applications. However, weak consistency could introduce problems for

job monitoring utilities, which normally rely on strongly consistent file

systems to achieve live user feedback, such as progress indication and data

preview, because they appear to be non-cooperating processes.

In practice, live feedback, progress indication in particular, can be estimated
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via a proxy, such as the size of output files generated by a batch job, which

can in turn simply be a stale number as opposed to an up-to-date value [84].

Based on this observation, BatchFS includes a separate metadata interface

targeted at monitoring utilities. Designed with weak consistency in mind,

this special interface provides applications with “metadata snapshots”

(snapshots of file size for example) that do not necessarily represent a

latest value but are designed to return newer versions under a sequence of

repeated file system calls. With this interface, progress monitoring can be

efficiently implemented without forcing batch jobs to perform unnecessary

synchronization, thus ensuring high performance.

3.3 Evaluation

In this section, we report experiments done on our previous work, IndexFS

[26], to show the promise of BatchFS’s file system metadata architecture. As

BatchFS’s predecessor, IndexFS allows its clients to complete file creation

operations locally if these files are known to be new, and will later bulk

insert all these cached operations into the global namespace using a

single SSTable insertion. This feature, a simple metadata bulk insertion, is

extended by BatchFS to provide additional features such as ACL-specific

file system snapshots, self-provable metadata representation, client-funded

auxiliary metadata servers, and optimistic concurrency control. As a result,

performance measurements of IndexFS showed in this section can be

viewed as an optimistic projection of future BatchFS performance.

To show the efficiency of IndexFS’s metadata bulk insertion, a consistent

client-side metadata write-back cache, we ran our experiments with this

cache mechanism either enabled or disabled. More specifically, we mea-

sured performance on an IndexFS cluster where IndexFS was layered upon

HDFS [21]. It consisted of 8 HDFS data nodes and 1 HDFS metadata node

(an HDFS name node) and was configured with four different settings, as

is illustrated in Figure 3.2.

To model metadata-intensive applications, we used a synthetic micro-

benchmark tool, mdtest [85], to insert zero-byte files into multiple newly

created directories. We generated a two-phase workload. In the first phase,

N clients each create one private directory and then insert files into that

directory. In the second phase, each of these clients performs getattr in

a random order on the files created under its own directory. In total, M
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Setup-I: Single IndexFS Server Setup-II: Dual IndexFS Servers

Setup-III: Full IndexFS Servers Setup-IV: Client-Side Bulk Insertion

HDFS Name Node HDFS Date Node IndexFS Server

IndexFS Clients IndexFS Clients with Bulk Insertion

……

… … Figure 3.2: IndexFS with four different se-
tups to model different amount of server
resources. All our machines are from the
NSF PRObE Kodiak cluster and are con-
figured with dual 2.6 GHz AMD Opteron
processors, 8 GB of memory, two 1 TB 7200
rpm SATA disks, and a 1000 Mbps Ether-
net NIC, with each running 64-bit Ubuntu
12.04 upon Linux 3.2.16. Note that this con-
figuration was set up for ease of testing,
real clusters often use dedicated hardware
for the storage infrastructure and their file
system servers.
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Figure 3.3: With bulk insertion, BatchFS’s
predecessor, IndexFS, is able to outperform
HDFS by 360x and IndexFS without bulk
insertion by as much as 18x. Bulk insertion
also results in better metadata read perfor-
mance, but metadata footprint is too large
for 100% cache hits and getattrs may have
to wait on HDFS data nodes.

million files will be created and stat’d, where M is the total number of

IndexFS servers or bulk insertion clients. The total number of clients, N,

varies from 8 to 64.

Our experimental results are illustrated in Figure 3.3. In general, with the

presence of a client-side metadata write-back cache, clients are able to drive

an 8x to 360x increase in file creation throughput, in addition to better

metadata read performance. This can in part be attributed to the faster

metadata path, the more aggressive usage of client resources, as well as a

local in-memory metadata cache provided by their embedded metadata

processing modules. Moreover, compared with synchronous metadata

processing that must be coordinated by a set of centralized metadata

servers, allowing clients to self-manage their private namespaces indeed

leads to better utilization of the underlying hardware resources, since the

same system is delivering much higher throughput when bulk insertion is

activated.

42



Chapter 3 Relaxed Consistency and Client-Funded Filesystem Metadata

3.4 Related Work

Serverless filesystems [7, 86] are often characterized by a set of symmetric

file servers that are each capable of serving the whole filesystem namespace.

This architecture is used by BatchFS primary and client-funded auxiliary

metadata servers to achieve both high scalability and high efficiency. To im-

prove write performance, PLFS [44] devised a library-based user-level index

structure capable of shaping I/O access patterns and aggregating small files,

which allows it to avoid performance bottlenecks at the underlying cluster

filesystem. PLFS inspired our approach to improving speed by decoupling

sharing where possible and showed us where read performance would be

of concern. BatchFS’s client-side metadata write-back cache can also be

used to buffer small files. In addition, BatchFS’s log-structured table-based

on-disk metadata representation is general purpose and integrated with

the filesystem.

RPC is an important but performance limiting component in distributed

filesystems. Mercury [87] is an efficient RPC subsystem optimized for HPC

data centers. It uses the traditional TCP/IP based network channel to send

control messages but redirects bulk data to dedicated RDMA channels

for fast transfer. BatchFS features a similar optimization mechanism that

separates the filesystem control plane and data plane. In addition, BatchFS

uses SSTables stored in the shared underlying storage infrastructure as

a virtual communication channel to enable efficient metadata access and

bulk insertion.

Modern HPC filesystems often use dedicated I/O nodes for integrated data

buffering and I/O forwarding [88, 89]. These techniques are orthogonal

and complementary to BatchFS, which could utilize them for its private,

auxiliary, or primary metadata servers.

BatchFS employs optimistic concurrency control protocol [82] commonly

seen in data-intensive and database systems to increase concurrency. How-

ever, BatchFS does not enforce transaction atomicity as it allows a batch of

metadata operations to fail partially during verification without rollback.

In addition, BatchFS, like other weakly consistent systems [90–92], allows

its applications to later merge conflicts and retry specific operations if the

initial verification was rejected by the server.

Optimistic concurrency control and conditional operations have been used
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on file data in order to enable richer filesystem primitives for application

coordination [93–95]. BatchFS is different from these techniques in that it

focuses on metadata concurrency and targets batch applications that do

not use the filesystem as a synchronization mechanism.

In order to secure auxiliary metadata servers, BatchFS relies on VMs to

isolate these servers from adversary attacks. This can also be achieved

through remote attestation, which is available in today’s software distribu-

tions [96, 97] as well as commodity security co-processors such as industry

standard Trusted Platform Modules. Finally, BatchFS’s self-provable meta-

data representation is designed upon the observation that validating an

answer is much simpler than solving the original problem [80, 81].

3.5 Summary

Metadata scalability is limited in today’s HPC parallel filesystems because

(1) it usually employs an RPC per operation; (2) its semantics require the

status results of one operation to be known before the next is submitted;

(3) its authorization enforcement requires dedicated (fixed number of)

server machines; and (4) its durable representation of metadata is usu-

ally updated with random seeks for every mutation. With techniques for

deferring and batching metadata operations, for reconciling concurrent

weakly consistent mutations with optimistic concurrency control, for log-

structured and indexed on-disk representation, for trusting code running

in a user-contributed virtual machine, and for weakened semantics in

high performance filesystems, BatchFS proposes to allow the cooperating

processes of a single job to pre-execute all of their own metadata opera-

tions on a snapshot of the filesystem namespace, presenting all resulting

mutations back to the central filesystem in as few as a single batch, and

providing a “proof” of the correctness and authorization of these mutations

for optimistic concurrency control and selective reconciliation as late as

possible to maximize job independence and throughput. Moreover, BatchFS

allows user jobs to allocate virtual machines running filesystem server

code to scale metadata throughput with resources that local administrators

would not want to dedicate to filesystem servers. To show the promise

of this vision for scalable metadata services, BatchFS reports on a less ex-

pensive implementation of client-embedded metadata writeback caching,

which shows 8x to 360x throughput improvement over today’s common

implementations based on a single or a few dedicated metadata servers.
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It is an idea universally acknowledged that a distributed parallel filesystem

serving an exascale supercomputer must be in need of a large number of

dedicated metadata servers for high metadata performance. In this chapter,

we show that this need not be the case. Quite the opposite. We present a no

ground truth parallel filesystem metadata design, DeltaFS, and argue that

parallel filesystems scale better without dedicated metadata servers.

Dedicated metadata servers are inconvenient. A filesystem with dedicated

metadata servers is limited by the maximum performance that that sum

of machines are able to deliver. In addition, a cluster designer needs

to determine the amount of compute resources to be dedicated to the

filesystem’s metadata beforehand and, to ensure high performance, a

significant amount of resources may be needed.

DeltaFS uses no dedicated metadata servers. Instead, a parallel job instanti-

ates a filesystem namespace service in client middleware that operates on

only scalable object storage and communicates with other jobs by sharing

or publishing namespace snapshots. DeltaFS scales better because it dy-

namically distributes filesystem metadata processing across job compute

nodes rather than restricting it to dedicated metadata servers. Moreover,

DeltaFS does not use the idea of a global namespace, so unrelated jobs

never have to communicate.

4.1 Motivation

Three factors motivate our work: the limitations of today’s distributed

filesystem metadata techniques, the undue cost of today’s filesystem

metadata semantics, and the inflexibility of today’s resource provisioning

strategies for distributed filesystems.

Distributed filesystems today are known for their scalable access to file

data [7, 9, 19, 29]. Scalable filesystem metadata access, on the other hand,
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depends on dynamic namespace partitioning which spreads the processing

of metadata across multiple filesystem metadata servers [8, 24–27, 61].

While being a crucial technique, dynamic namespace partitioning does not

prevent globally serialized namespaces. Worse, in order for the filesystem

to be ready for an envisioned peak metadata demand, dynamic namespace

partitioning may require a large number of servers to be dedicated. This

reduces the overall resource utilization of a computing cluster. It is possible

to improve resource usage by utilizing a more efficient data structure

to manage the metadata information of files as fewer servers will then

be needed [26, 51, 72, 78, 79]. But even these efficient filesystem designs

will not stop global serialization, and applications continue to experience

bottlenecks.

To address the bottlenecks caused by global serialization and to avoid it

for new ways of providing filesystem namespace services on distributed

computing environments, we need to examine the filesystem metadata

semantics that underlie today’s distributed filesystems. First, distributed

filesystems today use one filesystem namespace to store all files. Having

one namespace simplifies data sharing. But for applications that do not

communicate [13], storing their files in one namespace is largely unnecessary.

In addition, modern filesystems tend to serialize namespace changes at the

moment they occur. But in cases where files created by an application are left

untouched until a later reader program that reads these files in a batch [10,

98], immediate serialization can be overkill. To avoid limiting application

performance for features that are not necessarily helpful, in this paper we

show a new paradigm for distributed filesystem metadata where filesystem

namespaces are explicitly composed from namespace mutation logs written

by previous application runs. This enables applications to control the

scope and timing of data sharing and allows costly synchronization and

serialization activities to be deferred until they are needed by the job at

hand.

Explicitly composing namespaces for applications causes delays due to

log compaction that an application must experience before it can access

a namespace efficiently. To minimize such delays, having a high peak

filesystem metadata performance that can quickly absorb these compaction

operations becomes critical. Unfortunately, modern distributed filesystem

metadata performance is coupled with dedicated resources. The peak

metadata performance of a filesystem is limited by the total amount of

computing power of its dedicated metadata servers [8, 24]. To enable higher

levels of peak metadata performance, our solution is to have applications
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independently allocate compute resources for metadata processing. This

distributes resource provisioning decisions and the control and processing

of metadata over individual applications in a computing cluster. Applica-

tions independently determine the amount of resources to be devoted to

the filesystem and instantiate services to process metadata operations. In

extreme cases, as much as an entire cluster can be utilized to scale filesystem

metadata performance.

We propose DeltaFS, a new paradigm for managing distributed filesystem

namespace information on shared storage. Rather than providing a single

shared filesystem namespace service for all applications in a computing

cluster, DeltaFS uses application knowledge to avoid unnecessary global

serialization and to simply filesystem resource provisioning.

A DeltaFS computing cluster features no dedicated metadata servers.

Application jobs independently instantiate filesystem namespace services

on client nodes, and record namespace changes (such as the creation and

deletion of files) as immutable namespace mutation logs stored in a shared

underlying storage system. We refer to these shared logs as deltas. Deltas

are log-structured. They can be chained together and merged to form

namespace views that reflect changes made through a set of previous

application runs. DeltaFS users use this mechanism to orchestrate data

sharing for their applications, preventing unnecessary synchronization

and serialization.

4.2 A Serverless Architecture

A DeltaFS computing cluster to have no filesystems as we know today [10, 12].

Instead, a shared scalable object store serves as a cluster’s underlying storage

[99]. Applications use only client middleware software to initialize and

access their filesystem namespaces, and independently allocate computing

resources for metadata processing. There are no dedicated filesystem

metadata servers. Both file data and filesystem metadata are directly stored

as compact log objects in the underlying object store. Data is not discarded

after an application run and can be made accessible to followup jobs and

other cluster users.
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Pitfalls of Dedicated Servers. The current state-of-the-art distributed

filesystem metadata is defined by client processes communicating with

a set of dedicated filesystem metadata servers [8, 24]. Each filesystem

metadata server manages a partition of the filesystem’s namespace. The

overall metadata performance of the filesystem can be viewed as a function

of the number of servers and the amount of compute resources each server

has.

The canonical way to improve filesystem metadata performance is to add

more nodes to run as dedicated filesystem metadata servers. This approach

works best when performance scales linearly with the number of servers

dedicated. While scalable designs exist to enable dynamic namespace

partitioning over large numbers of servers [8, 24–27, 61], we expect this

approach to be increasingly inconvenient as future clusters enable higher

levels of scale and performance.

First, as cluster size grows, the metadata demand of the cluster grows

with it. Worse, with emerging computing clusters combining multiple

compute and network technologies to meet performance, reliability, and

cost goals, the new types of applications they enable can be far more

metadata intensive than the ones we see today. To match the performance

of these applications, potentially a significant portion of a computing cluster

will have to be devoted to the filesystem to become dedicated metadata

servers, which leaves fewer compute resources available for running user

jobs. This reduces the effective capacity of the cluster.

Second, relying on dedicated resources to serve filesystem metadata re-

quires knowing the right amount of resources to dedicate. But because not

all applications of a cluster are metadata-intensive and metadata-intensive

ones may not use the filesystem all the time, the amount of resources to be

devoted to the filesystem can be hard to determine beforehand. This leads

to bottlenecks when the actual filesystem metadata demand of the cluster

is too high compared with the estimation, and a waste of resources when

otherwise.

DeltaFS allows for more flexible resource provisioning for distributed

filesystem metadata. This is because that in DeltaFS metadata is a service

that is dynamically instantiated by applications on compute nodes, so the

resource for metadata can be configured at a finer granularity and adjusted

on a per-application basis. A metadata-intensive application may employ

as much as an entire computing cluster to process metadata operations,
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whereas a metadata-light application can allocate as few as a single CPU

core to do so.

Formative Examples and Their Problems. The opposite of dedicating

servers is to be completely serverless. In a serverless filesystem, there is no

dedicated file managers [31, 86, 100, 101]. Instead, a cluster of client nodes

collectively manage a filesystem namespace. They do so by storing the data

and the metadata of the files in a shared underlying storage system [102].

Each node understands the filesystem’s on-storage data structures and

can dynamically assume responsibility for any file in the filesystem when

the file is accessed by the node. To achieve synchronization, all nodes use

locks [31, 103–105] to reach consensus on the current owners of the files

in the filesystem. The current owner flushes all dirty information to the

shared underlying storage before a new owner takes over. This approach

contrasts with filesystems such as Ceph [24] and the Panasas Filesystem

[8] where dedicated metadata managers each own a specific partition of

the filesystem and all its associated data structures on storage.

Today, serverless designs are often found in Storage Area Network (SAN)

filesystems [7, 106–109] serving enterprise applications. Scalability is fre-

quently an issue due to the large amount of communication needed to

achieve synchronization. To mitigate this problem, real world deployments

typically limit cluster size to a small number (usually less than 10). For

larger scale deployments, a small set of client nodes are often specialized

as dedicated file managers. These dedicated managers then export the

filesystem to the rest of the cluster which no longer act as managers of

the filesystem [110, 111]. Notwithstanding many benefits, such deployment

approaches largely defeat the goal of being serverless, and filesystem

performance reverses back to being coupled with the amount of resources

dedicated.

Our work can be viewed as a revival of this classic shared-storage approach

for filesystem metadata. To more scalably distribute filesystem metadata

computing capabilities across clients, our design decouples clients from

each other. A client metadata manager no longer serves all jobs under

a single cluster-wide filesystem namespace. Instead, jobs each launch

their own metadata managers. Different jobs work on different per-job

namespaces. Cross-job communication is done through shared storage

with jobs independently reading and merging immutable namespace data

published by previous jobs — no need to perform global synchronization
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among all job processes all the time.

Decreasing Synchronization Frequency. Frequent synchronization in-

creases interprocess communication, which limits the levels of throughput

(op/s) that can be achieved from a given set of compute resources. One

way to decrease the frequency of synchronization and serialization in

distributed filesystems is client-side write buffering. Clients locally apply

changes to the filesystem. A record is put on a lock manager for each file

with outstanding changes buffered at one or more clients.

4.3 Filesystem Format

DeltaFS provides scalable filesystem metadata services by leveraging

application knowledge and resources. The philosophy of our approach can

be summed up with the phrase — no false sharing, no free lunch. On the one

hand, applications self-define their filesystem namespaces to decouple from

each other. On the other hand, applications are expected to devote their own

compute node resources to progress filesystem metadata operations and to

perform necessary work (e.g., log compaction) to speedup their followup

metadata accesses. There is no longer a dedicated service maintaining a

shared namespace for everyone causing unnecessary performance and

scalability bottlenecks.

Our design consists of two parts: A) a format that the filesystem uses to

record metadata information on shared storage, and B) a set of software

entities that run in client middleware to provide filesystem metadata

services. In this section, we describe the filesystem format and its associated

data structures on storage.

A Log-Structured Approach for Filesystem Metadata. DeltaFS is log-

structured. Filesystem metadata information is persisted as logs. A metadata

write operation applies changes by writing new log entries to storage (no

in-place update, even for deletes, which are marked by tombstones). A

metadata read operation recalls information by searching and reading

related log entries from storage. Each log entry has a key, identifying the

file or the directory being recorded in the entry.
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Figure 4.1: Each application can be viewed
as executing a big append. It takes one or
more DAGs of previously logged filesystem
metadata changes as input, appends new
changes on top of it, and produces a new
DAG of changes as output. In this figure,
App1 takes DAG A as input, producing DAG
B. App2 takes DAG B as input, producing
DAG C. App3 takes both DAG B and C as
input, producing DAG D. App3 gives DAG
B a higher priority than C, so it sees the
/p/y created in B (Cyan) rather than the
one created in C (Orange).

In its simplest form an DeltaFS filesystem is an assemble of filesystem meta-

data logs. Logs are stored as named objects in a shared underlying object

store accessible to all applications on a computing platform. Applications

operate directly upon logs. They read logs to recover filesystem metadata

information previously recorded on storage, and write new logs to append

new information. Logs are named by applications. The underlying object

store ensures that log names are unique.

DeltaFS applications start by defining a base filesystem namespace. In

the simplest case, an application starts with an empty base and exits

with a log recording all filesystem metadata changes that the application

makes to the base. In cases where an application’s execution requires

reading the filenames written by a set of preceding applications (sequential

data sharing), the application uses the logs produced by those preceding

applications to instantiate its base namespace, obtaining the metadata

information of all files and directories recorded in the logs. The application

then executes filesystem metadata operations on top of the base, creating

new names or having existing ones (including those inherited from the logs)

modified or deleted. The application writes log entries to record each such

change. Upon termination, the application releases all its log entries. These

log entries comprise all metadata changes that the application makes to

the base. These logged changes (referred to as a change set), along with the

base (which essentially is filesystem metadata changes logged previously),

can in turn be used by subsequent applications to instantiate their own

base namespaces.

When building a base namespace atop two or more sets of previously

logged changes, it is possible for names recorded in different change sets to

conflict. To resolve this problem, an application defines a priority ordering

for all change sets on which it depends such that names recorded in a
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ID(/) a 2 No ID(a) Directory …

ID(/) b 1 No ID(b) Directory …
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ID(b) z 6 No ID(z) File …
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Figure 4.2: Illustration of representing
filesystem metadata as a sequence of logged
changes formatted as KV pairs. Each KV
pair formats a change. It stores the meta-
data information (file ID, type, permissions,
etc.) of a file after a change. Changes are
logged as an application executes meta-
data mutation operations. Each mutation
is logged as one or more changes. Each
change is keyed on the name of the file
being changed. Logged changes are sorted
by key enabling fast directory lookups and
scans. Changes are time ordered by their
sequence numbers. A tombstone bit shows
if a change is a delete.

higher priority set take precedence.

The execution of an DeltaFS application can be viewed as a big append

operation: it appends a set of logged changes to one or more DAGs of

previously logged changes, forming a new DAG of changes. As Figure 4.1

illustrates, each DAG has a root. Each node in a DAG denotes a change set

(corresponding to an application execution). Each directed edge denotes

a dependency between two sets of logged changes (corresponding to a

sequential data sharing relationship between two applications). Changes at

the top of a DAG override changes at the bottom. While it may be tempting

to deem DeltaFS similar to filesystems like UnionFS [112] and OverlayFS

[113], there are a few key distinctions. UnionFS-like filesystems try to

provide a unified namespace view over heterogeneous filesystem formats.

They are limited by direct updates, fan-out executions, and copy-on-write

overlay techniques. DeltaFS enables efficient composing and even merging

of namespaces atop a single filesystem format. Plus, it uses a log-structured

filesystem metadata representation to achieve high performance.

To recall a filename from a DAG, the root node of the DAG is searched first.

If a non-tombstone record is found, the record is immediately returned.

If a tombstone record is found, the filename is immediately considered

non-existent. Otherwise, the sub-DAGs beneath the root will be searched,

starting from the sub-DAG with the highest priority. The filename will

eventually be deemed non-existent when no non-tombstone record can be

found in any of the sub-DAGs.

Log Format. As Figure 4.2 illustrates, we use key-value (KV) pairs to

format the metadata changes we write to storage. Each KV pair formats a

change. We store the name of the file being changed in key and the metadata
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Figure 4.3: Illustration of writing a filesys-
tem metadata change set recording the
metadata changes an application makes
during its execution. A) Metadata changes
made by an application are first formatted
as KV pairs and written to a write-ahead
log (chgset2.WAL) for fault tolerance. B)
The changes are then inserted into an in-
memory buffer space for fast sorting when
the buffer is full. C) Sorted memory buffers
are flushed to storage as KV tables stored
as metadata log objects (chgset2-xxx.log) in
an underlying object store. D) A manifest
object (chgset2.MANIFEST) is created to
remember all metadata log objects created
as part of the set and all input change sets of
the application as the dependencies of the
set. E) Data for large files is stored at sepa-
rate data objects referenced by the metadata
log objects in the underlying object store.

information of the file after the change in value. A special tombstone bit is

recorded in key to indicate whether a logged change is a delete. Additionally,

each change is assigned a sequence number. Changes with higher sequence

numbers supersede changes with lower numbers.

We use parent directory IDs and the base names of files to represent

filenames. Storing directory IDs (instead of their full pathnames) in keys

prevents potentially massive key updates when an entire directory tree is

renamed [27, 114]. To further improve performance, we keep keys indexed

and sorted on storage. Sorting speeds up directory lookups and improves

the locality needed for efficient directory scans [26].

The metadata information we store for each file includes file ID, file type,

file data for small files, and file permissions for hierarchical access control.

For small files, storing data with metadata improves overall data locality

and reduces the total number of seeks to the remote storage for reading

or writing a file [26]. For large files, we store file data as plain objects in a

shared underlying object store. Per-file data may be spread across multiple

data objects in order to provide scalable performance to individual files

[28]. A file layout is put in the metadata record of each large file so that a

reader or a writer knows how to access a file.

Log Storage and Reference Counting. We use change sets to group the

metadata changes we put on storage. Each change set is a recording of

all metadata changes that an application makes during an execution. An

application takes one or more change sets as input and produces a new
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change set as output. To start writing a change set, an application creates a

manifest object in the underlying object store and records in it the names

of all the input change sets of the application as the dependencies of the

set. Next, an in-memory buffer space is allocated in application memory to

buffer incoming metadata changes formatted as KV pairs as the application

executes its program. Whenever the in-memory write buffer is full, it is

sorted in memory and appended to storage as a sorted KV table. A metadata

log object is created in the underlying object store to store the contents of

the table (one log object per table). The name of the log object, as well as

the key range of the table, is then logged in the manifest object so that a

subsequent reader knows which object to open to recall the contents of the

table. To prevent data loss, a write-ahead log is created in the underlying

object store for failure recovery of the in-memory write buffer. Metadata

changes are written to the in-memory buffer only after they have been

logged in the write-ahead log. The manifest object, the write-ahead log,

the metadata log objects listed in the manifest, and all the data objects

storing file data for large files constitute the entire state of a change set, as

we illustrate in Figure 4.3.

Change sets can be deleted when they are no longer needed. A user deletes

a change set by invoking a special filesystem program using the name of

the change set as argument. To prevent deleting a change set while other

change sets may still depend on it, we have each change set hold a reference

to itself and to each of its dependencies. When a user deletes a change set

using a special filesystem program, the set’s reference to itself is removed.

All member objects (the manifest, the write-ahead log, and all metadata

log objects) of the set will be deleted if no other change set has a reference

to it. When a change set is deleted, all its references to other change sets

will be removed enabling these change sets to be garbage collected too.

We perform reference counting on data objects as well. Data objects store

data for large files. Two reasons make reference counting them important.

First, the metadata information of a file may be updated across multiple

change sets causing all of these change sets to have dependencies on the

data of the file. Second, it is possible for an application to delete a file in

one change set while other applications working on other change sets may

still need the file to be alive. Data objects are referenced by metadata log

objects and write-ahead logs. A metadata log object or a write-ahead log

holds a reference to a data object when it has file data stored in it. A data

object is deleted when all the metadata log objects and the write-ahead logs

referencing it have been deleted. We use a shim layer running on top of the
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Figure 4.4: Illustration of log compaction
within a single change set. In this example,
Table 2 and 3 are merged into a new table,
Table 4. When merging tables, keys with
low sequence numbers are retired by their
high sequence number counterparts. For
example, Key d in Table 2 is retired by its
counterpart in Table 3. After compaction, a
record with updated member log informa-
tion is inserted into the manifest object of
the change set, committing the result of the
compaction. All metadata log objects and
data objects no longer referenced are then
deleted from the underlying object store
such as Obj d. Reading Key a required 3
table lookups before compaction: Table 3,
2, and 1. After compaction, only 2 lookups
are required: Table 4 and 1.

underlying object store to provide scalable reference counting services for

both data objects and change sets.

Log Compaction. We run log compaction to clean and reorganize the logs

within a single change set. Each log compaction operation can be viewed

as a #-way merge sort. It takes # individually sorted tables as input and

replaces them with a single sorted table as output. Log compaction serves

two purposes: garbage collection (by finishing data removal deferred by

logged tombstones) and read optimization (by reducing the total number

of table lookups needed to search a filename).

Figure 4.4 shows an example of log compaction. Before logs are compacted,

there are a total of 3 tables in the change set and looking up a key could

take up to 3 table lookups. After log compaction, the set consists of just

2 tables and looking up a key takes no more than 2 table lookups. When

merging tables, keys sharing a same filename prefix are merged such that

only the one with the highest sequence number is copied into the new

table. Old metadata log entries no longer taking effect are discarded. After

tables are merged, the newly constructed table is registered at the manifest

object of the change set and the old tables being merged are deregistered.

Next, the metadata log objects storing the old tables are deleted from the

underlying object store and their references to data objects are removed.

Finally, all data objects whose reference count falls to zero after compaction

are deleted and storage space used by these data objects is reclaimed.
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Figure 4.5: Our baseline runs launch meta-
data servers on dedicated server machines.
This is how the current state-of-the-art par-
allel filesystems such as Lustre and GPFS
are deployed in production.
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Figure 4.6: DeltaFS does not use dedicated
metadata servers. Instead, jobs dynamically
instantiate filesystem namespace services
on client machines. In our experiments,
we view each test as one single job and
launch 1 metadata server instance per client
node used. These metadata servers serve all
clients of a test. Each server is responsible
for a partition of the test job’s filesystem
namespace.

4.4 Experiments

We run experiments to demonstrate the effectiveness of the DeltaFS no

ground truth parallel filesystem metadata design. All our experiments

are performed on the CMU Narwhal computing cluster. Each Narwhal

node has 4 CPU cores, 16GB of memory, and 70GB of HDD storage. A total

of 140 nodes are used. Among them 128 are used as filesystem clients, 2

as dedicated filesystem metadata servers when the run requires it, and

the remaining 10 as storage nodes providing shared underlying storage

for both the filesystem and the filesystem clients. We use Ceph RADOS

to implement our underlying storage [24, 99, 115]. Our 10 storage nodes

consist of 8 Ceph OSD servers, 1 Ceph manager, and 1 Ceph monitor. Two

1GbE networks are used. One for the foreground communication between

a filesystem client and a filesystem server or among filesystem clients. The

other for the background communication between the filesystem (either

clients or servers) and the underlying storage.

Advantage of Being Free from Dedicated Servers. Our first set of ex-

periments compare the performance of filesystems that use dedicated

metadata servers (baseline) and filesystems that do not use dedicated

metadata servers and instead distribute metadata processing across client

machines (DeltaFS). We use mdtest to drive our tests. Each our test consists

of clients inserting empty files into a pool of pre-created parent directories

and then stat’ing the files they just created. All runs start with an empty

filesystem (except for those pre-created parent directories). Each client

creates and stats 200K files. Both the creation and stating are done in a

random order with regard to filenames. For baseline runs, we use 1 or 2

dedicated metadata servers to serve clients using 1 or 2 dedicated server

nodes, as Figure 4.5 shows. For DeltaFS runs, we run 1 metadata server

instance for each client compute node used, as Figure 4.6 shows. Our

smallest run used 1 client node, 4 client processes, and created 800K (0.8M)

files. Our largest run used 128 client nodes, 512 client processes, and created

a total of 102.4M files.

Figure 4.7a compares the insertion performance between baseline runs and

DeltaFS runs. The canonical way to improve parallel filesystem metadata

performance is to add more dedicated metadata servers. This works. Our

baseline runs with 2 dedicated servers are about 2x faster than the runs with

1 dedicated server. Unfortunately, filesystems that use dedicated metadata
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(a) Comparison of write (fcreate) performance between baseline runs and DeltaFS runs
using up to 128 client nodes and 512 client processes (4 client processes per client node).
Baseline runs are limited by their dedicated servers to deliver high insertion performance.
DeltaFS runs spawn 1 metadata server per client node (up to 128), show scalable write
performance as the amount of available client resources increases, and are up to 23.75x
faster. The speedup is less than 128x because of CPU saturation at the client nodes and
bottlenecks at the shared underlying storage.
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(b) Comparison of read (lstat) performance between baseline runs and DeltaFS runs.
Similar to what Figure 4.7a shows, baseline runs are limited by their dedicated servers
to deliver high performance whereas DeltaFS runs show scalable performance and are
up to 9.01x faster. The speedup is less than that in Figure 4.7a due to bottlenecks at the
shared underlying storage when filesystem metadata is read from it.
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(c) Comparison of read (lstat) performance when metadata information is fully cached
at server memory. DeltaFS runs use up to 128 servers and are up to 31.03x faster compared
with the baseline. The speedup is less than 128x due to CPU saturation at the client nodes.

Figure 4.7: Experiment results comparing
read (lstat) and write (fcreate) perfor-
mance of filesystems that use dedicated
metadata servers and filesystems that do
not use dedicated metadata servers and in-
stead distribute metadata processing over
client machines. For runs with dedicated
metadata servers (baseline runs), up to 2
dedicated server nodes and up to 128 client
machines are used. For runs without dedi-
cated metadata servers (DeltaFS runs), up
to the same amount of client nodes are
used and DeltaFS spawns 1 server instance
per client node and on that very client
node. Up to 128 client-colocated metadata
servers are used. All runs execute the same
filesystem server code and are configured
with the same amount of total metadata
cache. DeltaFS runs may be able to use
more writeback buffers and more LSM-Tree
compaction memories due to having more
server instances.
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of time spent in seconds for creating a to-
tal of 102.4 million files using 128 client
nodes (512 client processes) and 1 dedicated
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non-dedicated (DeltaFS) metadata servers.
DeltaFS is 43.38x faster in base work, 11.10x
faster in write-ahead logging, 63.75x less
costly in being blocked by background com-
paction activities, and 20.64x faster in name
collision checks for an aggregate speedup
of 23.75x as we report in Figure 4.7a.

servers are ultimately limited by their dedicated servers to deliver high

performance. Once the dedicated servers are saturated, performance stops

increasing and to enable higher performance more servers will need to be

added. DeltaFS decouples filesystem metadata performance from the use of

dedicated server machines. By distributing work across all available client

nodes, DeltaFS runs show scalable metadata performance that increases as

the amount of available client resources increase. At 512 client processes,

DeltaFS is 23.75x faster than the baseline with 1 dedicated metadata

server.

To better understand the 23.75x speedup of DeltaFS at 512 client processes,

Figure 4.8 breaks down the cost of file creates at the server side. We divide

the cost into 4 categories: (1) performing name collision checks, (2) waiting

for background compactions, (3) write-ahead logging, and (4) the rest of

the server-side work for creating a file (base work). To measure the cost of

one category, we do two runs — one with the cost and one without — and

then measure the difference in time. Cost is measured accumulatively. We

start with runs without collision checks, background compaction, or write-

ahead logging. We then gradually add write-ahead logging, background

compaction, and collision checks.

By distributing work across 128 client-colocated metadata servers, DeltaFS

is up to 43.38x faster in performing the base work. The speedup is less than

128x because of CPU saturation at the client side. At the same time, the

most significant cost of file creates lies in performing name collision checks

for which DeltaFS is up to 20.64x faster than baseline runs. The reason that

this speedup is less than that for the base work is due to bottlenecks in

the sharing underlying storage when performing collision checks requires

reading metadata information from it. DeltaFS gains speedup from less

background compaction throttling (due to having a smaller metadata

footprint per metadata server) and more concurrent write-ahead logging
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(a) Early Integration in a parallel DeltaFS job.
Job namespace is dynamically partitioned
across job metadata servers (S1, S2, and S3).
Each server is responsible for one namespace
partition. Namespace updates executed by
job processes (P1, P2, and P3) are immedi-
ately sent to the corresponding servers for
integration both for strong consistency and
for eager SSTable compaction for fast reads.

Parallel All-to-All Compaction

C1

P1

S1

C3

P3

S3

C2

P2

S2

SSTSSTSST

C1 C3C2

SST SSTSST

(b) Deferred Integration in DeltaFS. Per-
process namespace updates are directly
logged through process-local metadata
servers as SSTables. SSTable merging, parti-
tioning, and compaction are delayed until
post-processing and are carried out in the
form of a job-wide parallel all-to-all com-
paction program where each compaction
process (C1, C2, and C3) acts both as an
SSTable reader and as an SSTable writer.

Figure 4.9: Illustration of early integra-
tion and deferred integration in DeltaFS.
Whereas early integration ensures strong
consistency and immediately optimizes
metadata storage for fast reads, deferred
integration delays merging and read opti-
mization until post-processing which per-
forms both in a large batch.

(due to having more servers) too, though their effect is less significant in

our test runs.

Figure 4.7b compares the metadata read performance between baseline

runs and DeltaFS runs. Similar to metadata writes, DeltaFS shows scalable

performance and is not limited by dedicated servers to deliver high perfor-

mance. At 512 client processes, DeltaFS is up to 9.01x faster than baseline

runs. This speedup is less than the 23.75x that we see in Figure 4.7a because

of bottlenecks at the shared underlying storage.

Figure 4.7c shows performance of metadata reads when all metadata

information is cached in memory. Without being blocked by storage reads,

full-cache DeltaFS is up to 31.03x faster than full-cache baseline runs. Due

to CPU saturation at the client nodes, the speedup is still less than 128x.

Advantage of Deferred Integration. DeltaFS distributes work across

client machines to achieve scalable performance. Filesystem namespace

updates are immediately sent to client-colocated metadata servers for

early integration. Early integration has two advantages. First, it ensures

strong consistency. Filesystem namespace updates executed by one client

process are immediately visible to all other processes of a parallel job. At

the same time, early integration allows the underlying metadata storage
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(a) Comparison of early integration and deferred integration in DeltaFS. Early integration
used up to 512 client processes and 128 client-colocated metadata servers. In deferred
integration each client process doubles as a metadata server for sequential metadata
logging and there are no standalone metadata servers. A followup compaction program
merges and rewrites all namespace data for fast reads (time shown separately in figure).
Deferred integration yields better performance due to aggressive batching and a more
streamlined inter-process communication process during post-processing. The reason
that the gap between early integration and deferred integration appears to be reducing is
due to bottlenecks at the shared underlying storage and the fact that deferred integration
runs are overall more efficient so that their performance is more sensitive to the increasing
cost of name collision checks and filesystem write-ahead logging as job size increases.
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(b) Comparison of early integration and deferred integration with early integration runs
now spawn the same amount of metadata servers as clients (up to 512 client-colocated
metadata servers) and use batching when making RPC calls to servers (96 file creates
per RPC instead of 1). Due to more efficient client-server communication, batched
early integration shows comparable performance with deferred integration. Deferred
integration exhibits reduced total cost for large job sizes and has the advantage of being
able to skip merging and compaction altogether when fast metadata read performance is
not immediate required following job completion.

Figure 4.10: Experiment results comparing
early metadata integration and deferred in-
tegration in DeltaFS. With early integration,
per-job client metadata updates are imme-
diately merged at job metadata servers and
eagerly optimized for fast reads. With de-
ferred integration, by contrast, there are
no standalone job metadata servers. In-
stead, per-job metadata updates are directly
logged at per-process log files during job ex-
ecution and later bulk merged and parallel
compacted for fast reads.

representation (SSTables) to be immediately optimized for fast subsequent

reads. This is done by dynamically partitioning a parallel job’s filesystem

namespace across all available metadata servers of the job, immediately

sending client filesystem namespace updates to job servers according to

this partitioning, and then by having servers constantly run background

compactions to optimize SSTables for fast reads, as we show in Figure 4.9a.

For scientific workflows that do not require filesystem namespace updates

to be immediately visible job-wide and do not require these updates’

underlying storage representation to be immediately optimized for fast
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Figure 4.11: Illustration of a symmetric
DeltaFS deployment. Each job process acts
both as a filesystem client and as a meta-
data server managing a partition of the job’s
filesystem namespace. The job no longer
spawns standalone metadata servers as Fig-
ure 4.6 shows.

reads, it is possible to defer integration by having clients directly log

filesystem namespace updates in shared storage through an embedded

local metadata server and then by running a job-wide parallel compaction

program to merge and rewrite these metadata logs, partitioning and

reorganizing them for fast reads. We call this deferred integration, as

Figure 4.9b depicts.

Our second set of experiments compares the performance of early integra-

tion and deferred integration in DeltaFS. We focus on time to full integration.

For early integration, this measures the time for all client filesystem meta-

data operations to be processed at the server end. For deferred integration,

this measures the time for all client filesystem metadata operations to be

processed and logged at the client end and then for a followup parallel

post-processing program to finish merging and compacting all logged

namespace updates.

We use our DeltaFS results in Figure 4.7a to show the performance of

early integration. To evaluate the performance of deferred integration,

we perform the same tests but with a symmetric DeltaFS deployment

where each application process acts both as a filesystem client and as a

filesystem metadata server as Figure 4.11 illustrates. These per-process

metadata servers directly process the local client’s metadata operations and

log namespace updates in shared storage. Processing metadata operations

includes performing write-ahead logging for fault tolerance and per-process

name collision checks for filesystem integrity but excludes compaction.

A followup parallel compaction program merges and rewrites all these

updates, priming the namespace data for fast future reads.

Figure 4.10a shows the results. While distributing work across all available

client machines enables DeltaFS to be up to 23.75x faster than baseline runs

as we see in Figure 4.7a, deferred integration enables DeltaFS to be even

faster in absorbing metadata write operations. While deferred integration

requires per-job filesystem namespace updates to be first logged in a write-

optimized format and then read back and reorganized for fast metadata

reads, the reason deferred integration still yields better performance is

two-fold. First, deferred integration enables metadata information to be

partitioned and exchanged over the network in large batches which are

more efficient than doing it with per-file operations. At the same time,

deferring all filesystem-wide inter-process communication activities to a

separate post-processing program enables a more streamlined process that

is not limited by filesystem write-ahead logging and collision checks to

61



Chapter 4 A No Ground Truth Filesystem

+1.6M 

Files

+6.4M 

Files

+3.2M 

Files

+12.8

M Files

+51.2

M Files

+25.6

M Files

+0.8M

Files

0.8M 

Files

1

2

4

3

5

6

7

1.6M Files

3.2M Files

6.4M Files

12.8M Files

25.6M Files

51.2M Files

102.4M Files

32 Clients 128 Clients64 Clients16 Clients8 Clients4 Clients 256 Clients

Figure 4.12: Test workflow for measuring
the cost of a lack of a global filesystem
namespace in DeltaFS. Each our test starts
with a filesystem namespace containing
0.8M files. Then at each workflow stage, a
total of = files are inserted into the filesys-
tem raising the total file count to 2=. Files
are inserted through a parallel client appli-
cation. Each client process creates 200K files.
Our first stage consists of 4 client processes
inserting 800K (0.8M) files (= = 0.8"). We
do a total of 7 workflow stages. The last
stage consists of 256 client processes insert-
ing 51.2M files (= = 51.2") concluding
the test with a total of 102.4M files in the
filesystem.

deliver high performance. The reason that in our results the gap between

early integration and deferred integration appears to be reducing as job

size increases is due to bottlenecks at the shared underlying storage and the

fact that deferred integration runs are overall more efficient so that their

performance is more sensitive to the increasing overhead of name collision

checks and filesystem write-ahead logging (both require namespace data to

be read and written against storage in relatively small I/O sizes) as per-job

file count and file activities increase. Our largest run used 128 client nodes,

512 client processes, and created 102.4M files. The cost of reading back

namespace data for post processing increases as job size increases too, but

its effect is less significant to the overall performance due to the ability to

use large I/O sizes when performing these operations.

Figure 4.10b further compares the performance of early integration and

deferred integration with early integration runs now spawn the same

amount of metadata servers as clients (up to 512 client-colocated servers)

and use batching when making RPC calls to servers (96 file creates per

RPC instead of 1). With a smaller metadata footprint per server and RPC

batching, the cost of early integration reduces and now becomes comparable

with deferred integration. On the other hand, deferred integration still wins

and has the advantage of being able to further defer metadata merging

and compaction when fast metadata read performance is not immediately

needed following job completion.

Cost of No Global Namespace. A key property of DeltaFS is no global

namespace. While no global namespace permits freedom from global

serialization, the cost of it is the added need for jobs to merge and compact

related namespace data before they can access their namespaces efficiently.
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(a) Accumulative time it takes for a test run to complete each workflow stage. Workflow
stages are marked by the accumulative number of files that have been inserted into
the filesystem. For baseline runs, 1 dedicated metadata server is used and all files are
inserted into a global namespace. For DeltaFS runs, up to 512 client machines are used
and each workflow stage consists of executing two application programs. One is the
main application that creates files and logs namespace updates in SSTable files stored in
the shared underlying storage. The other is a parallel compaction program that merges
the SSTables from both the first program and the previous workflow stage to form a
combined namespace consisting of all created files. While DeltaFS performs more work,
it shows significantly less latency due to aggressive utilization of client resources.
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(b) Accumulative amount of compute resources that it takes for a test run complete each
workflow stage. Workflow stages are marked by the accumulative number of files that
have been inserted into the filesystem. Resource usage, shown logarithmically in figure,
is measured in the form of CPU seconds times cores. For baseline runs, two types of
resource usage are reported. One for the resource usage at the server end (shown as solid
line). The other for the usage at the client end (shown as dotted line). DeltaFS does not
use dedicated metadata servers. We report its resource usage at the client end. DeltaFS
consumed more compute resources for filesystem metadata processing due to repeated
work in merging workflow namespace data. While baseline runs spent less total resources
at the server end, they wasted a massive amount of client CPU cycles for doing nothing.

Figure 4.13: Experiment results measur-
ing the cost of no global namespaces in
a DeltaFS filesystem compared with the
current state-of-the-art which defines a
global namespace and uses dedicated meta-
data servers. By distributing work across
client machines, DeltaFS shows signifi-
cantly lower latency in absorbing bursty
filesystem metadata operations. The cost of
no global namespace is the increased work
that DeltaFS causes for merging names-
pace data potentially repeatedly. Even so,
DeltaFS shows better overall resource uti-
lization compared with the current state-of-
the-art.

Our last set of experiments measures this cost through running a synthetic

workflow as Figure 4.12 shows. Our workflow starts with a filesystem

containing 0.8M files. There are a total of 7 workflow stages. Each workflow

stage inserts new files into the filesystem and doubles the amount of files in

the filesystem. At the end of the last stage, there will be 102.4M files in the

filesystem. We use a parallel client application to create files. Each client

process creates 200K files. Our first stage consists of 4 processes inserting

800K (0.8M) files. The last stage consists of 256 processes inserting a total

of 51.2M files.
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Figure 4.14: Illustration of a DeltaFS work-
flow stage. Each DeltaFS stage consists of
running two application programs. The first
program is a parallel file-creating driver ap-
plication (P1-P: ) with embedded DeltaFS
metadata servers logging file creates as per-
process SSTables stored in the shared un-
derlying storage. The second program is a
parallel compaction program (C1-C2: ) that
merges both the per-process SSTables gen-
erated by the first program and the set of
SSTables produced by the previous work-
flow stage to form a combined filesystem
namespace containing all files that have
ever been created so far since workflow in-
ception — logically equivalent to a global
filesystem namespace. There are a total of 7
workflow stages. Each stage is 2x the size of
its predecessor. The first stage consists of 4
file create processes and 8 compaction pro-
cesses (: = 4). The last stage consists of 256
file create processes and 512 compaction
processes (: = 256).

We focus on the accumulative time and resource usage for a test run

to finish each workflow stage. We compare the performance of a run

with a global namespace (baseline) and a run without one (DeltaFS). For

baseline runs, all files are directly inserted into a dedicated metadata server

providing a global filesystem namespace. For DeltaFS runs, file inserts

are first recorded at per-process log files (SSTables) and then merged to

form “global” filesystem namespaces as Figure 4.14 depicts. That is, each

DeltaFS workflow stage consists of running two application programs.

The first program is the parallel file-creating driver application with

embedded DeltaFS metadata servers logging file creates as per-process

SSTables stored in the shared underlying storage. The second program is a

parallel compaction program that merges both the per-process SSTables

generated by the first program and the set of SSTables produced by the

previous workflow stage to form a combined filesystem namespace logically

equivalent to the global filesystem namespace that is defined in the baseline

runs. The need to run a parallel merge and compaction program at the end

of each workflow stage represents the cost of no global namespaces with

DeltaFS.

Figure 4.13a shows the results in terms of the time it takes for a test run to

finish each workflow stage. While DeltaFS requires jobs to explicitly merge

and compact namespace data for fast reads, its utilization of client resources

for scalable metadata processing still enables it to show significantly less

processing delays (49.93x faster) compared with baseline runs, which

are limited by a dedicated metadata server to deliver high metadata

performance. The cost of no global namespace is the increased work that

DeltaFS causes for merging namespace data repeatedly — each workflow

stage remerges the namespace data from previous stages. As Figure 4.13b

shows, DeltaFS used up to 3.56x more compute resources than baseline

runs. Meanwhile, even though the baseline runs spent less total resources

at the server end, they effectively wasted a massive amount of client CPU

cycles by blocking them for doing nothing. DeltaFS shows better overall

resource utilization by not limiting metadata processing to only dedicated

server machines.

4.5 Summary

At exascale, metadata is no longer a trivial step that adds only a tiny latency

before data operations. In LANL’s Trinity cluster [32], it takes 256s for
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1: Assuming a 5000 file creates/sec for a

typical Lustre configuration.
every CPU core to create a file in the global Lustre namespace1, but only

600s for the entire 2PB of memory to be dumped from compute nodes to

Trinity’s on-platform burst-buffer storage nodes. Traditional file systems

are unlikely to scale to exascale because: 1) centralized metadata requires

either expensive hardware to scale-up or a large number of dedicated

machines to scale-out; 2) imposing a single namespace forces applications

to frequently synchronize with each other mostly unnecessarily; 3) ensur-

ing metadata integrity and strong consistency over a global namespace

demands the use of a dedicated (and easily bottlenecked) coordinator to

enforce system invariants; and 4) classic on-disk metadata representation

lacks efficient support for fast metadata insertion, migration, redistribution,

and aggregation.

Through a serverless design, DeltaFS does not need the dedicated server

machines found in conventional parallel filesystems. Applications start

from immutable snapshots and self-manage their namespace data using

their own compute resources. DeltaFS’s LSM-Tree based metadata repre-

sentation is optimized for writes, efficient to share and merge, and can

be appropriately compacted to optimize later retrieval. At the same time,

DeltaFS advocates the use of scalable object stores to provide shared under-

lying storage, and to assist with security enforcement, garbage collection,

and administrative data purging. Our experiments show that DeltaFS

shows orders of magnitude lower latency in finishing a metadata-intensive

workflow step compared with the current state-of-the-art. Meanwhile, the

cost of no global namespace and no dedicated server is the increased work

that DeltaFS causes for merging namespace data potentially repeatedly.

Such cost may be reduced through utilization of metadata curators both

within and across scientific workflows.
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Scientific applications perform data analysis by writing data to storage

and then running queries against the data. It can be bad experience for

scientists when they either have to wait for a large amount of data to

be pre-transformed to a read-optimized format before they can start the

queries, or they must risk having each of their queries fetch an excessive

amount of data from storage while only a tiny percent of it is actually

needed for the results. In this chapter, we show a scalable streaming data

processing mechanism — Indexed Massive Directories (IMDs) — that

liberates scientists from this dilemma.

IMDs dynamically transform data to a read-optimized format as a parallel

writer application writes it to storage. Scientists enjoy fast queries while not

having to experience long post-processing (after writes) or pre-processing

(before queries) delays. More crucially, our work shows that it is possible

to leverage only idle CPU cycles available on the compute nodes of the

writer application to perform all these operations — no dedicated compute

resources are needed. IMDs demonstrate a new way of providing data

acceleration capabilities in modern HPC environments. Unlike emerging

storage designs in which dedicated compute resources near data at rest are

leveraged to speed up data analysis, in IMDs the acceleration takes place at

inception of a data pipeline and available compute resources on the main

computing platform of an HPC cluster are harvested to perform the data

acceleration computation. The unique way IMDs operate complements

emerging designs.

The rest of this chapter is structured as follows. Section 5.1 describes the

background and the motivation behind this work. Section 5.2 presents a

high-level design of IMDs. Section 5.3 discusses challenges and a series

of techniques for tackling these challenges. Section 5.4 demonstrates the

effectiveness of IMDs using real-world scientific workloads. We show

related work in Section 5.5 and summarize in Section 5.6.
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Timestep 1 Timestep 2 Timestep 3

Cell

Figure 5.1: Illustration of a typical VPIC
particle simulation. The simulation space is
divided into cells. Each VPIC process man-
ages a cell. Tracing the state of a particle
over time is non–trivial as particles move
in an unpredictable way during a simula-
tion and can be saved at different storage
locations at different time.

5.1 Motivation

The motivation for a new data processing mechanism came from difficulties

a team of Los Alamos National Laboratory (LANL) scientists encountered

when trying to use the Vector Particle-In-Cell (VPIC) simulation framework

on larger and more data intensive problems.

The Needle-In-a-Haystack Problem of VPIC. VPIC is an open-source

parallel particle simulation framework developed at LANL [116]. In a

VPIC simulation, the simulation code divides the simulated space into

cells and distributes ownership and management of each cell among the

processes in the simulation. Within each cell a process manages a set of

moving particles based on underlying principles from physics. Individual

particles often move between cells as the simulation progresses. This is

done by transferring the particle state between two processes managing

neighboring cells. Large-scale VPIC simulations powered by the world’s

largest high-performance computing platforms manage the state of trillions

of particles across hundreds of thousands of CPU cores [39].

VPIC-based simulations run in timesteps. Every few timesteps VPIC stops

and writes the state of all particles to storage. Typically, the analysis of a

VPIC simulation run occurs after the simulation concludes. The problem

the team of LANL scientists are looking at involves the trajectories of a tiny

subset of particles that end a simulation with an unusually high energy.

The trajectory of a particle includes its travel path through the simulated

space over time and its state (e.g. energy-level) for each step of the path, as

shown in Figure 5.1. High energy particles of interest are identified at the

conclusion of a simulation.

Finding the trajectories of a few high energy particles in a large simulation
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(a) The Pre-processing Approach runs a
separate data processing program to im-
prove read performance but resulting in
delays experienced by the reader applica-
tion.

Storage Fabric

Asynchronous Data 

Processing

App Reader

(b) The Current State-of-the-Art hides de-
lays by offloading data processing to stor-
age and performing it early and asyn-
chronously. Performance is improved pro-
vided sufficient compute resources at the
storage.

Storage Fabric

In-situ

Data

Processing

App Reader

(c) Our in-situ Data Processing Approach takes advantage of the idle compute resources
available on the compute nodes of the writer application to process data so data can be
processed early to minimizes delays while not being limited by the processing power of
the storage.

Figure 5.2: Comparison of three different
data processing approaches to speeding
up post-hoc data analysis queries. Our ex-
ample consists of a writer application on
the left and a followup reader application
on the right. The writer application writes
data to storage. The reader application ex-
ecutes queries which read data from stor-
age. The best read performance is achieved
when the data on storage is stored in a for-
mat that is optimized for the queries of the
reader application. a) The pre-processing
approach improves read performance by
pre-transforming data to a read-optimized
format before reads take place. The cost is
the time the reader application has to wait
before it can access data efficiently. b) To
hide such delays, modern computing plat-
forms utilize the compute resources within
the storage to process data so data can be
processed early and asynchronously while
the writer application writes it to storage.
Nevertheless, their abilities to hide delays
are ultimately limited by the total amount
of compute resources the storage possesses.
c) Our work utilizes the idle compute re-
sources available on the compute nodes of
the writer application to process data and
dynamically transforms the data to a read-
optimized format as the writer application
writes it to storage. Our approach has the
advantage of not being subject to the pro-
cessing power of the storage while allowing
data to be processed early to minimize de-
lays.

is a challenge for several reasons. First, the identity of the high energy

particles of interest is not known in advance, so they cannot be marked or

traced when the simulation starts. Second, as particles migrate between

simulation processes during the course of a simulation, a particle’s state

is scattered across the nodes in the cluster running the simulation. Third,

once the simulation completes and high energy particles are identified, the

entire simulation output needs to be read back and scanned in order to

extract the needed trajectories. Reading back an entire simulation output

and filtering out relevant information is becoming prohibitively expensive

as simulation size grows.

In some sense, tracing the trajectories of a small number of particles in

a large simulation output is like finding a needle in a haystack: both are

characterized by a high query selectivity and a large amount of data.

The reason this VPIC use case is interesting is two-fold. First, it represents

68



Chapter 5 Indexed Massive Directories

a common class of I/O problems for which existing data management

schemes fall short when data size is large. We show this aspect in Section

5.1.1 and Section 5.1.2. Second, the massive amount of compute resources

on modern computing platforms provide opportunities to process data

early before data reaches storage while overcoming limitations of existing

data management schemes. We show this aspect in Section 5.1.3.

5.1.1 Pre-Processing Data Before Queries

The difficulties VPIC scientists experience represent a common challenge

in data analytics. Many data-intensive applications output data without

necessarily considering the efficiency of the queries following the writes.

This is especially common when an application’s output consists of a large

number of small objects and these small objects are batched together and

appended to storage using large sequential writes. While doing so allows

the underlying storage bandwidth to be more fully utilized, data is not

always appended in the optimal order for subsequent queries. As a result,

processing a query may require reading back an excessive amount of data

from storage, which can be extremely inefficient and time-consuming.

One way to speed up queries is to pre-process data before queries. This

allows data to be transformed to a format that is optimized for the upcoming

inquiry. Today, data transformation is typically done by launching a separate

data processing program on the main computing platform after the main

application exits. As Figure 5.2a shows, the main application writes data

to storage. A followup data processing program reorganizes the data,

speeding up subsequent data analysis.

Reorganizing data requires reading back data from storage, processing it

on client nodes, and writing the transformed data to storage. As data size

grows, data reorganization done in the form of a separate data processing

program can be extremely costly. This is due to the large amount of I/O

involved in streaming the data from and to storage and the delay caused by

the program to perform the data reorganization computation. As a result,

a user may have to wait an extended amount of time before they can access

data in a read-optimized format.
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5.1.2 The Current State-Of-the-Art: Asynchronous Data

Processing Near Data at Rest

To accelerate data analysis, modern computing platforms take advantage

of the dedicated compute resources within their storage to perform data

operations. This includes both the compute resources on a storage server and

those within storage devices. It improves performance for two reasons:

First, as Figure 5.2b shows, offloading work to storage leaves room for

more aggressive latency hiding through asynchronous data processing.

For example, transformation of the current timestep’s data could take place

in the background while the application itself moves to the simulation

computation of the next timestep. Processing data in the background can

effectively hide delays. These include both the delay associated with I/O and

the delay associated with performing the data processing computation.

Second, directly processing data on storage enables more efficient data

access. This is because that the available I/O bandwidth inside the storage

may be significantly higher than the bandwidth of shared, higher-level

I/O channels outside the storage. This allows data to be processed faster,

provided that processing data is primarily bottlenecked on I/O.

While offloading data processing to storage introduces performance bene-

fits, two limitations exist:

First, despite the ability to hide latency through asynchronous processing,

the overall processing power of the storage is still limited by the total

amount of compute resources it possesses. When the available processing

power is insufficient for the demands of the incoming workload, a user

may still experience significant delays.

Second, even near media, reading and writing data in large amounts

are expensive. Critically, data processing remains costly if performing it

requires reading back all the data from storage and writing the processed

data to storage. As the gap between compute and storage continues to rise

[42], the performance of a modern computing platform is best exposed

when data is processed using the minimum amount of I/O and applications

experience as few data processing delays as possible [10, 13].
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Time

AnalysisCompute I/O Compute I/O …

Figure 5.3: Illustration of a typical scientific
workflow consisting of a bulk-synchronous
parallel simulation application acting as a
data writer and a subsequent data analysis
program acting as a data reader with the
execution of the writer further divided into
iterations of non-overlapping compute and
I/O phases. A writer application chooses
not to overlap its compute with its I/O be-
cause overlapping does not always reduce
total run time. The idle CPU cycles avail-
able on the compute nodes of such a writer
application during its I/O phases can then
be utilized to perform storage operations,
accelerating subsequent data analysis.

5.1.3 Processing Data Early Before Data Reaches Storage

To address the first limitation of the current state-of-the-art, we notice that

the computing cycles needed for data processing may be available on the

main computing platform while an application writes data to storage. This

is because that the writing process is expected to be blocked on storage

(and limited by it), which leaves idle CPU cycles on the compute nodes of

the application performing the writes. These idle CPU cycles, potentially

in massive amounts and allocated in proportion with the application’s

problem size, can then be utilized to perform storage operations, as we

illustrate in Figure 5.2c.

We call this in-situ data computation, as the computation takes place right

on the compute nodes of an application and happens when the application

writes data to storage. Compared with today’s on-storage data computation,

in-situ computation is not limited by the computing capability defined by

the underlying storage and has the ability to aggregate a massive amount

of compute resources outside the storage to perform data computation.

The best performance of in-situ data computation is seen when an applica-

tion writes data synchronously. This happens when the application runs

without overlapping compute with I/O so the execution of the application

program is effectively paused during the application’s I/O phases, as the

example we show in Figure 5.3.

Applications write data synchronously because overlapping is not always

a better option:

First, the in-memory state needed for I/O (the state of all particles in the

case of VPIC) may be modified during the next computation phase so

overlapping I/O with computation would require making a second copy

of the state in memory for I/O. As applications often set their problem

sizes to use all available memory, it would be inconvenient to store two

copies of state in memory reducing overall memory utilization.

Second, the NICs on the compute nodes may be used by the application to

perform inter-process communication during its computation phases. Thus

overlapping I/O with computation introduces contention in the network,

which may increase run time and reduce overall application performance.

To address the second limitation of the current state-of-the-art, we notice
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that the I/O cost of data processing can be significantly reduced if the

processing is done on the fly while an application writes data to storage.

The reason is two-fold. First, it allows data to be processed early before it

reaches storage so processing data does not involve reading back all the

data from storage and then writing the processed data to storage. This

minimizes total I/O. Second, it allows data to be processed in parallel

with its writing so that the data processing latency can be conveniently

hidden by the writing of the data to storage. This minimizes the total data

processing delay applications obverse.

We propose DeltaFS IMDs, a scalable method for parallel applications to

dynamically reorganize their writes for fast subsequent reads. To achieve

this, DeltaFS IMDs reuse the idle CPU cycles available on the compute

nodes of their applications to process data and dynamically transform data

to a read-optimized format as these applications write the data to storage.

While our work is inspired by the VPIC use case, we expect our techniques

to be generally useful in handling sequential writes and random reads

(needle in a haystack) problems, such as anomaly detection and software

debugging in network monitoring and event tracing systems [117, 118].

5.2 System Overview

DeltaFS IMDs are client middleware to be embedded inside the processes

of a parallel data application for in-situ data computation. As Figure 5.4

illustrates, when the application writes data to storage, DeltaFS IMDs

dynamically transform the data to a read-optimized format and write the

transformed data to storage, speeding up subsequent queries. In this section,

we present an overview of this online data transformation service.

5.2.1 Target Application and Query Types

Applications that benefit most from DeltaFS IMDs are ones with data

output that occurs in bursts. We imagine these applications to be massively

parallel programs in which each application process outputs data and

data is written to a shared underlying storage system such as a distributed

parallel filesystem running on a dedicated set of storage nodes.

We model data as simple key-value (KV) pairs. Keys are written in an
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Figure 5.4: Illustration of performing in-
situ data computation on the write path of
a parallel data application for speeding up
queries on the read path. Data computation
takes place within each application process.
Data is processed on the fly as it is written
by the application to storage. Processing
data consists of (A) online data partitioning
via all-to-all data shuffling and (B) online
per-partition data indexing. Each applica-
tion process is a data partition, and acts
as both a sender and a receiver of data. In-
dexed data is written to a shared underlying
storage system. Analysis queries are done
by a followup reader program (C), which
queries data directly against the underlying
storage.

arbitrary order with each key possibly appearing more than once. When

this happens, subsequent values on the same key append data to the

existing value rather than overwriting it. We expect each application to

be followed by a reader program which performs analysis on the data

produced by the former. Data analysis takes place after all data is written

to storage. We consider two types of queries: looking up a key for a specific

append or looking up all data that has been appended to a key. We call the

first type of query point queries and the second small-range queries.

5.2.2 Write Path

The write path of DeltaFS IMDs is designed as code that transforms data

on the fly as data is written to storage. Transforming data is a two-step

process. The first step partitions data among the processes of the writer

application. The second step builds per-partition data indexes.

An important reason for partitioning data is to assign a home region to each

key so that looking up a key does not require searching all data. Figure 5.5a

shows a case where data is not on the fly partitioned and is directly written

to per-process output files in the shared underlying storage. Because any

process may write any key, a followup reader program will have to check

all files in order to find the data of a key.

On the other hand, with data partitioning each key is sent to its home

process for writing so reading back a key requires searching only the output

of one specific process, which better bounds the work of a reader program,
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(a) Without data partitioning, data is directly
written to per-process output files and read-
ing back a key requires searching ALL files.
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(b) With data partitioning, each key is sent to
its home process for writing so reading back
a key requires searching only the output of
one specific process (process 2 in the example
figure).

Figure 5.5: Processes (numbered as 0, 1, 2,
..., 9) of a parallel application writing data
output with and without data partitioning.
Note that for both cases we assume that
all data is written to a shared underlying
storage system and that a followup reader
is able to access all files.

as Figure 5.5b shows.

To partition data, each process of a parallel DeltaFS IMD writer application

is assigned a partition. A hash function is used to map keys to partitions

such that each partition is responsible for a disjoint range of keys. When

the parallel writer application writes data to storage, data not belonging to

the local process is sent to the remote process responsible for the key. Each

process is a sender of data, and may receive data from all other processes.

When a process receives a key, an index entry is dynamically generated for

the key, speeding up data lookups within that data partition.

The overall write path of an DeltaFS IMD can be viewed as an in-situ

data processing pipeline embedded inside the processes of a parallel

writer application. The parallel writer application streams data to the

pipeline, the pipeline processes the data, and streams the processed data

to storage. Streaming data processing takes place on all processes of the

writer application, and consists of an online data partition step and an

online data indexing step. All work is done through reusing the idle CPU

cycles available during the writing of the data to storage. After processing,

data is stored as indexed per-process log objects in the shared underlying

storage. We present more details of this in-situ data processing pipeline in

Section 5.3.
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5.2.3 Read Path

The read path of DeltaFS IMDs is designed as code that processes queries

on behalf of a reader program. It utilizes the data partitions and indexes

created at the write phase to quickly recall keys and values. Processing

both types of queries (point queries and small range queries) requires first

determining the partition responsible for the key and then utilizing the

indexes of that partition to locate the data of the key. As we will demonstrate

in Section 5.4, because only a small amount of data needs to be read per

query, DeltaFS IMDs are able to keep queries fast even when data size is

large. This is as opposed to cases in which query latency is kept low by

having large numbers of compute nodes read back data in parallel, as we

sometimes see in practice [39, 119–121].

5.2.4 Programming Interface

DeltaFS IMDs are designed such that they can be accessed like a regular

filesystem directory. Providing a filesystem-like programming interface

makes it easier for us to integrate with different user applications. The

directory is designed to be opened either for reading or writing. When

opened for writing, the directory operates as an in-situ data processing

pipeline as described in Section 5.2.2. Each file write is turned into a KV

pair sent to the pipeline. The name of the file serves as key. The data of the

file serves as value. The final data streamed out of the pipeline is written to

an underlying storage container representing the directory.

When opened for reading, the directory operates as a serial query processor.

Each file read becomes a query keyed by the name of the file. The directory

processes the query as described in Section 5.2.3, and returns data as if

it was read from a physical filesystem file. We expect most reads to be

sequential fetches of entire files, so each read reads all data of a key.

5.3 Challenges and Techniques

The key concept behind DeltaFS IMDs is the use of idle CPU cycles available

on the compute nodes of an application to perform data computation. While

the potential to process data across a large number of idle compute nodes
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enables us to carry out massive computation, scaling an embedded data

computation service within a parallel data application can be drastically

different from scaling a traditional storage service:

First, traditional storage software may use all of a machine’s memory to

achieve scaling whereas an embedded data service can only use as much

memory as the application can live with.

Second, traditional storage software is able to take advantage of ownership

of resources to schedule as much work as possible in the background

whereas an embedded data service must avoid impacting application

performance by scavenging only idle resources and processing data as

optimally as possible.

In this section, we present the techniques that DeltaFS IMDs use for

fast online data partitioning and indexing. To address the challenges of

embedded in-situ data processing, DeltaFS IMDs index data in a single pass

(Section 5.3.1), efficiently partition data across the processes of a parallel

application (Section 5.3.2), and frugally use memory for all-to-all data

communication (Section 5.3.3).

5.3.1 Indexing Data In a Single Pass

A key component of our in-situ data processing pipeline is the online

indexing of data at each data partition. While indexing data as it is written

speeds up followup queries, it may also significantly increase the write

time of an application making it less efficient overall. Therefore the first

challenge of our work is to device an indexing mechanism that improves

the query performance at the read phase while not slowing down the

application at the write phase.

Must Index Data in One Pass! One way to structure data for fast reads

is to sort it by key. This enables queries to quickly rule out regions in the

storage that do not contain a key and directly jump to the data of interest.

To dynamically sort data by key as data is written to storage, one uses a

self-balancing data structure such as an LSM-Tree [58, 69].

Figure 5.6 shows the internal workings of a simplified LSM-Tree. An LSM-

Tree is made of two on-disk components. One of the two components is
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Figure 5.6: Illustration of a simplified LSM-Tree. An LSM-Tree consists of an in-memory write buffer, a write-optimized on-storage component
made of a series of logged tables (Tbl’s) of sorted KV pairs, and a read-optimized on-storage component consisting of a single large sorted table.
Tables are sorted at the time they are written. Each table is sorted independently. User data is first written to the in-memory buffer space of the
tree and is flushed to storage when the buffer is full. Each buffer flush writes a new table in the write-optimized on-storage component of
the tree. Querying a key from an LSM-Tree requires performing searches on tables starting from the most recent table of the tree (Tbl-3 in
the example) to the least recent table (Tbl-0). To reduce the number of table searches per query, a background compaction thread is run by
the tree to asynchronously migrate data from the write-optimized component to the read-optimized component. Migration is done through
merge-sorting tables of the two components. The best read performance is achieved when all data is merged into the read-optimized component
so that all queries search no more than a single table. The cost of achieving fast reads, on the other hand, is the massive data rereads and
rewrites needed to migrate data from the write-optimized component of the tree to the read-optimized component, which often require an
order of magnitude more I/O than the initial writing of data to the write-optimized component.

write-optimized. It consists of a series of logged tables of KV pairs. Each

table is independently sorted by key at the time it is logged to storage. The

other on-disk component is read-optimized, consisting of a single large

table of sorted KV pairs. During writing, user data is first staged at an

in-memory buffer space of an LSM-Tree. When the buffer is full, the data

in the buffer will be sorted and then logged to the write-optimized on-disk

component of the tree as a new table. A mapping structure is maintained

to record the storage locations of all tables in a tree.

During reads, a reader process uses the indexing information in the

mapping structure to locate tables and performs searches in the reverse

order of time (from the most recent table to the least recent). In the worst

case, a reader process will have to search all tables in a tree in order to find

the data of a key. To improve read performance, a separate compaction

thread is run by the LSM-Tree in the background to migrate data from

the write-optimized component to the read-optimized component. This is

done by merging tables of the two components. The best read performance

is achieved when all data is merged into the read-optimized component so

that each query searches no more than a single table.

While LSM-Trees are widely used in modern computing systems for

dynamically transforming data from a write-optimized format to a read-

optimized format for fast reads, they are extremely expensive for online

data indexing in the context of being embedded inside the write path of

a parallel data application for streaming processing. First, the migration
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of data from the write-optimized component of the LSM-Tree to the read-

optimized component requires massive storage rereads and rewrites, which

can significantly increase the run time of an application due to increased

I/O and computation. Second, operating as client middleware embedded

inside the processes of a parallel application prevents us from being able

to efficiently hide the latency of background storage operations through

asynchronously processing. When the background compaction activities

cannot keep up with the foreground data operation, either one risks leaving

data in a query-unfriendly format or the foreground data operation must

be rate limited or blocked to experience the data processing delays.

To prevent such bottlenecks, we need a mechanism that is capable of having

data reorganized and indexed in one pass and does not require merging

data in the background.

Switching to Filters. The reason merging improves performance is that

it reduces the number of places a reader has to search in order to find the

data of a key. To improve read performance without it, we use filters [64].

Filters are a special type of data structure whose canonical use involves

membership management. In these applications, one inserts keys into a

set and then asks if a key is in the set. A filter returns False when a key is

not in the set or True when the key may be in the set. Compared with an

index, filters inform a reader of where not to look at rather than the storage

locations worthy of reading.

Filters are effective for two reasons. First, filters are small compared with

the data they filter so writing and storing them in addition to data does

not introduce a significant I/O and storage overhead. Second, by creating

a filter for each table, a reader process is able to leverage information in the

filters to rule out tables that do not contain a key and only perform searches

on the rest of the tree. The total number of tables a reader needs to search

for a query is now bounded by the overall performance of the filters rather

than the progress of background merging. The former can be improved

through creating more computationally expensive filters whereas the latter

is largely a function of the available storage bandwidth. Filters are a better

approach when writing data to storage is primarily bottlenecked on storage

and less on the CPU cycles on the writing nodes.

78



Chapter 5 Indexed Massive Directories

Data Log Index Log

Filter 1

Filter 2

Filter 3

Filter 4

…

Epoch 1

ROOT

…

Table 1

Table 2

Table 3

Table 4

…

KV Table

k2, v2

k5, v5

k9, v9

S
o
rt

e
d
 b

y
 k

e
y

…

Figure 5.7: Illustration of the on-storage
format of an FL-Tree consisting of a data
log and an index log.

A Flattened LSM-Tree. We propose FL-Tree, a flattened LSM-Tree that

transforms data in a single pass. We achieve this through aggressive filtering

and being free of merging. The data structures of an FL-Tree consist of an

in-memory write buffer and a series of logged KV tables on storage. Like

LSM-Trees, writing data requires first staging the data in the in-memory

buffer and then flushing it when the buffer is full. Each buffer flush writes a

new table. Unlike LSM-Trees, FL-Trees do not rely upon merging to improve

read performance. Instead, queries are made efficient primarily through

filtering and an on-disk data format that minimizes the number of storage

seeks per query. The former is achieved by creating a filter for each table.

The latter is achieved by packing all filters in a single log file for efficient

retrieval.

Figure 5.7 shows the on-disk format of an FL-Tree. It consists of two log

files: a data log and an indexing log. The data log is a simple concatenation

of all tables logged in the tree. The index log contains the filter for each

table and two types of indexes: per-epoch indexes and a root index. A

per-epoch index is appended to the index log at the end of each epoch (such

as a timestep of a scientific simulation). It records the storage locations

(log offsets) of all tables and their associated filters created during that

epoch. The root index is appended to the index log at the conclusion of an

application run. It records the total number of epochs and for each epoch

the storage location of its per-epoch index.

Reading back a key from an FL-Tree is a three-step process. First, the reader

program reads the index log of the tree. Next, the reader program uses

the information in the index log to select and locate the tables of interest.

Finally, the reader program reads and searches those tables to obtain the

data of the key.

Measurements. To demonstrate the effectiveness of our design, we com-

pare our techniques with the current state-of-the-art. We use 32 compute
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(a) Average Latency of querying a KV pair.
Performing in-situ data compaction as data
is written drastically increases subsequent
query performance. An FL-Tree’s read per-
formance is on par with LevelDB.
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(b) Total Write Time (including both data
insertion time and compaction time). An FL-
Tree does not read back data from storage
for compaction as data is written. It finishes
writes almost as quickly as running no in-situ
computation.

Figure 5.8: Read and write performance of
an FL-Tree, LevelDB, and running no in-situ
data compaction. a) Carefully laying out
and packing data on storage allows an FL-
Tree to answer queries almost as efficiently
as the current state-of-the-art LevelDB. b)
Free of compaction and background data
merging allows an FL-Tree to absorb writes
as efficiently as performing no in-situ data
operations.

nodes. Each compute node consists of 32 CPU cores and 128GB RAM.

Storage is provided through a remote parallel filesystem shared by all

compute nodes. We developed a simple KV benchmark. It runs as a parallel

program. We run a benchmark process on each CPU core. Each process

produces a number of random KV pairs. We fix keys at 8 bytes and values

at 40 bytes. These KV pairs are partitioned on-the-fly by the benchmark

program and then indexed by a per-partition indexing mechanism. The

resulting data is written to the remote parallel filesystem. We use LevelDB

to represent the current state-of-the-art technique for per-partition data

indexing [57, 60]. LevelDB is a general-purpose implementation of an

LSM-Tree. It relies on background compaction (merging) to achieve good

read performance. LevelDB is widely used by many storage systems we

see today [26, 51, 78, 99, 122].

Our experiments compare FL-Tree with the LSM-Tree in LevelDB. Each our

run consists of a write phase followed by a read phase. We focus on total

write time and average query latency. To achieve good read performance,

LevelDB runs LSM-Tree compaction (background data merging and re-

organization) as data is inserted. Our total write time includes both data

insertion time and data compaction time. LevelDB performs compaction

in parallel with data insertion. The total write time we report does not

double count the overlapped portion of time. In addition to LevelDB, our

experiments also include a configuration where we directly write data to

storage without performing any in-situ data computation.
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Figure 5.9: Illustration of performing online data partitioning across the processes of a parallel data application while these processes
simultaneously write data to storage. The goal of data partitioning is to send each key to its home data partition. Data partitions are spread
across all application processes. Each application process is responsible for a data partition, which maps to a disjoint range of keys. As these
processes write data to storage, data not belonging to the local process is sent over the network to the remote process responsible for the
key. Each process may send data to each other process, forming an all-to-all data shuffling process. The best performance is achieved when
partitioning data does not slow down writes so that the overall writing process continues to be blocked on storage (rather than becoming
bottlenecked on the added data partitioning process).

Results. Figure 5.8a shows average query latency as a function of total

data size. All our queries read data from the underlying parallel filesystem.

We run 100 queries per configuration. Each query starts with a cold cache

and targets a random key. Without any in-situ processing at the write

phase, querying a key requires scanning all data. Results show that latency

can be high even when data is read back in parallel (our experiments used

all the CPU cores to scan data in parallel). By partitioning and indexing

data on the fly as data is written, both LevelDB and FL-Tree runs have

data dynamically optimized for fast reads. They both exhibit good read

performance. An FL-Tree is able to answer queries almost as efficiently

as the LSM-Tree in LevelDB. This is because FL-Trees carefully lay out

and pack data on storage so that data can be efficiently queried without

performing a large number of storage seeks, and without requiring sorting

at the write phase.

Figure 5.8b shows the total write time of each configuration. FL-Trees

index data on the fly without reading back data from storage for merging.

So they finish writes almost as quickly as running no indexing at all.

LevelDB uses compaction to keep reads efficient. Performing compaction

as data is written requires repeatedly reading back data from storage

for sorting. This significantly increases an application’s total write time

when compaction cost cannot be hidden by asynchronous processing using

dedicated resources.
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5.3.2 Efficiently Partitioning Data Over the Network

DeltaFS IMDs run inside the processes of a parallel data application and

perform in-situ computation on data as the application writes it to storage.

In addition to online data indexing, another key component of DeltaFS

IMDs is the online partitioning of data, as we illustrate in Figure 5.9.

Online data partitioning requires transferring data over the network so that

data can be processed by the partition responsible for the key. We expect

that the bulk of our applications to be high entropy such that all data needs

to be sent to a remote partition during data partitioning. However, when

the interconnection network bandwidth of the parallel application does not

dominate the bandwidth of storage, performing online data partitioning

during application writes could drastically slow down the writes, making

it prohibitive due to increased write time. Thus the second challenge of

our work is to be able to efficiently partition data over the network such

that the overall data partitioning overhead remains low even when the

network-to-storage bandwidth ratio decreases.

DeltaFS IMDs model data as KV pairs. To efficiently move KV pairs over

the network, a trivial optimization is to batch multiple KV pairs within the

payload of one RPC. Assuming that RPC size is fixed at a large number (e.g.,

32KB), online data partitioning efficiency then depends on the amount of

data exchanged. We show a novel data shuffling mechanism that drastically

reduces the amount of network traffic needed for online KV partitioning,

making the process significantly less subject to network performance.

Simple Data Indirection Doesn’t Work. The current state-of-the-art uses

data indirection to reduce KV movement when directly moving KV pairs is

too costly [26, 123]. With data indirection, one moves keys with pointers to

values rather than moving complete KV pairs. Figure 5.10 shows all-to-all

data shuffling both before (Figure 5.10a) and after (Figure 5.10b) applying

data indirection. To shuffle data with indirection, an application process

writes the value component of a KV pair to a per-process log file. We call

this log file a Value Log. Next, the offset of the write and the ID of the

process is encoded into a pointer. The process then sends the key with

the pointer (offset + process ID) to the partition to which the key belongs.

Thus instead of receiving a KV pair, the destination partition receives a

Key-Pointer (KP) pair. This KP pair is then inserted into the FL-Tree of

that partition. To recall a KV pair, a reader program first retrieves the
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(c) Our Lossy Format stores partial pointers. Each pointer may point to one or more
data locations (e.g., k7 is mapped to both process 1 and 2). Note that not all processes
or keys are shown in the figure (only process 1 and 2 are drawn). Our scheme reduces
write cost while only slightly slowing down reads.

Figure 5.10: Illustration of 3 different data
partitioning schemes. a) The base format
shuffles intact KV pairs so potentially lots
of data is exchanged over the network. b)
By shuffling keys with only pointers to val-
ues, simple indirection (the current state-of-
the-art) moves less data over the network
but storing pointers in addition to values
adds a significant amount of I/O to storage
when value size is small. c) Our scheme en-
codes pointers in a lossy format so storing
pointers requires transferring fewer bits to
storage. Our technique reduces write over-
head while still allowing KV pairs to be
efficiently queried.
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Figure 5.11: Auxiliary Table Design consisting of a fingerprint (FP) layer and an index layer. These two layers work hand in hand to map keys to
their source processes. Raw keys (k1, k2, k3, ...) are lossily converted to tiny hash fingerprints (fp0 , fp1 , fp2 ) before they are inserted into the
fingerprint layer. Due to hash collisions, it is possible for multiple keys to be stored as one fingerprint. When this happens, the source processes
of these keys will be listed at the index layer under that fingerprint. In this example, <k1, proc1>, <k3, proc5>, and <k4, proc3> are clustered
under fp1 , and stored as <fp1 , {proc5, proc1, proc3}>. Each query to k1, k3, or k4 will return {proc5, proc1, proc3} resulting in false positives.

corresponding KP pair, and then dereferences the pointer to read back the

value of the key.

The advantage of sending KP instead of KV pairs is a reduction in the

amount of data exchanged over the network. However, storing pointers

in addition to the original KV data increases total data size and has the

disadvantage of increasing an application’s total I/O time. While this

overhead is negligible when the size of pointers is dwarfed by the size

of data, this is not always the case. Values smaller than 250 bytes are

reported to be the norm for Facebook’s Memcached [124]. It is also common

for scientific applications to output objects that are smaller than 50 bytes

[116, 125]. In these cases, applying indirection may end up adding more

overhead to storage (in the form of increased I/O time) than is removed

from the network. To more efficiently apply data indirection when value

size is small, we have developed LossyKV.

The LossyKV Data Shuffling Scheme. The key to improving perfor-

mance beyond the current state-of-the-art is to make pointers less costly

when value size is small. Recall from Figure 5.10b that with simple data

indirection only KP pairs are shuffled across the network. Values are di-

rectly written to per-process value logs. Recovering a KV pair requires first

retrieving the corresponding KP pair and then using the pointer to read

back the value. Each pointer identifies the value log to which the value is

written and the offset in the log file where the value resides. To achieve so,

pointers typically add a 12-byte I/O and storage overhead per key, with

each pointer consisting of a 4-byte file ID and an 8-byte file offset. Our goal

is to significantly reduce this overhead while still facilitating fast reads.

84



Chapter 5 Indexed Massive Directories

fpb,proc5 fpd,proc8 fpb,proc1

fpa,proc2 fpf,proc1

fpc,proc1

fpc,proc2

fpe,proc1 fpg,proc4

fpb,proc3

fpe,proc3

fpb

b Slots

hash

1
0
0
1
1
1
1
0
0
1
0
1
1
1
0
0
1
0
0
1
0
1

h’

h

N
B
u
c
k
e
ts

k
1

p
ro
c
1

Figure 5.12: Auxiliary Table Implementation using Partial-Key Cuckoo Hash Tables. A partial-key cuckoo hash table consists of a number of
buckets (currently sized at 6 in this example). Each bucket holds up to 1 data slots (1 = 4 in this example). Each key is mapped to < buckets
(< = 2 in this example) and can be stored at any of the empty slots in either of the < buckets. Each slot stores a key’s fingerprint (partial-key)
and its source process ID. k1 is mapped to bucket 0 and 5. Because different keys may share fingerprints, a key can be mapped to multiple
source processes. In this example, k1 is fingerprinted as fp1 and is mapped to proc1, 3, and 5.

Our approach, named LossyKV, uses lossy pointers to reduce pointer

overhead. A pointer is said to be lossy when its interpretation may match

multiple data locations. This is as opposed to the usual case in which

pointers are encoded with exact location information. Reducing pointer

accuracy enables us to store pointers using fewer amounts of bits reducing

their I/O and storage cost.

Figure 5.10c depicts how LossyKV works. LossyKV shuffles Key-ID (KID)

pairs, rather than KV or KP pairs. When shuffling a KV pair, an application

process first writes the intact KV pair to the process’s own FL-Tree. It then

sends another copy of the key along with its process ID (a KID pair) to the

key’s destination partition. Each KID pair serves as a pointer mapping a

key back to the process who wrote the key and the process’s FL-Tree that

stores the value of the key. After data partitioning, LossyKV produces two

types of data structures. One is the FL-Tree storing intact KV pairs. The

other, called Auxiliary Tables, stores KID pairs in a lossy way and serves as

a lossy index mapping keys to their source FL-Trees. Because KID pairs are

all-to-all shuffled according to their partitions, each auxiliary table indexes

a disjoint range of keys.

Recovering a KV pair from a LossyKV is a two-step process. First, the

source FL-Tree of the key is determined through a responsible auxiliary

table. Second, the corresponding FL-Tree is read returning the value of

the key. Since auxiliary tables store data lossily to reduce I/O and storage

overhead, it is possible for a key to be mapped to multiple source FL-Trees.

In these cases, a reader program searches all these trees until it finds the

target key. As FL-Trees are packed with intact KV pairs, a reader knows

when it hits a key.
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Achieving Lossiness. We use compact hash data structures to achieve

lossiness. Figure 5.11 shows a logical view of our auxiliary tables. Each

auxiliary table consists of a fingerprint layer and an index layer. The

fingerprint layer is made up of a set of fingerprints. Fingerprints are partial

keys; they store partial information about keys (such as a prefix of the hash

of a key) rather than their full byte information. The index layer records the

source processes that are mapped to each fingerprint (key). Multiple keys

may be stored as one fingerprint. So each fingerprint may map to multiple

source processes, with each of these source processes represents a key that

is stored as the fingerprint.

A Cuckoo Hash Based Implementation. To implement our design, we

use Partial-Key Cuckoo Hash Tables [126–128]. These are a cuckoo hash

table variant that stores fingerprints of keys (partial-keys) instead of full

keys [129, 130]. Figure 5.12 shows an example. Each partial-key cuckoo hash

table consists of an array of buckets (the array size is 8 in our example).

Each bucket holds 1 (fixed at 4 in our example) data slots.

When a KV pair is inserted into a partial-key cuckoo hash table, the key is

hashed into a partial key. The resulting partial KV pair is then assigned

to < (2 in our example) candidate buckets in the table and can be placed

at any of the empty slots in either of the buckets. When all such slots are

taken, a random slot from one of the < buckets will be selected to hold

the incoming key. The current resident of the slot will be evicted and then

relocated to its alternative locations in the table. This relocation process

continues recursively until an empty slot can be found, or fails after a large

number (typically 500) of attempts and causes the table to be resized.

In practice, partial-key cuckoo hash table sizes are powers of 2, so each

resize doubles the size of a table [127]. Mapping each key to 1 ×< potential

locations in the table allows for high levels of table space utilization before

a table must be resized [63]. But because not all slots are necessarily filled

after all data is inserted into the table, a partial-key cuckoo hash table

may leak space in the data structure, leading to unnecessary memory and

storage overhead.

To minimize such overhead, our implementation uses a side table when

the primary one is full. For example, rather than resizing a 1-million-slot

table to 2 million, our implementation combines a 1-million-slot table with

an 128K-slot table to hold 1.1 million keys. This keeps space utilization at
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(b) Performance of reading a KV pair from
a 2TB dataset. LossyKV shows comparable
performance while requiring reading back
more data and performing more lookups
due to indirection and lossiness.

Figure 5.13: Read and write performance of
different online data shuffling mechanisms.
We compare the base format where intact
KV pairs are shuffled, current state-of-the-
art with data indirection, and LossyKV with
both data indirection and a compact lossy
format for storing pointers. a) LossyKV re-
duces write slowdown by up to 3.3x. b)
LossyKV only slightly increases query over-
head (200ms per query).

about 95% in practice, while only slightly slowing down reads.

Measurements. We run experiments to evaluate the read and write

performance of LossyKV. We use 64 compute nodes. Each compute node

has 68 CPU cores and 96GB RAM. Reading and writing data is through a

remote parallel filesystem. Performing RPC operations on these compute

nodes is expected to be about 4x more expensive in latency and 3x in

bandwidth compared with the compute nodes we tested in Section 5.3.1,

making balancing network and I/O overhead and balancing read and write

performance critical [131, 132].

Our experiments are driven by a parallel benchmark program. Each run

consists of a write phase and a read phase. In the write phase, the benchmark

program generates 32 billion keys. We fix keys at 8 bytes and values at

56 bytes. Data is on the fly shuffled across 4096 benchmark processes and

then indexed using a FL-Tree at each process before written to storage.

About 2TB of raw data is generated per run. Our read phase consists of

100 independent queries. Each query starts with a cold cache, and reads a

random KV pair.

We compare performing all-to-all data shuffling using the base format,

simple indirection (the current state-of-the-art), and LossyKV (our solution).

We use Write Slowdown to gauge the total data partitioning overhead

during the writing of data to storage. It is measured as the additional time

each run must spend to finish writing all the data. We use median query

latency to measure read performance.
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Figure 5.13a compares the write slowdown of different online data shuffling

schemes. Results show that LossyKV is able to reduce total write slowdown

by 3.3x compared with the base format and by 2.8x compared with the

current state-of-the-art. This is because LossyKV shuffles smaller KID pairs

instead of KV or KP pairs (so less network traffic), and uses a lossy format

to store pointers (so less I/O overhead). While the current state-of-the-art

mechanism (simple indirection) also reduces network traffic, the increased

I/O overhead caused by storing raw pointers makes this approach less

effective overall.

Figure 5.13b compares the median query latency of different schemes. The

base format delivers the best read performance because reading a KV

pair requires only searching one FL-Tree. The current state-of-the-art uses

data indirection to reduce data movement within network. The cost of

applying indirection is one extra read operation per query which increases

its median query latency from 190ms to 250ms in these runs. Finally, with

a compact lossy storage format for fast data shuffling, each LossyKV query

must first read an entire auxiliary table (roughly 18MB each) and then

attempt reads at multiple data partitions due to false positives (about 1.88

partitions per query in these runs). As such, LossyKV has the highest

median read latency (440ms) among all three data management schemes.

Though overall LossyKV shows comparable read performance with the

base format and the current state-of-the-art, while being about 200ms

slower.

5.3.3 Frugally Using Memory for All-to-All Data

Communication

Efficiently exchanging data over network is essential to fast online data

shuffling. But even with an efficient shuffle mechanism, performing data

shuffling among hundreds of thousands of application processes can be

challenging. Critically, direct N-N routed messages delayed for efficient

transfer use too much memory for RPC writeback buffering. This excessive

memory usage prevents us from running inside a parallel data application.

Thus the third challenge of our work is to have a scalable communication

mechanism that better bounds the memory needed for efficient all-to-all

data shuffling.
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(b) 3-Hop Routing. Sending a message is
done via up to 2 intermediate forwarder
cores such that each core only talks with a
subset of remote cores.

Figure 5.14: Illustration of different all-to-
all data communication mechanisms. a) Di-
rect N-N routed messages delayed for effi-
cient network transfer use too much mem-
ory for RPC writeback buffering at scale. b)
Routing messages in multiple hops dras-
tically reduces per-core RPC destinations.
Having each core serve as a partial represen-
tative load balances all cores and prevents
representatives from becoming bottlenecks.

Direct N-N Routing Uses Too Much Memory. As a key component of

our in-situ data computation, we need to efficiently support online data

partitioning for both small- and large-scale data applications. Online data

partitioning requires data to be all to all shuffled among the processes of

a parallel application. Thus each application process communicates with

each other process.

Unfortunately, even with today’s fastest interconnection networks, the cost

of large-scale all-to-all communication can be high if frequent commu-

nication consists of small payloads that prevent us from fully utilizing

the network’s bandwidth. To efficiently transfer data, one must buffer

adequate data (e.g., 32KB) before sending it from one application process

to another for all-to-all data shuffling. Efficiency is further improved when

network operations are performed asynchronously so that concurrent data

computation may be overlapped with network communication.

If all-to-all data communication were implemented by having each process

directly send RPC messages to each other process (direct N-N routing), all

processes would have to buffer data to be sent to all other processes. We

assume running an application process on each CPU core. So direct N-N

routing is effectively direct core-to-core communication. As Figure 5.14a

illustrates, it directly follows that for large-scale application runs with

hundreds of thousands of CPU cores the total size of RPC writeback

buffers required per process for efficient use of the network will become

unacceptable to applications with which we share memory. This makes

direct N-N routing infeasible for in-situ data communication at scale.

Multi-Hop Routing. To restrict memory use in large-scale application

runs, we have chosen to route messages via multiple hops. That is, we

forward each RPC message through one or more intermediate application
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processes before sending the message to its final destination. This is as

opposed to directly sending each message to its final destination in one

hop. With multi-hop routing, a process acts as a shuffle sender, a receiver,

and an intermediate message forwarder simultaneously. Each process

may forward some of its messages to other processes in the application

for message delivery. Sharing and consolidating communication routes

allows processes to directly communicate with only a small subset of their

peers. Thus each process maintains fewer RPC writeback buffers, and these

writeback buffers can be filled more quickly. This improves overall shuffle

efficiency and better bounds the total amount of buffer memory needed at

each process.

As Figure 5.14b shows, our current multi-hop routing implementation

consists of 3 hops. To send a message our protocol first forwards the

message to a local Representative process on the sender node, and then

to a remote representative on the receiver node, which then forwards

the message to the final destination. The inter-node communication step

is bypassed if a message is aimed at a process on the same node. To

reduce communication cost we expect all intra-node communication to be

performed through shared memory. One problem of this approach is that

the representative process on each node tends to become a bottleneck.

To prevent such bottlenecks, our implementation has each process on a node

act as a representative for only a subset of the remote nodes. This reduces

the connection state per representative, and distributes communication

load more evenly among all local processes and CPU cores.

Figure 5.14b shows an example of 3-hop routing with 4 nodes and 16 shuffle

processes. Each process is both a shuffle sender and a shuffle receiver.

On each node, 3 processes are selected to act as the local representatives
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for one remote node each. Thus, each process only needs to maintain

3 local connections and at most 1 remote connection. In contrast, direct

communication would require that each process maintains 15 connections.

In general, given " nodes and � cores per node 3-hop routing only requires

$("/�) remote connections per process on average, while direct N-N

routing would require $("�). We consider this �2 reduction important,

because it suggests that if the number of cores per node increases faster than

the number of nodes in a cluster, the amount of required communication

state is further reduced. We expect this to be the case in the future, as higher

counts of lightweight or specialized cores become more widespread.

Case Study. The best way to demonstrate the scalability of 3-hop routing

is to run it on a big machine. We do this in Section 5.4. Here, we show

the memory saving of 3-hop routing compared with direct N-N routing.

We consider running a parallel data application on the LANL’s Trinity

supercomputer, the one we will use in Section 5.4. Each Trinity compute

node has 32 CPU cores (� = 32). We imagine running an application

process on each CPU core and performing all-to-all data shuffling among

the processes of that application. We assume a 32K RPC size so that

an application process buffers 32K of data before it sends the data to a

destination process. RPC writeback buffers are allocated independently at

a source process for each destination process. Figure 5.15 projects the total

amount of memory needed per process for RPC writeback buffering as a

function of job sizes. Three-hop routing is able to bound memory usage

at a lower level (<16MB) as the job size grows, whereas with direct N-N

routing memory usage quickly rises to prohibitive.

5.4 End-to-End Evaluation

This section evaluates the end-to-end performance of DeltaFS IMDs. DeltaFS

IMDs dynamically reorganize the output of a parallel writer application

to speed up queries of a subsequent reader program. Our evaluation

shows that DeltaFS IMDs can effectively accelerate reads while only slightly

slowing down the writer application for streaming data reorganization.

In this section, we start with discussing our VPIC driver application in

Section 5.4.1. We then describe our experiment and show results in Section

5.4.2.
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5.4.1 Driver Application: VPIC

VPIC is a parallel particle code widely used for simulating kinetic plasmas

[116]. In a VPIC simulation, each process manages a region of cells in the

simulation space. These simulation processes track particles as they move

through their corresponding cells. Every few timesteps the simulation

stops and every simulation process writes a per-process file containing the

state of all the particles currently managed by the process. State for each

particle is 48 bytes.

Data analysis takes place after a simulation concludes. Our analysis involves

reading back the trajectories of a tiny subset of particles. These particles

exhibit unusual characteristics such as high energy which separates them

from other particles. VPIC particles each have an unique ID. We config-

ure VPIC to print the IDs of all particles to be queried at the end of a

simulation.

Today, looking up a particle trajectory by its ID requires scanning up to an

entire simulation output. This is because that there is no particular order

in which particles are written during a simulation. Thus a particle can be

written from different processes to different per-process files at different

timesteps of a simulation. This, combined with a lack of a per-particle

index, makes trajectory analysis prohibitively costly for large-scale VPIC

simulations.

To demonstrate the effectiveness of DeltaFS IMDs, we use them to dy-

namically partition and index particles as the simulation writes them to

storage. Our implementation leverages idle CPU cycles available during

simulation I/O to perform data operations. Dynamically constructed per-

particle indexes speed up queries while not significantly slowing down

the writing of data during a simulation. For VPIC, retrieving the state of

a particle at a specific timestep represents a point query. Retrieving the

trajectory of a particle over a range of timesteps represents a small-range

query. Small-range queries are more difficult. We focus on them in our

experiments.

I/O Model. With a filesystem-like interface, it is easy for VPIC to use

DeltaFS IMDs. To speed up particle queries, VPIC creates one IMD file for

each particle it simulates, and appends all data of a particle to that particle’s

file. As discussed above, particle queries are known to be keyed on particle
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Figure 5.16: Comparison of the file-per-
process model used by vanilla VPIC with
the new file-per-particle model enabled by
a DeltaFS IMD. Unmodified VPIC writes
one file per process. To index VPIC particles
with DeltaFS, we modify VPIC to write the
state of each particle into a DeltaFS IMD us-
ing particle IDs as the filenames (A, B, C, ...,
F). Dynamically created directory indexes
keyed on filenames allow us to quickly re-
trieve per-particle information following
a simulation. Critically, no massive data
scans are expected. Indexed particle data
is packed and stored by DeltaFS as large
per-partition log objects in the underlying
storage.

IDs. So VPIC uses particle ID to name all such files. To retrieve per-particle

data, a reader program opens a DeltaFS IMD, and reads the corresponding

particle file (using the ID of the particle as filename). Internally, the directory

uses the indexes and partitions it creates during the write phase to quickly

locate the data of the file. Both the indexes and the partitions are keyed on

filenames making them capable of speeding up the data locating process.

This process is transparent to the reader program. File data, which is

opaque to the directory, is read by the reader program and interpreted by

it as particle records.

Figure 5.16 compares the file-per-process model used by vanilla VPIC with

the new file-per-particle model enabled by a DeltaFS IMD. Unmodified

VPIC simulations write their output to an underlying filesystem using one

file per process. Without pre-processing data before queries, retrieving

the trajectory of a specific particle requires reading an entire simulation

output (upwards of PBs of data). With DeltaFS IMDs, VPIC writes one

file per particle. Each file represents a particle trajectory. These files are

dynamically partitioned and indexed by the directory during simulation

I/O so retrieving a file from a massive directory after a simulation requires

reading mainly the indexes (typically only MBs of data) of one partition of

the directory, followed by storage seeks that directly hit the file. No massive

data readbacks are involved.

5.4.2 Experiment Design and Results

To measure performance, we run experiments on the LANL’s Trinity

supercomputer [32]. Each Trinity compute node has 128GB of DDR4 RAM

and 32 Intel Xeon Haswell CPU cores with a base frequency of 2.3 GHz.
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Our experiments consist of real VPIC simulation runs both with and

without using DeltaFS IMDs for in-situ data processing. Each simulation

run has one simulation process on each CPU core. For VPIC baseline runs,

the simulation writes one output file per simulation process. For DeltaFS

runs, the VPIC simulation writes into a DeltaFS IMD, with the directory

dynamically partitioning and indexing the data, and writing the results as

large per-process log objects. Our largest run simulated 2 trillion particles

across 131,072 CPU cores.

Across all runs, simulation data is first written to a burst-buffer storage

tier (made up of fast SSDs managed by the Cray’s DataWarp software)

and is later staged out to an underlying Lustre filesystem [9]. We keep

the compute node to burst-buffer node ratio fixed at 32 to 1. Writing data

from compute nodes to burst-buffer nodes is expected to be bottlenecked

on the burst-buffer node’s NIC bandwidth. Each burst-buffer node can

absorb data at approximately 5.3GB per second. Our in-situ data techniques

process data on the fly while fully utilizing available storage bandwidth

minimizing write overhead.

After each simulation, queries are executed directly from the underlying

filesystem. Each query targets a random particle and reads all of its data.

Particle data is written out over time as the simulation runs through

timesteps. Each simulation is configured to output all particle data for 5

of those timesteps. Each our query therefore returns data from 5 distinct

points in time. To retrieve the trajectory of a particle, the VPIC baseline

reader reads an entire simulation output (thus time consuming) so all

baseline queries are repeated up to 2 times. DeltaFS handles queries more

efficiently. All DeltaFS queries are repeated 100 times, with each query

starting with a cold data cache. We report the average query latency. DeltaFS

uses a single CPU core to execute queries, whereas the baseline reader uses

the number of simulation processes to read data in parallel.

Figure 5.17a shows the read performance. While the baseline reader used

all the CPU cores to run queries, a single-core DeltaFS reader was still up-to

1,740x faster. This is because without an index for particles, the baseline

reader reads all the particle data so its query latency is largely bounded

by the underlying storage bandwidth. As DeltaFS builds indexes in-situ,

it is able to quickly locate per-particle information after a simulation and

maintain a low query latency (about 300ms in these experiments) as the

simulation scales.
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Figure 5.17b shows the I/O overhead DeltaFS adds to the simulation’s I/O

phases for building the data indexes. Part of the overhead comes from

writing the indexes in addition to the original simulation output. The rest

is due to the reduced I/O efficiency resulting from DeltaFS performing

the in-situ indexing work. DeltaFS had large but decreasing overheads for

the first 5 runs. This is because those jobs are not large enough to saturate

the burst-buffer storage, so the system is dominated by the extra work

DeltaFS performs to build the indexes. Starting from the sixth run the

jobs began to bottleneck on the storage, and there is a modest DeltaFS

slowdown of about 10%. For the last 2 runs, the job sizes are deliberately

increased to demonstrate the performance at scale, and there is a slowdown

of 20%-35%.
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(b) Overhead of performing in-situ data computation within a simulation application.
Our techniques keep write overhead low (10% for medium runs, 20-30% for big runs)
while efficiently transforming data to a read-optimized format, all while powered by only
idle CPU cycles on the main computing platform.

Figure 5.17: Results from real VPIC sim-
ulation jobs on LANL’s Trinity hardware.
Our biggest job at the write phase used
4,096 compute nodes, 131,072 CPU cores,
simulated 2 trillion particles, and wrote
96TB of data per timestep. Our biggest job
at the read phase covered 524,288 million
particles (jobs beyond that would require
burning an excessive amount of comput-
ing hours on national lab resources). Re-
sults beyond that are projected reasonably.
While our baseline VPIC reader used all the
CPU cores to search particles in parallel, all
DeltaFS queries were executed on a single
CPU core.
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5.5 Related Work

Filter data structures are used by many storage systems to improve read

performance. Unlike indexes which directly map keys to data locations,

filters speed up queries by indicating where not to read thus saving the

query process from performing potentially a large number of unnecessary

storage reads [133]. When the key space of an application is bounded, filters

can be implemented using compressed bitmaps [134, 135]. When the key

space is unbounded, filters are typically implemented through hash-based

data structures such as the Bloom filter [64], cuckoo filter [126, 127], and

quotient filter [136, 137]. Recently, we have also seen filters implemented

using tries such as SuRF [138] and using perfect hash functions such as the

ECT structure in SILT [126]. These filter implementations may also be used

to implement LossyKV.

Many systems have proposed variants of LSM-Trees to improve perfor-

mance. WiscKey [123] reduces the I/O amplification associated with

compaction by storing keys and values separately and only performing

compaction on the keys. Both Monkey [139] and SlimDB [128] use ana-

lytical models to generate optimized filter layouts that balance per-filter

performance with available memory. LSM-Trie [140] uses an incremen-

tal compaction scheme [141] to reduce compaction overhead, and uses

clustered indexes to improve query performance. VT-Tree [71] uses a cus-

tomized compaction procedure that avoids re-sorting in-order data. The

DeltaFS’s custom LSM-Tree implementation presented in this paper is in-

spired by these reorganizations, particularly the LSM-Trie, though DeltaFS

is primarily optimized for point and small-range queries.

DeltaFS employs a hash function to partition its data for efficient lookup.

Hashing allows for efficient point queries, while maintaining fairly even

loads across all partitions for arbitrary workloads. The tradeoff is that

hashing places adjacent keys into distant buckets, and the data layout

therefore has no locality. Therefore, certain queries such as range queries

and prefix matching can not be supported efficiently. In practice, storage

systems such as HyperDex [142] and HBase [143] reorganize data once

written, to create an ordered storage layout. Parallel sorting algorithms

such as SDS-Sort [144] also recreate order by making multiple passes over

data once written. However, making multiple I/O passes can be extremely

inefficient when dealing with large datasets and finite storage bandwidths

– which is often the case with large simulations. Augmenting DeltaFS with
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an in-situ partitioning capability that preserves locality, balances loads, and

works with arbitrary distributions is something we’re currently working

on.

Rich in-transit data processing capabilities are provided by multiple mid-

dleware libraries such as PreDatA [145], GLEAN [146, 147], NESSIE [148],

and DataSpaces [149]. These systems all use auxiliary nodes to provide

analysis tasks. Similarly, systems such as Damaris [150] and Functional Par-

titioning [151] co-schedule analysis, visualization, and de-duplication tasks

on compute nodes, but require dedicated cores. DeltaFS embeds indexing

computation directly within the application processes and performs the

processing during the application’s regular output methods.

The GoldRush runtime [152] provides an embedded in-situ analytics

capability by scheduling analysis tasks during idle periods in simulations

using an OpenMP threaded runtime. The analysis tasks leverage the FlexIO

[153] capability within ADIOS [154] to create shared memory channels

for generating analysis tasks inputs to execute during idle periods of

application execution. The embedded in-situ framework within DeltaFS

instead co-schedules analysis tasks (i.e. partitioning and indexing) with

the application’s I/O output phase. While Goldrush is extremely effective

at scavenging idle resources within the OpenMP runtime model, DeltaFS

instead focuses on co-scheduling analysis tasks for single-threaded bulk-

synchronous applications.

The SENSEI in-situ analysis framework [155] provides a generic library

capable of running computationally efficient in-situ tasks on dedicated or

shared resources. Their studies included instrumenting a variety of codes

and mini-apps. Additionally, they concluded that most in-situ analysis

tasks require little memory overhead. DeltaFS is able to use only 3% of

the system memory to do effective latency hiding for in-situ operations

even though the analysis requires shuffling and indexing the entire output

dataset.

FastQuery [119, 120], a popular indexing and query library for scientific

data, uses parallel, compressed bitmap indexes similar to the bitmap

indexing described by FastBit [135], and has been deployed as part of in-

situ indexing service to accelerate subsequent reads [156]. DeltaFS creates

a similar compressed bitmap index following the shuffle phase to quickly

filter data tables from within a partition. By customizing a bitmap index

for partitioned particle data, DeltaFS is able to reduce the overall index size
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and reduce storage overhead.

The distributed data partitioning and indexing capability of MDHIM [122]

is similar to that of DeltaFS, though there are several key differences.

First, DeltaFS uses an LSM-Tree that is more optimized for small value

retrieval and in-situ scenarios. Second, DeltaFS uses a POSIX-like file

system abstraction while MDHIM uses a key-value store abstraction. Finally,

MDHIM relies on MPI for inter-process communication while DeltaFS

uses Mercury RPC [87, 157] to run seamlessly across platforms supporting

different network transports [158–160]. The Mercury RPC layer allows

DeltaFS to run seamlessly across platforms supporting MPI, TCP/IP [158],

InfiniBand [159] and OpenFabrics Interfaces [160].

Byna et al. have published the largest petascale particle simulations using

vpic [39–41]. With two trillion particles and 2000 time steps of simulation

the authors produced 350 TBs of data (including checkpoints) and detail

the series of optimizations required to use a single shared HDF5 file output

model. Some of the difficulties encountered while analyzing the resulting

particle outputs motivated the creation of the DeltaFS embedded in-situ

indexing pipeline for vpic.

5.6 Summary

Not all storage bottlenecks are caused by slow media. On the contrary, one

might have fast media but the storage is bottlenecked on the server carrying

the media, with its application being blocked on it not fully utilizing its

compute node resources. DeltaFS IMDs harvest idle compute, memory,

and network resources on the compute nodes of an application to perform

data computation, hiding server bottlenecks. One uses DeltaFS IMDs to

dynamically reorganize the writes of a writer application, speeding up the

queries of a followup reader program.

In this chapter, we described a set of techniques that enabled the scaling of

DeltaFS IMDs to more than a hundred thousand processes. The lessons we

learned designing and applying these techniques can be used to address

scalability challenges in a variety of in-situ data computation middleware.

We distinguish our techniques between those that provide improvements

to the scalable shuffling of data and those improving the efficiency of data

indexing.
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Latency hiding and efficient bandwidth utilization are critical for scalable

shuffling. Our analysis shows that careful buffer management is the key to

keeping latency low and bandwidth high. Buffers must be large enough

to make efficient use of the network without being so large as to waste

memory. In our configuration 32KB buffers are sufficient, but we anticipate

that larger buffers may be required with future more lightweight processor

cores. To slow the increase in the number of buffers as the system scales we

introduced our 3-hop all-to-all communication technique. By limiting the

number of off-node connections per process, we believe the applicability

of the 3-hop technique will increase for future computing platforms if

intra-node parallelism increases faster than inter-node parallelism.

An efficient data shuffling protocol that contracts network traffic is also

essential to achieving scalable online data partitioning. We use indirection

to reduce the total amount of data we need to send and receive over the

network (when partitioning data) so that the overall data partitioning

process becomes less subject to the hosting platform. We then strive to use

the minimal amount of physical indexes to manage data indirection so that

per-key overhead can be kept low and we can achieve good performance

even when KV size is tiny. Critically, performing the latter distinguishes us

from the current state-of-the-art that only exploits simple data indirection

techniques.

Our indexing techniques demonstrate that on-storage data reorganization

(e.g. LSM-Tree compaction) is not necessary if the dominant access regimes

are point and small-range queries. In particular, clustered indexes can be

efficiently constructed and accessed on modern computing platforms, and

space-efficient KV filters are able to balance efficient searching with optimal

storage system access.

For large-scale data indexing capabilities in particular, we believe in-situ

indexing embedded within application provides a compelling advantage

in its ability to scavenge temporarily available resources to improve the

efficiency of post-hoc analysis. Although embedded in-situ processing

introduces scalability challenges, we believe that these challenges are

manageable. The techniques described in this paper demonstrate efficient

scaling to a hundred thousand processes. We believe that additional

techniques exist to improve embedded in-situ scaling even further. In

addition to further scaling techniques, it is clear to us that improving

the performance of queries when partitioning functions cannot provide

an evenly balanced distribution is important to furthering the adoption

100



Chapter 5 Indexed Massive Directories

of our techniques. Support for multiple simultaneous indexes to enable

multivariate analysis is also important to diverse types of scientific analysis.

Adding this capability to our embedded in-situ pipeline will enable new

classes of scientific applications to leverage DeltaFS.
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It has been a tradition that, every once in a while, we stop and reassess

the way we build filesystems. One previous effort was made by the NASD

project [19], which urged people to stop coupling filesystem data communi-

cation with metadata management and instead use object storage devices

for scalable data access. While the NASD principle has underpinned almost

every modern parallel filesystem that we see today, this thesis informs

people of what it takes to further advance parallel filesystem performance

in order to better keep with up the rapidly increasing scale of today’s

massively-parallel computing environments.

Existing filesystem clients communicate too frequently with their servers.

We showed how the relaxed consistency requirements of modern HPC

workflows can be utilized to reduce filesystem metadata synchronization

and serialization and how LSM-Tree data structures can be used to enable

efficient logging and deferring of filesystem metadata changes. Existing

filesystem metadata performance depends too much on dedicated server

resources. We showed how filesystem namespace services can be dynam-

ically instantiated on client nodes to achieve scalable performance and

how inter-application communication can be efficiently implemented on

top of immutable filesystem namespace snapshots with unrelated appli-

cations never having to communicate. Finally, modern scientific inquiry

uses costly post-processing to ensure good read performance. We showed

how data can be in-situ indexed for fast queries as an application writes

it to storage and how this in-situ computation can be efficiently carried

out through available compute resources on application compute nodes

without requiring dedicated compute resources and without requiring

post-processing.

Putting all of them together, we imagine future HPC storage to have no

parallel filesystems as we see today. Instead, a simple object store serves as

shared storage and on top it applications dynamically instantiate services

for scalable filesystem namespace management and data processing. As a

result, filesystem design and provisioning decisions can be separated from

the overall design of a computing cluster leading to fewer bottlenecks. At

the same time, applications running on a large computing platform can be
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less restricted by the underlying storage to attain high performance.

Our work consists of the following key trace-offs. First, modern distributed

filesystem metadata is optimized for interactive data accesses. Filesystem

namespace updates made by one client are immediately synchronized and

made visible to all clients in a computing cluster. Our work is primarily

optimized for non-interactive batch workloads. Rather than immediately

integrating every metadata change, our work delays it through deep client-

side writeback caching until subsequent bulk integration for high metadata

write performance. However, one cost of such a delay is the extra work

an interactive reader application needs to pay for reading and merging

information cached at clients and the increased complexity for handling

errors out of the original filesystem call site when client cached metadata

updates cannot later be applied. Second, today’s parallel filesystems use

dedicated servers for filesystem metadata management whereas our work

advocates the use of dynamically instantiated client services for scalable

filesystem metadata performance. While we have showed that shifting away

from dedicated servers has many benefits, an important cost of it is the lack

of a big, warmed-up cache for low-latency read accesses and the increased

work an application may have to do for merging namespace logs potentially

repeatedly. Finally, our Indexed Massive Directory work features a classic

trace-off between reads and writes. In-situ indexing speeds up reads. The

cost of it is the increased write time for computing and writing the indexes

and the increased storage space for storing indexes in addition to data.

The idea of streaming indexing data as it is written is based on a model

where data writeback buffered at application process memory can be

dynamically indexed when the previous indexed buffer is written to

storage. The key is to overlap indexing computation with storage writes

such that an application process is always able to send the next write when

the previous write returns provided that the client CPU core can process

data faster than storage can absorb. As a result, storage is kept busy all the

time and streaming data indexing overhead is reduced to minimum.

Streaming indexing data consists of first partitioning data across application

process cores and then indexing data within each data partition. In practice,

we find that the cost of data partitioning done through an all-to-all data

shuffling process at scale can be significantly higher than per-partition data

indexing. The reason is two-fold. First, direct all-to-all routed messages

delayed for efficient network transfer will use too much application process

memory for sender-side writeback buffering. To mitigate this problem,
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multi-hop routing can be used to reduce per-process destinations at the

cost of increased total network communication — each message is sent and

received more than one times. Another reason all-to-all data shuffling is

costly at scale is due to the total amount of data that must be transferred

across the network. Multi-hop routing exacerbates this problem by sending

each message multiple times. To mitigate this problem, data indirection

can be used to transfer only data indexes across the network rather than

the actual data at the cost of one extra data lookup at the read time and

the extra storage space needed for storing the indexes. The size of the

latter can be further reduced by using filter data structures with additional,

additional read overhead.

At exascale and beyond, synchronization of anything global should be

avoided, even if the changes needed to do so are drastic. Conventional

parallel filesystems, with fully synchronous and consistent namespaces,

mandate synchronization with file create and other filesystem metadata

operations. This must stop. Moreover, the idea of dedicating a single filesys-

tem metadata service to meet the needs of all applications running on a

single computing environment, is archaic and inflexible. This too must

stop. By shifting away from constant global synchronization, transforming

dedicated filesystem metadata servers to per-job client software, and adopt-

ing a log-structured filesystem metadata representation for deep metadata

writeback caching and merging, this thesis breaks established filesystem

designs and identifies the set of changes that are needed for scalable parallel

filesystem metadata performance. At the same time, by designing and

implementing Indexed Massive Directories, this thesis demonstrates the

promise of utilization of client-side storage writeback buffers and a poten-

tially massive amount of client CPU cycles for a streaming data processing

pipeline to unlock new ways of query acceleration, and shows how to

perform such operations efficiently at scale. With the convergence of HPC

and big data, the changes put forth in this thesis may prove necessary for

other areas of computing as well.

Future Work

The ideas of this thesis may be extended in the follow directions.

Richer Object Storage Interface The idea of a richer object storage is not

new. For example, PVFS discussed the possibility of having object
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storage execute multiple data operations in a batch for better con-

currency control and atomicity guarantees. The Google Filesystem

(version 2) also used rich semantics at the object storage levels to

ease file block management. With filesystem metadata completely

served through transient client services, there is new room for the

underlying storage to better serve a distributed filesystem. Criti-

cally, DeltaFS requires the underlying storage to provide reference

counting to support garbage collection. Our current implementation

assumed a standard object storage interface and had the clients to

perform reference counting in namespace manifest logs. It is more

secure, efficient, and less error-prone for the underlying storage to

take over such responsibility and provide scalable reference counting

for parallel filesystem metadata management.

Better Scheduling and Parameter Tuning for Filesystem Metadata. With

filesystem metadata no longer managed through the HPC platform,

applications take responsibility for tuning filesystem parameters

and arrange compaction and other filesystem maintenance activities

to attain high performance. While best practice and field knowl-

edge may be communicated through filesystem manuals, per-site

documentation, and rumors among application programmers, it is

necessary to have an analytic model to better guide programmers to

make the best decision.

Range Queries in IMDs. Our current Indexed Massive Directories (IMDs)

implementation works only for queries against a single key. This

is because that we use hashing to partition data across application

process cores and to ensure that each query only searches data within

one data partition. To extend the capability of IMDs to range queries

and iterator functions, it is important that IMDs are paired with

an ordered key-value pair abstraction. That is, keys are no longer

converted to hashes before partitioning. Instead, keys are directly

partitioned and partitioning them requires assigning key ranges to

data partitions. Partitioning ordered keys might be done efficiently

when the distribution of keys can be known beforehand. When this is

not the case, we imagine a streaming process where key distribution

is dynamically sampled in mini-phases and per-partition key ranges

are dynamically adjusted on an as-needed basis.

Securely Executing User Functions at Shared Storage. In this work, we

have focused on utilizing client compute resources for scalable filesys-
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tem namespace management and scientific query acceleration. While

dynamically instantiating storage functions on client nodes allows

applications to efficiently group a large amount of compute resources

to quickly absorb bursts of storage workloads, it is also critical that

compute resources near data at rest, especially in the form of compu-

tational storage, are utilized to perform data operations. We imagine

two forms of compute in which these backend compute resources are

utilized by user applications. First, we imagine a domain language

that application programmers can use to express their data processing

needs and can submit their computation for direct, secure execution

at the shared storage end. One example of such a mechanism is

the Berkeley Packet Filter (BPF) technology where application logic

is securely executed by the operating system for network package

filtering and notification. Another form of such computation is to

group storage resources as pools and then enable applications to

allocate resource pools for data computation. Today, we already

see solutions where pooled burst-buffer storage resources can be

dynamically allocated by applications for increased I/O bandwidth.

We imagine future technologies to extend this capability to enable

applications to allocate not only storage space and bandwidth but

the compute resources associated with the storage as well.
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