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Abstract
Distributed in-memory key-value stores (KVSs), such as

memcached, have become a critical data serving layer in
modern Internet-oriented datacenter infrastructure. Their per-
formance and efficiency directly affect the QoS of web services
and the efficiency of datacenters. Traditionally, these systems
have had significant overheads from inefficient network pro-
cessing, OS kernel involvement, and concurrency control. Two
recent research thrusts have focused upon improving key-value
performance. Hardware-centric research has started to ex-
plore specialized platforms including FPGAs for KVSs; results
demonstrated an order of magnitude increase in throughput
and energy efficiency over stock memcached. Software-centric
research revisited the KVS application to address fundamental
software bottlenecks and to exploit the full potential of mod-
ern commodity hardware; these efforts too showed orders of
magnitude improvement over stock memcached.

We aim at architecting high performance and efficient KVS
platforms, and start with a rigorous architectural characteri-
zation across system stacks over a collection of representative
KVS implementations. Our detailed full-system characteriza-
tion not only identifies the critical hardware/software ingre-
dients for high-performance KVS systems, but also leads to
guided optimizations atop a recent design to achieve a record-
setting throughput of 120 million requests per second (MRPS)
on a single commodity server. Our implementation delivers
9.2X the performance (RPS) and 2.8X the system energy effi-
ciency (RPS/watt) of the best-published FPGA-based claims.
We craft a set of design principles for future platform architec-
tures, and via detailed simulations demonstrate the capability
of achieving a billion RPS with a single server constructed
following our principles.
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1. Introduction
Distributed in-memory key-value stores such as mem-
cached [7] have become part of the critical infrastructure for
large scale Internet-oriented datacenters. They are deployed
at scale across server farms inside companies such as Face-
book [36], Twitter [8], Amazon [1], and LinkedIn [4,7]. Unfor-
tunately, traditional KVS implementations such as the widely
used memcached do not achieve the performance that mod-
ern hardware is capable of: They use the operating system’s
network stack, heavyweight locks for concurrency control,
inefficient data structures, and expensive memory manage-
ment. These impose high overheads for network processing,
concurrency control, and key-value processing. As a result,
memcached shows poor performance and energy efficiency
when running on commodity servers [32].

As a critical layer in the datacenter infrastructure, the perfor-
mance of key-value stores affects the QoS of web services [36],
whose efficiency in turn affects datacenter cost. As a result,
architects and system designers have spent significant effort
improving the performance and efficiency of KVSs. This has
led to two different research efforts, one hardware-focused and
one software-focused. The hardware-based efforts, especially
FPGA-based designs [14,15,32], improve energy efficiency by
more than 10X compared to legacy code on commodity servers.
The software-based research [18, 19, 26, 31, 34, 35, 38] instead
revisits the key-value store application to address fundamental
bottlenecks and to leverage new features on commodity CPU
and network interface cards (NICs), which have the potential
to make KVSs more friendly to commodity hardware. The cur-
rent best performer in this area is MICA [31], which achieves
77 million requests per second (MRPS) on recent commodity
server platforms.

While it is intriguing to see that software optimizations can
bring KVS performance to a new level, it is still unclear: 1)
whether the software optimizations can exploit the true poten-
tial of modern platforms; 2) what the essential optimization in-
gredients are and how these ingredients improve performance
in isolation and in collaboration; 3) what the implications are
for future platform architectures. We believe the answers to
these questions will help architects design the next generation
of high performance and energy efficient KVS platforms.
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We begin with a rigorous and detailed characterization
across system stacks, from application to OS and to bare-
metal hardware. We evaluate four KVS systems, ranging from
the most recent (MICA) to the most widely used (memcached).
Our holistic system characterization provides important full-
stack insights on how these KVSs use modern platforms, from
compute to memory and to network subsystems. This paper
is the first to reveal the important (yet hidden) synergistic
implications of modern platform features (e.g., direct cache ac-
cess [2,23], multi-queue NICs with flow-steering [3], prefetch,
and beyond) to high performance KVS systems. Guided by
these insights, we optimize MICA and achieve record-setting
performance (120 Million RPS) and energy efficiency (302
kilo RPS/watt) on our commodity system—over 9.2X the
performance (RPS) and 2.8X the system energy efficiency
(RPS/watt) of the best-published FPGA-based claims [14],
respectively. Finally, based on these full-stack insights, we
craft a set of design principles for a future manycore-based and
throughput-optimized platform architecture, with right system
balance among compute, memory, and network. We extend
the McSimA+ simulator [11] to support the modern hardware
features our proposal relies upon and demonstrate that the
resulting design is capable of exceeding a billion requests per
second on a quad-socket server platform.

2. Background and Related Work
In-memory KVSs comprise the critical low-latency data serv-
ing and caching infrastructure in large-scale Internet services.
KVSs provide a fast, scalable storage service with a simple,
generic, hash-table-like interface for various applications. Ap-
plications store a key-value pair using PUT(key,value), and
look up the value associated with a key using GET(key).

KVS nodes are often clustered for load balancing, fault tol-
erance, and replication [36]. Because each individual store in
the cluster operates almost independently, a KVS cluster can
offer high throughput and capacity as demonstrated by large-
scale deployments—e.g., Facebook operates a memcached
KVS cluster serving over a billion requests/second for tril-
lions of items [36]. However, the original memcached, the
most widely used KVS system, can achieve only sub-million
to a few million requests per second (RPS) on a single IA
server [31, 32] because of overheads from in-kernel network
processing and locking [27,32]. Recent work to improve KVS
performance has explored two different paths: hardware ac-
celeration for stock KVSs (mostly memcached) and software
optimizations on commodity systems.

The hardware-based approach uses specialized platforms
such as FPGAs. Research efforts [14, 15, 28, 32] in this di-
rection achieve up to 13.2MRPS [14] with a 10GbE link and
more than 10X improvements on energy efficiency compared
to commodity servers running stock memcached. There are
also non-FPGA-based architecture proposals [20, 30, 33, 37]
for accelerating memcached and/or improving performance
and efficiency of various datacenter workloads.

On the software side, recent work [18, 19, 26, 31, 34, 35, 38]
has optimized the major components of KVSs: network pro-
cessing, concurrency control, key-value processing, and mem-
ory management, either in isolation or combination for better
performance. Reducing the overhead of these components can
significantly improve performance on commodity CPU-based
platforms. As of this writing, the fastest of the new KVS
software designs is MICA [31], which achieves 77 MRPS on
a dual-socket server with Intel R© Xeon

TM
E5-2680 processors.1

3. Modern Platforms and the KVS Design Space
This section describes recent improvements in hardware and
software, efficient KVS implementations, and the synergies
between them.

3.1. Modern Platforms

The core count and last level cache (LLC) size of modern
platforms continues to increase. For example, Intel Xeon
processors today have as many as 18 powerful cores with
45MBs of LLC. These multi-/manycore CPUs provide high
aggregate processing power.

Modern NICs, aside from rapid improvements in bandwidth
and latency, offer several new features to better work with
high-core-count systems: multiple queues, receiver-side scal-
ing (RSS), and flow-steering to reduce the CPU overhead of
NIC access [17, 41]. Multiple queues allow different CPU
cores to access the NIC without contending with each other,
and RSS and flow-steering enable the NIC to distribute a sub-
set of incoming packets to different CPU cores. Processors
supporting write-allocate-write-update-capable Direct Cache
Access (wauDCA) [23],2 implemented as Intel Data Direct
I/O Technology (Intel DDIO) [2] in Intel processors, allow
both traditional and RDMA-capable NICs to inject packets
directly into processor LLC. The CPU can then access the
packet data without going to main memory, with better control
over cache contention should the I/O data and CPU working
sets conflict.

Figure 1 briefly illustrates how these new technologies
work together to make modern platforms friendly to network-
intensive applications. Before network processing starts, a pro-
cessor creates descriptor queues inside its LLC and exchanges
queue information (mostly the head and tail pointers) with
the NIC. When transmitting data, the processor prepares data
packets in packet buffers, updates some transmit descriptors
in a queue, and notifies the NIC through memory-mapped IO
(MMIO) writes. The NIC will fetch the descriptors from the
descriptor queue and packets from the packet buffers directly
from LLC via wauDCA (e.g., Intel DDIO), and start trans-
mission. While this process is the same as with single-queue

1Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or
other countries.

2This paper always refers to DCA as the wauDCA design [23] (e.g., Intel
Data Direct I/O Technology [2]) instead of the simplified Prefetch Hint [23]
based implementation [5].
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Figure 1: A modern system with write-allocate-write-update-capable Direct Cache Access (wauDCA), e.g., Intel DDIO [2], and a multi-
queue NIC with flow-steering, e.g., Intel Ethernet Flow Director [3], to support high performance network intensive applications.

Network stack Example systems

Kernel memcached [7], MemC3 [19]
Userspace Chronos [27], MICA [31]

Concurrency control Example systems

Mutex memcached, MemC3
Versioning Masstree [34], MemC3, MICA
Partitioning Chronos, MICA

Indexing Replacement policy Example systems

Chained hash table Strict LRU memcached
Cuckoo hash table CLOCK MemC3
Lossy hash index FIFO/LRU/Approx.LRU MICA

Memory management Example systems

SLAB memcached, MemC3
Log structure RAMCloud [38]
Circular log MICA

Table 1: Taxonomy of design space of key-value store (KVS) systems.

NICs, multi-queue NICs enable efficient parallel transmission
from multiple cores by eliminating queue-contention, and par-
allel reception by providing flow-steering, implemented as
Intel Ethernet Flow Director (Intel Ethernet FD) [3] in Intel
NICs. With flow-steering enabled NICs, each core is assigned
a specific receive queue (RX Q), and the OS or an application
requests the NIC to configure its on-chip hash table for flow-
steering. When a packet arrives, the NIC first applies a hash
function to a portion of the packet header, and uses the result
to identify the associated RX Q (and thus the associated core)
by looking up the on-chip hash table. After that, the NIC will
inject the packet and then the corresponding RX Q descriptor
directly into the processor LLC via wauDCA. The core can
discover the new packets either by polling or by an interrupt
from the NIC. The NIC continues processing new packets.
Using wauDCA (e.g., Intel DDIO), network I/O does not al-
ways lead to LLC misses: an appropriately structured network
application thus has the possibility to be as cache-friendly as
non-networked programs do.

With fast network I/O (e.g., 100+ Gbps/node), the OS
network stack becomes a major bottleneck, especially for
small packets. Userspace network I/O, such as PacketShader
I/O [21] and Intel Data Plane Development Kit (DPDK) [24],
can utilize the full capacity of high speed networks. By elim-
inating the overheads of heavy-weight OS network stacks,
these packet I/O engines can provide line-rate network I/O
for very high speed links (up to a few hundred Gbps), even
for minimum-sized packets [21, 43]. Furthermore, userspace
networking can also be kernel-managed [13, 42] to maximize
its benefits.

Although modern platforms provide features to enable fast
in-memory KVSs, using them effectively is nontrivial. Un-
fortunately, most stock KVSs still use older, unoptimized

software techniques. For example, memcached still uses the
traditional POSIX interface, reading one packet per system
call. This renders it incapable of saturating multi-gigabit links.
Thus, we navigate through the KVS design space to shed light
on how KVSs should exploit modern platforms.

3.2. Design Space of KVSs

Despite their simple semantics and interface, KVSs have a
huge design and implementation space. While the original
memcached uses a conservative design that sacrifices perfor-
mance and efficiency, newer memcached-like KVSs, such as
MemC3 [19], Pilaf [35], MICA [31], FaRM-KV [18], and
HERD [26], optimize different parts of the KVS system to
improve performance. As a complex system demanding hard-
ware and software co-design, it is hard to find a “silver bullet”
for KVSs, as the best design always depends on several factors
including the underlying hardware. For example, a datacenter
with flow-steering-capable networking (e.g., Intel Ethernet
FD) has a different subset of essential ingredients of an appro-
priate KVS design from a datacenter without it. Table 1 shows
a taxonomy of the KVS design space in four dimensions: 1)
the networking stack; 2) concurrency control; 3) key-value
processing; and 4) memory management.

The networking stack refers to the software framework
and protocol used to transmit key-value requests and responses
between servers and clients over the network. memcached uses
OS-provided POSIX socket I/O, while newer systems with
higher throughput often use a userspace network stack to avoid
kernel overheads and to access advanced NIC features. For
example, DPDK and RDMA drivers [10, 24] expose network
devices and features to user applications, bypassing the kernel.

Concurrency control is how the KVS exploits parallel data
access while maintaining data consistency. memcached relies
on a set of mutexes (fine-grained locking) for concurrency
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control, while many newer systems use optimistic locking
mechanisms including versioned data structures. Versioning-
based optimistic locking reduces lock contention by optimiz-
ing the common case of reads that incur no memory writes.
It keeps metadata to indicate the consistency of the stored
key-value data (and associated index information); this meta-
data is updated only for write operations, and read operations
simply retry the read if the metadata and read data versions
differ. Some designs partition the data for each server core,
eliminating the need for consistency control.

Key-value processing comprises key-value request pro-
cessing and housekeeping in the local system. Hash tables are
commonly used to index key-value items in memcached-like
KVSs. memcached uses a chained hash table, with linked lists
of key-value items to handle collisions. This design is less
common in newer KVSs because simple chaining is inefficient
in both speed and space due to the pointer chasing involved.
Recent systems use more space- and memory access-friendly
schemes such as lossy indexes (similar to a CPU cache’s as-
sociative table) or recursive eviction schemes such as cuckoo
hashing [39] and hopscotch hashing [22]. Replacement poli-
cies specify how to manage the limited memory in the server.
memcached maintains a full LRU list for each class of similar-
sized items, which causes contention under concurrent ac-
cess [19]; it is often replaced by CLOCK or other LRU-like
policies for high performance.

Memory management refers to how the system allocates
and deallocates memory for key-value items. Most systems
use a custom memory management for various reasons: to
reduce the overhead of malloc() [7], to allow using huge
pages to reduce TLB misses [7, 19], to facilitate enforcing the
replacement policy [7,31], etc. One common scheme is SLAB
that defines a set of size classes and maintains a memory pool
for each size class to reduce the memory fragmentation. There
are also log structure [38]-like schemes including a circular log
that optimizes memory access for KV insertions and simplifies
garbage collection and item eviction [31].

It is noteworthy that new KVSs benefit from recent hard-
ware trends described in Section 3.1, especially in their net-
work stack and concurrency control schemes. For example,
MICA and HERD actively exploit multiple queues in the NIC
by steering remote requests to a specific server core to imple-
ment data partitioning, rather than passively accepting packets
distributed by RSS. While these systems always involve the
server CPU to process key-value requests, they alleviate the
burden by directly using the large CPU cache that reduces the
memory access cost of DMA significantly.

4. Experimental Methods
Our ultimate goal is to achieve a billion RPS on a single
KVS server platform. However, software and hardware co-
design/optimization for KVS is challenging. Not only does a
KVS exercises all main system components (compute, mem-
ory, and network), the design space of both the system ar-

chitecture and KVS algorithms and implementation are huge,
as described in Section 3. We therefore use a multi-stage
approach. We first optimize the software to exploit the full
potential of modern architecture with efficient KVS designs.
Second, we undertake rigorous and cross-layer architectural
characterization to gain full-stack insights on essential ingredi-
ents for both hardware and software for KVS designs, where
we also extend our analysis to a collection of KVS designs to
reveal system implications of KVS software design choices.
Finally, we use these full-stack insights to architect future
platforms that can deliver over a billion RPS per KVS server.

4.1. KVS Implementations

To pick the best KVS software design to start with, we have
to navigate through the large design space of KVS and ide-
ally try all the combinations of the design taxonomy as in
Table 1, which is a nearly impossible task. Fortunately, Lim
et al. [31] have explored the design space to some extent and
demonstrated that their MICA design achieves 77 MRPS on
a single KVS server; orders of magnitude faster than other
KVSs. Thus, we take MICA as the starting point for optimiza-
tion (leaving RDMA-based KVS designs for future work) to
fully exploit the potential of modern platforms and include
popular memcached [7] and MemC3 [19] (a major yet non-
disruptive improvement over memcached) to study the system
implications of KVS design choices. Table 2 gives an overview
of the KVS implementations used in this work.

Mcd-S is the original memcached. This implementation is
commonly used in numerous studies. Mcd-S uses socket I/O
provided by the OS and stores key-value items in SLAB. It
uses multiple threads to access its key-value data structures
concurrently, which are protected by fine-grained mutex locks.
It uses a chained hash table to locate items and maintains an
LRU list to find items to evict.

Mcd-D is a DPDK-version of Mcd-S. It replaces the net-
work stack of Mcd-S with a userspace networking stack en-
abled by DPDK and advanced NICs to perform efficient net-
work I/O. It reuses other parts of Mcd-S, i.e., concurrency
control and key-value data structures.

MC3-D is a DPDK-version of MemC3. MemC3 replaces
the hashing scheme of memcached with the more memory-
efficient concurrent cuckoo hashing, while still using fine-
grained mutex for inter-thread concurrency control. It also
substitutes the strict LRU of memcached with CLOCK, which
eliminates the high cost of LRU updates. While these changes
triple its throughput [19], MC3-D still suffers from overhead
caused by the code base of the original memcached.

MICA is a KVS that uses a partitioned/sharded design and
high-speed key-value structures. It partitions the key-value
data and allocates a single core to each partition, which is ac-
cessed by cores depending on the data access mode as shown
in Figure 2. In exclusive read exclusive write (EREW) mode,
MICA allows only the “owner core” of a partition to read and
write the key-value data in the partition, eliminating the need
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Name KVS Network Concurrency Key-value processing Memory
codebase stack control Indexing Replacement policy management

Mcd-S memcached Kernel (libevent) Mutex Chained hash table Strict LRU SLAB
Mcd-D memcached Userspace (DPDK) Mutex Chained hash table Strict LRU SLAB
MC3-D MemC3 Userspace (DPDK) Mutex+versioning Cuckoo hash table CLOCK SLAB
MICA MICA-cache Userspace (DPDK) None/versioning Lossy hash index FIFO/LRU/Approx.LRU Circular log

Table 2: Implementations of the KVS systems used in our experiments. Mcd-D and MC3-D are modified from their original code to
use DPDK for network I/O. MICA is optimized for higher throughput and operates in its cache mode.

Partition

Partition

Core

Core

GET data path PUT data path

MICA EREW MICA CREW

Main memory Processor

Partition

Partition

Core

Core

Main memory Processor

Figure 2: Partitioning/sharding in MICA.

for any concurrency control. In concurrent read exclusive
write (CREW) mode, MICA relaxes this access constraint
by allowing cores to access any partition for GET requests
(whereas keeping the same constraint for PUT requests), which
requires MICA to use a versioning-based optimistic locking
scheme. We use MICA’s cache mode, which is optimized for
memcached-like workloads; MICA maintains a lossy index
that resembles the set-associative cache of CPUs for locating
key-value items, and a circular log that stores variable-length
items with FIFO eviction. In this design, remote key-value
requests for a key must arrive at an appropriate core that is
permitted to access the key’s partition. This request direction
is achieved by using flow-steering as described in Section 3.1
and making clients to specify the partition of the key explicitly
in the packet header. MICA supports FIFO, LRU, and ap-
proximate LRU by selectively reinserting recently used items
and removing most inactive items in the circular log. MICA
performs intensive software memory prefetching for the index
and circular log to reduce stall cycles.

While MICA is for co-optimizing hardware and software to
reap the full potential of modern platforms, other KVS designs
are important to understand system implications of key design
choices. For example, from Mcd-S to Mcd-D we can see the
implications on moving from OS to user-space network stack.
And from Mcd-D to MC3-D, we can find the implications
for using more efficient key-value processing schemes over
traditional chaining with LRU policy.

4.2. Experimental Workloads

We use YCSB for generating key-value items for our work-
load [16]. While YCSB is originally implemented in Java, we
use MICA’s high-speed C implementation that can generate up
to 140 MRPS using a single machine. The workload has three
relevant properties: average item size, skewness, and read-
intensiveness. Table 3 summarizes four different item counts
and sizes used in our experiment. The packet size refers to the
largest packet size including the overhead of protocol headers
(excluding the 24-byte Ethernet PHY overhead); it is typically

Dataset Count Key size Value size Max pkt size
Tiny 192 Mi 8 B 8 B 88 B
Small 128 Mi 16 B 64 B 152 B
Large 8 Mi 128 B 1,024 B 1,224 B

X-large 8 Mi 250 B 1,152 B 1,480 B

Table 3: Workloads used for experiments.

the PUT request’s size because it carries both the key and value,
while other packets often omit one or the other (e.g., no value
in GET request packets). To demonstrate realistic KVS perfor-
mance for large datasets, we ensure that the item count in each
dataset is sufficiently high so that the overall memory require-
ment is at least 10GB including per-object space overhead.
The different datasets also reveal implications of item size in
a well controlled environment for accurate analysis. We use
relatively small items because they are more challenging to
handle than large items that rapidly become bottlenecked by
network bandwidth [32]. They are also an important workload
in datacenter services (e.g., Facebook reports that in one mem-
cached cluster [12], “requests with 2-, 3-, or 11-byte values
add up to 40% of the total requests”).

We use two distributions for key popularity: Uniform and
Skewed. In Uniform, every key has equal probability of being
used in a request. In Skewed, the popularity of keys follows
a Zipf distribution with skewness 0.99, the default Zipf skew-
ness for YCSB. The Zipf distribution captures the key request
patterns of realistic workloads [12,32] and traces [32]. Skewed
workloads often hit system bottlenecks earlier than uniform
workloads because they lead to load imbalance, which makes
them useful for identifying bottlenecks.

Read-intensiveness indicates the fraction of GET requests
in the workload. We use workloads with 95% and 50% GET
to highlight how KVSs operate for read-intensive and write-
intensive applications, respectively.

We define the STANDARD workload as a uniform workload
with tiny items and a 95% GET ratio. This workload is used
in several of our experiments later.

4.3. Experiment Platform

Our experiment system contains two dual-socket systems with
Intel R© Xeon

TM
E5-2697 v2 processors (12 core, 30MB LLC,

2.7GHz ). These processors are equipped with Intel DDIO
(an implementation of wauDCA on Intel processors) and thus
enable NICs to inject network I/O data directly into LLC. Each
system is equipped with 128GB of DDR3-1600 memory and
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Figure 3: MICA’s number-of-cores scalability with 1 10GbE port
and one socket. We use STANDARD workload and EREW mode.
RX batch size is the average number of packets MICA fetches
per I/O operation from the NIC via DPDK. All numbers are nor-
malized to their values at one core, where the actual RPS, RX
batch size, and IPC are 11.55 MRPS, 32 packets per I/O opera-
tion, and 1.91 (IPC per core), respectively.

four Intel R©X520-QDA1 NICs, with four 10Gbps Ethernet
(10GbE) ports on each NIC. The NICs support flow-steering
via the built-in Intel Ethernet Flow Director. The two systems
are directly connected via their NICs for simplicity, with one
system acting as a client and the other acting as a server.

CentOS 7.0 is installed with kernel 3.10.0-123.8.1. All
code is compiled with gcc 4.8.2. For application-, system-,
and OS- level analysis, we use Systemtap 2.4. For hardware
level performance analysis, we use Intel R© VTune

TM
to collect

statistics from hardware performance counters. We measure
the total power supplied to the server from a wall socket using
Watts-Up-Pro. Inside the server, we use a National Instruments
DAQ-9174 to measure the power of the two processors (via
the 12V rail of the voltage regulator) and one of the PCIe NICs
(via the 3.3V and 12V rails on the PCIe slot).

5. The Road to 120 Million RPS per KVS Server

We first describe our optimizations guided by detailed full-
system characterization, achieving 120 MRPS on our experi-
ment platform. Then, we present insights gained from cross-
layer performance analysis on system implications of KVS
software design choices, as well as the essential ingredients
for high performance KVS systems.

5.1. Architecture Balancing and System Optimization

Because KVSs exercise the entire software stack and all major
hardware components, a balance between compute, memory,
and network resources is critical. An unbalanced system will
either limit the software performance or waste expensive hard-
ware resources. An important optimization step is to find the
compute resources required to saturate a given network band-
width, for example, a 10GbE link. Figure 3 shows MICA’s
throughput when using one 10GbE link with an increasing
number of CPU cores. While one core of the Intel Xeon pro-
cessor is not enough to keep up with a 10GbE link, two cores
provide close to optimal compute resources, serving 9.76 Gbps
out of the 10 Gbps link. Using more cores can squeeze out the

remaining 2.4% of the link bandwidth, at the expense of spend-
ing more time on network I/O compared to actual key-value
(KV) processing. For example, using three cores instead of
two reduces the average RX batch size by a factor of 6 (from
32 to 5.29), meaning that cores do less KV processing per I/O
operation. Although the IPC does not drop significantly with
adding more cores, the newly added cores simply busy-wait
on network I/O without doing useful KV processing.

Holding the core to network port ratio as 2:1, we increase
the cores and 10GbE ports in lockstep to test the full-system
scalability. The maximum throughput achieved in this way is
80 MRPS with 16 cores and 8 10GbE ports. Going beyond
these values leads to a performance drop because of certain
inefficiencies that we identified in the original MICA system.
First, originally, each server core performed network I/O on all
NIC ports in its NUMA domain. Thus, the total number of NIC
queues in the system is NumCores×NumPorts, leading to a
rapid increase in the total network queues the processor must
maintain. More total queues also requires the NICs to inject
more data into the LLC via Intel DDIO that, however, can only
use up to 10% of the LLC capacity [2]. In addition, with more
cores and higher throughput, the cores must fetch more data
into the LLC for key-value processing. The combination of
these two effects causes LLC thrashing and increases the L3
miss rate from less than 1% to more than 28%.

To reduce the number of queues in the system, we changed
the core to port mapping so that each core talks to only one
port. With this new mapping, the performance reached 100
MRPS with 20 cores and 10 10GbE ports, but dropped off
slightly with more cores/ports. We analyzed this problem
in detail by using Systemtap to track the complete behavior
(on-/off-CPU time, call graph, execution cycle breakdown,
among others) of all procedure calls and threads in the en-
tire software stack (MICA, DPDK, and OS). We found that
several housekeeping functions consumed more than 20% of
the execution time when there are more than 20 cores. Ex-
amples include statistics collection from NICs (used for flow
control, and expensive because of MMIO) and statistics col-
lection from local processors (for performance statistics). We
reduced the frequency of these housekeeping tasks to alleviate
the overhead without affecting the main functionality. With
this optimization, MICA scaled linearly with number-of-cores
and number-of-ports.

Figure 4 shows MICA’s throughput with our optimizations.
MICA achieves 120 MRPS when all 24 cores in both sockets
are used. With increasing numbers of cores and ports, L1D
and L2 cache misses remain stable, at ∼ 1.5% and ∼ 32%, re-
spectively. The L1D miss rate stays low because of 1) MICA’s
intensive software prefetching, which ensures that data is ready
when needed; and 2) MICA’s careful buffer reuse such as zero-
copy RX-TX packet processing. The high L2 cache miss rate
is due to packet buffers that do not fit in L1D. The LLC cache
miss rate is also low because network packets are placed in
LLC directly by the NICs via Intel DDIO and because MICA
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Ports Cores Network BW (Gb/s) TX/RX Mem BW (GB/s) RD/WR Tput (MRPS)
2 10GbE 4 19.31 / 19.51 6.21 / 0.23 23.33
12 10GbE 24 99.66 / 105.45 34.97 / 2.89 120.5

Table 4: MICA’s resource utilization. Cores and ports are evenly distributed across the two sockets. We use STANDARD workload
with EREW mode.
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Figure 4: Throughput scalability and cache3 miss rates of
MICA with our optimizations. The port count used is half the
core count. We use STANDARD workload and EREW mode.

uses intensive software prefetching. While the performance in-
creases linearly, the LLC cache miss rate increases when there
are more than 16 active cores (8 per socket). The increased
LLC miss rate happens for the same reason that prevents us
from increasing beyond 80 MRPS before applying the core-
to-port mapping optimization, which indicates the importance
of sufficient LLC capacity for future manycore processors for
high KVS performance even with the mapping optimization.

Hereafter, we refer to MICA with our optimizations as
MICA for simplicity. Table 4 shows the utilization of hard-
ware components on the dual-socket system with two configu-
rations: 2 ports with 4 cores, and 12 ports with 24 cores. The
cores and ports are evenly distributed across two NUMA do-
mains. The resource utilization scales almost linearly as more
cores and ports are used with the fixed 2-to-1 core-to-port
ratio. For example, the memory bandwidth increases from
6.21 GB/s with 2 ports to 34.97 GB/s with 12 ports.

We also performed an architectural characterization of
the system implications of simultaneous multithreading
(SMT) [44] on our KVS performance, using Intel Hyper-
threading Technology, an implementation of 2-way SMT on
Intel processors. Our characterization shows that 2-way SMT
causes a 24% throughput degradation with the full system
setup (24 cores and 12 10GbE ports). This is because the two
hardware threads on the same physical core compete on cache
hierarchy from L1 to LLC and cause cache thrashing, resulting
in a 14%, 27%, and 3.6X increase on L1, L2, and LLC MPKI,
respectively. While SMT can improve resource utilization for
a wide variety of applications, MICA’s relatively simple con-
trol structure means that it can incorporate application-specific
prefetching and pipelining to achieve the same goal, making
single-threaded cores sufficient.

5.2. System Implications of KVS SW Design Choices
Figure 5 shows the measured full-system performance of the
four KVS systems (Table 2) with tiny and small datasets (Ta-

3Unlike memcached with 20+% L1I$ miss rate due to the complex code
path in the Linux kernel and networking stack [32], MICA’s L1I$ miss rate is
below 0.02% due to the use of userspace networking and kernel bypass.
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Figure 5: Throughput of the 4 KVS systems with differ-
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100µs. MICA runs EREW mode.

# NUMA # Cores/domain # 10GbE Ports/domain
Mcd/MC3-D 2 4 1
MICA 2 12 6

Table 5: KVS configurations to achieve best performance. Mcd-
S, Mcd-D, and MC3-D have the same optimal configuration.

ble 3) and different GET/PUT ratios. MICA performs best
regardless of datasets, skew, and GET ratios. For tiny key-
value pairs, MICA’s throughput reaches 120.5∼116.3 MRPS
with the uniform workload and 84.6∼82.5 MRPS for the
skewed workload. MICA uses 110∼118 Gbps of network
bandwidth under the uniform workload, almost saturating
the network stack’s sustainable 118 Gbps bandwidth on the
server (when processing packet I/O only). Other KVSs achieve
0.3∼9 MRPS for the tiny dataset. Because the system remains
the same (e.g., 120GbE network) for all datasets, using larger
item sizes shifts MICA’s bottleneck to network bandwidth,
while other KVSs never saturate network bandwidth for these
datasets. Since larger items rapidly become bottlenecked by
network bandwidth and thus are much easier to handle even for
inefficient KVSs [32], large and x-large datasets have similar
results, with shrinking gaps between MICA and other KVSs
as the item size increases.

Because of the inherent characteristics of their different de-
sign choices, the KVS systems achieve their best performance
with different system balances. We sweep the system-resource
space for all four KVSs to find their balanced configuration,
shown in Table 5. While MICA can leverage all the 24 cores
with 12 10GbE ports in the tested server, Mcd-S, Mcd-D,
and MC3-D can only use four cores and one 10GbE port
per domain due to their inherent scalability limitations (Sec-
tion 5.2.1). Because MICA uses NUMA-aware memory al-
location for partitions [31], we run other systems with two
processes, one on each NUMA domain (with different 10GbE
ports) to compare the aggregate performance more fairly.
5.2.1. Inside KVS Software Stack and OS Kernels Despite
MICA’s high throughput, it is critical to understand its perfor-
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STANDARD workload is used; MICA is in EREW mode.

mance deeply via holistic cross-layer analysis. Figure 6 shows
execution time breakdown between the four major components
of KVS software (Section 3.2), obtained by Systemtap. With
the best configuration (BT), Mcd-S spends more than 60%
of its execution time on network processing because of the
high overhead of the kernel’s network stack. This is in line
with observations from previous studies on memcached [27].
The pthread mutex-based concurrency control in Mcd-S con-
sumes about 11% of execution time and memory management
consumes 13%. As a result, key-value processing work only
gets about 10% share of the execution time, leading to the low
performance of Mcd-S (0.3 MRPS, Figure 5) .

Replacing the kernel’s network stack by a more efficient,
user-level network stack improves performance, but it is not
enough to achieve the platform’s peak performance. For ex-
ample, Mcd-D replaces memcached’s network stack by In-
tel DPDK. This increases throughput dramatically from 0.3
MRPS to 3.1 MRPS, but still less than 3% of MICA’s peak
throughput. This is because, with the user-level network stack,
memcached’s bottleneck shifts from network I/O to the heavy-
weight mutex-based concurrency control. As a result, the
actual KV processing still consumes only 26% of the total
execution time.

MC3-D attempts to modify memcached’s data structures
for better concurrent access, leading to a tripled throughput
(up to 9 MRPS). However, it still performs costly concurrency
control, which consumes ∼ 30% of its execution time. While
MC3-D seems to achieve a relatively balanced execution-time
breakdown with its best configuration (BT in Figure 6) that
uses 8 cores and 2 ports as in Table 5, there is significant
imbalance with the full system configuration (FS). In the FS
mode, Mcd-S, Mcd-D, and MC3-D spend a much smaller
share of execution time in key-value processing than in the
BT mode, and actually get 2∼3x less performance than the
BT mode. MICA shows the most balanced execution time
break down, with both network and KV processing taking
∼45% of execution time respectively. This analysis reveals
the underlying reason why replacing one component in the
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Figure 7: Implications of prefetch on MPKIs of L1/L2/L3 caches,
memory bandwidth (MemBW), time spent on each RX batch
(time/RX), and throughput (RPS). All numbers are normalized to
that without prefetch.

complex KVS software is not enough and a holistic re-design
of KVSs is the right approach to achieve high performance.

5.3. Key Implications on Modern Platforms Running Op-
timized MICA

Trade memory bandwidth for latency via prefetching:
MICA is very sensitive to memory latency because it must
finish the KV processing before the next batch of incoming
packets is injected to LLC by the NICs. If it fails to do so, the
packet FIFO in the NIC will overflow. The overflow informa-
tion is collected by the MICA server that subsequently notifies
its clients to slow down, which in turn degrades the system
performance. MICA relies on multi-staged software (SW)
prefetch on both packets and KV data structures to reduce
latency and keep up with high speed network.

Figure 7 shows the system implications of the multi-staged
SW prefetch.4 With SW prefetch, MPKI of L1D decrease
by more than 50%. Because prefetching bypasses L2, the
elimination of interferences from both the packet data accesses
and the random key-value accesses reduces L2 misses, leading
to a 75% reduction in L2 MPKI. Most LLC misses come from
the KV data structures, because NICs inject the RX network
packets directly into the LLC with sufficient LLC capacity for
Intel DDIO (thus accesses usually do not cause any misses).
Because of the randomness in requested keys, LLC has a high
cache miss rate without SW prefetch (57%), similar to that
observed in other KVSs [32]. SW prefetch reduces the LLC
miss rate dramatically to 8.04% and thus frees may LLC-miss-
induced stall cycles to do KV processing, which improves
performance (RPS) by 71% and reduces LLC MPKI by 96%,
as shown in Figure 7.

At the system level, the NICs and CPUs form a high-speed
hardware producer-consumer pipeline via Intel DDIO. The re-
duction of cache misses significantly improves latency for con-
suming requests/packets, eliminating 54% of the time needed
to process an RX packet batch, leading to a 71% performance
gain. These improvements come at the expense of increasing
memory bandwidth use to 34.97GB/s. While the increased
memory bandwidth use is mostly due to the performance gain,
SW prefetch generates extra memory traffic due to potential

4MICA uses non-temporal software prefetch, prefetchnta, to bypass L2
because the large and random dataset does not benefit from a small sized L2.
L3 is inclusive of L1 and thus not bypassed. Because of Intel DDIO, packets
are injected to L3 directly, thus not bypassing L3 is naturally better.
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cache pollution. For each key-value request, MICA needs 1∼2
random DRAM accesses, for a total of 3∼4 cache lines (some
cache lines are adjacent and do not cause DRAM row-buffer
conflicts). The network packet that contains the request has
high access locality since it is placed in a contiguous segment
inside LLC directly by the NICs. Thus, the 120MRPS perfor-
mance requires ∼30 GB/s memory bandwidth,5 which means
SW prefetch adds ∼17% overhead to memory bandwidth.
However, trading memory bandwidth for latency is favorable,
because memory latency lags bandwidth significantly [40].
Section 6.1 demonstrates how trading memory bandwidth for
latency simplifies the memory subsystem design for future
KVS platform architecture.
System implications of skewed workloads: Unlike uni-
formly distributed (or simply uniform) workloads that evenly
spread requests to all partitions, skewed workloads cause un-
even load on cores/partitions and create hot and cold cores
with different throughput. A cold core spends more time spin
waiting for jobs from external sources, which results in dif-
ferent instruction mixes than on hot cores. Therefore, using
traditional metrics such as IPC and cache miss rate for skewed
workloads could be misleading. Instead, Figure 8 uses instruc-
tions per KV (key-value) operation (IPO) and cache misses
per KV operation (MpOp), together with overall performance
for skewed workloads. We focus on per-core behavior because
it differentiates hot and cold cores, which affects overall per-
formance. We normalize to EREW with a uniform workload
as the baseline; its whole-system throughput is 120 MRPS.

With skewed workloads, the EREW throughput is ∼84
MRPS. The per-core throughput of cold cores decreases by
28% to 3.58 MRPS on average. The hot cores’ throughput,
however, increases by 43% to 7.1 MRPS, which mitigates
the system impact of the skew. The increased locality of the
requests in the skewed workload reduces L3 MpOp of the hot
cores by over 80%, compared to the cold cores, as shown in
Figure 8. Moreover, the hot cores’ packets per I/O almost
triples from 12.5 packets per I/O with uniform workload to
32 packets per I/O, which reduces the per-packet I/O cost and
results in the 14% improvement on IPO on hot cores.

5Although MICA cannot achieve 120MRPS without SW prefetch, we
verified the relationship between throughput and memory bandwidth demand
at lower achievable throughput levels with SW prefetch turned off.
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While EREW tolerates skewed workloads well, CREW in
MICA further bridges the gap. In CREW, all cores receive
and process GET requests regardless of their partition affinity.
The bottleneck due to the hot cores for GET heavy workloads
nearly disappears, and the different load on the hot and cold
cores is due to PUTs and associated synchronization between
GETs and PUTs. CREW generates 86% (4.3 MRPS) and
129% (6.5 MRPS) throughput/core for cold and hot cores re-
spectively, compared to the uniform EREW mode. This brings
the overall system performance back to 108 MRPS, a 10% per-
formance drop from the uniform workload. CREW shows the
same trend as EREW, benefiting from the increased locality
(MpOp reduction) and reduced I/O overhead (increased RX
batch size and reduced IPO) on hot cores.

5.4. Round Trip Latency (RTT) vs. Throughput

High throughput is only beneficial if latency SLAs (service
level agreement) are satisfied. All the results shown so far
are guaranteed with the 95th percentile of latency being less
than 100µs. Figure 9 reveals more latency-vs-throughput de-
tails. As throughput changes from 10M∼120M RPS, latency
changes gracefully (e.g., mean: 19∼81µs; 95th: 22∼96µs).
Our optimized MICA achieves high throughput with ro-
bust SLA guarantees. Figure 5 shows that with the same
95th percentile latency (less than 100µs), MICA (120MRPS)
achieves over two orders of magnitude higher performance
than stock memcached (0.3MRPS). Moreover, even at the
highest throughput (120MRPS), the 95th percentile latency
of MICA is only 96µs, ∼11X better than the 95th percentile
latency of 1135µs reported by Facebook [36].

The high system utilization at 120MRPS throughput takes a
toll on tail latencies, with 99th and 99.9th percentile latencies
at 276µs and 952µs, respectively. However, these latencies
are better than widely-accepted SLAs. For example, MICA’s
99th percentile latency is ∼72X better than the 99th percentile
latency of 20ms reported by Netflix [9]. Moreover, a small
sacrifice of throughput (8.3%, for 120MRPS to 110MRPS)
improves 99th and 99.9th percentile tail-end latencies to 45µs
and 120µs, respectively.
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mance KVS systems.

5.5. Energy Efficiency

With the energy characterization setup, we measure the power
consumption of our KVS platform as 399.2W, with power
distribution to the two CPUs and four NICs being 255W and
62W, respectively. The remaining 82W is consumed by the
remaining system components, mostly the 128GB memory
and motherboard. At 120.5MRPS, our KVS platform achieves
302 kilo RPS/watt (KRPS/W; higher is better) energy effi-
ciency. The best published FPGA-based memcached system
so far is from Xilinx [14], with performance of 13.02 MRPS
and energy efficiency of 106.7 KRPS/watt (254.8 KRPS/watt
when the FPGA host’s power is excluded) for minimum-sized
packets. Our CPU-based optimized MICA server achieves
not only 9.2X the performance (RPS) but also 2.8X (1.18X
even when the FPGA host’s power is excluded) the system
energy efficiency (RPS/watt) of the best-published results for
FPGA-based memcached implementations.

This shows that, when fully exposing the system capability,
high-performance processors can provide higher performance
as well as higher energy efficiency. The OS network stack
and concurrency control overheads limit the performance and
scalability of memcached. When memcached is executed on a
high-end server, the compute, memory, and network resources
are severely underutilized, but continue to consume power.
Software optimizations can help reap the full potential of the
system and ensure that each system resource is well utilized,
making our commodity system not only a high performance
platform but also an energy efficient one for KVSs.

6. Achieving a Billion RPS per KVS Server

Our optimized MICA design achieves record-setting perfor-
mance and energy efficiency, offering valuable insights about
how to design KVS software and its main architectural impli-
cations (Section 5). This section focuses on our final grand
challenge: designing future KVS platforms to deliver a billion
RPS (BRPS) throughput using a single multi-socket server.

6.1. Architecting a Balanced Platform Holistically

As shown in Figure 10 and Table 6, the proposed platform
consists of multiple manycore processors. Each processor

CPU (w/ wauDCA similar to Intel DDIO [2])
Technology (nm) 14
Core Single-thread, 3-issue, OOO, 64 ROB
Clock rate (GHz) 2.5(N,0.7v)/1.5(LP, 0.6v)/

3.0(TB, 0.85v)
L1 Cache 32 KB, 8-way, 64 B
L2 (LLC) Cache / tile 1.5 MB (768KB/core), 16-way, 64 B
# Cores(Tiles)/socket 60 (30), w/ 2 cores per tile
Integrated IO agent PCIe 4.0 (tot. 32 lanes);

Memory Subsystem
Memory Controllers 6, single-channel
Memory type DDR4-2400

Network (w/ flow-steering similar to Intel Ethernet FD [3])
Multi-queue NICs Three 100GbE, PCIe4.0 x8 per NIC

Table 6: Parameters of the target platform. All numbers are
for one socket, the target platform has two or four sockets. The
different frequency-voltage pairs (obtained from McPAT [29]) are
for normal (N), low power (LP), and turbo boost (TB). wauDCA
can use up to 10% of LLC [2].

is organized as multiple clusters of cores connected by an
on-chip 2D mesh network. Each cluster has two out-of-order
(OOO) cores, connected to a distributed shared LLC (L2 cache
in our case) via a crossbar. A two-level hierarchical directory-
based MOESI protocol is used for cache coherence for L1
and L2 as well as for wauDCA for the NICs. Multiple mem-
ory controllers provide sufficient memory bandwidth. The
target processor was estimated to have a 440mm2 die size and
125W TDP by using McPAT [29]. Each processor is paired
with three multi-queue 100GbE NICs with flow-steering. The
NICs communicate with the processor through PCIe 4.0 and
inject packets directly to the LLC via wauDCA. The target
server contains two or four such manycore processors, and we
evaluate both dual- and quad-socket servers.

We now explain the reasons behind our main design choices,
based on the insights gained from the full-stack system anal-
ysis and our simulations. Designing a BRPS-level (billion
requests per second) KVS platform requires the right system
balance among compute, memory, and network.
Compute: Figure 3 shows that MICA’s IPC is up to 1.9 on
the CPU, which indicates that 4-issue OOO cores could be
an overkill. Thus, we perform a sensitivity study for core
weight through simulations (see Section 6.2 for simulation
infrastructure details). Figure 11 shows the platform’s perfor-
mance in normalized RPS as the reorder buffer (ROB) size
(number of entries) and issue width are varied for datasets
with different key and value sizes. Supporting multiple issues
and out-of-order execution with a reasonably sized instruction
window substantially improves the performance, but further
increasing issue width or ROB size brings diminishing returns.
In particular, as shown in Figure 11, increasing the ROB size
from 1 (in-order issue) to 64 in the single-issue core doubles
performance, but increasing it further to 256 only provides an
additional 1% boost. With a ROB size of 64 entries, increasing
issue width from 1 to 3 almost doubles system performance.
Further increasing the issue width to 4, however, improves per-
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Figure 11: Relative performance for different item size when
varying the ROB size and issue width of cores.

formance by only 5%. Considering the super-linear increase
in complexity with larger window sizes and issue width, using
a core more powerful than 3-issue with 64 ROB entries is not
cost effective. Thus, we choose 3-issue OOO cores with 64
ROB entries in the target system.
Network and I/O subsystem: MICA (or any KVS) is a
network application. Because our optimized MICA achieves
near-perfect scaling (Section 5.1), we expect that the number
of cores required per 10Gbps network capacity will remain
unchanged, with appropriately sized (issue width, ROB size)
cores and other balanced components. Thus, each 60 core
processor can provide enough processing power for 300Gbps
bandwidth. We assume that our platform will use emerging
100Gbps Ethernet NICs (similar to [6]). Each 100GbE NIC
requires at least 100Gbps of I/O bandwidth—an 8 lane (upcom-
ing) PCIe 4.0 slot will be enough with its 128Gbps bandwidth.
On-chip integrated NICs [30, 37] will be an interesting design
choice for improving system total cost of ownership (TCO)
and energy efficiency, but we leave it for future exploration.
Memory subsystem and cache hierarchy: Like all KVS
systems, MICA is memory intensive and sensitive to mem-
ory latency. Fortunately, its intensive SW prefetch mecha-
nism is effective in trading memory bandwidth for latency
(Section 5.3), which is favored by modern memory systems
whose latency lags bandwidth significantly [40]. Thus, when
designing the main memory subsystem, we provision suffi-
cient memory bandwidth without over-architecting it for low
memory latency. Using the same analysis as in Section 5.3,
should our optimized MICA reach 1 BRPS on the target 4-
sockets platform, each socket will generate at least 1

4 ·4 billion
cache line requests per second from DRAM, for 64GB/s of
DRAM bandwidth. We deploy six memory controllers with
single-channel DDR4-2400 for a total of 118 GB/s aggregated
memory bandwidth to ensure enough headroom for the band-
width overhead because of MICA’s software prefetching and
the random traffic in key-value processing.

Our cache hierarchy contains two levels, because our per-
formance analysis (Section 5.1) and simulations reveal that a
small private L2 cache in the presence of large L3 does not
provide noticeable benefits due to high L2 miss rate. An LLC6

6Our performance analysis (Section 5.1) and simulations confirm that a
32KB L1D cache is sufficient. We focus on detailed analysis of LLC in the
paper because of its high importance and the limited paper space.
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is critical not only to high performance KV processing on
CPUs but also to high speed communication between CPUs
and NICs. If the LLC cannot hold all RX/TX queues and
associated packet buffers, LLC misses generated by NICs dur-
ing directly injecting packets to the LLC via wauDCA will
cause undesired main memory traffic leading to slow network
and performance degradation. Moreover, contention between
CPUs and NICs can cause LLC thrashing. For example, NICs
can evict previously injected packets and even KV processing
data structures (prefetched by CPUs) out of the LLC before
they are consumed by CPUs. And even more cache conflicts
will be generated when CPUs fetch/prefetch those data back
from main memory for processing.

Figure 12 shows the platform performance and LLC misses
with different LLC capacity, with wauDCA consuming up to
10% [2] of LLC capacity. While the 256KB (per-core) LLC
cannot hold all queues and packet buffers from the network, in-
creasing LLC capacity to 512KB accommodates most of them
without thrashing against KV processing on CPU, leading to
a major performance gain (97%) and cache miss reduction
(98%). Increasing LLC capacity further to 768KB fully ac-
commodates network I/O injected directly into the LLC by
the NICs and eliminates the interference among the two cores
in the same tile, leading to extra performance gain (20%) and
LLC miss reduction (82%). Further increasing LLC capacity
to 2MB brings diminishing returns with only 4.6% additional
gain. Therefore, we adopt the LLC design with 768KB per
core (45MB per processor) in our manycore architecture.

Large items demonstrate similar trends, with smaller per-
formance gain and LLC miss reduction when increasing LLC
capacity. The reason is that large items rapidly become bot-
tlenecked by network bandwidth. Thus, the faster degraded
network I/O provides more time slack than what is needed by
CPUs to fetch extra cache lines because of increased item size
for KV processing.

Discussions: Despite a carefully crafted system architecture,
our platform remains general purpose in terms of its core ar-
chitecture (3-issue with 64-entry ROB is midway in the design
spectrum of modern OOO cores), its processor architecture
(many cores with high speed I/O), and its system architecture
(upcoming commodity memory and network subsystem). This
generality should allow our proposed platform to perform well
for general workloads. With proper support, the proposed
platform should be able to run standard OSes (e.g., Linux).
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6.2. Performance Evaluation

Our simulation infrastructure is based on McSimA+ [11], a
manycore simulator that models multithreaded in-order and
out-of-order cores, caches, directories, on-chip networks, and
memory controllers and channels in detail. We augmented
McSimA+ with a multi-queue NIC model and MOESI cache
coherence protocol to model wauDCA. We also extended
the interconnect model of McSimA+ to simulate inter-socket
communication. Because the kernel bypassing and memory
pinning used in MICA render OS features less important, our
simulation results are accurate regardless of the OS used (and
thus regardless of McSimA+’s inability to model detailed OS-
level activities). To reduce simulation complexity, McSimA+
uses a ghost client to send and receive key-value requests
without modeling the execution of the client. However, it
is the same from the simulated server’s perspective, and the
server can apply the same flow control mechanism as if it was
talking to a real client.

Figure 13 shows the performance of the target dual- and
quad-socket servers. Running on our proposed platform in
simulation, our optimized MICA achieves linear scaling on
both dual- and quad-socket servers for uniform workloads, re-
gardless of the GET ratio. As a result, the performance on the
quad-socket platform successfully reaches ∼ 1.2 billion RPS
(BRPS) in EREW mode with uniform workloads. Skewed
workloads pose a harder problem on the target platform be-
cause of its large number of cores—increasing the number
of cores leads to more partitions, which causes a larger load
imbalance. In a Zipf-distributed population of size 192×220

(192 million) with skewness 0.99 (as used by YCSB [16]), the
most popular key is 9.3×106 times more frequently accessed
than the average. For a small number of cores (thus partitions),
the key-partitioning does not lead to a significant load imbal-

ance [31]. For example, for 24 cores (and partitions), as in our
experimental platform (Section 5), the most popular partition
is only 97% more frequently requested than the average.

However, in our proposed architecture, the load on hottest
partition is 10.6X (on the 240-core quad-socket server) and
5.8X (on the 120-core dual-socket server) of the average load
per core, respectively. Although the increased data locality
and decreased I/O processing overhead improves the perfor-
mance of the hottest cores by ∼ 50% based on our simulations,
it is not enough to bridge the gap between hot and cold parti-
tions/cores. Thus, the hot cores become a serious bottleneck
and cause a drastic performance degradation for skewed work-
loads: The performance on dual- and quad-socket machines is
0.13 BRPS (21% of the system peak performance) and 0.14
BRPS (11% of peak), respectively. Using the CREW mode
can help GET-intensive skewed workloads, since in CREW
mode all GET requests are sent to all cores to share the load
(writes are still sent to only one core). However, for PUT-
intensive skewed workloads (Skewed, 50% GET), there is still
a large gap between the achieved performance and the peak
performance (Figure 13).

Using workload analysis, we found that the load on the
partitions (cores) is very skewed. On both systems, there are
only two very hot cores (Figure 14). More than 90% of the
cores are lightly loaded—less than 20% of the hottest core.
This observation leads to an architectural optimization using
dynamic frequency/voltage scaling (DVFS) and turbo boost
(TB) technologies. We assume that our manycore processor
is equipped with recent high efficiency per-domain/core on-
chip voltage regulators [25]. Based on the supply voltage and
frequency pairs shown in Table 6, we reduce the frequency
(and voltage) on the 20 most lightly loaded cores (their load
is less than 12% of the load on the hottest core) from 2.5GHz
to 1.5GHz and increase the frequency of the 6 most loaded
cores to 3.5GHz. Results obtained from DVFS modeling in
McPAT [29] show that this configuration actually reduces
total processor power by 16%, which ensures enough thermal
headroom for turbo boost of the 6 hot cores. Our results
in Figure 13 show that with CREW-T, the combination of
fine-grained DVFS/TB and MICA’s CREW mode, the system
throughput for the write-intensive skewed workload (Skewed,
50% GET) improves by 32% to 0.42 BRPS and by 27% to
0.28 BRPS on the quad- and dual-socket servers, respectively.
Although datacenter KVS workloads are read-heavy with GET
ratio higher than 95% on average [12], this architecture design
is especially useful for keys that are both hot and write-heavy
(e.g., a counter that is written on every page read or click).

Although distributing jobs across more nodes/servers (with
fewer cores/sockets per server) works well under uniform
workloads, as skew increases, shared-read (CREW, especially
our newly proposed CREW-T) access becomes more important.
Thus, a system built with individually faster partitions is more
robust to workload patterns, and imposes less communication
fan-out for clients to contact all of the KVS server nodes.
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7. Conclusions
As an important building block for large-scale Internet ser-
vices, key-value stores affect both the service quality and
energy efficiency of datacenter-based services. Through a
cross-stack whole system characterization, this paper evalu-
ates (and improves) the scaling and efficiency of both legacy
and cutting-edge key-value implementations on commodity
x86 servers. Our cross-layer system characterization provides
important full-stack insights (software through hardware) for
KVS systems. For example, the evaluation sheds new light on
how both software features such as prefetching, and modern
hardware features such as wauDCA and multi-queue NICs
with flow-steering, can work synergistically to serve high per-
formance KVS systems.

Beyond optimizing to achieve the record-setting 120 MRPS
performance and 302 KRPS/watt energy efficiency on our
commodity dual-socket KVS system, this paper sets forth prin-
ciples for future throughput-intensive architectural support for
high performance KVS platforms. Through detailed simu-
lations, we show that these design principles could enable a
billion RPS performance on a single four-socket key-value
store server platform. These results highlight the impressive
possibilities available through careful full-stack hardware/soft-
ware co-design for increasingly demanding network-intensive
and data-centric applications.
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[18] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in NSDI, 2014.

[19] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
NSDI, 2013.

[20] A. Gutierrez, M. Cieslak, B. Giridhar, R. G. Dreslinski, L. Ceze, and
T. Mudge, “Integrated 3D-stacked server designs for increasing physical
density of key-value stores,” in ASPLOS, 2014.

[21] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in SIGCOMM, 2010.

[22] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,” in Dis-
tributed Computing. Springer, 2008, pp. 350–364.

[23] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access for high
bandwidth network I/O,” in ISCA, 2005.

[24] Intel, “Intel Data Plane Development Kit (Intel DPDK),” http://www.
intel.com/go/dpdk, 2014.

[25] R. Jevtic, H. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and
B. Nikolic, “Per-core DVFS with switched-capacitor converters for
energy efficiency in manycore processors,” IEEE TVLSI, vol. 23, no. 4,
pp. 723–730, 2015.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in SIGCOMM, 2014.

[27] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in SOCC,
2012.

[28] M. Lavasani, H. Angepat, and D. Chiou, “An FPGA-based in-line
accelerator for Memcached,” in HotChips, 2013.

[29] S. Li, J. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in MICRO, 2009.

[30] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi,
“System-level integrated server architectures for scale-out datacenters,”
in MICRO, 2011.

[31] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic
approach to fast in-memory key-value storage,” in NSDI, 2014.

[32] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin Servers with Smart Pipes: Designing SoC accelerators for Mem-
cached,” in ISCA, 2013.

[33] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” in ISCA, 2012.

[34] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in EuroSys, 2012.

[35] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store,” in USENIX ATC, 2013.

[36] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI, 2013.

[37] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
NUMA,” in ASPLOS, 2014.

[38] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in RAMCloud,” in SOSP, 2011.

[39] R. Pagh and F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51,
no. 2, pp. 122–144, May 2004.

[40] D. A. Patterson, “Latency lags bandwith,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, 2004.

[41] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris, “Improving
network connection locality on multicore systems,” in EuroSys, 2012.

[42] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in OSDI, 2014.

[43] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in USENIX
ATC, 2012.

[44] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor,” in ISCA, 1996.

488

http://aws.amazon.com/elasticache/
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.oracle.com/technetwork/server-storage/ts-4696-159286.pdf
http://www.oracle.com/technetwork/server-storage/ts-4696-159286.pdf
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_Card.pdf
http://memcached.org/
http://memcached.org/
https://blog.twitter.com/2010/memcached-spof-mystery
https://blog.twitter.com/2010/memcached-spof-mystery
http://techblog.netflix.com/2012/01/ephemeral-volatile-caching-in-cloud.html
http://techblog.netflix.com/2012/01/ephemeral-volatile-caching-in-cloud.html
http://www.mellanox.com/page/products_dyn?product_family=26
http://www.mellanox.com/page/products_dyn?product_family=26
http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk



