
Multiversioned Page Overlays: Enabling Faster
Serializable Hardware Transactional Memory

Ziqi Wang
Carnegie Mellon University

ziqiw@cs.cmu.edu

Michael A. Kozuch
Intel Labs

michael.a.kozuch@intel.com

Todd C. Mowry
Carnegie Mellon University

tcm@cs.cmu.edu

Vivek Seshadri
Microsoft Research India

visesha@microsoft.com

Abstract—Practical and efficient support for multiversioning
memory systems would offer a number of potential advan-
tages, including improving the performance and functionality of
hardware transactional memory (HTM). This paper presents a
new approach to multiversioning support (Multiversioned Page
Overlays) along with a new HTM design that it enables: Over-
layTM. Compared with existing HTM designs, OverlayTM takes
advantage of multiversioning to reduce unnecessary transaction
aborts while providing full serializable semantics (in contrast with
multiversioning HTMs that improve performance at the expense
of being vulnerable to write skew anomalies). Our performance
results demonstrate that OverlayTM is especially advantageous
in read-heavy workloads.

I. INTRODUCTION

Hardware Transactional Memory (HTM) [1] has gained
considerable traction in recent years due to its usefulness in
avoiding synchronization bugs while writing parallel software.
While today’s commercial HTM implementations [2]–[6] are
helpful for programmers, they typically experience more
transaction aborts than are strictly necessary due to limitations
such as the sizes of the caches (or other hardware buffers), the
conservative nature of eager conflict detection, etc. To help
address these limitations, there has been research on techniques
for supporting unbounded transactions [7]–[10] as well as lazy
conflict detection [11]–[14].

Challenge: Achieving both High Performance and
Strong Semantics with HTM. Across the spectrum of HTM
designs, there is a fundamental tension between providing the
highest performance and providing the strongest correctness
guarantees (aka “semantics”) to programmers. This is roughly
analogous to the performance-versus-correctness tradeoffs with
memory consistency models [15]: programmers would prefer
the strong semantics of sequential consistency (to help avoid
correctness bugs), but weaker consistency models can offer
higher performance. As illustrated in Fig. 1, the strongest
semantic model for HTM is full serializability of transactions.
At the other end of the spectrum is unsynchronized transactions,
which offer high performance but no isolation guarantees.

Snapshot isolation is an interesting semantic model in the
middle of this spectrum. By maintaining a consistent snapshot
of memory that a transaction can read from throughout its
execution, snapshot isolation eliminates the need to check
for read-write conflicts across transactions. Hence HTM
designs based upon snapshot isolation (e.g., SI-TM [14])
have been shown to outperform previous HTM designs with

Parallelism

Semantics

Unsynchronized

Snapshot
Isolation

(e.g. SI-TM)

Two Phase
Locking

(2PL)

Forward
Optimistic
(e.g. TCC)

Backward
Optimistic

IdealMultiversioned
Optimistic

(OverlayTM)

Low High

Serializable

Snapshot
Isolation

Non-Isolated

Fig. 1: Trade-off Between Parallelism and Semantics for HTM

serializable semantics due to reduced abort rates (especially
in workloads with frequent read-only transactions). While the
weaker semantic model of snapshot isolation offers performance
advantages, it does so at the cost of enabling concurrency bugs
due to write skew anomalies [14]. For example, we observe
that one of the STAMP benchmarks [16] (genome) does not
run correctly under snapshot isolation (when compiled with
standard libraries) due to a write skew anomaly.

Similar to how researchers have explored techniques for
closing the performance gap between sequential consistency
and relaxed memory consistency models [18], our goal in
this paper is to offer the strong transactional semantics of
full serializability while closing as much of the performance
gap with snapshot isolation (e.g., SI-TM) as possible. Similar
to snapshot isolation, our design also maintains snapshots of
memory, but we use them to accelerate performance while still
providing the strong semantics of full serializability. For both
snapshot isolation and our design, however, a key technical
challenge is efficiently maintaining these snapshots through
some form of multiversioned memory system.

Multiversioned Page Overlays (MPO): Efficient Support
for Multiversioned Memory. Our multiversioning design
builds upon page overlays [19]. The page overlays framework
maps each virtual page to a default physical page (similar to
today’s virtual memory systems), but it additionally enables
the optional mapping of cache-line-sized portions of the virtual
address space to alternate physical addresses (called “overlays”).
During a memory access, if an overlay exists for the particular

TABLE I: Qualitative comparison of OverlayTM with prior work.

Conflict Serializable Read-Only Hardware Unbounded No No Commit-Time
Design Detection Semantics Optimization Multiversioning Transactions Broadcasting Cache Flush

2PL [1] Two Phase Locking X 5 5 5 X X

TCC [17] Forward OCC X 5 5 Partly 5 X

SI-TM [14] Snapshot Isolation 5 X X X X 5

OverlayTM Backward OCC X X X X X X

virtual address, it will access that overlay; otherwise, the
default physical page will be accessed. In the original page
overlays design, only a single overlay can exist for a given
virtual address. As described in detail later in Section III, we
extend this design to support multiple overlays per virtual
address where the desired overlay is specified through an
Overlay ID (OID). To handle version requests from multiple
processors, we also propose adding a version directory that
tracks which version is cached by which processor. The
version directory is comparable to a coherence directory,
and can be implemented with similar hardware costs. The
original page overlays paper [19] discussed six interesting use
cases for overlays beyond HTM: i.e. overlay-on-write, sparse
data structures, fine-grained deduplication, checkpointing, fine-
grained metadata management and flexible super-pages. Each
of these techniques can potentially benefit from MPO (e.g.,
when N processes are sharing the same data structures, etc.).

While it would be relatively straightforward to use MPO’s
multiversioning support to implement an HTM with snapshot
isolation, our goal was to deliver comparable performance but
with much stronger (fully serializable) semantics. We call our
new HTM design OverlayTM.

OverlayTM: A Fast Serializable HTM that Combines
Multiversioning with Optimistic Concurrency Control. A
key performance benefit of an HTM based upon snapshot
isolation (e.g, SI-TM) compared with previous serializable
HTM designs is that read-only transactions can always
successfully commit under snapshot isolation. This is because
the snapshot guarantees the consistency of any data that is
read throughout the read-only transaction. As illustrated in the
qualitative comparison in Table I, our OverlayTM design also
leverages multiversioning to enable read-only transactions to
commit successfully. However, a key difference is that our
conflict detection in OverlayTM is not based upon snapshot
isolation (SI), but rather upon backward optimistic concurrency
control (backward OCC). As we describe in detail later in
Section IV, this key difference means that OverlayTM detects
conflicts that would cause serializability to fail.

Compared with most of today’s commercial HTM imple-
mentations that have pessimistic two-phase locking (2PL)
conflict detection, OverlayTM offers better performance by
enabling conflicting transactions to co-exist through OCC. By
combining backward OCC with MPO’s multiversioning support,
OverlayTM not only ensures that transactions are isolated
from each other, it also improves performance by allowing
read-only transactions to successfully commit. Hence within
the spectrum of HTM designs, OverlayTM appears near the

✓ ‒ Both commit ✗ ‒ One must abort ? ‒ Non-serializable

Ti
m

e

Txn X Txn Y

Read A

Commit X

Write A
Read B

Commit Y

2PL ✗ | Optimistic✓ | SI ✓

Uncommitted
WAR

(a) Uncommited WAR

Ti
m

e

Txn X Txn Y

Read A

Commit X

Write A
Read B

Commit Y

2PL ✗ | Optimistic✗ | SI✓

Committed
WAR

(b) Committed WAR

Ti
m

e

Txn X Txn Y

Read A = 2

Read B = 5
while(B++ != A);

Write A = 9
Write B = 5
Commit Y

2PL ✗ | Optimistic ? | SI ?

Initially, A = 2, B = 0

Committed
WAR

(c) Inconsistent Read

Ti
m

e

Txn X Txn Y

Read A

Write B
Commit X

Write A
Read B

Commit Y

2PL ✗ | Optimistic✗ | SI ?

Write
Skew

(d) Write Skew
Fig. 2: False Aborts and Anomalies in Conflict Detection – As
semantics are relaxed, more read-write interleavings become possible.
In the meantime anomalies may also occur.

upper-right corner in Fig. 1, achieving strong semantics (full
serializability) and relatively high parallelism.

This paper makes the following contributions:
• We propose Multiversioned Page Overlays (MPO), a

novel technique based upon Page Overlays [19] for
creating memory snapshots and supporting multiversioning
on the entire address space with relatively low cost.

• We propose OverlayTM, a multiversion-based HTM
design that supports unbounded transactions and fast read-
only transactions. OverlayTM requires relatively modest
hardware changes.

• We evaluate the performance of OverlayTM. Our results
show that OverlayTM often offers signficant reductions
in abort rates compared with previous HTM proposals,
and it achieves performance that is either better than or
comparable to the state of the art. Compared with SI-TM,
OverlayTM achieves similar performance while offering
serializability (as opposed to snapshot isolation, which
risks write skew anomalies).

II. BACKGROUND: CONFLICT DETECTION IN HTM
Conflict detection in HTM has a close relationship with

concurrency control algorithms in transaction processing.

Herlihy et al. [1], one of the earliest HTM proposals, uses a
variant of Two-Phase Locking (2PL) in which the lock holder
gives up the lock and aborts when the lock is requested. Read
and write locks on individual cache lines map to read-shared
and read-exclusive requests in invalidation-based coherence
protocols such as MESI. Fig. 2a gives an example of read-
write conflict in 2PL. X must abort because it will receive
a read-exclusive request when Y writes A. LogTM [7], [20]
implements 2PL in the coherence directory as “sticky bits”.
Instead of forcing transactions to abort on conflict, LogTM
allows processors to be stalled until the lock holder completes.
VTM [8] extends coherence-based 2PL by adding an auxiliary
data structure called XADT. Speculative status of in-cache
blocks are represented by their coherence states as in the
baseline 2PL protocol, while those evicted from the cache
are entered into the XADT. The XADT is searched against
incoming coherence requests to ensure that conflicts with
evicted lines are still detected.

Detecting conflicts eagerly (as in 2PL) may introduce
unnecessary aborts or stalls, since conflicts are only harmful
when they form cycles. TCC [11], [17] and Bulk [12], [21]
overcome this problem by detecting conflicts lazily before
transaction commit. This is similar to Optimistic Concurrency
Control (OCC) commonly seen in database engines [22]–[24].
OCC divides transaction execution into three phases: read,
validation and write. In the read phase, the transaction body
is executed. Speculative data is buffered and invisible to other
transactions. Every transaction should maintain a local read-
and write-set (RW set) for transactionally accessed data. In the
validation phase, each transaction attempts to commit by testing
its RW sets against the RW sets of concurrent transactions–
those recently committed and possibly also those still executing.
In the write phase, speculative data is made globally visible.
Based on the validation algorithm, OCC can be further divided
into two categories: backward and forward. Backward OCC
tests the read set of the committing transaction with write sets
of concurrent transactions that committed before the validation
begins. Forward OCC, on the other hand, lets the validating
transaction broadcast its write set to running transactions
whose read sets are then tested with the broadcasted write
set. Validation succeeds in both cases if all intersections are
empty sets.

OCC provides better parallelism than 2PL, as illustrated
by Fig. 2a in which a write does not commit until after an earlier
transactional read commits, forming an uncomitted Write After
Read (WAR) dependency. In fact, with OCC, uncommitted
writes never incur conflicts as they are “invisible” to other
transactions. Committed WAW conflicts are also harmless
because OCC serializes writes to the same address with global
coordination1 (e.g. commit token in TCC, bus arbitrator in
Bulk). However, committed WAR conflicts (where a transaction
including a write to A commits before a transaction including
an earlier read of A) will cause the reading transaction to abort
during validation, as shown in Fig. 2b.

1In practice, synchronization occurs at the granularity of cache lines.

DRAM

Core

Cache

TLB

OMC

①

②

③

④

⑤ ⑥

⑦
OMT

Way

Set

OBitVector

Overlay Bit + OID

Generic Interconnec on Network

Fig. 3: Page Overlays – This diagram shows how memory system
handles overlay. 1© TLB lookup using VA; 2© TLB outputs either
translated PA or VA based on OBitVector; 3© Cache lookup using
TLB output; 4© On cache miss (or eviction), include (OID, VA) in
the fetch (eviction) request; 5© If address is PA (or not an overlay
cache line), send request to the main memory; 6© If address is VA
(or is an overlay cache line), send request to OMC; 7© OMC queries
OMT using (OID, VA), obtains PA, and fetches from memory.

Despite increased parallelism, naive forward and backward
OCC have implementation issues that hinder their adoption.
Forward OCC, as is the case with TCC and Bulk, requires a
broadcasting medium to perform validation, which is expensive
on modern multicore architecture. Backward OCC, on the other
hand, may expose inconsistent states that will never be seen
during serialized execution, causing undefined behavior [25].
As shown in Fig. 2c, txn X reads an old value of A but a new
value of B, and then begins the loop. Although the validation
algorithm can correctly identify this as a WAR conflict and
prevents txn X from committing at the end, there is no guarantee
that txn X may have a chance to validate, due to the infinite loop
(assuming integers are sufficiently long) caused by reading the
“partial writes” of txn Y. By contrast, in a serialized execution,
no matter which of the two transactions execute first, the value
of B is always smaller than the value of A, meaning that both
can terminate within a finite number of cycles.

To further relax the semantics and reduce aborts, SI-TM [14]
proposes Snapshot Isolation (SI) as the conflict detection
algorithm. SI provides even higher parallelism than OCC, since
it only checks for WAW conflicts and allows committed WAR
conflicts, as shown in Fig. 2b. However, SI does not provide
serializability, and this approach can introduce hard-to-reason-
about anomalies, such as write skew (see Fig. 2d). No serial
schedule can produce the final state in this example, since there
is a dependency cycle between txn X and txn Y.

Several conflict detection algorithms have also been designed
to track dependency information as conflicts are detected and
to abort transactions only when absolutely necessary, i.e. when
a conflict cycle is about to occur. These designs typically
involve changing existing coherence protocols as in DATM [26]
and HMTX [27], adding non-trivial tracking infrastructure as
in OmniOrder [28], WnGTM [29], and EazyHTM [30], or
timestamping the entire address space as in SONTM [31].
Such proposals are complicated, hard to verify, and often only
provide limited speedup due to hardware resource constraints,
lack of global information, and unrealistic assumptions.

III. MULTIVERSIONED PAGE OVERLAYS

In this section, we discuss our Multiversioned Page Overlays
(MPO) framework. We first provide a review of the basic Page
Overlays [19] framework. We then discuss how we extend it
to support multiversioning.

A. Overview of Page Overlays

As illustrated in Fig. 3, the Page Overlays paper [19]
describes a fine-grained, general-purpose virtual memory tech-
nique intended for optimizing common memory management
tasks such as copy-on-write [32], sparse data structures,
deduplication, etc.

1) Overlay Address Mapping: In the Page Overlays design,
every virtual memory page may be associated with two
different backing stores: the usual physical memory frame
and an alternative “overlay” frame, which may be sparsely
populated and stored compactly in a reserved portion of main
memory. Additionally, an Overlay Bit Vector (OBitVector),
indicating which cache lines should be fetched from the usual
physical frame and which should be fetched from the overlay,
is associated with each overlay frame and cached in the
Translation Lookaside Buffer (TLB). The MMU checks the
OBitVector in parallel with normal address lookup when an
address translation is requested. If the corresponding bit is set,
indicating an access to the overlay, normal address translation
is aborted, and the MMU directly outputs the virtual address
as the “overlay address”. Otherwise, the MMU produces the
usual physical address.

2) Overlay Cache Lookup: Using untranslated virtual ad-
dresses to access an unmodified cache has undefined result, as
most modern L1 caches are Virtually Indexed and Physically
Tagged (VIPT). To avoid false hits when virtual addresses are
used, cache tags are extended with Version Tags consisting
of two fields: A one bit Overlay flag to indicate whether the
address tag is a virtual address, and a 15-bit Overlay ID (OID)
which originally meant to be a process ID. On receiving a
lookup request, the cache uses the address provided by MMU
to perform a tag check. Given a tag match, a hit is signaled
only in one of the following two cases: (i) Address is virtual,
the Overlay bit is set, and OID from the instruction matches
tag OID; (ii) Address is physical, and Overlay bit is clear.

3) Overlay Memory Controller: When a line is evicted from
the LLC, the cache controller checks the Overlay bit in the
cache tag. If the bit is clear, then a normal write back to the
main memory is scheduled. Otherwise, the controller sends it
to a special device, the Overlay Memory Controller (OMC).
Cache misses are handled similarly; the processor sends the
cache line fill request to either main memory or the OMC
based on whether the MMU outputs a normal physical line
fetch or overlay line fetch.

The OMC is a memory-backed device connected to the
inter-processor communication network. It maintains a separate
virtual-to-physical mapping table, the Overlay Memory Table
(OMT). Compared with a page table, the OMT has two unique
features. First, OMT mappings have cache line guanularity,
thus enabling more compact memory management than paging.

Second, the OMT maps the overlay address (the virtual address
augmented with a corresponding OID) into a physical address,
i.e. (OID, VA) → PA.

On receiving a request from the cache, the OMC queries
the OMT using the virtual address and OID in the request.
The cache line is then written back to (fetched from) the main
memory using the physical address. The OS is responsible for
allocating a chunk of memory for the OMC to use. Memory
management within the chunk, however, is performed solely
on hardware by the OMC for efficiency reasons. The OMC
also maintains the OBitVectors. On a page fault, the MMU
needs to access the OMC to fetch the relevant OBitVector.

Because the overlay system provides a seperate mapping
for each OID-address tuple, we can repurpose this design to
support versions of memory at a cache line granularity. We
describe this multiversion scheme in the section that follows.

B. Extensions to Support Multiversioning

1) Version Instructions: Versions are timestamped, im-
mutable overlays, logically ordered by the OIDs. To enable
version access, we extend the ISA by adding four version
instructions. We first describe the semantics of the four
version instructions, and then present a practical implementation
in Section III-B2. Version instructions take an implicit operand,
the operation timestamp (ots). This operand is supplied by a
special register, current ots, which is part of the model-specific
register file. This register can be loaded either manually, or by
transaction begin instructions as we will see later in Section IV.
The semantics of version instructions are as follows:

vload addr (Versioned Load): Load the most recent version
(numerically greatest timestamp) with timestamp ≤ ots. If such
version does not exist, load from the main memory.

vstore addr, val (Versioned Store): For first write, make
a copy of a previous version by issuing vload with the vstore’s
ots. Later writes are performed on the new (copied) cache line.
Note that dirty versions remain speculative, and are invisible
to other processors until version commit.

vcommit ts (Version Commit): Atomically commit all
speculative versions in the cache, thus making them accessible
to other processors. The OID of these versions are changed to
ts, the instruction’s explicit operand. Note that version commit
does not force versions to be written back to the OMC.

vabort (Version Abort): Atomically discard all speculative
versions whose OID = ots.

For the sake of generality, MPO also provides overlay
load (oload) and overlay store (ostore) to access a specified
version. An exception is raised if the version does not exist.
Implementation of oload and ostore in MPO is trivial. In the
following sections, we focus on versioned operations.

One major difficulty of implementing these instructions is
that committed versions can be scattered in multiple caches. For
example, assume that processor #0, #1, #2 committed version
100, 104 and 102 respectively on the same address. Later on,
version 100 was written back to the OMC due to an eviction.
Now consider what if processor #3 issues versioned load with
ots = 103. If processor #3 sends a versioned load request to

the OMC, it can only read version 100, because the OMC
is not aware of larger versions in the caches of processor #1
and #2. On the other hand, the correct result can be obtained,
if processor #3 broadcasts the versioned load request to all
other processors and the OMC. After receiving all responses,
processor #3 performs a local sort, and can finally read the
correct version, 102.

Sending broadcasts solves the correctness issue, but is
expensive on large systems. To solve this problem, we leverage
the observation that the challenge of selecting the right
version to read is essentially a coherence problem. Instead of
maintaining consistent content between different caches and the
main memory as in classical cache coherence problems, which
is unnecesary for OMC as versions are immutable, coherence
needs to be maintained between caches and the OMC on the
number of versions and their OIDs.

2) Version Directory: We propose a version coherence
mechanism that tracks in-cache versions at a lower cost than
broadcasting. We add a directory to the OMC, called a Version
Directory. The version directory operates similarly to a cache
coherence directory: one bit is reserved for each processor
on every cache line sized memory block; If a bit is set, then
the corresponding processor owns a version on the virtual
address. Version instructions can be implemented efficiently
with a version directory as follows:

vload addr: Perform overlay read. If cache misses, the
processor sends a versioned load request to the OMC. On
receiving the request, OMC reads the directory, and sends
a version query request to processors that have a “1” bit.
Processors check their own caches on receiving the version
query from OMC. If one or more committed versions has
OIDs ≤ ots, the OIDs are sent back to the OMC in a single
packet. Otherwise the processor replies NACK. After receiving
all responses, the OMC sorts all versions (including versions
in OMC itself) by their OID. The version is then fetched by
OMC using a version fetch message, and forwarded back to
the requestor. The OID in requestor’s cache tag is set to ots,
to ensure later accesses will hit.

vstore addr, val: Perform overlay write. If cache misses,
issue vload with vstore’s ots first, and then write to the local
copy. The OID in cache tag is set to ots. A Speculative bit in
cache tag is also set. Cache lines with Speculative bit set do
not respond to version coherence messages. The directory bit
is set for the requestor by the OMC on seeing the versioned
load request.

vcommit ts: For cache lines with Speculative bit set and
OID = ots, change the OID to ts, and flash-clear the bit. This
process is local – no message is sent.

vabort: Assemble an abort request which contains the
addresses of all cache lines that have Speculative bit set, and
send the request to OMC. On receiving the abort request, OMC
clears the directory bit for addresses in the request. Note that
if multiple versions on the same address exist in the cache,
the address signature must only be set for the address if all
versions are speculative. Otherwise the directory bits must

Core
#0

Core
#1

Core
#2

Core
#3

（Empty） Ver. 104 Ver. 102

OMC

Ver. 100
OMTDir

（Empty）

①② ⑥③ ④

⑤

Fig. 4: Sequence of Messages on Versioned Store by Processor
#3 – In the normal access path using the directory, six messages and
three steps are needed to resolve a vstore miss.

remain unchanged. The processor also flash-invalidates all
cache lines with Speculative bit set.

3) Version Directory Example: To better understand how the
version directory works, we now present an example, illustrated
in Fig. 4. We assume that processor #1 and #2 have committed
version 104 and 102 respectively. Processor #0 has committed
version 100, and then evicts the version to the OMC. All
versions are on address A.

Now processor #3 issues a versioned store operation with ots
= 103 on address A. First, processor #3 needs to search its own
cache for an overlay whose OID = 103. In our case this will
be a cache miss, as processor #3 has never read or committed
version 103. On a cache miss, processor #3 issues a versioned
load request to the OMC, which contains the operation’s ots
(1©). On receiving the versioned load request, the OMC reads
the directory entry for address A, and finds out that the bits
for processor #1 and #2 are set. In the meantime, the OMC
also searches the OMT, and finds out that version 100 is in the
main memory. The OMC then sends a version query request
to processor #1 and #2 (2©). On receiving the version query,
both processors search their private cache for versions whose
OID ≤ the operation’s ots, 103. In our case, processor #2
replies 102, and processor #1 replies NACK (3©) since 104 is
greater than 103. After receiving the reply messages, the OMC
sorts all version OIDs. There are only two versions: Version
100 in the main memory, and version 102 from processor #2.
The OMC then selects the largest version, which is 102. Since
version 102 is from processor #2, the OMC sends a version
fetching request to processor #2 (4©), and the latter replies
with cache line data (5©). Finally, the OMC forwards the cache
line to processor #3 (6©). Processor #3 allocates a cache line
entry for version 102, and changes the OID of the line to 103.
The speculative bit of the line is also set. The next time a
versioned load or store operation with ots = 103 is issued, the
line that the processor just read will be hit. After processing a
versioned store operation, the OMC also sets the directory bit
for the processor that issues the write.

4) Decoupled Metadata and Data Writeback: In the naive
directory-based design, each cache miss triggered by versioned
operation will take six steps on the network to resolve in the

(102, A) → #1
OMS OMT

(100, A) → #1

(100, A) | Data (102, A) | Data

(101, C) | Data

(98, B) | Data

Processor #1’s Cache Processor #2’s Cache

① versioned load @ (101, A)② version forward

③ Data xfer

Fig. 5: Fast Access Path with Decoupled Matedata Writeback –
Accessing a frequently accessed address only takes three steps and
four messages

worst case: Two between the requestor and OMC, two for
version query, and another two for version fetch (see Fig. 4).
By contrast, a normal cache miss can be resolved in only three
steps: one for the initial GETS/GETX request, and another two
for invalidation and ACK (on a store miss).

To close the gap, we propose decoupled metadata writeback
for frequently accessed addresses, which leverages point-to-
point query as much as possible to avoid extra rounds of
message exchange. This technique works as follows. When the
OMC receives a versioned load request generated by a vstore
miss from processor P on address VA, it immediately inserts
(ots, VA) → P into the mapping without data (recall that
ots is in the request), and does not set the directory bit. Multiple
entries may be created this way for the same VA but different
ots. The next time OMC receives a versioned load request for
VA, since the direcory bit is clear, no version query message is
sent to any of the processors. Instead, the OMC will perform an
OMT lookup, sorts all entries on the requested address by their
version, and locates the correct version to read using the version
read rule. If the selected version in the mapping is of the form
(VER, VA) → P, OMC will notify processor P to forward
version VER to the requesting processor, by sending P a version
forward message. On receiving this message, processor P will
initiate a cache-to-cache transfer of the specified version to the
requesting processor, taking advantage of the high-bandwidth
inter-processor link.

With decoupled metadata writeback, fulfilling a cache miss
on frequently accessed addresses only takes three steps: One
for the initial versioned load request, one to notify the version
owner with version forward message, and one cache-to-cache
transfer carrying the requested data (in parallel with the reply
message to the requestor). In total, only four messages are sent
over the network, which is also comparable to a normal cache
miss (see Fig. 5).

On eviction of committed versions, both the metadata and
data are written back to the OMC. The cache controller checks
whether the line is the only locally cached version of the
address. If no other version is found, the controller sets a
“clear directory” bit in the eviction message, indicating that
the version directory should clear the bit for the processor. On
receiving the eviction message from processor P, the OMC
will insert an entry (OID, VA) → DATA to the mapping,
in which version data is also stored. We postpone discussion
of uncommitted version eviction to Section IV-E under the

context of OverlayTM.
5) Discussion: In this section we discuss implementation

issues with MPO and version directory. We show that both can
be implemented rather efficiently on modern hardware.

Directory Overhead: Given the locality of computation,
the version directory only needs to quickly access bit vectors
for a small subset of addresses at any given moment. The
directory can therefore be implemented as a sparse hash table
with a cache hierarchy for accelerating accesses to recently
used entries.

Scalability: In larger systems, the version directory can be
partitioned into slices, each responsible for an address range.
A hash function needs to be applied to the address to generate
the target slice address before a version request is sent.

Verification Cost: No MESI state is maintained for versions,
since they are immutable. Moreover, the MPO design only adds
incremental changes; existing cache coherence and eviction
policy are not modified.

OMT Bandwidth: To avoid overloading the OMT by
inserting an entry for every versioned load request generated by
vstore misses, we propose adding a small cache to the OMT,
such that the mapping (ots, VA) → P is only inserted
into the cache. When an entry is evicted from the OMT cache,
the OMC sets the directory bit for processor P on address VA,
and then just discards the entry. Frequently accessed addresses
will remain in the cache and therefore have lower protocol
latency, while the rest use the version directory.

6) Comparison with Existing Multiversioning Designs: We
compare MPO with two previous transactional multiversioning
designs: HICAMP [33] and SI-TM [14]. HICAMP also features
hardware supported immutable versions. Objects in the main
memory are organized into segments, a B+Tree-like structure
that enables fast content-based lookup. HICAMP natively
supports Snapshot Isolation transactions. It involves, however,
radical hardware and software redesign, and changes the
programming paradigm entirely. On the contrary, MPO is just
an extension of existing virtual memory system, and can be
easily disabled by the Operating System. More importantly,
programs do not suffer any performance overhead from not
using MPO.

SI-TM embeds a Multiversion Manager (MVM) in the LLC
controller, which intercepts line misses and evictions from
upper level caches, and rewrites the physical address in the
request with a translated version address. Upper level caches,
as opposed to our design, are unaware of multiversioning, and
only store the address tag. Since versions are not self-contained
as in MPO, on SMT switch and transaction commit, upper
level caches must evict all dirty lines in the private cache.
This operation is on the critical path, because future version
accesses with different timestamps may hit the wrong version,
due to the fact that different versions on the same address
have the same tag. MPO, on the other hand, tags every line in
the private cache with OID, and uses a customized coherence
protocol to enforce the version read rule. Version commit is
therefore instantaneous, as suggested in Table I.

IV. OVERLAYTM: MPO + CONFLICT DETECTION

Transactional memory designs must address two challenges:
Version management and conflict detection. Multiversioned
Page Overlays (MPO) provides a solution to HTM version
management using version instructions such as vload and vstore,
as we have seen in Section III. In this section, we fianlize
OverlayTM by introducing its conflict detection hardware: the
commit queue.

A. Commit Queue

The Commit Queue (CommitQ) is a hardware structure in
the OMC that buffers write sets of committed transactions. We
do not discuss the implementation of RW sets in detail. We
assume they are fixed-length bloom filters (our experiments
show that bloom filters of 2KB with a good hash function
achieves almost perfect conflict detection in most cases, which
is consistent with previous work [20], [31]). The cache
controller may compress the RW set before sending them
in order to optimize bandwidth [21]. Set intersections can be
computed efficiently on hardware using bitwise AND, with
the possibility of false positives. Processors maintain per-
transaction read and write sets (RW sets). These local RW
sets are updated accordingly as processors issue vload and
vstore instructions, and cleared when new transaction begins.
Note that partially written lines should be added to both the
read and the write set.

The CommitQ accepts two inputs: an RW set bloom filter
and a validation timestamp. Each entry of the CommitQ also
has an entry timestamp, with a comparator that outputs “1” if
the validation timestamp is less than the entry timestamp. There
is also a RW set comparator on every CommitQ entry which
allows quick intersection tests against the input RW set. The
RW set comparator outputs “1” if two bloom filters have non-
empty intersections. The results of the tests are first AND’ed
with the output of the timestamp comparator respectively, and
then OR’ed together as the final output signal. A logical “1”
indicates validation failure. A block diagram of the CommitQ
is depicted in Fig. 6.

B. Transaction Begin

In order to serialize transactions on a globally agreed order,
the OMC maintains a global timestamp (gts) counter, the width
of which is identical to the OID in cache tags (i.e. 15 bits
in most cases). At transaction begin, the processor acquires
a begin timestamp (bt) by sending a begin request to the
OMC. The OMC fetch-increments gts, and replies with the new
value, which is also an unique identifier of the transaction. The
processor then loads the current ots register (see Section III-B1)
such that vload and vstore use bt as the implicit operand,
essentially accessing a snapshot at logical time bt.

The OMC also maintains a list that tracks the bt of
uncommitted transactions. The newly allocated bt is inserted
into this list when a new transaction begins, removed when it
is committed or aborted. In later sections, we will see that this
list plays an important role in handling overflowed versions
and performing garbage collection.

C. Transaction Commit

At transaction commit, the processor sends a commit request
message to the OMC. This message includes the read set,
write set, and the bt of the transaction. The OMC validates
the transaction by dispatching the read set and the bt to the
CommitQ. If the CommitQ indicates a validation success, the
OMC fetch-increments gts, and then sends a committed message
back to the requestor. The committed message contains the
new value of gts as the transaction’s commit timestamp (ct).

On receiving the committed message, the processor injects a
vcommit into the pipeline. The explicit operand of vcommit is
the ct in the committed message, meaning that all speculative
versions created by the transaction will become visible to
transactions started after logical time ct. In the meantime,
the CommitQ allocates an entry for the newly committed
transaction, and stores both the ct and the write set of the
transaction into the new entry.

If, on ther other hand, the CommitQ indicates a validation
failure, the OMC will send an aborted message to the requestor.
On receiving the message, the processor performs version abort,
which invalidates all speculative versions. Directory bits for
speculative versions are cleared by the OMC in the background.
This does not affect correctness, but only incurs some extra
traffic for a short time.

OverlayTM’s commit protocol only validates one transaction
at a time, serializing concurrent commit requests. Transaction
begin and version requests that are not on committed addresses,
however, are unaffected as long as the network guarantees or-
dered delivery between committed and version query messages.
In Section VII-B we show that the serialization penalty is
minimal for most workloads, and hence does not constitute a
bottleneck in most cases.

D. Garbage Collection

CommitQ entries are garbage collected (GC’ed) if no
uncommitted transaction can be aborted by the entry. The
CommitQ maintains the smallest uncommitted bt as a low-water
mark (recall that the OMC maintains a list of uncommitted
transactions), and removes an entry if its entry timestamp is
smaller than the low-water mark.

Versions are also deleted when they are no longer accessible
by active transactions. A version becomes inaccessible when
there exists a larger version on the same address, and no
uncommitted bt exists in-between. Due to the complexity of
this task, we propose using a software handler for version
cleanup when the OMS runs out of space.

E. Supporting Overflowed Transactions

In OverlayTM, a transaction overflows if one or more
uncommitted versions are evicted from the last-level cache
(LLC). The OMC will insert this speculative version into the
OMT as described in Section III-B4 as if it were a committed
version. To ensure proper isolation, the OMC will check the
list of uncommitted bt when serving a versioned load request,
and exclude this speculative version from the response. Unlike
some other TM designs, there is no time consuming “version

TS TS TS TS

BF BF BF BF

TS

BF

< < < <

Head
Tail

Abort?
Input

Fig. 6: Commit Queue – Implements Backward OCC validation algorithm; The committing write set is compared with read sets of transactions
committed after it starts.

walk” on transaction commit, and therefore, transaction commit
is always a fast operation.

Compared with SI-TM [14], VTM [8], etc., OverlayTM’s
overflow handling requires no dedicated logging hardware
for spilling speculative data to a private log. This should be
attributed to the fact that versions in OverlayTM are self-
contained, and that every transaction has its own unique
identifier. Overflowed transactions also do not complicate
the conflict detection protocol, because OverlayTM decouples
conflict detection from version management by using bloom
filters. Compared with TCC [17] and EazyHTM [30], over-
flowed transactions in OverlayTM does not block concurrent
transactions by entering “invincible state”, which scales better.

F. Timestamp Wrap-Around

On platforms with 48 bit physical address [34], Page
Overlays can support at most 15 bits OID [19]. In a saturated
system, we expect OIDs to wrap-around quite often, because
most transactions will use two OIDs, one for begin and another
for commit. In this section we propose a solution for timestamp
wrap-around using phase variable.

To detect global timestamp (gts) wrap-around, OMC main-
tains one additional Phase Variable counter, initialized to
zero at startup time. The phase variable is wide enough (e.g.
64 bits) such that in practice it never overflows. Every time
gts overflows, the OMC increments the phase variable. On
receiving a begin request, the OMC also includes the phase
variable value in the reply message. On receiving the reply,
processors save the phase variable in begin phase model-
specific register, which is part of the context. On every version
request and on commit, the processor piggybacks the value of
begin phase register in the commit request message. The OMC
checks whether the begin phase is identical to the current phase
variable. If not, the OMC instantly replies aborted, because
the transaction was started in a stale phase, and timestamps
have already wrapped around since then.

G. Optimizations

In this section, we present two optimizations that leverage
OverlayTM’s ability to read from a consistent snapshot.

Read-Only Commit: A transaction can always commit
successfully if it does not write to shared states (the detection
of which can be implemented on hardware or compilers).

Serializability is still achievable, with the possibility that the
read-only transaction may not see the most up-to-date data.
Section VII-A1 shows that the performance improvement can
be significant for certain read-dominant workloads.

Early Release: OverlayTM implements early release [35] by
simply not adding certain reads into the read set. MPO’s snap-
shot read semantics guarantee that the read image is consistent,
while not adding them to the read set prevents the transaction
from being aborted by committed WAR conflicts. For some
applications, early release provides better concurrency without
sacrificing correctness. In Section VII-A1, we demonstrate
that this feature can reduce OverlayTM aborts on STAMP
labyrinth by almost 5×.

H. Scaling to Large Systems

The centralized conflict detection protocol introduced in Sec-
tion IV-C may not scale well on future large systems due
to CommitQ contention. In this section we present several
techniques that enable higher parallelism within the protocol
for better scalability.

Parallel Validation: Instead of only serving one commit
request at a time, the CommitQ hardware may implement
k copies of validation logic (i.e. AND gates and integer
comparator in Fig. 6). During validation, k waiting entries
in the receiving buffer are selected and then validated against
CommitQ entries. In addition, the read sets of k validating
transactions are checked with each other’s write sets. The
CommitQ must guarantee that if transaction X is assigned
a smaller ct than Y, the write set of X must have empty
intersection with the read set of Y. Since multiple commit
requests are validated in parallel, the commit latency can be
reduced by at most k times, improving overall throughput.

Eager Abort: As described in Section III-B2, on receiving
version query messages, processors check their own cache for
committed versions whose OID ≤ request ots. We slightly
extend the protocol as follows: If the processor finds a
committed version on the requested address with OID > ots, it
indicates in the reply message that a larger committed version
exists. The OMC will immediately abort the transaction by
sending an aborted message back to the requestor, since a
committed WAR violation has been detected. This alleviates
contention on the OMC if aborts are frequent.

Hierarchical Conflict Detection: In large systems where
the address space is partitioned between several nodes (e.g.
NUMA), OverlayTM hardware components can also be par-
titioned, such that every node has an OMC and CommitQ
handling requests only within that node. While intra-node
conflicts are resolved lazily, inter-node conflicts cannot be
detected because they are validated by distinct CommitQ.
We propose resolving these conflicts eagerly using version
coherence. Recall that during a cross-node version access,
the version read request is sent to the OMC on the remote
node, which will then be forwarded to processors on that node.
On receiving such a cross-node version request, processors
owning a conflicting uncommitted version on the requested
address will abort immediately. Note that, in this scheme, one
additional bit per processor is used by the directory to mark
speculative reads, and inter-node version requests generated by
vstores are forwarded to both speculative readers and writers.
The gts counter is maintained cooperatively by multiple OMC
devices using regular coherence (i.e. only one OMC may have
permission to increment gts at a time).

To see why hierarchical conflict detection is correct, let us
assume there is a non-serializable execution where transaction
X commits on transaction Y’s read set. It must be that Y reads
address A before X commits. There are two possibilities: either
X executes vstore A before Y’s vload A or the opposite. In both
cases, the version request protocol can recognize that there is
an uncommitted versioned load or store on another node, and
one of them will abort, a contradiction!

V. HARDWARE COST SUMMARY

Because our design is built on top of page overlays [19],
it includes the same three sources of hardware overhead:
(i) the OMT Cache, (ii) wider TLB entries (to store the
OBitVector), and (iii) wider cache tags (due to the wider
physical address space). (The hardware overhead of this
baseline page overlay design is discussed in detail in [19].)

We have three additional sources of hardware overhead: (i)
our extensions to page overlays to support multiversioning
(discussed in Section III-B), (ii) our hardware commit queue
(discussed in Section IV-A), and (iii) additional registers in
each processor. While the last two are specific to supporting
OverlayTM, hardware for multiversioning support is generally
useful for applications beyond transactional memory.

Our extension adds additional control logic into OMC to
support version coherence. Similar to cache coherence, the
control logic can be implemented as a state machine. Since
versions are immutable, we expect the state machine to be
simpler than the one used for cache coherence. In the commit
queue, the most significant portion of hardware is the array
of bloom filters. As shown by [20], bloom filters of size 2KB
can achieve almost perfect conflict detection. Assume that
the number of entries in the commit queue is equal to the
number of processors. For a 16-core system, the commit queue
will need 32KB (16 * 2KB) storage in total. Each processor
maintains a read set, a write set, and registers to store the bt,

TABLE II: Simulation parameters

CPU cores 16 cores 4-way superscalar @ 3GHz
CPU L1-D/I caches 32KB, 64B lines, 8-way, 4 cycles
CPU L2 cache 256KB, 64B lines, 8-way, 8 cycles
CPU L3 cache 32MB, 64B lines, 16-way, 30 cycles
Memory Controllers 4
DRAM Latency 100 cycles
zSim Phase Length 200 cycles

ct, gts, and RO bit. This adds an extra 4KB plus a few bytes
for each processor.

VI. EXPERIMENTAL FRAMEWORK

A. Simulation Platform

We extended zSim [36] to simulate OverlayTM. We chose
zSim not only for its simulation speed, but also because its
execution-driven approach is important for correctly modeling
execution paths when transactions need to retry. Our simulation
parameters are shown in Table II.

The execution binaries that we simulate are compiled using
the Intel TSX Restricted TM (RTM) interface [34], [37]. We
instrument three RTM instructions:
• XBEGIN: The processor enters speculation mode, after

taking a snapshot of the current context. This instruction
also takes the address of the abort handler. On a transaction
abort, the control flow will transfer to the abort handler,
after the context is restored.

• XEND: Commits the current transaction.
• XABORT: Aborts the current transaction. This instruction

carries a user-defined return code that the abort handler
can access. The abort code is put into EAX, together with
several hardware set status bits.

B. Simulated HTM Designs

We compare OverlayTM against 2PL (requestor-wins) and
SI-TM to illustrate the performance differences between each
of the underlying concurrency control algorithms. Both 2PL
and SI-TM are scalable and use simple hardware extension,
which is similar to OverlayTM. We also simulate an idealized
version of TCC, for which we assume instant commit (no
bus arbitration) and unbounded support (no serialized commit
when transactions overflow). This gives a lower bound of TCC
on realistic hardware. We also make the following assumptions
to ensure fairness of comparison. First, all HTMs detect
conflicts at aligned 8-byte word granularities (to help avoid false
sharing conflicts). Second, we assume that the hardware can
overlap long operations during speculation, e.g. cache tag walk
before commit, because this process is highly implementation-
dependent (in practice this assumption works well, as shown
in [31]).

C. Benchmarks

Our simulation runs STAMP benchmark [16] with recom-
mended parameters. Moreover, to further evaluate the feasibility
of OverlayTM on a broad range of workloads, three data
structures are used:

0.00.10.20.30.40.50.60.70.80.9
−0.06−0.04−0.020.000.020.040.060.082PL TCC SI-TM OverlayTM

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

C
yc

le
s

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
26

0.
21

0.
36

0.
99

0.
90 0.

95

0.
95

0.
21

0.
68

0.
69

0.
70

0.
93 1.

0

0.
92 0.

98

0.
82

0.
18

0.
14

0.
25

0.
97

0.
76

0.
16

0.
16 0.
19

0.
64 0.

71

0.
72

0.
94 1.

0

0.
92 0.
95

0.
79

0.
20

0.
11

0.
26

0.
89

0.
74

0.
94

0.
20 0.
23

0.
59

0.
71

0.
70

0.
93 1.

0

0.
92 0.

96

Fig. 7: Normalized Cycles – All numbers are normalized to 2PL.

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0

1

2

3

4

5

A
bo

rt
s

/C
om

m
itt

ed
Tx

n

4.
0

4.
8

3.
2

4.
7

1.
9

0.
93

3.
9

3.
9

2.
2

2.
1

2.
0

0.
73

0.
14

0.
06

0.
03

0.
00

3.
2

1.
5

0.
49

1.
4

0.
10

0.
65

3.
0

3.
0

0.
28

1.
3

0.
94

0.
19

0.
02

0.
04

0.
02

0.
00

2.
3

0.
55

0.
22

0.
87

0.
04

0.
00

0.
54

0.
54

0.
24

1.
2

0.
82

0.
21

0.
04

0.
05

0.
02

0.
00

2.
3

0.
58

0.
00

0.
93

0.
04

0.
00

2.
9

0.
60

0.
30

1.
0

0.
90

0.
17

0.
02

0.
05

0.
02

0.
00

Fig. 8: Aborts Per Committed Transaction

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

A
bo

rt
s

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
81

0.
31

0.
15

0.
30

0.
05

0.
70 0.

77

0.
77

0.
12

0.
65

0.
46

0.
26

0.
17

0.
75

0.
62

0.
84

0.
58

0.
11

0.
07

0.
18

0.
02

0.
00

0.
14

0.
14

0.
10

0.
59

0.
40

0.
28

0.
26

0.
87

0.
57 0.

63

0.
59

0.
12

0.
00

0.
20

0.
02

0.
00

0.
74

0.
15

0.
13

0.
51

0.
43

0.
23

0.
17

0.
93

0.
70 0.

79

Fig. 9: Normalized Aborts – All numbers are normalized to 2PL.

• Linked List: A singly linked list. Each node has an 8
byte key and 8 byte payload field. Threads first generate a
random number k between 0 and the current length minus
one, and then traverse k nodes before they finally insert,
delete or read the node after the current node.

• B+Tree: A standard B+Tree with 4KB nodes. Both key
and payload are 8 bytes. Threads insert, update or read
on certain “hot spots”.

• Array: An array of integers with (m+n) worker threads.
m threads perform linear scan on the array, n threads
write randomly chosen array entries.

All random numbers are drawn from the rand function in
standard C library. We repeat each test case five times using
the same random seed, and then take the median.

All workloads adopt the lock elision algorithm recommended
by [37]. Critical sections are backed by a single state-of-the-
art spin lock. Transactions elide the lock by reading the lock
variable once started. On transaction abort, the abort status
code is checked. The transaction will restart if: (i) the abort is

caused by transient conditions such as conflicts; and (ii) the
retry counter has not reached zero. Otherwise, the fall-back
path will be executed, and the lock is physically acquired.
In this case, speculative transactions are blocked by the lock
before they can start.

VII. EXPERIMENTAL EVALUATION

A. Performance Analysis

We run each of the HTM with STAMP and data structure
workloads and present simulation results in Fig. 7 (normalized
cycles), Fig. 8 (aborts per committed transaction) and Fig. 9
(normalized aborts). We discuss these numbers in the following.

1) Overall: In 11 out of the 16 workloads (all except array
update-heavy, vacation low, genome, kmeans, ssca2),
OverlayTM outperforms 2PL by more than 20%, which
demonstrates a great advantage of lazy conflict detection
over eager 2PL. Furthermore, in 8 out of the 16 workloads,
OverlayTM outperforms TCC with both less cycles and lower
abort rates, which shows the effectiveness of multiversioning.

Most interestingly, OverlayTM, with its ability to commit read-
only transactions regardless of concurrent writes, is comparable
in most cases with SI-TM (23% more aborts and 11% more
cycles, except labyrinth). We consider this as the biggest
merit of our design: Achieving similar or better performance
than Snapshot Isolation with strong semantics.

2) Linked List: The initial list has 256 nodes. Worker threads
eiher insert, delete, or read a node as described in Section VI-C.
Write-heavy workload has 20% read, 40% insert, and 40%
delete; Read-heavy workload has 80% read, 10% insert, and
10% delete.

The linked list workload models a broad range of commonly
used data structures including sorted list, chaining hash table,
etc. Our configuration features high contention and high read-
write ratio, since threads read a “prefix” of all nodes in the list
before they finally stop. This behavior makes them vulnerable
to WAR conflicts incurred by any updating transaction on the
prefix.

In Fig. 9, we can see that both eager conflict detection
(2PL) and forward OCC (TCC) suffer from high abort rates
as well as more wasted cycles. As explained by Section II,
2PL and TCC are sensitive to committed WAR conflicts on the
prefix, while multiversioning HTM, i.e. SI-TM and OverlayTM,
commits read-only transactions using the snapshot they take at
transaction begin. In addition, 2PL has more aborts than TCC,
due to the fact that 2PL also aborts on uncommitted conflicts.
Both OverlayTM and SI-TM achieves a 20% speedup with
40% less aborts.

3) B+Tree: In the first insert-only stage, 16 worker threads
insert 16384 keys into the tree. Then in the second stage,
threads either update or query the tree. The first phase models
the B+Tree index of an Online Transactional Processing
(OLTP) table where new entries are concurrently created by
assigning monotonically increasing entry IDs. The second
phase resembles YCSB-A [38] read-update: 50% reads and
50% updates are performed on a “hotspot” that is gradually
drifting in the key space. Compared with linked list, the B+Tree
workload has fewer contention and lower read-write ratio, since
conflict almost only happens on leaf levels due to the fact that
node split is rare.

For insert-only, all other three HTMs outperform 2PL by
60% – 75%, with 70% – 80% less aborts. This is because
2PL transactions expose writes eagerly, which is detrimental:
On average, half of the node data is moved around when
inserting into a B+Tree leaf node, causing uncommitted write-
read and write-write conflicts. In addition, SI-TM has the best
performance, because SI-TM commits transactions even for
committed WAR. For read-update, OverlayTM runs 20% –
90% faster than all other HTMS with negligible aborts, while
SI-TM suffers from concurrent WAW on the same item and
TCC suffers from committed WAR. The reason OverlayTM
does not abort in the case of WAW is that we implicitly adopt
the assumption that conflict detection is on word granularity.
Blind writes (writes to memory addresses without reading first)
can therefore be optimized by not adding them to the read set.
If we take out this assumption, then OverlayTM performance

will be slightly worse than SI-TM, but still much better than
TCC and 2PL (not shown).

4) Array: The array workload models an Online Analytical
Processing (OLAP) table, where worker threads update the table
at the front end, and background threads run real-time auditing
operations that scan the entire table. This workload features
long read-only sequences and short updates. As expected,
OverlayTM and SI-TM handle this case extremely well due
to multiversioning: Performance improves by 10% – 25%
with negligible aborts. Although cycle improvement is not
as significant as abort rates, we argue that, in this scenario,
latency (i.e. number of aborts for auditing transactions) is more
critical than aggregated cycles because the background auditing
threads might be used to support real-time decision making
systems where the timeliness of data is the uttermost.

5) STAMP: OverlayTM, SI-TM and TCC improve per-
formance by approximately 30% on vacation high and
intruder out of the four STAMP workloads, with 57%
– 77% less aborts. For bayes and yada, the performance
is improved by 80% and 60% respectively, with 90% and
49% – 75% less aborts. On genome, kmeans, ssca2 and
vacation low, performance improvement is very limited
(less than 10%) for all three HTMs. This can be explained
by the fact that the absolute abort rate is already low in our
implementation of lock elision: Only 3.3% of total 14749
transactions suffer aborts for 2PL in genome. Optimizing
aborts is meaningless in this case because only a small fraction
of execution cycles are wasted.
labyrinth implements the transactional version of Lee’s

algorithm [39], [40]. The algorithm runs BFS between a point
pair on a maze after copying the maze to the local storage,
and then attempts to establish a connecting path between
the two points using backtracking. Without early release
(Section IV-G), transactions are forced to serialize, because
any writing transaction to the maze will cause committed
WAR conflict with every concurrent transaction. As shown
in the figure, only SI-TM maintains low abort rate and low
cycle wastage, as it commits transactions despite committed
WAR. With early release enabled on OverlayTM, however, only
transactions that truly conflict (i.e. two transactions select the
same grid during backtracking) will abort, ignoring committed
WAR on irrelevent grids since they are not part of the read
set. The overall performance is comparable to that of SI-TM,
a significant improvement.

We also noticed that these numbers seem to deviate from
what has been published [14]. Our explanation is that our
lock elision algorithm upper bounds the number of retries
a transaction may attempt using a retry counter. Once this
upper limit is reached, the transaction will grab the global lock
and execute non-transactionally. This simple technique avoids
one or a few long transactions repeatedly aborting all other
transactions and each other in eager systems (e.g. 2PL), and
hence reduces aborts significantly [41].

TABLE III: Commit Queue Overhead – The first column lists the
average number of pending requests in the buffer when a processor
requests to commit. The second column shows the percentage of
total execution cycles spent on waiting for OMC to process commit
requests. We only model a single-issue, centralized commit queue.

Workload Avg. # Pending % Cycles

Linked List Write-Heavy 1.65 2.40

Linked List Read-Heavy 0.79 3.33

B+Tree Write-Heavy 1.42 6.39

B+Tree Insert-Only 5.00 5.73

Array Update-Heavy 0.12 0.012

Array Scan-Heavy 0.39 0.43

genome 3.62 4.54

vacation 4.23 0.63High Contention

vacation 4.62 1.10Low Contention

intruder 3.93 3.70

bayes 1.66 0.059

kmeans 2.46 5.75

labyrinth 1.90 0 (negligible)

labyrinth 1.67 0 (negligible)
(Early Release)

ssca2 3.49 26

yada 2.64 0.091

B. Commit Queue Overhead

Recall from Section IV-A that when the OMC receives a
commit request, all gts operations including transaction begin
and commit will be blocked. Processors that have a pending
request must stall to wait for the OMC to complete the commit
sequence. In this section we evaluate the overhead of serialized
commits.

We measure the serialization of transaction commit by
modeling the FIFO buffer in front of the commit queue. Pending
requests are inserted into the buffer in the order they are
received by the OMC. We assume an average overhead of
20 cycles for processing one request. The simulator notes
down the relative positions of requests in the buffer when they
arrive (zero means the request is processed immediately). The
relative position is treated as an approximation of the level
of contention. We analyze the overhead of serialization using
these numbers, and summarize the result in Table III.

Our analysis shows that, for most workloads that we use, the
commit queue does not constitute a bottleneck. 12 out of 16
workloads spend less than 5% of total execution time waiting
for pending requests to complete. For B+Tree write-heavy,
B+Tree insert-only and kmeans, the percentage of wasted
cycles is higher, but are still less than 7%. ssca2 represents
one extreme case where the commit queue overhead constitutes
26% of total execution cycles. After inspecting the statistics, we
found out that the high commit overhead of ssca2 is caused
by unusually short transactions, the average size of which is
around 20 cycles. In this case, the commit queue has become

major bottleneck of the system’s transaction throughput in our
evaluation. We agree that a centralized commit queue is not
capable of handling extremely short transactions very well, and
would like to leave this to future work.

Table III also shows that the average number of pending
requests that a processor will have to wait for is usually
below five. This means that, in average, there are five other
transactions waiting for validation when another validation
request is received by the commit queue. This shows a great
potential for parallel validation described in Section IV-H.

VIII. CONCLUSIONS

In this paper, we have presented a new framework for
supporting multiversioning in modern memory systems (Mul-
tiversioned Program Overlays (MPO)) and a new hardware
transactional memory design (OverlayTM) built on top of that
framework. By cleanly separating the hardware necessary for
general-purpose multiversioning (in MPO) from the additional
hardware necessary for HTM (in OverlayTM), we believe
that MPO is attractive in its own right because it enables
N -way versions of the many use cases described in the
original page overlays paper [19] (i.e. overlay-on-write, sparse
data structures, fine-grained deduplication, checkpointing, fine-
grained metadata management and flexible super-pages), among
other things. MPO enables multiversioning at a cache line gran-
ularity without significantly altering existing virtual memory
frameworks or introducing high overheads.

OverlayTM builds on top of MPO using a hardware commit
queue to implement commit-time ordering with backward opti-
mistic concurrency control to support unbounded transactions
where read-only transactions are guaranteed to successfully
commit. In contrast with SI-TM (another HTM design that
uses multiversioning), OverlayTM achieves similar or better
performance while scaling to multi-socket systems and pro-
viding full serializability By significantly reducing abort rates
compared with other state-of-the-art HTM designs in a number
of cases, OverlayTM successfully leverages multiversioning to
improve both performance and functionality for transactional
memory programmers. Given these results, we believe that
OverlayTM (even on its own) presents a strong argument for
including MPO support in future systems.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[2] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar et al., “Haswell:
The fourth-generation intel core processor,” IEEE Micro, vol. 34, no. 2,
pp. 6–20, 2014.

[3] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier et al., “Evaluation of
amd’s advanced synchronization facility within a complete transactional
memory stack,” in Proceedings of the 5th European conference on
Computer systems. ACM, 2010, pp. 27–40.

[4] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early experience
with a commercial hardware transactional memory implementation,”
in Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XIV. New York, NY, USA: ACM, 2009, pp. 157–168.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508263

[5] C. Click, “Azul’s experiences with hardware transactional memory,” in
HP Labs-Bay Area Workshop on Transactional Memory, vol. 89, 2009.

[6] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of blue gene/q hardware support
for transactional memories,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM,
2012, pp. 127–136.

[7] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A. Wood et al.,
“Logtm: log-based transactional memory.” in HPCA, vol. 6, 2006, pp.
254–265.

[8] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional memory,”
in Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, ser. ISCA ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 494–505. [Online]. Available:
https://doi.org/10.1109/ISCA.2005.54

[9] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. Van Biesbrouck, G. Pokam, B. Calder, and O. Colavin,
“Unbounded page-based transactional memory,” in Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XII.
New York, NY, USA: ACM, 2006, pp. 347–358. [Online]. Available:
http://doi.acm.org/10.1145/1168857.1168901

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,
“Unbounded transactional memory,” in High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on. IEEE,
2005, pp. 316–327.

[11] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun, “A scalable, non-blocking approach to
transactional memory,” in High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on. IEEE,
2007, pp. 97–108.

[12] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation of
speculative threads in multiprocessors,” in ACM SIGARCH Computer
Architecture News, vol. 34, no. 2. IEEE Computer Society, 2006, pp.
227–238.

[13] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 139–150.
[Online]. Available: https://doi.org/10.1109/ISCA.2008.17

[14] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson, “Si-
tm: reducing transactional memory abort rates through snapshot isolation,”
ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 383–398,
2014.

[15] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996. [Online].
Available: http://dx.doi.org/10.1109/2.546611

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium on.
Citeseer, 2008, pp. 35–46.

[17] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in ACM SIGARCH
Computer Architecture News, vol. 32, no. 2. IEEE Computer Society,
2004, p. 102.

[18] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is sc + ilp =
rc?” in Proceedings of the 26th Annual International Symposium
on Computer Architecture, ser. ISCA ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 162–171. [Online]. Available:
http://dx.doi.org/10.1145/300979.300993

[19] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, T. C. Mowry, and T. Chilimbi, “Page overlays: An enhanced
virtual memory framework to enable fine-grained memory management,”
ACM SIGARCH Computer Architecture News, vol. 43, no. 3, pp. 79–91,
2016.

[20] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood, “Logtm-se: Decoupling hardware transactional
memory from caches,” in High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on. IEEE, 2007, pp.
261–272.

[21] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk
enforcement of sequential consistency,” in ACM SIGARCH Computer
Architecture News, vol. 35, no. 2. ACM, 2007, pp. 278–289.

[22] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[23] T. Härder, “Observations on optimistic concurrency control schemes,”
Information Systems, vol. 9, no. 2, pp. 111–120, 1984.

[24] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 18–32.

[25] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir, “Hardware exten-
sions to make lazy subscription safe,” arXiv preprint arXiv:1407.6968,
2014.

[26] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in Proceedings of the
41st annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2008, pp. 246–257.

[27] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu, and D. I.
August, “Hardware multithreaded transactions,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2018, pp.
15–29.

[28] X. Qian, B. Sahelices, and J. Torrellas, “Omniorder: Directory-based
conflict serialization of transactions,” in 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2014, pp.
421–432.

[29] S. A. R. Jafri, G. Voskuilen, and T. Vijaykumar, “Wait-n-gotm: improving
htm performance by serializing cyclic dependencies,” in ACM SIGPLAN
Notices, vol. 48, no. 4. ACM, 2013, pp. 521–534.

[30] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal,
T. Harris, and M. Valero, “Eazyhtm: eager-lazy hardware transactional
memory,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2009, pp. 145–155.

[31] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed
concurrency control in transactional memory,” in Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on.
IEEE, 2010, pp. 15–26.

[32] M. Gorman, Understanding the Linux virtual memory manager. Prentice
Hall Upper Saddle River, 2004.

[33] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
O. Azizi, “Hicamp: architectural support for efficient concurrency-safe
shared structured data access,” in ACM SIGPLAN Notices, vol. 47, no. 4.
ACM, 2012, pp. 287–300.

[34] Intel Corporation, Intel® 64 and IA-32 Software Developer’s Manual,
May 2018, no. 325462-067US.

[35] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proceedings
of the twenty-second annual symposium on Principles of distributed
computing. ACM, 2003, pp. 92–101.

[36] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” in ACM SIGARCH Computer
architecture news, vol. 41, no. 3. ACM, 2013, pp. 475–486.

[37] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization
Reference Manual, April 2018, no. 248966-040.

[38] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

http://doi.acm.org/10.1145/1508244.1508263
https://doi.org/10.1109/ISCA.2005.54
http://doi.acm.org/10.1145/1168857.1168901
https://doi.org/10.1109/ISCA.2008.17
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1145/300979.300993

[39] I. Watson, C. Kirkham, and M. Luján, “A study of a transactional parallel
routing algorithm,” in Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques. IEEE Computer
Society, 2007, pp. 388–398.

[40] C. Y. Lee, “An algorithm for path connections and its applications,” IRE

transactions on electronic computers, no. 3, pp. 346–365, 1961.
[41] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling

highly concurrent multithreaded execution,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 2001, pp. 294–305.

