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Abstract
Large-scale cluster storage systems use redundancy (via
erasure coding) to ensure data durability. Disk-adaptive
redundancy—dynamically tailoring the redundancy scheme
to observed disk failure rates—promises significant space
and cost savings. Existing disk-adaptive redundancy systems,
however, pose undesirable constraints on data placement, par-
titioning disks into subclusters that have homogeneous failure
rates and forcing each erasure-coded stripe to be entirely
placed on the disks within one subcluster. This design in-
creases risk, by reducing intra-stripe diversity and being more
susceptible to unanticipated changes in a make/model’s fail-
ure rate, and only works for very large storage clusters fully
committed to disk-adaptive redundancy.

Tiger is a new disk-adaptive redundancy system that effi-
ciently avoids adoption-blocking placement constraints, while
also providing higher space-savings and lower risk relative to
prior designs. To do so, Tiger introduces the eclectic stripe,
in which redundancy is tailored to the potentially-diverse
failure rates of whichever disks are selected for storing that
particular stripe. With eclectic stripes, pre-existing placement
policies can be used while still enjoying the space-savings
and robustness benefits of disk-adaptive redundancy. This
paper introduces eclectic striping and Tiger’s design, includ-
ing a new mean-time-to-data-loss (MTTDL) approximation
technique and new approaches for ensuring safe per-stripe
settings given that failure rates of different devices change
over time. In addition to avoiding placement constraints, eval-
uation with logs from real-world clusters shows that Tiger
provides better space-savings, less bursty IO for changing
redundancy schemes, and better robustness (due to increased
risk-diversity) than prior disk-adaptive redundancy designs.

1 Introduction

“A Tiger never changes its stripes”, but can it be made to?
In this context, the Tiger is a cluster storage system and its
stripes are the erasure coded data that is placed across multiple
disks in order to ensure data reliability. In today’s cluster

*Equal contribution

(a) Conventional
cluster storage

(b) Pacemaker
(subcluster-based)

(c) Tiger
(this paper)

Figure 1: Stripe placements and configurations in different erasure
coding systems: Disks of same color have similar annualized failure
rates (AFRs), with red being least reliable (highest AFR), then blue,
then green. Rectangles represent stripes with shorter stripes having
higher redundancy. Conventional one-scheme-fits all designs (1a)
impose no placement restrictions, but make no distinction of disk
AFRs and therefore overprotect much of the data—all stripes use
the widest redundancy scheme, shown as 2-wide for illustration.
Pacemaker (1b) and Tiger (1c) tailor redundancy based on disk AFRs,
resulting in different stripe widths in the illustration, and thereby
reduce storage overhead. Pacemaker does this with rigid AFR-based
subcluster boundaries, whereas Tiger requires no such boundaries.

storage systems, most of the data reliability is via erasure
coding [13, 21, 37, 40, 50, 58].

Conventionally, a single cluster-wide redundancy scheme
is selected for each data corpus (or for all data corpuses) [11,
14, 15, 21, 33]. This approach fails to account for the disk-
reliability heterogeneity present in modern storage clusters,
which consist of hundreds-of-thousands of hard disk drives
(HDDs or just "disks") of multiple makes/models deployed at
different times. This forces conventional storage clusters to
use excessive redundancy (wasting capacity, and thus money
and energy) to guarantee data safety, given that different disks
have different failure rates. Absent other information, redun-
dancy schemes are usually chosen to be safe for stripes fully
stored on the least reliable disks (e.g., Fig. 1a). Recent re-
search has showed that adapting redundancy scheme selection
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to the observed failure rates of specific disks can reduce the
space (=cost) overhead of redundancy by up to 20% [23].

Existing disk-adaptive redundancy designs [24, 25], how-
ever, face several significant adoption hurdles. At their core,
these designs rigidly partition a storage cluster into sub-
clusters of disks (called redundancy groups or Rgroups)
that have similar failure rates, so they can use a subcluster-
wide redundancy scheme tailored to meet the required data
reliability target (e.g., Fig. 1b). Key adoption hurdles in-
clude: (1) Since each stripe must be entirely within a sin-
gle Rgroup, this subcluster-based design can interfere with
other data placement considerations, such as enhancing risk-
diversity by spreading data across fault domains and different
makes/models/batches of disks. Indeed, many of the Rgroups
consist of a single make/model. (2) To provide reasonable
degrees of performance and reconstruction speed scalability,
subclusters must be sizable, making these designs only suit-
able for very large storage clusters. (3) When failure rates rise
for a given make/model, as it ages, the redundancy scheme
for an entire Rgroup (potentially 100s of PBs) may need
to change to maintain target data reliability levels—all at
once. The Pacemaker design [24] proposes to predict such
changes and start them early, but they need to predict a month
or more in advance to avoid reliability problems given the
huge amount of data being transitioned, which is inherently a
risky proposition. (4) The subcluster-based designs assume
full adoption of disk-adaptive redundancy, not allowing for
selective adoption for some data corpuses but not for others.

We present Tiger, a disk-adaptive redundancy system that
eliminates the placement constraints posed by subcluster-
based disk-adaptive redundancy designs while providing
equal or greater benefits. Tiger’s core new abstraction is
the eclectic stripe, in which disks of different AFRs can
be used to store a stripe that has redundancy tailored to the
set of AFRs for those disks. In terms of placement flexibil-
ity, eclectic stripes are identical to stripes in conventional
(non-disk-adaptive redundancy) designs. But, unlike conven-
tional stripes, eclectic stripes do not conservatively assume the
worst-case AFR for all disks. Instead, with eclectic stripes,
the redundancy scheme is dynamically set for each stripe
based on the AFRs of the chosen disks (e.g., Fig. 1c). Tiger’s
eclectic stripe approach avoids all the adoption hurdles dis-
cussed above, while simultaneously increasing the effective-
ness (higher space-savings) and robustness (lower burstiness
of urgent transition IO) of disk-adaptive redundancy.

Efficiently incorporating the proposed new abstraction of
eclectic stripes is challenging due to multiple reasons. Tiger
introduces several new design elements to overcome these
challenges. First, calculating the exact reliability in terms
of mean-time-to-data-loss (MTTDL) of a stripe can be pro-
hibitively expensive, since accounting for different failure
rates can lead to an exponential number of states in the tradi-
tional Markov chain reliability model. To address this, we pro-
vide a novel approximation technique that speeds up MTTDL

calculation by 2-4 orders of magnitude while always pre-
serving accuracy of over 95%, and on average over 99.5%.
Second, while disks for a stripe can be chosen based on pre-
existing placement policies, the chosen disks may not form an
adequately-reliable stripe for a planned redundancy scheme,
since the reliability is dependent on the chosen disks’ AFRs.
Tiger uses an AFR-aware stripe-width-reduction policy to
quickly achieve sufficient reliability. Third, disk AFRs change
over time [25], which can require changing the redundancy
schemes of some eclectic stripes. Keeping track of AFRs for
each stripe and triggering the redundancy schemes can signif-
icantly increase the overhead for metadata and background
operations. Tiger introduces an eclectic volume abstraction
to reduce metadata overhead and make identification of re-
quired changes efficient. It also introduces policies to reduce
transition IO: the IO involved with enacting changes to stripe
redundancy schemes.

Evaluating the feasibility and efficacy of eclectic stripes
requires analysis of long-term effects on huge storage clusters.
We evaluate Tiger using the same logs as used to evaluate
Pacemaker [24], enabling an apples-to-apples comparison.
These logs contain all disk-deployment, failure, and decom-
missioning events from four production storage clusters: three
160K–450K-disk Google clusters and a ≈110K-disk cluster
used for the Backblaze Internet backup service [3]. Simula-
tion driven by production logs allows us to analyze reliability,
space usage, and redundancy maintenance traffic for multiple
clusters each with over 100K disks and over multiple years,
which would be infeasible otherwise as part of a research
setup. For all four clusters, Tiger provides equal or better
space-savings than Pacemaker, while requiring at most 0.5%
of daily IO bandwidth for transition IO. More importantly,
the transition IO is both less bursty, in terms of when it is
needed, and less urgent, in terms of how unsafe an unsafe
stripe might be if the scheme transition were delayed. For in-
stance, in response to a tiny rise in AFR (< 0.25%) for disks
of a given make/model, Pacemaker would need 196% of the
total IO bandwidth from each of those disks in order to make
the data safe—to avoid stealing more than 5% of IO band-
width for transition IO, Pacemaker would have to know to
start 40 days in advance—but Tiger would need <1.6% even
for a 1% AFR increase because of the diversity of its eclectic
stripes. And, most importantly, Tiger exhibits significantly
better risk-diversity, stemming from removing placement con-
straints and allowing differently-reliable disks (and hence
disks of different makes/models) to belong to the same stripe.
For example, even with random selection of disks for each
stripe, most of Tiger’s eclectic stripes span most of a cluster’s
make/models; Pacemaker’s strict Rgroup boundaries disallow
use of more than one make/model for most stripes.

Contributions. In this paper, we make four main contribu-
tions. First, we introduce eclectic stripes as a tool for realizing
disk-adaptive redundancy without the placement restrictions
posed by prior designs. Second, we present a reliability model
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and its approximation to efficiently calculate the MTTDL of
eclectic stripes. A surprising outcome is that a homogeneous
stripe with the same scheme and average disk AFR as an eclec-
tic stripe is less reliable! Third, we present the design and
architecture of Tiger, the first disk-adaptive redundancy sys-
tem for supporting and efficiently managing eclectic stripes.
Fourth, we evaluate Tiger and compare it to the state-of-the-
art, using logs from four large real-world storage clusters,
demonstrating its effectiveness in realizing disk-adaptive re-
dundancy without prior designs’ adoption challenges and with
greater space-savings and lower risk.

2 Background and Motivation

We first provide a primer on data redundancy done using
erasure coding followed by the gist and importance of disk-
adaptive redundancy. We then describe the problems with
existing disk-adaptive redundancy systems, which is the mo-
tivation for this paper.

Erasure Coding for data durability. Modern storage
clusters often comprise of hundreds-of-thousands of disks
of multiple make/models deployed over time. The sheer scale
of the storage clusters makes disk failures a common occur-
rence [15], which necessitates some form of redundancy to
ensure data durability and availability. While replication is
popular for availability of hot data, erasure coding (a more
space-efficient alternative to replication) is more common for
the durability of colder data, which forms the majority of the
stored data. In erasure coding (EC), data is split into k chunks,
and n− k parity chunks are subsequently generated to form a
stripe with n chunks. Each chunk is stored on a separate disk.
This k-of-n EC scheme (also called “redundancy scheme”)
can withstand up to n−k failures with a storage overhead of n

k .
Any k chunks of an n-chunk stripe are sufficient to construct
the original data.

Reliability Metrics: MTTDL and AFR. The reliabil-
ity of a stripe is determined by its mean-time-to-data-
loss (MTTDL). A stripe’s MTTDL is calculated using a
continuous-time Markov chain shown in the left side of
Fig. 3. Each state represents the number of simultaneously
lost chunks in a stripe. The MTTDL is the mean time to
reach state DL (where n− k+1 chunks are simultaneously
lost) from state 0; this is when data is irrecoverably lost. This
model assumes a homogeneous stripe, where all disks fail
with the same rate λ. Downward transitions denote failures,
which happen with a rate of λ times the number of available
chunks, while upward transitions denote repairs, which hap-
pen with a fixed rate µ. Failure rates are commonly expressed
as an annualized failure rate (AFR), which is defined as the
expected fraction of failed disks in a year, assuming that failed
disks are replaced and the disk population remains fixed.

Disk-adaptive redundancy. Storage clusters have con-
ventionally been using a one-scheme-fits-all redundancy
scheme by assuming that all disks fail similarly. Prior work

has shown that disk AFRs are highly correlated with their
vintage [26, 35]. With modern clusters having a mix of
disk makes/models/batches, there can be over an order of
magnitude difference between AFRs of different groups of
disks [25]. Additionally, over their lifetime, disk AFRs fol-
low a “bathtub curve” with multiple failure regimes: infancy
(high AFR) followed by useful life with potentially multiple
phases (piecewise linear phases with low AFR that increases
gradually) and finally wearout (high AFR) [24].

Disk-adaptive redundancy capitalizes on differences in disk
AFRs and dynamically tailors data redundancy to observed
disk failure rates [23]. Disk-adaptive redundancy systems take
into account various constraints including the reconstruction
costs when making the decision of a target stripe width to
adapt to. Specifically, wide schemes are used only when a
stripe’s average AFR is low enough to keep the reconstruc-
tion cost contained below a configured limit. More generally,
wide stripes provide cost savings in terms of smaller storage
overhead at the cost of higher reconstruction costs and higher
degraded mode reads. We know from conversing with archi-
tects of large-scale storage clusters that the cost of the excess
byte footprint matters more than the cost of excess IO re-
quired in the context of redundancy, given existing workloads.
This is especially so since, in general, large-scale capacity-tier
storage cluster workloads tend to be cold (have low IO/s per
byte). Additionally, cold data experiences fewer reads, and
therefore has very few costly degraded mode reads. Back-
blaze is an example where, for archival data that has low IO
access rates, administrators have publicly confirmed use of
wide redundancy schemes such as 17-of-20 [4]. By using
more space-efficient redundancy schemes during low AFR
regimes, disk-adaptive redundancy can provide substantial
space-savings (> 20%) in clusters with over 100K disks.

Prior disk-adaptive redundancy systems. Two disk-
adaptive redundancy systems have been proposed in the lit-
erature: HeART [25] and Pacemaker [24]. In HeART, the
authors propose a tool to statistically learn the AFRs of dif-
ferent disk groups and identify change-points for safe redun-
dancy transitions. By transitioning to an encoding scheme
with minimum storage overhead that still meets the target
MTTDL, HeART was able to obtain ≈ 20% space-savings
when tailoring erasure codes, and≈ 33% space-savings when
tailoring replication. Although lucrative, HeART overlooked
an important practical hurdle in performing disk-adaptive
redundancy: transition overload, i.e. the IO overhead of per-
forming redundancy transitions. Crippling transition overload
when thousands of disks require simultaneous redundancy
transitions forms the basis for Pacemaker [24]. The gist of
Pacemaker is to convert urgent redundancy transitions into
schedulable ones by making conservative predictions of the
rise in AFR and proactively issuing redundancy transitions.
This allows the transition overload to be spread out over time,
such that it can be completed within tolerable IO limits with-
out compromising data safety.
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(a) Placement constraints (b) Risk-diversity

Figure 2: 2a shows Pacemaker’s placement constraints by highlight-
ing the fraction of the disk fleet that is viable for different schemes
exercised on four production clusters. Fig. 2b shows the risk-diversity
obtained by the same clusters on particular dates in their lifetime.
A risk-diversity of 100% implies at least one chunk stored on ev-
ery possible make/model, whereas a 0% risk-diversity implies that
the particular scheme was not feasible in the cluster. Pacemaker
performs poorly in both placement constraints and risk-diversity.

2.1 Existing designs are impractical

Despite remarkable space-savings and low IO costs, existing
disk-adaptive redundancy systems remain impractical in real-
world settings.

Placement restrictions. The primary hurdle stems from
the placement restrictions posed by reliance on redundancy
groups (Rgroups). An Rgroup is a set of disks with similar
AFRs, such that they can use the same redundancy scheme.
Prior systems redundancy management techniques rigidly par-
tition the cluster’s disks into Rgroups, and every stripe must
be stored entirely within a single Rgroup. Fig. 2a shows the
percentage of disks that are rendered infeasible for various re-
dundancy schemes Pacemaker can employ on a particular day
in four large storage clusters. More than 30% of the disks are
deemed infeasible for space-efficient schemes beyond 22-of-
25, because their AFRs are not low enough for those disks to
participate in an Rgroup for which schemes beyond 22-of-25
can meet the target MTTDL. Furthermore, in order to main-
tain proper redundancy, stripes are typically constrained to
span across different racks, servers, power lines, etc. Adding
another placement constraint may be close to impossible.

Lower risk-diversity. Due to high correlation of AFRs and
makes/models/batches [26,35], and in order to enable efficient
transitioning mechanisms, many Rgroups contain disks from
just one make/model. This is undesirable from a risk-diversity
perspective. Fig. 2b shows the fraction of makes/models that
are covered for the same stripe configurations in the same four
clusters described above. Higher risk-diversity is valuable for
mitigating consequences of bulk failure situations (e.g., from
rapid degradation due to manufacturing defects), especially
in a disk-adaptive redundancy system where redundancy is
tuned rather than regularly excessive.

Reliance on AFR prediction. With lower risk-diversity,
Pacemaker’s Rgroups are already susceptible to data loss due
to bulk failures in a single make/model (uncommon, but not
impossible). Furthermore, Pacemaker’s IO cost reduction is

highly dependent on being able to accurately predict an AFR
rise well in advance. Currently AFR is calculated only on the
basis of age. Prior work has highlighted that it is dependent
on various factors such as vintage, temperature, vibration,
etc. [7, 26, 27, 35]. This makes an already difficult task of
accurate AFR prediction even harder.

All-or-nothing. Current disk-adaptive redundancy designs
depend on forming Rgroups, and work efficiently if entire
Rgroups perform redundancy transitions together (for step-
deployed disks). This implies that the entire cluster must
commit to performing disk-adaptive redundancy for all of
their data stored on all disks. Such a restriction makes disk-
adaptive redundancy unusable without a major overhaul of
the architecture of the existing storage cluster.

The key takeaway is that additional data placement restric-
tions create adoption-blocking limitations and risks. In order
have have both placement flexibility and disk-adaptivity, we
need a new approach that includes the ability to reason about
and tune the reliability of stripes that span disks with different
AFRs. We achieve this via eclectic stripes.

3 Eclectic Stripes and their challenges

Eclectic stripes are central to Tiger’s approach of providing
disk-adaptive redundancy without placement restrictions. An
eclectic stripe is an EC stripe placed on a collection of disks
that can have different failure rates. The reliability model of
conventional EC stripes forces them to be allocated on disks
having (or worse, assumed to be having) the same failure
rate. In terms of composition an eclectic stripe is no different
than what a conventional EC stripe would be. Specifically,
the same disks that make up a conventional stripe can also
make up an eclectic stripe, just that eclectic stripes are cog-
nizant of the AFR differences of the underlying disks and
can accurately reason about the resulting reliability. A disk-
adaptive redundancy system that supports eclectic stripes has
to overcome several challenges.

1. Ensure efficient creation of sufficiently reliable eclec-
tic stripes. Taking AFR differences of all disks in a stripe into
account makes exact MTTDL calculation of eclectic stripes
prohibitively expensive (see §4.1.1). Since stripe creation is
a critical-path operation, it is imperative that a disk-adaptive
redundancy system supporting eclectic stripes reasons about
its reliability in an efficient and accurate manner.

2. Ensure efficient management of eclectic stripes. All
underlying disks of an eclectic stripe will not experience an
AFR rise or fall together. A system supporting eclectic stripes
must efficiently identify which stripes need to change their
redundancy in response to changing AFRs.

3. Support unchanged placement policies. While tweak-
ing the placement policies might provide additional optimiza-
tions, a system that supports eclectic stripes must support
existing placement policies without any change.
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4. Retain key benefits of disk-adaptive redundancy. Dy-
namic redundancy adaptation at a low transition IO cost;
continuously providing adequate reliability; providing space-
savings by using more space-efficient redundancy schemes
in low-AFR regimes are the key benefits of disk-adaptive
redundancy. Any proposed disk-adaptive redundancy system
should strive to maintain these benefits.

5. Ensure an adoption-friendly design. Apart from place-
ment restrictions, existing disk-adaptive redundancy system
designs require that the entire cluster commits entirely to per-
form disk-adaptive redundancy, or it cannot gain any of its
benefits. Moreover, only the very large-scale storage clusters
can use existing disk-adaptive redundancy designs, whereas
the small and medium sized clusters are outside their scope.
High emphasis on usability and showcasing a way for easy
adoption of disk-adaptive redundancy in existing storage clus-
ters of all shapes and sizes is an important design challenge.

4 Mechanisms to enable eclectic stripes

In this section, we address the two main challenges of eclectic
stripes: their reliability and their management.

4.1 Interpreting reliability of eclectic stripes
We first shed light on key takeaways from our study of the
reliability of eclectic stripes and then provide the detailed
theory and the associated analysis.

Calculating MTTDL of eclectic stripes is efficient and
accurate. The exact calculation of the MTTDL of an eclec-
tic stripe is computationally expensive. We provide a novel
approximation that provides the MTTDL with over 99.5%
accuracy (on average), and always provides over 95% accu-
racy in our tests. In practice, a difference of 5% in MTTDL
typically translates into a difference of around 0.1% AFR for
a homogeneous stripe, which is negligible. The exact MTTDL
calculation and the approximation are detailed in §4.1.1, 4.1.2.

Eclectic stripes are more reliable than homogeneous
stripes. When comparing the MTTDL of an eclectic stripe
with a homogeneous stripe having the same EC scheme and
same avg. AFR, the MTTDL of the eclectic stripe is always
higher than the MTTDL of the corresponding homogeneous
stripe for typical system parameters (§4.2, Fig. 4).

Eclectic stripes are robust to AFR changes of individ-
ual disks. The MTTDL of the eclectic stripes does not react
abruptly to the increase in AFR of a few disks. Compared to
the conventional approach of treating stripes as homogeneous
with AFR equal to the maximum AFR in the stripe, MTTDL
of eclectic stripes react very gradually to AFR changes.

Eclectic stripes are more robust to AFR misestimations.
Due to the nature of empirical data, any system that measures
AFR has to estimate it. Since the AFRs of different disk
make/models are estimated independently, it is unlikely that
there will be simultaneous underestimation of the AFR of

Figure 3: Left: Classic Markov chain model for the MTTDL of
a 2-of-4 homogeneous stripe. Right: Markov chain model for the
MTTDL of a 2-of-4 eclectic stripe.

every disk in an eclectic stripe, and hence the impact of esti-
mation errors is smaller (Fig. 5) and may even cancel each
other out. Furthermore, disk-adaptive redundancy systems are
made even more robust against misprediction by the use of
confidence intervals. Thus, eclectic stripes are more robust to
AFR misestimations compared to homogeneous stripes.

4.1.1 Exact MTTDL calculation is costly

Using a Markov chain model to calculate the MTTDL of
storage systems is a classic approach [16]. A generalization
of this approach helps us take into account disks with different
failure rates. Consider an EC stripe of a k-of-n scheme, placed
over n disks with failure rates λi(i ∈ [n]) and a disk repair rate
of µ. The state of the system is given by an n-length vector
s = (s0, . . . ,sn) with si = 1 if disk i has failed, and si = 0
otherwise (i ∈ [n]). The state space is given by states (si)

n
i=1

such that the total number of failure ∑
n
i=0 si is at most the

number of parities n− k, and a data loss state labeled DL.
Therefore, the total number of states is 1+∑

n−k
i=0

(n
i

)
. The rate

of transition from state s to s′ is defined as:

• λi if si = 0,s′i = 1, and s j = s′j for i 6= j (ith disk fails),

• µ if si = 1,s′i = 0, and s j = s′j for i 6= j (ith disk repaired),

• ∑
n
i=1(1− si)λi if ∑

n
i=1 si = n− k and s′ = DL (any disk

fails when n− k disks have failed and are not repaired).

The MTTDL is defined as the mean time to state DL from the
initial state 0 = (0, . . . ,0).

Given the values of n,k,(λi)
n
i=1, and µ, one can compute

the MTTDL by using the standard approach of solving a sys-
tem of equations. However, this approach is not tractable, due
to the exponential explosion on the number of states with
respect to n− k (see Fig. 3 to compare conventional Markov
chain with that of an eclectic stripe). For example, the Markov
chain of a 10-of-14 eclectic stripe has 1472 states, compared
to 6 states in the case of a 10-of-14 homogeneous stripe.
Reasoning about this model can be hard too, since it is not
directly clear how disk AFRs affect MTTDL. Furthermore,
this approach tends to be numerically unstable, which makes
obtaining precise MTTDLs hard. We find that computing a
single MTTDL using this approach with realistic parameters
can take up to several seconds using the Mathematica 12
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Figure 4: Reliability of eclectic stripes compared to homogeneous
stripes. For each scheme, we sample 1000 eclectic stripes and for
each stripe we compute its MTTDL ρ and then compute the AFR λ

of a homogeneous stripe with the same scheme and MTTDL equal
to ρ. The boxes show the distribution of λ over the 1000 stripes. The
AFR of the first n−1 disks in a eclectic stripe are sampled uniformly
at random from the range 2–16% (high variance) or 5–13% (low
variance), and the AFR of the last disk in a stripe is chosen to ensure
that the average AFR of the disks in each stripe is fixed at 9%. E.g.
the median 6-of-9 eclectic stripe from the high-variance group is
as reliable as a 6-of-9 homogeneous stripe with AFR 8.5%, despite
having an average AFR of 9%.

software [52] on a desktop PC. This is too slow in practice,
because not only do we need to compute the MTTDL when
creating new stripes, but we also need to periodically compute
the MTTDL of every stripe in the system (typically billions)
as device AFRs change. The next section describes an effi-
cient approximation that makes the MTTDL calculation of
eclectic stripes computationally tractable and highly accurate.

4.1.2 Efficient and accurate MTTDL approximation

In order to compute and better understand the MTTDL of
eclectic stripes, we propose an approximation formula, build-
ing on the approach presented in [2] for homogeneous stripes.
This approximation is extremely good when µ� maxi λi,
which is true for modern cluster storage systems.

The main idea behind this approximation is to note that
(in the steady state) disk i will be available a fraction Ai =
µ/(µ+λi) of the time, and that the system will reach the DL
state when exactly k−1 of the disks are available. Therefore,
the MTTDL can be approximated with the following formula
(see appendix A for the full derivation):

MTTDL≈ (µ(n− k+1)PBin(k−1;n,(Ai)
n
i=1))

−1 , (1)

where PBin(k;n,(pi)
n
i=1) is the probability of obtaining ex-

actly k heads when flipping n biased coins with probability
of heads pi for coin i. PBin is known as the Poisson-binomial
distribution, and it can be efficiently evaluated [12, 19].

We tested this approximation against the Markov chain ap-
proach over all values of 6≤ k≤ 30, 1≤ n−k≤ 3, and AFRs
of 1–16%. The relative difference between the two output
MTTDLs never exceeded 5% and was less than 0.5% on av-
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Figure 5: Reliability of a 6-of-9 eclectic stripe when the AFR of a
single disk varies. The eclectic stripe is composed of 8 devices with
AFR 9%, and one device whose AFR varies from 1% to 30% (x axis).
The dashed line denotes the MTTDL of a 6-of-9 homogeneous stripe
with the same average AFR as the eclectic stripe. The solid line
denotes the MTTDL of the eclectic stripe. Reliability of the eclectic
stripe is always above the corresponding homogeneous stripe.

erage*. As a benefit, the approximation is 2–4 orders of mag-
nitude faster to evaluate (in the order of milliseconds), more
numerically stable, significantly simpler to implement, and
gives direct insight into how the parameters affect MTTDL.

4.2 Understanding MTTDL of eclectic stripes
The main difference between the reliability of an eclectic
stripe and a homogeneous stripe is given by the Poisson-
binomial factor in Eq. 1, which becomes Binomial when all
probabilities are equal. Notice that the difference between Ai
in Eq. 1 will be small because µ�maxi λi, and therefore the
corresponding Poisson-Binomial distribution will not devi-
ate too much from a Binomial distribution with trial success
probability A = ∑

n
i=1 Ai/n [6]. Furthermore, we have:

n

∑
i=1

Ai

n
=

1
n

n

∑
i=1

1
1+λi/µ

≈ 1
n

n

∑
i=1

(
1− λi

µ

)
= 1− ∑

n
i=1 λi/n

µ
,

where we use the approximation 1/(1+ x)≈ 1− x for small
x. This means that the reliability of an eclectic stripe will tend
to be close to the reliability of a homogeneous stripe with
AFR equal to the average AFR of the eclectic stripe.

To measure how close the MTTDL of an eclectic stripe
will be to that of a homogeneous stripe with the same scheme
and average AFR, we conduct two numerical experiments.
Fig. 4 compares eclectic stripes against homogeneous stripes
that have the same MTTDL, across different schemes and
AFR ranges. In this experiment, instead of directly showing
an MTTDL ρ (which is hard to interpret) in the y-axis, we
show the AFR λ of a homogeneous stripe that has MTTDL
equal to ρ (under the relevant scheme). The results show that
eclectic stripes are more reliable than homogeneous stripes
with the same scheme and average AFR. In other words, for a
homogeneous stripe composed of disks with AFR λ to match

*The median relative difference between the exact and approximated
eclectic stripe MTTDL was 0.1%, the 90th percentile error was 0.5%, and
the 95th percentile error was 0.7%.
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the reliability of an eclectic stripe with AFRs (λi)
n
i=1, the disks

in the homogeneous stripe have to be more reliable on average,
i.e., λ < ∑

n
i=1 λi/n. The difference, however, becomes small

when the ratio n/k is small, or the range of AFRs is small.
Fig. 5 shows the reliability of an eclectic stripe when the
AFR of a single disk in the eclectic stripe varies in the range
1–30%. This experiment shows that eclectic stripes provide
a dampening effect against AFR rises of a small number of
devices in two ways: (1) a small number of devices have a
smaller impact on the average AFR of the stripe (slope of the
dashed line), and (2) the convex shape of the curve shows that
the eclectic stripe is even more reliable than a homogeneous
stripe with the same scheme and average AFR.

Checking if a stripe is safe: Typically, a minimum level
of reliability is set in the cluster by setting a MTTDL threshold
that all stripes must satisfy in order to be deemed safe. Given
the results presented in this section, we now describe a simple
method to determine whether a stripe is safe. We define the
critical AFR of a k-of-n scheme and MTTDL threshold θ as
the highest AFR that disks in a homogeneous k-of-n stripe can
attain while still having an MTTDL of at least θ. The critical
AFRs for the different schemes that are used in a system can
be precomputed and stored. Then, a simple andx efficient way
of checking whether an eclectic stripe under some scheme is
safe is to check whether the average AFR in the stripe is less
than the critical AFR for that scheme. Since an eclectic stripe
is at least as reliable as a homogeneous stripe with the same
scheme and average AFR, if the stripe passes this check, then
we can be certain that the stripe is safe. If the stripe does not
pass the check, then it may be unsafe, which can determined
by computing its MTTDL. This test can help greatly reduce
the amount of work needed in checking whether stripes are
still safe, and it also provides a simple way of understanding
the reliability of eclectic stripes.

4.3 Eclectic Volumes

Disk AFR changes may trigger redundancy transitions. Prior
designs performed disk-adaptive redundancy at the disk level.
Thus, if a disk’s AFR changed, either all or none of the stripes
on that disk required a redundancy transition. With eclectic
stripes, each disk may store chunks of stripes with different
reliabilities. An AFR change might only require redundancy
transitions for a subset of those stripes. With millions of eclec-
tic stripe chunks being stored on each disk, a linear search
through all of them for each AFR change is impractical.

An eclectic volume is a collection of eclectic stripes that use
the same EC scheme and are stored on the same set of disks.
A disk can contain multiple volume fragments identified by
their globally unique volume ID. Each disk maintains a map
of stripe ID to eclectic volume ID. Since each eclectic volume
spans the exact same disks, whenever a disk’s AFR changes,
Tiger only needs to check whether the EC scheme used for
each of the disk’s constituent volumes still meets the required

Figure 6: Architecture of Tiger. The blue boxes correspond to
Tiger’s components. The gray boxes correspond to existing compo-
nents in cluster storage system architecture and components present
in existing disk-adaptive redundancy systems.

MTTDL target. There is no need to check the reliability of
each of the individual eclectic stripes within a volume since
they are all identically reliable. The details of how Tiger
manages eclectic volumes is described in §5.3.

Eclectic volumes prove to be efficient only if they represent
a large number of eclectic stripes. Therefore, in Tiger the
default size of an eclectic volume is set to 1 TeraByte (TB).
This way, even though Tiger performs reliability monitoring
at the volume granularity it ensures that each eclectic stripe is
always sufficiently reliable.

5 Design and working of Tiger

Tiger is a practical disk-adaptive redundancy system designed
to overcome the challenges described in §3. Fig. 6 shows the
architectural components of Tiger (colored boxes) and how
they interact with existing cluster storage system components
and common disk-adaptive redundancy components.

5.1 Data flow in Tiger
We overview Tiger by explaining the lifecycle of eclec-
tic stripes. An eclectic stripe is created via the Eclectic
Stripe Allocator (ESAllocator), which identifies a set of
disks and the corresponding scheme on which this data is
to be stored. The ESAllocator uses the existing and unmod-
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ified data placement policy to obtain a set of disks. That
placement policy uses whatever knowledge designers choose
(e.g., available freespace, load balance, and fault domain
constraints) in selecting the set of disks. The ESAllocator
then queries the Eclectic Stripe Manager’s MTTDL Engine
(ESMTTDLEngine) with the AFRs of the chosen disks, and
a stripe configuration, to verify that the planned stripe’s
MTTDL meets the required target MTTDL. If it does not,
the ESAllocator boosts the MTTDL by changing the stripe
configuration until an appropriately safe redundancy scheme
is found. §5.2 details this process.

Once created, the ESAllocator passes the stripe to the Eclec-
tic Volume Manager (EVManager, see §5.3) to either add the
stripe to an existing volume, or create a new volume which
will contain the new stripe. The Eclectic Volume Health In-
spector (EVHInspector) continuously monitors the reliability
of the eclectic volume by querying the change point detector,
which identifies significant AFR changes in the data from the
AFR curve learner. The AFR curve learner, change point de-
tector and the rate limiter can be reused without change from
any existing disk-adaptive redundancy system*. In reaction
to a significant AFR change (rise or fall), the EVHInspector
alerts the EVManager, which fetches the eclectic stripe meta-
data from the EVDirectory and provides both the AFR change
and the metadata to the Eclectic Stripe Reorganizer (ESReor-
ganizer; see §5.2). The ESReorganizer includes techniques to
efficiently perform redundancy transitions. If eclectic stripes
must change, the ESReorganizer consults the ESAllocator in
forming them. Non-urgent redundancy transitions (when the
target MTTDL is not at risk of being violated) are throttled by
the rate limiter in order to not overwhelm the storage cluster.

Tiger’s stripe-by-stripe disk-adaptive redundancy approach
enables incremental adoption by allowing data to be stored
either as an eclectic stripe or a homogeneous stripe. This is in
contrast to subcluster-based designs that are all-or-nothing.

5.2 The Eclectic Stripe Manager
The Eclectic Stripe Manager (ESManager) handles construc-
tion, maintenance and reorganization of eclectic stripes.

Constructing eclectic stripes In the absence of an exist-
ing eclectic volume that has space (described later in §4.3),
the ESAllocator asks the existing data placement policy for
disks to store each new eclectic stripe. Since that placement
policy is unaware of disk-adaptive redundancy, it may return
a set of disks whose AFRs produce an MTTDL that either
fails to meet or far exceeds the target MTTDL. Algorithm 1
describes the process to build a space-efficient, yet adequately
reliable eclectic stripe.

To give itself flexibility, ESAllocator asks the placement
policy to provide a set of disks for the maximum-width-
allowed stripe (e.g., 33 for 30-of-33). The ESAllocator then

*Tiger reuses the Ruptures change-point detection library [47, 48], the
AFR curve-learner and the rate-limiter from HeART [25] and Pacemaker [24].

Algorithm 1
θMTTDL← target MTTDL
nmax← max{n | (n,k) ∈ schemes}
(d1, . . . ,dnmax)← nmax randomly sampled devices
for (n,k) ∈ schemes in order of increasing n/k do

if MTTDL(n,k,(d1, . . . ,dn))≥ θMTTDL then return (n,k)

queries the ESMTTDLEngine with the provided disks and
its planned scheme to get the MTTDL value. If the MTTDL
does not meet the target MTTDL, ESAllocator discards a
disk from the set and increases the redundancy of the corre-
sponding scheme (e.g., 29-of-32 instead of 30-of-33) to boost
the stripe’s MTTDL, repeating this process until sufficient
MTTDL is achieved. This process is guaranteed to terminate,
since the least space-efficient scheme in a storage cluster must
meet the target MTTDL. Moreover, by iterating from the most
space-efficient scheme allowed, the algorithm terminates at
the most space-efficient scheme for the provided disks.

Ensuring reliability amid disk failures. The reliability
of each eclectic stripe is a function of the AFRs on the disks
on which it is stored. So, when a disk fails, the reconstructed
data cannot simply be placed on a randomly chosen disk,
since its AFR might be high enough to cause the eclectic
stripe’s MTTDL to exceed the target. Recall, from §4.2, that
the critical AFR of an EC scheme is the highest AFR that
a homogeneous stripe of that scheme can reliably support,
and a simple way to test that an eclectic stripe is safe is to
check that its average AFR is below the critical AFR for its
EC scheme. Therefore, we can ensure that reliability will be
preserved if we choose a disk that keeps the average AFR of
the affected stripes under their respective critical AFRs.

When a disk in Tiger fails, the EVManager is notified. This
triggers a lookup in the EVDirectory for eclectic stripes whose
chunks need to be reconstructed. The EVManager forwards
the list of chunks to the ESReorganizer. For each stripe, the
ESReorganizer asks the ESAllocator for disks to replace the
failed disks, providing the critical AFR for the stripe. The
ESAllocator returns suitable disks, if they are found, other-
wise, it allocates (one or more) new eclectic stripes and moves
the prior stripe’s data (including any reconstructed data) to
the new stripes. Finding sufficiently reliable disks to store
the reconstructed data results in lower transition IO than allo-
cating new eclectic stripes, since the latter involves moving
data of disks that did not fail. After the reconstruction process
(whether or not new eclectic stripes are formed), ESReorga-
nizer informs the EVManager of the changes, which then
updates the EVDirectory accordingly.

Dealing with AFR changes over time A disk’s AFR is
not constant throughout its lifetime [9, 10, 23, 56]. In addition
to building and maintaining eclectic stripes, ESManager must
also ensure that data is kept safe when a disk’s AFR changes.

Ensuring data reliability with increasing AFRs. The EV-
Manager monitors AFR by querying the change point detector.
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Whenever the AFR rises, the EVManager identifies any eclec-
tic volumes whose data is at a risk of becoming under-reliable.
It alerts the ESReorganizer, with the necessary stripe metadata
of such stripes, which calls the ESAllocator with the current
and previous disk AFR values and the number of chunks that
need reallocation onto safer disks.

As with failed data reconstruction, ESAllocator prefers
finding suitable disk alternates whose AFRs are less than or
equal to previous AFRs values of the disks whose AFRs rose.
If ESAllocator cannot find suitable disks, new eclectic stripes
are formed and data is moved, as described previously.

Reducing data over-protection with reducing AFRs. When
a disk’s AFR decreases, there is no reliability threat to the
data stored on that disk, but there may be an opportunity to
reduce redundancy and obtain space-savings.

The simplest way (that also entails no transition IO cost) of
reducing a stripe’s redundancy is by deleting excess parities*.
However, deleting parities is rarely an option for two reasons.
First, most storage clusters have a minimum requirement on
the number of parities per stripe, set by the system administra-
tor. Second, adding/deleting a parity has a much higher impact
on the MTTDL value of a stripe than adding/deleting a data
chunk— deleting even a single parity usually makes the stripe
miss the target MTTDL. When ESReorganizer receives meta-
data of possibly over-redundant stripes from the EVManager,
it queries the ESMTTDLEngine whether reducing parities is
feasible and, if so, enacts the change.

When deleting parities is not an option, there are two addi-
tional ways redundancy can be reduced. First, the ESAllocator
could find candidate disks with AFR higher than the current
disk’s AFR, but low enough that the mean AFR is below the
stripe’s critical AFR. This method is cost-effective, since it
involves only reading and writing those chunks that are on
over-protected disks. Second, if the ESAllocator cannot find
suitable disks, it performs new stripe allocations if it can find
a new eclectic stripe with lower storage overhead. Although
re-allocation has a high IO overhead (since it involves copy-
ing data over to the new stripe), it is not urgent when lowering
redundancy and can be throttled by the rate limiter without
putting any data at risk.

The eclectic stripe reorganizer (ESReorganizer). The
ESReorganizer uses several techniques to ensure adequate
reliability and provide maximum space-savings.

At any given time, the ESReorganizer might be dealing with
multiple eclectic stripes seeking possible changes. ESReorga-
nizer processes requests in priority of maintaining reliability:
failed data reconstruction, then near-risk stripes that need to
increase their redundancy, then requests of decommissioning
disks to move data off of them, and then stripes seeking a
redundancy reduction. It processes eclectic stripes that are
requesting reduction in redundancy in descending order of
their storage overhead.

*Deleting parities may not work reducing redundancy of non-MDS codes.

5.3 The Eclectic Volume Manager

The EVManager is responsible for creating, maintaining and
monitoring the health of eclectic volumes. Recall (from §4.3)
that an eclectic volume (typically in TBs) contains hundreds-
of-thousands of eclectic stripes (typically in MBs). Along
with health, the EVManager maintains usage statistics (e.g.,
freespace and load) for each eclectic volume.

Constructing and populating eclectic volumes. Similar
to how ESManager manages eclectic stripes, EVManager
dynamically creates and destroys eclectic volumes. The con-
struction of the first eclectic stripe forces the creation of the
first eclectic volume on the same set of disks that are cho-
sen by the ESAllocator. When creating subsequent eclectic
stripes, the ESAllocator first queries the EVManager to check
if there are eclectic volumes that are conducive for storing
new stripes. The EVManager does this by maintaining ca-
pacity and load-balancing metrics for each eclectic volume.
Thus, the EVManager also avoids hot-spotting within eclectic
volumes by spreading hot data evenly across multiple eclec-
tic volumes. Once the target eclectic volume is identified,
the set of disks comprising the eclectic volume are returned
to the ESAllocator. If there is no space available, the ESAl-
locator gets a new set of disks from the placement policy
which causes EVManager to create a new eclectic volume
atop those disks. Tiger’s eclectic volumes operate similar to
Ceph’s placement groups [51].

The Eclectic Volume Directory. Recall from §4.3 that
eclectic volumes are simply a logical grouping of all the eclec-
tic stripes with the same redundancy scheme on the same set
of disks. Each eclectic volume has a unique entry in the EVDi-
rectory and stored against the eclectic volume ID are the disks
on which the eclectic volume is stored. In addition, the EVDi-
rectory also contains a mapping from disk serial number to
list of volume IDs whose fragments are stored on that disk.
Note that the size of this metadata is very small. With TB-
sized volume fragments, even a 100K disk storage cluster
with 20TB disks will have an EVDirectory less than 100MB.

The tiny size of the EVDirectory also implies that it is
unlikely to be a bottleneck. The EVDirectory will typically
be queried and updated whenever disks fail, or their AFR
increases significantly (in order to fetch the eclectic volumes
IDs stored on the affected disks). It might also be queried to
fulfill an allocation request in order to get the disks on which
an eclectic volume is stored, if the eclectic-volume-to-disks
mapping is not cached. Even a cluster with 500K disks has at
most a few hundred disk failures in a day and typically not
more than 10 makes/models, thus limiting the EVDirectory
updates to less than 1000 per day. Although allocations are
more frequent, caching can filter most queries for them, and
their rate is also much lower than the rate of file metadata
lookups in a cluster with billions of files. And, if necessary,
traditional metadata scaling techniques can be employed to
prevent EVDirectory from becoming a bottleneck.
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Figure 7: Placement constraints posed by Tiger compared to Pacemaker by observing the percentage of the disk fleet that is viable for the
different redundancy schemes. Tiger has lower placement constraints than Pacemaker. Tiger has over >75% disks being viable for all four
clusters for all scheme configurations. Pacemaker’s placement constraints are more pronounced in Google clusters since they are mostly
step-deployed. This results in strict Rgroup boundaries disallowing disks from different makes/models being a part of the same Rgroup.

Reacting to failures and AFR changes. The EVHInspec-
tor continuously polls the change point detector and the clus-
ter metadata service to gather information about disk failures
and significant AFR changes. For all significant changes, the
EVHInspector reconfirms the MTTDL of the affected vol-
umes by querying the ESMTTDLEngine with the changed
AFRs. Even though it is technically not a stripe, a EVDirec-
tory has all information required to calculate the reliability
of an eclectic volume, viz. the AFRs of the disks on which
the volume resides, and the redundancy scheme configuration.
Due to its small metadata footprint, EVHInspector can check
the health of billions of stripes by checking the reliability of
only thousands of eclectic volumes.

Whenever a disk fails, or a disk’s AFR increases, the
EVHInspector looks up the EVDirectory to find the volumes
affected due to this failure / AFR rise. If the disk in question is
alive, the volume manager queries the disk to obtain the stripe
IDs belonging to that volume ID. If the disk has failed, the
EVHInspector queries other disks of that particular eclectic
volume and gathers the stripe IDs from them. Note that all
disks storing a particular eclectic volume have the same list of
eclectic stripe IDs in common (but they also each may have
other stripes as well from non-overlapping eclectic volumes).

The EVHInspector then forwards the list of stripe IDs to
the ESReorganizer along with the updated and previous AFR
information and the action to be taken (reconstruct data, in-
crease redundancy or reduce redundancy). On performing the
appropriate task, the ESReorganizer communicates the meta-
data changes back to the EVManager, and the EVManager
subsequently reflects it in the EVDirectory. For reconstruction
and increase in redundancy, if a replacement disk is found,
and has enough capacity to accommodate all chunks of the
failed disk / disks whose AFR has increased, the eclectic
volume of all constituting eclectic stripes after the operation
remains the same. For redundancy reductions, or in case of
not finding a replacement disk, or not finding one with enough
capacity, the eclectic stripes depart from their original eclectic
volume (unlike Ceph’s placement groups) since they will now
be stored on potentially different subset of disks.

6 Evaluation of Tiger

We now evaluate how Tiger performs on real-world data, and
show how it fulfills the challenges laid out in §3. Tiger is eval-
uated using real-world deployment and failure logs from four
production clusters at two different organizations (Google and
Backblaze). Each cluster has a multi-year lifetime and disks
from multiple makes/models/batches. Backblaze uses trickle-
deployed disks. These disks are added to the cluster every few
days in the tens or hundreds. Google Cluster 2 and Cluster 3
have step-deployed makes/models where disks are introduced
into the cluster in large batches of tens-of-thousands of disks
within a very short span of time. Google Cluster 1 is a mix of
step- and trickle-deployed disks.

The highlights of our evaluation are (1) Tiger significantly
lowers placement restrictions posed by Pacemaker (existing
state-of-the-art disk-adaptive redundancy system); (2) Tiger’s
eclectic stripes provide much higher risk-diversity compared
to Pacemaker; (3) Tiger is closer to the target MTTDL, and
thus more efficient than existing disk-adaptive redundancy ap-
proaches; (4) Tiger outperforms Pacemaker in space-savings
while keeping the average transition IO <= 0.5% and peak
transition IO < 5% of cluster IO bandwidth and (5) Tiger’s
eclectic stripes are less sensitive to rising AFR and provide
better data safety.

6.1 Tiger enables flexible data placement
We capture the flexibility in data placement by measuring
the percentage of the disk fleet that is considered viable for
storing data using a particular redundancy scheme. The vi-
ability is decided by whether the data stored on those disks
will meet the target MTTDL. The X-axis in Fig. 7a shows
the various schemes that can be supported in each storage
cluster*. For estimating Tiger’s viable disk candidates, we
perform a Monte-Carlo simulation on specific days in each

*The narrowest scheme is set to 6-of-9 and widest is set to 30-of-33.
Schemes with higher width have lower redundancy since the number of
parities are kept the same. This is based on reference to prior work [24, 25],
and also on the basis of communication with storage administrators of large-
scale cluster storage systems at various organizations.
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Figure 8: Risk-diversity achieved by Tiger over three large-scale cluster storage systems. All three plots are average risk-diversity measurements
taken over 5 days spread equally over the lifetime of the clusters. Pacemaker due its Rgroup based design has much lower risk-diversity
compared to Tiger, more evident in Fig. 8c and 8d which are entirely step-deployed clusters.

of the cluster’s lifetime. We allocate 1000 eclectic stripes by
picking disks uniformly at random and check how many of the
possible schemes can use the chosen disks. For Pacemaker,
we bin the disks by AFRs to mimic Rgroups and measure the
ratio of the population of the Rgroups to the entire disk fleet.

Tiger has almost all disks available for allocation for any
scheme in Google Clusters 1 and 3 (Figs. 7b, 7d), whereas in
Backblaze and Google Cluster 2 (Figs. 7a, 7c) at most 25%
disks are deemed not viable for the widest schemes (beyond
22-of-25). When a large fraction of disks of the cluster have a
high AFR (as is the case with Backblaze and Google Cluster
2 for the chosen dates), formation of eclectic stripes ends
up with mostly high AFR disks. In such situations, Tiger
cannot employ a very space-efficient redundancy scheme.
Pacemaker’s strict Rgroup boundaries, on the other hand, limit
all disks in an Rgroup to a single scheme that may not be very
wide. Therefore, for Pacemaker, all clusters see a significant
drop in viable disks as the width increases.

6.2 Tiger achieves high risk-diversity
Risk-diversity of a stripe is directly proportional to the number
of unique makes/models participating in that stripe. If all
makes/models in the storage cluster have representation in
the stripe, its risk-diversity is defined to be 100%. A 0% risk-
diversity implies that there were no disks in the cluster that
could be used for the particular scheme. The setup used for
evaluating risk-diversity is a Monte-Carlo simulation, where
100 stripes were allocated for each scheme configuration by
choosing disks uniformly at random. For Tiger, we measure
risk-diversity by capturing the average number of unique disk
makes/models on which the chunks of an eclectic stripe are
stored for each stripe configuration. For Pacemaker, we again
bin the disks by AFR to form Rgroups, and count the unique
number of makes/models within each Rgroup. We take the
average of this simulation performed on five equally spaced
days in the cluster lifetime to get an overall sense of risk-
diversity of both systems.

Tiger significantly outperforms Pacemaker in providing
high risk-diversity. Fig. 8 captures the risk-diversity achieved
by Tiger vs Pacemaker. Since Tiger has no partitioning of

disks, all disks of any make/model are viable for allocating
any scheme. The minimum risk-diversity achieved by Tiger is
60% across all four clusters, that too for the narrowest scheme
(6-of-9) for Backblaze (Fig. 8a) and Google Cluster 1 (Fig. 8b)
clusters. Both these clusters have seven makes/models, and
it is unlikely that seven out of nine chunks will be across
different makes/models. As the stripe width increases, Tiger’s
risk-diversity also improves. Entirely step-deployed clusters,
Google Cluster 2 (Fig. 8c) and Google Cluster 3 (Fig. 8d)
have four and three makes/models respectively. Tiger achieves
perfect risk-diversity for all possible schemes in those clus-
ters. For Pacemaker, it is more likely that clusters where all
makes/models are trickle-deployed will have a better risk-
diversity because multiple makes/models can be a part of the
same Rgroup so long as their AFRs are in the same range,
for e.g. Backblaze (Fig. 8a). Nevertheless, even clusters with
all trickle-deployed disks do not see perfect (or even good)
risk-diversity since different makes/models are deployed at
different times, and they go through different phases of life at
different dates. Risk-diversity is poorer for Pacemaker in clus-
ters with step-deployed makes /models as seen in Figs. 8c and
8d. This is because Rgroups and steps have a 1:1 mapping
and each step only contains disks of a single make/model.
The reason Pacemaker has 100% risk-diversity for 30-of-33 is
because when averaging over multiple days (5 for this experi-
ment), all makes/models on some date belonged to an Rgroup
with the 30-of-33 redundancy scheme.

6.3 Tiger adapts redundancy efficiently
The efficacy of disk-adaptive redundancy performed by Tiger
is evaluated using three metrics. First, we discuss the MTTDL
distribution of data stored using Tiger. Subsequently, using
the same four clusters used by Pacemaker we evaluate the
resulting space-savings obtained by Tiger because of disk-
adaptive redundancy, and finally we measure the IO overhead
needed to perform necessary redundancy transitions. For fair
comparison, when evaluating Tiger, we employ the same con-
figurations (such as the IO constraints and permitted redun-
dancy schemes) and tools (such as the AFR curve learner and
the change-point detector) that are used in Pacemaker.
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(b) Google Cluster 1 space-savings
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(c) Google Cluster 2 space-savings
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Figure 9: Space-savings achieved by Tiger for disk-adaptive redundancy simulated on four production clusters compared to Pacemaker over
conventional one-scheme-fits-all redundancy approaches. Figs. 9a–9d show that across all clusters with different maximum stripe width
configurations, Tiger provides up to 5% higher average space-savings compared to Pacemaker.
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Figure 10: Comparison of MTTDL distributions for different ap-
proaches. We form 10000 random stripes for each approach using
the AFRs from Google Cluster 1 (notice the different scales in the
Y-axis). In a conventional system, a single scheme is chosen for all
stripes based on the average AFR (a) or maximum AFR (b). (c) In
Pacemaker, stripes must reside within an Rgroup, and the scheme
depends on the Rgroup. (d) In Tiger, the scheme for each stripe is
chosen based on the AFRs in the stripe. The dashed vertical line
denotes the target MTTDL.

Tiger’s achieves tight reliability. Storage clusters have to
ensure that all data in the cluster always meets a specified
target level of reliability typically specified as a MTTDL value.
Tiger’s target MTTDL is set as the lowest acceptable MTTDL
in the system. This is calculated using the MTTDL of the most
conservative homogeneous stripe possible (6-of-9) having the
maximum possible AFR (16%). These settings are borrowed
from Pacemaker’s evaluation for a fair comparison with Tiger.

Fig. 10 shows a comparison in the distribution of stripe
MTTDL with different approaches to redundancy selection
for a specific day in Google Cluster 1. Fig. 10(a) shows con-
ventional systems choosing the redundancy scheme based on
the avg. AFR, which results in small storage overhead, but
puts a big fraction of the stripes at risk. Fig. 10(b) shows
conventional systems that choose the redundancy scheme on
the basis of max AFR. Although all stripes are sufficiently
protected, the storage overhead is the highest among all four
alternatives. Fig. 10(c) shows Pacemaker where the different
MTTDL clusters represent different Rgroups with different
redundancy schemes. Pacemaker achieves good reduction
in storage overhead, and keeps all stripes above the target

MTTDL. In fact, some Rgroups (with higher MTTDL values)
are too over-protected and denote lost opportunities for space-
savings. Finally, Fig. 10(d) shows Tiger’s MTTDL distribu-
tion. Despite all its eclectic stripes being above the MTTDL
threshold, Tiger has least storage overhead.

Tiger achieves attractive space-savings. Akin to Pace-
maker, by dynamically tailoring redundancy to disk AFRs,
Tiger’s eclectic stripes can use more space-efficient redun-
dancy schemes to meet the required MTTDL target. Fig. 9
shows that Tiger achieves equal or better average space-
savings compared to Pacemaker in all four clusters. For
Google Clusters 1, 2 and 3 (Figs. 9b, 9c, 9d), the highly
cost-efficient redundancy transitions of Pacemaker allows a
large step-deployed make/model to spend more time in lower
redundancy. This boosts Pacemaker’s overall space-savings
for these clusters and prevents Tiger from surpassing it easily.

In the Backblaze cluster (Figs. 9a), the reason for Tiger
achieving better space-savings is because eclectic stripes al-
low high AFR disks to be mixed with low AFR disks and
yet use an optimized redundancy scheme. In Pacemaker, high
AFR disks cannot be mixed with other disks, resulting in
lower space-savings. In the Backblaze cluster, all the seven
makes/models are trickle-deployed. This results in a non-
trivial fraction of disks constantly being in high-AFR regimes
of infancy or wearout. While Pacemaker is forced to use the
default, most conservative redundancy scheme on these disks,
Tiger can use these disks for more space-efficient redundancy
schemes by combining them with other, more robust disks. As
a result, Tiger is able to achieve up to 5% higher space-savings
compared to Pacemaker.

Tiger has very low IO overhead. Fig. 11 shows the IO
overhead comparison between Pacemaker and Tiger. Al-
though both systems are capped at 5% and in general require
very low IO (compared to background tasks such as scrubbing
that requires ≈ 7% [5]), our evaluation shows that Tiger can
achieve all its benefits with an average IO bandwidth required
for redundancy transitions of at most 0.5%. In an absolute
sense, Tiger’s low IO overhead is mainly attributed to Tiger’s
efficient redundancy transitions for an AFR rise (detailed in
§5.2), where Tiger moves the potentially risky chunk from
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(b) Google Cluster 1 IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n 
IO

 (%
)

Tiger
Pacemaker

(c) Google Cluster 2 IO overhead
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Figure 11: IO overhead of redundancy scheme transitions of Tiger versus Pacemaker. In most configurations, Tiger has a higher IO overhead
compared to Pacemaker due to Pacemaker leveraging its IO-efficient transitioning mechanisms. Despite being higher, the average IO overhead
of Tiger is still at most 0.5% of the overall cluster’s IO bandwidth; much lower than existing background tasks such as scrubbing, that require
approximately 7% IO bandwidth [5]

an unsafe disk to a safe disk rather than re-encoding it or
reallocating it; both having a significantly higher IO cost.

Compared to Pacemaker, Tiger still incurs slightly higher
IO overhead. This is due to Tiger’s mechanism of coalescing
space-inefficient (high-redundancy) eclectic stripes into new
space-efficient (low-redundancy) eclectic stripes in response
to AFR reduction by moving all chunks. It leads to more
data movement compared to moving just the chunks of the
high-AFR disks (as is the case when AFR rises). This is a
conscious design choice made in Tiger in order to maximize
space-savings for non-urgent redundancy transitions at the
expense of a minor increase in the IO overhead. Moreover,
Pacemaker’s IO-efficient redundancy transitioning mecha-
nisms (that are more suitable for its Rgroup-based design)
further help in reducing its IO overhead.

Tiger does not experience urgent IO bursts. In order
to understand the burstiness of the IO that can be experi-
enced by Tiger compared to Pacemaker, we artificially in-
crease the AFR of a make/model and measure the resulting
transition IO load for maintaining data reliability. Fig. 12
shows the comparison of IO loads experienced by Pacemaker
vs Tiger for three instances of increasing AFR of a single step-
deployed make/model. Performed on three different dates in
two Google clusters (Cluster 1 and Cluster 2), we observe
that Pacemaker needs orders of magnitude higher IO band-
width than Tiger to achieve the required transitions. In fact
for Google Cluster 2, in both instances none of Tiger’s stripes
needed transitioning despite observing a 1% rise in AFR.

We explain Pacemaker’s high IO requirement with an ex-
ample. Suppose a 20TB disk, which can perform 100MB/s
needs to transition away from using a 30-of-33 scheme. De-
spite using Pacemaker’s optimized Type 2 transitions*, sim-
ply reading the data to recalculate new parities would require
196% of the disk’s possible IO bandwidth in a day (assuming
90% fullness to match Pacemaker’s setup). In a step-deployed
make/model all disks of an Rgroup transition together. In or-

*In Type 2 transitions, Pacemaker re-encodes data from one scheme to
another without re-writing any data. It simply recalculates new parities, writes
them and deletes the old ones.
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Figure 12: IO cost of redundancy transitions associated with the
increase of AFR for one constituent make/model. IO cost is mea-
sured as a percentage of the total IO bandwidth of the Rgroup for
Pacemaker, whereas it is the total cluster IO bandwidth for Tiger.
It is calculated by scaling up a simulation of 1000 random stripes
in each system and measuring the number of stripes that become
unsafe after the given increase in AFR.

der to spread out the resulting IO burst over time, Pacemaker
relies on predicting the AFR rise well in advance. To maintain
a 5% IO cap, Pacemaker would need to know the AFR rise
at least 40 days in advance. Long-term AFR predictions are
both non-robust and non-trivial.

In contrast, Tiger for the same transition does not suffer
from any IO bursts. Firstly, because of eclectic stripes, even if
the disk AFR increases, only a limited fraction of data stored
on it will need a redundancy transition, since other stripes
might be residing on more robust disks and might continue
to meet the target MTTDL. Secondly, other disks over which
the eclectic stripes needing an increase in redundancy are
spread need not (and probably will not) belong to the same
make/model/batch. Therefore, they will not require a simulta-
neous increase in redundancy and can assist in transitioning
data from the affected stripes. Thus disks in Tiger are spared
from any sudden IO bursts.

6.4 Challenging situations for Tiger
There are certain situations that create fundamental challenges
for Tiger and other disk-adaptive redundancy systems.

Sudden rise in AFRs mimicking bulk failures. Although
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Fig. 12 shows that Tiger is robust to AFR rises in any
make/model in a cluster, there could be bulk failure scenarios
where large fraction of the disks in the cluster fail together.
On such occasions, any system (including Tiger) that depends
on redundancy will suffer from potential data loss unless the
system includes cross-cluster redundancy.

A cluster with a single step-deployed make/model. Sup-
pose a cluster had only one make/model, deployed in a step-
deployed manner (note: we have not come across such an
example for the large clusters targeted): there would be no
diversity to exploit and all disks of the cluster would undergo
redundancy transitions together. Not only would this produce
bursty IO, but also will potentially result in a capacity crunch
(when increasing redundancy). Such clusters would either
need to keep some space unutilized to account for the bulk
redundancy-increasing transitions, or will need to make provi-
sions to add more disks to the cluster before the redundancy-
increasing transitions are issued.

7 Additional Related Work

The closest related works, HeART and Pacemaker, are dis-
cussed in §2 together with other background. Additional re-
lated works can be divided into works that study the reliabil-
ity of disks and distributed storage, and systems that manage
multiple EC schemes and transitions between them. One es-
sential part of disk-adaptive redundancy is the monitoring
of disk AFRs, which are used by Tiger to assess the relia-
bility of stripes. Many works have studied the behavior of
disk AFRs and their impact on distributed storage reliabil-
ity [5, 8, 18, 22, 26, 34, 35, 41–44]. Also, multiple works have
studied the prediction of disk AFRs based on different fea-
tures [1, 17, 27, 32, 45, 49, 59].

Many existing distributed storage systems allow for multi-
ple EC schemes to coexist in the same cluster [11, 14]. There
are systems that propose choosing different EC schemes for
different data [46,55]. The problem of transitioning data from
one EC scheme to another has been widely studied in the Cod-
ing Theory literature, with many works studying its cost, as
well as proposing special code designs that reduce the cost of
transitions [20, 28–31, 36, 38, 39, 53–55, 57, 60]. Such designs
could be used with Tiger, though our evaluations indicate that
transition IO is not a significant problem.

8 Conclusion

Tiger enables disk-adaptive redundancy without the place-
ment restrictions and associated problems that plague prior de-
signs. Tiger’s eclectic stripes tailor redundancy to whichever
disks are chosen for each stripe. Our evaluations indicate that
it reduces risk in two major ways: by increasing disk-type
diversity in stripes and by reducing burstiness of transition

IO urgency. Taken together, Tiger makes disk-adaptive redun-
dancy practical for adoption in real storage clusters.
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A Derivation of approximation of MTTDL of
eclectic stripes

In order to approximate the MTTDL of an eclectic stripe, we
will assume that the stripe can be repaired in the data loss
state and we will approximate the MTTDL as the mean time
between visits to the data loss state. In particular, we will
analyze the stripe as an alternating renewal process. Let As
be the stripe availability (i.e., the fraction of the time that the
stripe is not in the data loss state), µs be the repair rate in the
data loss state, and λs the stripe data loss rate. As described
above, the MTTDL is approximately λ−1

s . For an alternating
renewal process, we have that:

As =
µs

µs +λs
⇐⇒ 1

λs
=

As

µs(1−As)
(2)

The repair rate in the data loss state is simply the number of
failed disks in that state:

µs = (n− k+1)µ. (3)

We assume that each disk in the stripe fails independently
from the rest, and that it is repaired with rate µ if it fails. Then,
in steady state, disk i is available with probability:

Ai =
µ

µ+λi
. (4)

Let P( j) be the probability that we find the stripe in a state
where exactly j disks are available in the stripe. Since there
are no states with more than n− k+1 failed disks, we have
that:

P( j) =
Q( j)

Q(k−1)+ · · ·+Q(n)
, for k−1≤ j ≤ n, (5)

where Q( j) is the probability that exactly j disks are avail-
able. Since disks are independent, Q( j) is equal to a Poisson-
binomial distribution, with probabilities (Ai)

n
i=1. Given this,
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the availability of stripe is given by:

As = P(k)+ · · ·+P(n). (6)

Thus, we have:

1
λs

=
Q(k)+ · · ·+Q(n)

µ(n− k+1)Q(k−1)
≈ 1

µ(n− k+1)Q(k−1)
. (7)

Where the approximation comes from the fact that Q(n)≈ 1
because µ�maxi λi and thus all Ai are close to 1.

In summary, we have that:

MTTDL≈ 1
µ(n− k+1)Q(k−1)

. (8)
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