MICA: A Holistic Approach to Fast In-Memory Key-Value Storage

Hyeontaek Lim,! Dongsu Han,> David G. Andersen,' Michael Kaminsky?
1Carnegie Mellon University, 2KAIST, 3Intel Labs

Abstract

MICA is a scalable in-memory key-value store that han-
dles 65.6 to 76.9 million key-value operations per second
using a single general-purpose multi-core system. MICA
is over 4-13.5x faster than current state-of-the-art sys-
tems, while providing consistently high throughput over
a variety of mixed read and write workloads.

MICA takes a holistic approach that encompasses all
aspects of request handling, including parallel data access,
network request handling, and data structure design, but
makes unconventional choices in each of the three do-
mains. First, MICA optimizes for multi-core architectures
by enabling parallel access to partitioned data. Second,
for efficient parallel data access, MICA maps client re-
quests directly to specific CPU cores at the server NIC
level by using client-supplied information and adopts a
light-weight networking stack that bypasses the kernel.
Finally, MICA’s new data structures—circular logs, lossy
concurrent hash indexes, and bulk chaining—handle both
read- and write-intensive workloads at low overhead.

1 Introduction

In-memory key-value storage is a crucial building block
for many systems, including popular social networking
sites (e.g., Facebook) [30]. These storage systems must
provide high performance when serving many small ob-
jects, whose total volume can grow to TBs and more [5].

While much prior work focuses on high performance
for read-mostly workloads [15, 30, 32, 37], in-memory
key-value storage today must also handle write-intensive
workloads, e.g., to store frequently-changing objects [2,

, 36]. Systems optimized only for reads often waste re-
sources when faced with significant write traffic; their
inefficiencies include lock contention [32], expensive up-
dates to data structures [15, 30], and complex memory
management [15, 32, 36].

In-memory key-value storage also requires low-
overhead network communication between clients and
servers. Key-value workloads often include a large num-
ber of small key-value items [5] that require key-value
storage to handle short messages efficiently. Systems us-
ing standard socket I/O, optimized for bulk communica-
tion, incur high network stack overhead at both kernel-
and user-level. Current systems attempt to batch requests

at the client to amortize this overhead, but batching in-
creases latency, and large batches are unrealistic in large
cluster key-value stores because it is more difficult to ac-
cumulate multiple requests being sent to the same server
from a single client [36].

MICA (Memory-store with Intelligent Concurrent Ac-
cess) is an in-memory key-value store that achieves high
throughput across a wide range of workloads. MICA can
provide either store semantics (no existing items can be
removed without an explicit client request) or cache se-
mantics (existing items may be removed to reclaim space
for new items). Under write-intensive workloads with a
skewed key popularity, a single MICA node serves 70.4
million small key-value items per second (Mops), which
is 10.8x faster than the next fastest system. For skewed,
read-intensive workloads, MICA’s 65.6 Mops is at least
4x faster than other systems even after modifying them to
use our kernel bypass. MICA achieves 75.5-76.9 Mops
under workloads with a uniform key popularity. MICA
achieves this through the following techniques:

Fast and scalable parallel data access: MICA’s data
access is fast and scalable, using data partitioning and
exploiting CPU parallelism within and between cores.
Its EREW mode (Exclusive Read Exclusive Write) min-
imizes costly inter-core communication, and its CREW
mode (Concurrent Read Exclusive Write) allows multiple
cores to serve popular data. MICA’s techniques achieve
consistently high throughput even under skewed work-
loads, one weakness of prior partitioned stores.
Network stack for efficient request processing: MICA
interfaces with NICs directly, bypassing the kernel, and
uses client software and server hardware to direct remote
key-value requests to appropriate cores where the requests
can be processed most efficiently. The network stack
achieves zero-copy packet I/O and request processing.
New data structures for key-value storage: New mem-
ory allocation and indexing in MICA, optimized for store
and cache separately, exploit properties of key-value work-
loads to accelerate write performance with simplified
memory management.

2 System Goals

In this section, we first clarify the non-goals and then
discuss the goals of MICA.



Non-Goals: We do not change the cluster architecture. It
can still shard data and balance load across nodes, and
perform replication and failure recovery.

We do not aim to handle large items that span multiple
packets. Most key-value items will fit comfortably in a
single packet [5]. Clients can store a large item in a tradi-
tional key-value system and put a pointer to that system
in MICA. This only marginally increases total latency;
one extra round-trip time for indirection is smaller than
the transfer time of a large item sending multiple packets.

We do not strive for durability: All data is stored in
DRAM. If needed, log-based mechanisms such as those
from RAMCloud [37] would be needed to allow data to
persist across power failures or reboots.

MICA instead strives to achieve the following goals:
High single-node throughput: Sites such as Facebook
replicate some key-value nodes purely to handle load [36].
Faster nodes may reduce cost by requiring fewer of them
overall, reducing the cost and overhead of replication
and invalidation. High-speed nodes are also more able to
handle load spikes and popularity hot spots. Importantly,
using fewer nodes can also reduce job latency by reduc-
ing the number of servers touched by client requests. A
single user request can create more than 500 key-value
requests [36], and when these requests go to many nodes,
the time until all replies arrive increases, delaying comple-
tion of the user request [10]. Having fewer nodes reduces
fan-out, and thus, can improve job completion time.
Low end-to-end latency: The end-to-end latency of a re-
mote key-value request greatly affects performance when
a client must send back-to-back requests (e.g., when sub-
sequent requests are dependent). The system should min-
imize both local key-value processing latency and the
number of round-trips between the client and server.
Consistent performance across workloads: Real work-
loads often have a Zipf-distributed key popularity [5],
and it is crucial to provide fast key-value operations re-
gardless of skew. Recent uses of in-memory key-value
storage also demand fast processing for write-intensive
workloads [2, 36].

Handle small, variable-length key-value items: Most
key-value items are small [5]. Thus, it is important
to process requests for them efficiently. Ideally, key-
value request processing over the network should be
as fast as packet processing in software routers—40 to
80 Gbps [12, 19]. Variable-length items require careful
memory management to reduce fragmentation that can
waste substantial space [5].

Key-value storage interface and semantics: The
system must support standard single-key requests (e.g.,
GET (key), PUT (key,value), DELETE (key))
that are common in systems such as Memcached. In cache
mode, the system performs automatic cache management
that may evict stored items at its discretion (e.g., LRU); in

store mode, the system must not remove any stored items
without clients’ permission while striving to achieve good
memory utilization.

Commodity hardware: Using general-purpose hardware
reduces the cost of development, equipment, and oper-
ation. Today’s server hardware can provide high-speed
/0 [12, 22], comparable to that of specialized hardware
such as FPGAs and RDMA-enabled NICs.

Although recent studies tried to achieve some of these
goals, none of their solutions comprehensively address
them. Some systems achieve high throughput by support-
ing only small fixed-length keys [33]. Many rely on client-
based request batching [15, 30, 33, 36] to amortize high
network I/O overhead, which is less effective in a large
installation of key-value stores [14]; use specialized hard-
ware, often with multiple client-server round-trips and/or
no support for item eviction (e.g., FPGAs [7, 29], RDMA-
enabled NICs [35]); or do not specifically address remote
request processing [45]. Many focus on uniform and/or
read-intensive workloads; several systems lack evalua-
tion for skewed workloads [7, 33, 35], and some systems
have lower throughput for write-intensive workloads than
read-intensive workloads [30]. Several systems attempt
to handle memory fragmentation explicitly [36], but there
are scenarios where the system never reclaims fragmented
free memory, as we describe in the next section. The fast
packet processing achieved by software routers and low-
overhead network stacks [12, 19, 20, 41, 43] set a bar for
how fast a key-value system might operate on general-
purpose hardware, but do not teach how their techniques
apply to the higher-level processing of key-value requests.

3 Key Design Choices

Achieving our goals requires rethinking how we design
parallel data access, the network stack, and key-value
data structures. We make an unconventional choice for
each; we discuss how we overcome its potential draw-
backs to achieve our goals. Figure 1 depicts how these
components fit together.

3.1 Parallel Data Access

Exploiting the parallelism of modern multi-core systems
is crucial for high performance. The most common access
models are concurrent access and exclusive access:
Concurrent access is used by most key-value sys-
tems [15, 30, 36]. As in Figure 2 (a), multiple CPU cores
can access the shared data. The integrity of the data struc-
ture must be maintained using mutexes [36], optimistic
locking [15, 30], or lock-free data structures [34].

Unfortunately, concurrent writes scale poorly: they in-
cur frequent cache line transfer between cores, because
only one core can hold the cache line of the same memory
location for writing at the same time.



I Server

[Client

Network
NIC staek

;| CPU core |\
1 :
(§3:2/84:2) i aceess _,_ structures

‘| CPU core |’ g

------- . Memory

data data

§(§3.1/§4.1)é

Figure 1: Components of in-memory key-value stores. MICA’s key design choices in §3 and their details in §4.

[ CPU core —{ Partition ]
[ CPU core ——{ Partition ]
[ CPU core ——{ Partition ]
[ CPU core ——] Partition |

Shared
CPU core data

(a) Concurrent access (b) Exclusive access

Figure 2: Parallel data access models.

Exclusive access has been explored less often for key-
value storage [0, 25, 33]. Only one core can access part
of the data, as in Figure 2 (b). By partitioning the data
(“sharding”), each core exclusively accesses its own parti-
tion in parallel without inter-core communication.

Prior work observed that partitioning can have the best
throughput and scalability [30, 45], but cautions that it
lowers performance when the load between partitions is
imbalanced, as happens under skewed key popularity [15,

, 45]. Furthermore, because each core can access only
data within its own partition, request direction is needed
to forward requests to the appropriate CPU core.
MICA’s parallel data access: MICA partitions data and
mainly uses exclusive access to the partitions. MICA ex-
ploits CPU caches and packet burst I/O to disproportion-
ately speed more loaded partitions, nearly eliminating
the penalty from skewed workloads. MICA can fall back
to concurrent reads if the load is extremely skewed, but
avoids concurrent writes, which are always slower than
exclusive writes. Section 4.1 describes our data access
models and partitioning scheme.

3.2 Network Stack

This section discusses how MICA avoids network stack
overhead and directs packets to individual cores.

3.2.1 Network I/0

Network I/O is one of the most expensive processing
steps for in-memory key-value storage. TCP processing
alone may consume 70% of CPU time on a many-core
optimized key-value store [33].

The socket I/O used by most in-memory key-value
stores [15, 30, 33, 45] provides portability and ease of
development. However, it underperforms in packets per
second because it has high per-read () overhead. Many
systems therefore often have clients include a batch of re-
quests in a single larger packet to amortize I/O overhead.

Direct NIC access is common in software routers to
achieve line-rate packet processing [12, 19]. This raw
access to NIC hardware bypasses the kernel to minimize
the packet I/O overhead. It delivers packets in bursts to
efficiently use CPU cycles and the PCle bus connecting
NICs and CPUs. Direct access, however, precludes useful
TCP features such as retransmission, flow control, and
congestion control.

MICA'’s network I/0 uses direct NIC access. By target-
ing only small key-value items, it needs fewer transport-
layer features. Clients are responsible for retransmitting
packets if needed. Section 4.2 describes such issues and
our design in more detail.

3.2.2 Request Direction

Request direction delivers client requests to CPU cores for
processing.! Modern NICs can deliver packets to specific
cores for load balancing or core affinity using hardware-
based packet classification and multi-queue support.

Server Server
ier KEY0 N
Clznt CPU core] Cl;cnt CPU core
£ KEY1
i KEY0 i
Client @ Client
B KEY1 B KEY1

(a) Flow-level core affinity (b) Object-level core affinity

Figure 3: Request direction mechanisms.

Flow-level core affinity is available using two methods:
Receive-Side Scaling (RSS) [12, 19] sends packets to
cores based by hashing the packet header 5-tuple to iden-
tify which RX queue to target. Flow Director (FDir) [4 1]
can more flexibly use different parts of the packet header
plus a user-supplied table to map header values to RX
queues. Efficient network stacks use affinity to reduce
inter-core contention for TCP control blocks [20, 41].

Flow affinity reduces only transport layer contention,
not application-level contention [20], because a single
transport flow can contain requests for any objects (Fig-
ure 3 (a)). Even for datagrams, the benefit of flow affinity
is small due to a lack of locality across datagrams [36].
Object-level core affinity distributes requests to cores
based upon the application’s partitioning. For example,
requests sharing the same key would all go to the core
handling that key’s partition (Figure 3 (b)).

Because we target small key-value requests, we will use requests
and packets interchangeably.



Systems using exclusive access require object-level

core affinity, but commodity NIC hardware cannot di-
rectly parse and understand application-level semantics.
Software request redirection (e.g., message passing [33])
incurs inter-core communication, which the exclusive ac-
cess model is designed to avoid.
MICA'’s request direction uses Flow Director [23, 31].
Its clients then encode object-level affinity information
in a way Flow Director can understand. Servers, in turn,
inform clients about the object-to-partition mapping. Sec-
tion 4.2 describes how this mechanism works.

3.3 Key-Value Data Structures

This section describes MICA’s choice for two main data
structures: allocators that manage memory space for stor-
ing key-value items and indexes to find items quickly.

3.3.1 Memory Allocator

New item New item

free

free

(a) Dynamic object allocator (b) Append-only log structure

Figure 4: Memory allocators.

A dynamic object allocator is a common choice for stor-
ing variable-length key-value items (Figure 4 (a)). Sys-
tems such as Memcached typically use a slab approach:
they divide object sizes into classes (e.g., 48-byte, 56-byte,
..., 1-MiB?) and maintain separate (“segregated””) memory
pools for these classes [15, 36]. Because the amount of
space that each class uses typically varies over time, the
systems use a global memory manager that allocates large
memory blocks (e.g., 1 MiB) to the pools and dynamically
rebalances allocations between classes.

The major challenge for dynamic allocation is the mem-
ory fragmentation caused when blocks are not fully filled.
There may be no free blocks or free objects for some size
classes while blocks from other classes are partly empty
after deletions. Defragmentation packs objects of each ob-
ject tightly to make free blocks, which involves expensive
memory copy. This process is even more complex if the
memory manager performs rebalancing concurrently with
threads accessing the memory for other reads and writes.
Append-only log structures are write-friendly, placing
new data items at the end of a linear data structure called
a “log” (Figure 4 (b)). To update an item, it simply in-
serts a new item to the log that overrides the previous
value. Inserts and updates thus access memory sequen-
tially, incurring fewer cache and TLB misses, making logs

Pt

2Binary prefixes (powers of 2) end with an “i” suffix, whereas SI

prefixes (powers of 10) have no “i” suffix.

particularly suited for bulk data writes. This approach is
common in flash memory stores due to the high cost of
random flash writes [3, 4, 28], but has been used in only
a few in-memory key-value systems [37].

Garbage collection is crucial to space efficiency. It re-
claims space occupied by overwritten and deleted objects
by moving live objects to a new log and removing the old
log. Unfortunately, garbage collection is costly and often
reduces performance because of the large amount of data
it must copy, trading memory efficiency against request
processing speed.

MICA’s memory allocator: MICA uses separate mem-
ory allocators for cache and store semantics. Its cache
mode uses a log structure with inexpensive garbage collec-
tion and in-place update support (Section 4.3.1). MICA’s
allocator provides fast inserts and updates, and exploits
cache semantics to eliminate log garbage collection and
drastically simplify free space defragmentation. Its store
mode uses segregated fits [42, 47] that share the unified
memory space to avoid rebalancing size classes (Sec-
tion 4.3.3).

3.3.2 Indexing: Read-oriented vs. Write-friendly

Read-oriented index: Common choices for indexing are
hash tables [15, 33, 36] or tree-like structures [30]. How-
ever, conventional data structures are much slower for
writes compared to reads; hash tables examine many slots
to find a space for the new item [ | 5], and trees may require
multiple operations to maintain structural invariants [30].

Write-friendly index: Hash tables using chaining [33,

] can insert new items without accessing many memory
locations, but they suffer a time-space tradeoff: by hav-
ing long chains (few hash buckets), an item lookup must
follow a long chain of items, this requiring multiple ran-
dom dependent memory accesses; when chains are short
(many hash buckets), memory overhead to store chain-
ing pointers increases. Lossy data structures are rather
unusual in in-memory key-value storage and studied only
in limited contexts [7], but it is the standard design in
hardware indexes such as CPU caches [21].

MICA'’s index: MICA uses new index data structures
to offer both high-speed read and write. In cache mode,
MICA’s lossy index also leverages the cache semantics
to achieve high insertion speed; it evicts an old item in
the hash table when a hash collision occurs instead of
spending system resources to resolve the collision. By
using the memory allocator’s eviction support, the MICA
lossy index can avoid evicting recently-used items (Sec-
tion 4.3.2). The MICA lossless index uses bulk chaining,
which allocates cache line-aligned space to a bucket for
each chain segment. This keeps the chain length short and
space efficiency high (Section 4.3.3).



4 MICA Design

This section describes each component in MICA and
discusses how they operate together to achieve its goals.

4.1 Parallel Data Access

This section explains how CPU cores access data in
MICA, but assumes that cores process only the requests
for which they are responsible. Later in Section 4.2, we
discuss how MICA assigns remote requests to CPU cores.

4.1.1 Keyhash-Based Partitioning

MICA creates one or more partitions per CPU core and
stores key-value items in a partition determined by their
key. Such horizontal partitioning is often used to shard
across nodes [4, | 1], but some key-value storage systems
also use it across cores within a node [6, 25, 33].

MICA uses a keyhash to determine each item’s partition.
A keyhash is the 64-bit hash of an item’s key calculated
by the client and used throughout key-value processing
in MICA. MICA uses the first few high order bits of the
keyhash to obtain the partition index for the item.

Keyhash partitioning uniformly maps keys to partitions,
reducing the request distribution imbalance. For example,
in a Zipf-distributed population of size 192 x 220 (192
Mi) with skewness 0.99 as used by YCSB [ 1,3 the most
popular key is 9.3 x 10° times more frequently accessed
than the average; after partitioning keys into 16 partitions,
however, the most popular partition is only 53% more
frequently requested than the average.

MICA retains high throughput under this remaining
partition-level skew because it can process requests in
“hot” partitions more efficiently, for two reasons. First, a
partition is popular because it contains “hot” items; these
hot items naturally create locality in data access. With
high locality, MICA experiences fewer CPU cache misses
when accessing items. Second, the skew causes packet
I/O to be more efficient for popular partitions (described
in Section 4.2.1). As a result, throughput for the Zipf-
distributed workload is 86% of the uniformly-distributed
workload, making MICA’s partitioned design practical
even under skewed workloads.

4.1.2 Operation Modes

MICA can operate in EREW (Exclusive Read Exclusive
Write) or CREW (Concurrent Read Exclusive Write).
EREW assigns a single CPU core to each partition for all
operations. No concurrent access to partitions eliminates
synchronization and inter-core communication, making
MICA scale linearly with CPU cores. CREW allows any
core to read partitions, but only a single core can write.
This combines the benefit of concurrent read and exclu-
sive write; the former allows all cores to process read re-

3i-th key constitutes 1/(i%°H,99) of total requests, where
Hy099 = YL, (1/i%%) and n is the total number of keys.

quests, while the latter still reduces expensive cache line
transfer. CREW handles reads efficiently under highly
skewed load, at the cost of managing read-write conflicts.
MICA minimizes the synchronization cost with efficient
optimistic locking [48] (Section 4.3.2).

Supporting cache semantics in CREW, however, raises
a challenge for read (GET) requests: During a GET, the
cache may need to update cache management informa-
tion. For example, policies such as LRU use bookkeeping
to remember recently used items, which can cause con-
flicts and cache-line bouncing among cores. This, in turn,
defeats the purpose of using exclusive writes.

To address this problem, we choose an approximate ap-
proach: MICA counts reads only from the exclusive-write
core. Clients round-robin CREW reads across all cores
in a NUMA domain, so this is effectively a sampling-
based approximation to, e.g., LRU replacement as used
in MICA’s item eviction support (Section 4.3.1).

To show performance benefits of EREW and CREW,
our MICA prototype also provides the CRCW (Concur-
rent Read Concurrent Write) mode, in which MICA al-
lows multiple cores to read and write any partition. This
effectively models concurrent access to the shared data in
non-partitioned key-value systems.

4.2 Network Stack

The network stack in MICA provides network /0 to trans-
fer packet data between NICs and the server software, and
request direction to route requests to an appropriate CPU
core to make subsequent key-value processing efficient.
Exploiting the small key-value items that MICA tar-
gets, request and response packets use UDP. Despite
clients not benefiting from TCP’s packet loss recovery
and flow/congestion control, UDP has been used widely
for read requests (e.g., GET) in large-scale deployments
of in-memory key-value storage systems [36] for low la-
tency and low overhead. Our protocol includes sequence
numbers in packets, and our application relies on the
idempotency of GET and PUT operations for simple and
stateless application-driven loss recovery, if needed: some
queries may not be useful past a deadline, and in many
cases, the network is provisioned well, making retrans-
mission rare and congestion control less crucial [36].

4.2.1 Direct NIC Access

MICA uses Intel’s DPDK [22] instead of standard socket
I/0O. This allows our user-level server software to control
NICs and transfer packet data with minimal overhead.
MICA differs from general network processing [12, 19,

] that has used direct NIC access in that MICA is an
application that processes high-level key-value requests.

In NUMA (non-uniform memory access) systems with
multiple CPUs, NICs may have different affinities to
CPUs. For example, our evaluation hardware has two



CPUs, each connected to two NICs via a direct PCle bus.
MICA uses NUMA-aware memory allocation so that each
CPU and NIC only accesses packet buffers stored in their
respective NUMA domains.

MICA uses NIC multi-queue support to allocate a ded-

icated RX and TX queue to each core. Cores exclusively
access their own queues without synchronization in a sim-
ilar way to EREW data access. By directing a packet to
an RX queue, the packet can be processed by a specific
core, as we discuss in Section 4.2.2.
Burst packet I/0: MICA uses the DPDK’s burst packet
I/O to transfer multiple packets (up to 32 in our imple-
mentation) each time it requests packets from RX queues
or transmits them to TX queues. Burst I/O reduces the per-
packet cost of accessing and modifying the queue, while
adding only trivial delay to request processing because
the burst size is small compared to the packet processing
rate.

Importantly, burst I/O helps handle skewed workloads.
A core processing popular partitions spends more time
processing requests, and therefore performs packet I/O
less frequently. The lower I/O frequency increases the
burst size, reducing the per-packet I/O cost (Section 5.2).
Therefore, popular partitions have more CPU available for
key-value processing. An unpopular partition’s core has
higher per-packet I/O cost, but handles fewer requests.
Zero-copy processing: MICA avoids packet data copy
throughout RX/TX and request processing. MICA uses
MTU-sized packet buffers for RX even if incoming re-
quests are small. Upon receiving a request, MICA avoids
memory allocation and copying by reusing the request
packet to construct a response: it flips the source and des-
tination addresses and ports in the header and updates
only the part of the packet payload that differs between
the request and response.

4.2.2 Client-Assisted Hardware Request Direction

Modern NICs help scale packet processing by directing
packets to different RX queues using hardware features
such as Receiver-Side Scaling (RSS) and Flow Director
(FDir) [12, 19, 41] based on the packet header.

Because each MICA key-value request is an individual
packet, we wish to use hardware packet direction to di-
rectly send packets to the appropriate queue based upon
the key. Doing so is much more efficient than redirecting
packets in software. Unfortunately, the NIC alone cannot
provide key-based request direction: RSS and FDir cannot
classify based on the packet payload, and cannot examine
variable length fields such as request keys.

Client assistance: We instead take advantage of the op-
portunity to co-design the client and server. The client
caches information from a server directory about the
operation mode (EREW or CREW), number of cores,
NUMA domains, and NICs, and number of partitions.

Head (old items are evicted) Tail (new items are inserted)

Circular log | | | | | | | ‘

Log entry

Initial size |Kcyhash| Key/value length |Expirc time
Key
Value

Figure 5: Design of a circular log.

The client then embeds the request direction information
in the packet header: If the request uses exclusive data
access (read/write on EREW and write on CREW), the
client calculates the partition index from the keyhash of
the request. If the request can be handled by any core (a
CREW read), it picks a server core index in a round-robin
way (across requests, but in the same NUMA domain
(Section 4.2.1)). Finally, the client encodes the partition
or core index as the UDP destination port.* The server
programs FDir to use the UDP destination port, without
hashing, (“perfect match filter” [23]), as an index into
a table mapping UDP port numbers to a destination RX
queue. Key hashing only slightly burdens clients. Using
fast string hash functions such as CityHash [£], a sin-
gle client machine equipped with dual 6-core CPUs on
our testbed can generate over 40 M requests/second with
client-side key hashing. Clients include the keyhash in
requests, and servers reuse the embedded keyhash when
they need a keyhash during the request processing to ben-
efit from offloaded hash computation.

Client-assisted request direction using NIC hardware
allows efficient request processing. Our results in Sec-
tion 5.5 show that an optimized software-based request
direction that receives packets from any core and dis-
tributes them to appropriate cores is significantly slower
than MICA’s hardware-based approach.

4.3 Data Structure

MICA, in cache mode, uses circular logs to manage mem-
ory for key-value items and lossy concurrent hash indexes
to index the stored items. Both data structures exploit
cache semantics to provide fast writes and simple memory
management. Each MICA partition consists of a single
circular log and lossy concurrent hash index.

MICA provides a store mode with straightforward ex-
tensions using segregated fits to allocate memory for key-
value items and bulk chaining to convert the lossy concur-
rent hash indexes into lossless ones.

4.3.1 Circular Log

MICA stores items in its circular log by appending them
to the rail of the log (Figure 5). This results in a space-
efficient packing. It updates items in-place as long as the

4To avoid confusion between partition indices and the core indices,
we use different ranges of UDP ports; a partition may be mapped to a
core whose index differs from the partition index.



new size of the key+value does not exceed the size of the
item when it was first inserted. The size of the circular
log is bounded and does not change, so to add a new item
to a full log, MICA evicts the oldest item(s) at the head
of the log to make space.

Each entry includes the key and value length, key, and
value. To locate the next item in the log and support item
resizing, the entry contains the initial item size, and for
fast lookup, it stores the keyhash of the item. The entry
has an expire time set by the client to ignore stale data.
Garbage collection and defragmentation: The circular
log eliminates the expensive garbage collection and free
space defragmentation that are required in conventional
log structures and dynamic memory allocators. Previously
deleted items in the log are automatically collected and
removed when new items enter the log. Almost all free
space remains contiguously between the tail and head.
Exploiting the eviction of live items: Items evicted at
the head are not reinserted to the log even if they have
not yet expired. In other words, the log may delete items
without clients knowing it. This behavior is valid in cache
workloads; a key-value store must evict items when it
becomes full. For example, Memcached [32] uses LRU
to remove items and reserve space for new items.

MICA uses this item eviction to implement common
eviction schemes at low cost. Its “natural” eviction is
FIFO. MICA can provide LRU by reinserting any re-
quested items at the tail because only the least recently
used items are evicted at the head. MICA can approxi-
mate LRU by reinserting requested items selectively—by
ignoring items recently (re)inserted and close to the tail;
this approximation offers eviction similar to LRU with-
out frequent reinserts, because recently accessed items
remain close to the tail and far from the head.

A second challenge for conventional logs is that any
reference to an evicted item becomes dangling. MICA
does not store back pointers in the log entry to discover all
references to the entry; instead, it provides detection, and
removes dangling pointers incrementally (Section 4.3.2).
Low-level memory management: MICA uses
hugepages and NUMA-aware allocation. Hugepages
(2 MiB in x86-64) use fewer TLB entries for the same
amount of memory, which significantly reduces TLB
misses during request processing. Like the network stack,
MICA allocates memory for circular logs such that cores
access only local memory.

Without explicit range checking, accessing an entry
near the end of the log (e.g., at 23* — 8 in the example
below) could cause an invalid read or segmentation fault
by reading off the end of the range. To avoid such errors
without range checking, MICA manually maps the virtual
memory addresses right after the end of the log to the
same physical page as the first page of the log, making
the entire log appear locally contiguous:

Lossy concurrent
hash index

Bucket 0 |Versi0n| | | | | D

Bucket 1

Index entries
A

Bucket 2 I

Tag | Item offset

Figure 6: Design of a lossy concurrent hash index.

0 r)?il
Virtual address space 1

!
CITTTTTTITITTIIITT]

CIT T I T]

Physical address space
first page mapped twice

Our MICA prototype implements this scheme in
userspace by mapping a pool of hugepages to virtual
addresses using the mmap () system call.

4.3.2 Lossy Concurrent Hash Index

MICA’s hash index locates key-value items in the log
using a set-associative cache similar to that used in CPU
caches. As shown in Figure 6, a hash index consists of
multiple buckets (configurable for the workload), and
each bucket has a fixed number of index entries (config-
urable in the source code; 15 in our prototype to occupy
exactly two cache lines). MICA uses a portion of the key-
hashes to determine an item’s bucket; the item can occupy
any index entry of the bucket unless there is a duplicate.

Each index entry contains partial information for the
item: a tag and the item offset within the log. A tag is
another portion of the indexed item’s keyhash used for
filtering lookup keys that do not match: it can tell whether
the indexed item will never match against the lookup key
by comparing the stored tag and the tag from the lookup
keyhash. We avoid using a zero tag value by making it
one because we use the zero value to indicate an empty
index entry. Items are deleted by writing zero values to
the index entry; the entry in the log will be automatically
garbage collected.

Note that the parts of keyhashes used for the partition
index, the bucket number, and the tag do not overlap. Our
prototype uses 64-bit keyhashes to provide sufficient bits.
Lossiness: The hash index is lossy. When indexing a new
key-value item into a full bucket of the hash index, the
index evicts an index entry to accommodate the new item.
The item evicted is determined by its age; if the item
offset is most behind the tail of the log, the item is the
oldest (or least recently used if the log is using LRU), and
the associated index entry of the item is reclaimed.

This lossy property allows fast insertion. It avoids ex-
pensive resolution of hash collisions that lossless indexes
of other key-value stores require [15, 33]. As a result,



[ Ttem offset | [ Ttem offset |

0 dangling pointer valid pointer 918

Offset space

Circular log

Figure 7: Offset space for dangling pointer detection.

MICA’s insert speed is comparable to lookup speed.
Handling dangling pointers: When an item is evicted
from the log, MICA does not delete its index entry. Al-
though it is possible to store back pointers in the log entry,
updating the hash index requires a random memory write
and is complicated due to locking if the index is being
accessed concurrently, so MICA does not. As a result,
index pointers can “dangle,” pointing to invalid entries.

To address this problem, MICA uses large pointers
for head/tail and item offsets. As depicted in Figure 7,
MICA’s index stores log offsets that are wider than needed
to address the full size of the log (e.g., 48-bit offsets vs 34
bits for a 16 GiB log). MICA detects a dangling pointer
before using it by checking if the difference between the
log tail and the item offset is larger than the actual log
size.’ If the tail wraps around the 48-bit size, however, a
dangling pointer may appear valid again, so MICA scans
the index incrementally to remove stale pointers.

This scanning must merely complete a full cycle before
the tail wraps around in its wide offset space. The speed
at which it wraps is determined by the increment rate of
the tail and the width of the item offset. In practice, full
scanning is infrequent even if writes occur very frequently.
For example, with 48-bit offsets and writes occurring at
239 bytes/second (millions of operations/second), the tail
wraps every 243730 seconds. If the index has 2>* buckets,
MICA must scan only 2° buckets per second, which adds
negligible overhead.

Supporting concurrent access: MICA’s hash index
must behave correctly if the system permits concurrent
operations (e.g., CREW). For this, each bucket contains
a 32-bit version number. It performs reads optimistically
using this version counter to avoid generating memory
writes while satisfying GET requests [15, 30, 48]. When
accessing an item, MICA checks if the initial state of the
version number of the bucket is even-numbered, and upon
completion of data fetch from the index and log, it reads
the version number again to check if the final version
number is equal to the initial version number. If either
check fails, it repeats the read request processing from
the beginning. For writes, MICA increments the version
number by one before beginning, and increments the ver-
sion number by one again after finishing all writes. In

3(Tail — ItemOffset +2*8) mod 2*¥ > LogSize.

Free space that can fit D
Free space that can fit |:|
Free space that can fit I:I

Figure 8: Segregated free lists for a unified space.

CRCW mode, which allows multiple writers to access the
same bucket, a writer also spins until the initial version
number is even (i.e., no other writers to this bucket) using
a compare-swap operation instruction.

Our MICA prototype uses different code to optimize

locking. It uses conventional instructions to manipulate
version numbers to exploit memory access ordering on the
x86 architecture [48] in CREW mode where there is only
one writer. EREW mode does not require synchroniza-
tion between cores, so MICA ignores version numbers.
Because of such a hard-coded optimization, the current
prototype lacks support for runtime switching between
the operation modes.
Multi-stage prefetching: To retrieve or update an item,
MICA must perform request parsing, hash index lookup,
and log entry retrieval. These stages cause random mem-
ory access that can significantly lower system perfor-
mance if cores stall due to CPU cache and TLB misses.

MICA uses multi-stage prefetching to interleave com-
putation and memory access. MICA applies memory
prefetching for random memory access done at each pro-
cessing stage in sequence. For example, when a burst
of 8 RX packets arrives, MICA fetches packets 0 and 1
and prefetches packets 2 and 3. It decodes the requests in
packets 0 and 1, and prefetches buckets of the hash index
that these requests will access. MICA continues packet
payload prefetching for packets 4 and 5. It then prefetches
log entries that may be accessed by the requests of pack-
ets 0 and 1 while prefetching the hash index buckets for
packets 2 and 3, and the payload of packet 6 and 7. MICA
continues this pipeline until all requests are processed.

4.3.3 Store Mode

The store mode of MICA uses segregated fits [42, 47]
similar to fast malloc implementations [27], instead of the
circular log. Figure 8 depicts this approach. MICA defines
multiple size classes incrementing by 8 bytes covering
all supported item sizes, and maintains a freelist for each
size class (a linked list of pointers referencing unoccupied
memory regions that are at least as large as the size class).
When a new item is inserted, MICA chooses the smallest
size class that is at least as large as the item size and has
any free space. It stores the item in the free space, and
inserts any unused region of the free space into a freelist
that matches that region’s size. When an item is deleted,
MICA coalesces any adjacent free regions using boundary



Lossless concurrent .
) Index entries
hash index A

Main bucket 0 |[Version| [ [ [ [ || [, ]
Main bucket 1

Main bucket 2

Spare bucket i |Version| | | | | | | | |

Spare bucket j

Spare bucket k

Figure 9: Bulk chaining in MICA’s lossless hash index.

tags [26] to recreate a large free region.

MICA’s segregated fits differ from the simple segre-
gated storage used in Memcached [ 15, 32]. MICA main-
tains a unified space for all size classes; on the contrary,
Memcached’s SLAB allocator dynamically assigns mem-
ory blocks to size classes, which effectively partitions the
memory space according to size classes. The unified space
of MICA eliminates the need to rebalance size classes un-
like the simple segregated storage. Using segregated fits
also makes better use of memory because MICA already
has partitioning done with keyhashes; a SLAB alloca-
tor introducing another partitioning would likely waste
memory by allocating a whole block for only a few items,
resulting in low memory occupancy.

MICA converts its lossy concurrent hash index into a
lossless hash index by using bulk chaining. Bulk chaining
is similar to the traditional chaining method in hash tables;
it adds more memory space to the buckets that contain an
excessive number of items.

Figure 9 shows the design of the lossless hash index.
MICA uses the lossy concurrent hash index as the main
buckets and allocates space for separate spare buckets
that are fewer than the main buckets. When a bucket
experiences an overflow, whether it is a main bucket or
spare bucket, MICA adds an unused spare bucket to the
full bucket to form a bucket chain. If there are no more
spare buckets available, MICA rejects the new item and
returns an out-of-space error to the client.

This data structure is friendly to memory access. The
main buckets store most of items (about 95%), keeping
the number of random memory read for an index lookup
close to 1; as a comparison, cuckoo hashing [39] used
in improved Memcached systems [ 5] would require 1.5
random memory accesses per index lookup in expecta-
tion. MICA also allows good memory efficiency; because
the spare buckets only store overflow items, making the
number of spare buckets 10% of the main buckets allows
the system to store the entire dataset of 192 Mi items in
our experiments (Section 5).

5 Evaluation

We answer four questions about MICA in this section:
* Does it perform well under diverse workloads?
* Does it provide good latency?
e How does it scale with more cores and NIC ports?
e How does each component affect performance?

Our results show that MICA has consistently high
throughput and low latency under a variety of workloads.
It scales nearly linearly, using CPU cores and NIC ports
efficiently. Each component of MICA is needed. MICA
achieves 65.6—76.9 million operations/second (Mops),
which is over 4-13.5x faster than the next fastest system;
the gap widens as the fraction of write requests increases.

MICA is written in 12 K lines of C and runs on x86-64
GNU/Linux. Packet I/0O uses the Intel DPDK 1.4.1 [22].
Compared systems: We use custom versions of open-
source Memcached [32], MemC3 [15], Masstree [30],
and RAMCloud [37]. The revisions of the original code
we used are: Memcached: 87e¢2f36; MemC3: an internal
version; Masstree: 4ffb946; RAMCloud: aOf6889.

Note that the compared systems often offer additional

capabilities compared to others. For example, Masstree
can handle range queries, and RAMCloud offers low la-
tency processing on InfiniBand; on the other hand, these
key-value stores do not support automatic item eviction
as Memcached systems do. Our evaluation focuses on
the performance of the standard features (e.g., single key
queries) common to all the compared systems, rather than
highlighting the potential performance impact from these
semantic differences.
Modifications to compared systems: We modify the
compared systems to use our lightweight network stack to
avoid using expensive socket I/O or special hardware (e.g.,
InfiniBand). When measuring Memcached’s baseline la-
tency, we use its original network stack using the kernel to
obtain the latency distribution that typical Memcached de-
ployments would experience. Our experiments do not use
any client-side request batching. We also modified these
systems to invoke memory allocation functions though
our framework if they use hugepages, because the DPDK
requests all hugepages from the OS at initialization and
would make the unmodified systems inoperable if they
request hugepages from the OS; we kept other memory
allocations using no hugepages as-is. Finally, while run-
ning experiments, we found that statistics collection in
RAMCloud caused lock contention, so we disabled it for
better multi-core performance.

5.1 Evaluation Setup

Server/client configuration: MICA server runs on a ma-
chine equipped with dual 8-core CPUs (Intel Xeon ES-
2680 @2.70 GHz), 64 GiB of total system memory, and
eight 10-Gb Ethernet ports (four Intel X520-T2’s). Each



CPU has 20 MiB of L3 cache. We disabled logical pro-
cessor support (“Hyper-Threading”). Each CPU accesses
the 32 GiB of the system memory that resides in its local
NUMA domain over a quad-channel DDR3-1600 bus.
Each CPU socket is directly connected to two NICs using
PCIe gen2. Access to hardware resources in the remote
NUMA domain uses an interconnect between two CPUs
(Intel QuickPath).

We reserved the half of the memory (16 GiB in each
NUMA domain) for hugepages regardless of how MICA
and the compared systems use hugepages.

MICA allocates 16 partitions in the server, and these
partitions are assigned to different cores. We configured
the cache version of MICA to use approximate LRU to
evict items; MICA reinserts any recently accessed item at
the tail if the item is closer to the head than to the tail of
the circular log.

Two client machines with dual 6-core CPUs (Intel Xeon
L5640 @2.27 GHz) and two Intel X520-T2’s generate
workloads. The server and clients are directly connected
without a switch. Each client is connected to the NICs
from both NUMA domains of the server, allowing a client
to send a request to any server CPU.

Workloads: We explore different aspects of the systems
by varying the item size, skew, and read-write ratio.

We use three datasets as shown in the following table:

Dataset ‘ Key Size (B) ‘ Value Size (B) ‘ Count

Tiny 8 8 | 192 Mi
Small 16 64 | 128 Mi
Large 128 1024 8 Mi

We use two workload types: uniform and skewed. Uni-
form workloads use the same key popularity for all re-
quests; skewed workloads use a non-uniform key popu-
larity that follows a Zipf distribution of skewness 0.99,
which is the same as YCSB’s [9].

Workloads have a varied ratio between GET and PUT.
50% GET (50% PUT) workloads are write-intensive, and
95% GET (5% PUT) workloads are read-intensive. They
correspond to YCSB’s A and B workloads, respectively.
Workload generation: We use our custom key-value
request generator that uses similar techniques to our
lightweight network stack to send more than 40 Mops
of key-value requests per machine to saturate the link.° It
uses approximation techniques of Zipf distribution gener-
ation [17, 38] for fast skewed workload generation.

To find the maximum meaningful throughput of a sys-
tem, we adjust the workload generation rate to allow only
marginal packet losses (< 1% at any NIC port). We could
generate requests at the highest rate to cause best-effort

SMICA clients are still allowed to use standard socket I/O in cases
where the socket overhead on the client machines is acceptable because
the MICA server and clients use the plain UDP protocol.

request processing (which can boost measured through-
put more than 10%), as is commonly done in throughput
measurement of software routers [12, 19], but we avoid
this method because we expect that real deployments of
in-memory key-value stores would not tolerate excessive
packet losses, and such flooding can distort the intended
skew in the workload by causing biased packet losses at
different cores.

The workload generator does not receive every re-
sponse from the server. On our client machines, receiving
packets whose size is not a multiple of 64 bytes is sub-
stantially slower due to an issue in the PCIe bus [18].

The workload generator works around this slow RX
by sampling responses to perform fewer packet RX from
NIC to CPU. It uses its real source MAC addresses for
only a fraction of requests, causing its NIC to drop the
responses to the other requests. By looking at the sampled
responses, the workload generator can validate that the
server has correctly processed the requests. Our server is
unaffected from this issue and performs full packet RX.

5.2 System Throughput

We first compare the full-system throughput. MICA uses
EREW with all 16 cores. However, we use a different
number of cores for the other systems to obtain their best
throughput because some of them (Memcached, MemC3,
and RAMCloud) achieve higher throughput with fewer
cores (Section 5.4). The throughput numbers are calcu-
lated from the actual number of responses sent to the
clients after processing the requests at the server. We de-
note the cache version of MICA by MICA-c and the store
version of MICA by MICA-s.

Figure 10 (top) plots the experiment result using tiny
key-value items. MICA performs best, regardless of the
skew or the GET ratio. MICA’s throughput reaches 75.5—
76.9 Mops for uniform workloads and 65.6-70.5 Mops
for skewed ones; its parallel data access does not incur
more than a 14% penalty for skewed workloads. MICA
uses 54.9-66.4 Gbps of network bandwidth at this pro-
cessing speed—this speed is very close to 66.6 Gbps that
our network stack can handle when doing packet I/O only.
The next best system is Masstree at 16.5 Mops, while
others are below 6.1 Mops. All systems except MICA
suffer noticeably under write-intensive 50% GET.

Small key-value items show similar results in Figure 10
(middle). However, the gap between MICA and the other
systems shrinks because MICA becomes network bottle-
necked while the other systems never saturate the network
bandwidth in our experiments.

Large key-value items, shown in Figure 10 (bottom),
exacerbates the network bandwidth bottleneck, further
limiting MICA’s throughput. MICA achieves 12.6-14.6
Mops for 50% GET and 8.6-9.4 Mops for 95% GET; note
that MICA shows high throughput with lower GET ratios,



80

= Uniform, 50% GET e =
[ Uniform, 95% GET s Aess |
60 | EZZA Skewed, 50% GET 7 7
ZZ] Skewed, 95% GET

TOH

50

40}

3

S
T

Tiny key-value items

Throughput (Mops)

10

61 58 s7| |65

07 13 0713 os[ Jesf ] oo |io

Memcached MemC3 RAMCloud Masstree

MICA-c MICA-s

3 Uniform, 50% GET
[|C— Uniform, 95% GET
60|{EZZ Skewed, 50% GET oz .. [Pleeez
ZZ1 Skewed, 95% GET P

30| Small key-value items

20

Throughput (Mops)
= ot

10

53 58 57 57| |85

31
05[os

Memcached MemC3 RAMCloud Masstree

07,13 07 13 09

MICA-c

3 Uniform, 50% GET 5 1o
[ Uniform, 95% GET , 32
12}{EZ3A Skewed, 50% GET ]
ZZ] Skewed, 95% GET

52

Throughput (Mops)
b
«Q
@
=
3
5
=
@
=
3
[

0
Memcached MemC3 RAMCloud Masstree  MICA-c MICA-s

Figure 10: End-to-end throughput of in-memory key-
value systems. All systems use our lightweight network
stack that does not require request batching. The bottom
graph (large key-value items) uses a different Y scale
from the first two graphs’.

which require less network bandwidth as the server can
omit the key and value from the responses. Unlike MICA,
however, all other systems achieve higher throughput un-
der 95% GET than under 50% GET because these systems
are bottleneck locally, not by the network bandwidth.

In those measurements, MICA’s cache and store modes
show only minor differences in the performance. We will
refer to the cache version of MICA as MICA in the rest
of the evaluation for simplicity.

Skew resistance: Figure 11 compares the per-core
throughput under uniform and skewed workloads of 50%
GET with tiny items. MICA uses EREW. Several cores
process more requests under the skewed workload than
under the uniform workload because they process requests
more efficiently. The skew in the workload increases the
RX burst size of the most loaded core from 10.2 packets
per I/O to 17.3 packets per I/O, reducing its per-packet I/O
cost, and the higher data locality caused by the workload
skew improves the average cache hit ratio of all cores from

e e S S S SRR B

H m— Skewed |- ]
He e Uniform|

Throughput (Mops)
.
+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 11: Per-core breakdown of end-to-end throughput.

3 Uniform, 50% GET
[ Uniform, 95% GET

EZ3 Skewed, 50% GET
[ZZ1 Skewed, 95% GET

200

’a 174.8
Q

1473 1496 1484 151.7 1491 f7/7‘
§ 10 = 77 855 1384 .
3 100f - B N
Ry
g
o 50h |
e
<
ju

0
EREW CREW

Figure 12: Local throughput of key-value data structures.

67.8% to 77.8%. A local benchmark in Figure 12 (without
network processing) also shows that skewed workloads
grant good throughput for local key-value processing due
to the data locality. These results further justify the parti-
tioned design of MICA and explains why MICA retains
high throughput under skewed workloads.

Summary: MICA’s throughput reaches 76.9 Mops, at
least 4x faster than the next best system. MICA delivers
consistent performance across different skewness, write-
intensiveness, and key-value sizes.

5.3 Latency

To show that MICA achieves comparably low latency
while providing high throughput, we compare MICA’s
latency with that of the original Memcached implemen-
tation that uses the kernel network stack. To measure the
end-to-end latency, clients tag each request packet with
the current timestamp. When receiving responses, clients
compare the current timestamp and the previous times-
tamp echoed back in the responses. We use uniform 50%

$—4 Original Memcached |
+— MICA

T T T T

Average latency (us

0.0 0.1 02 030 10 20 30 40 50 60 70 80
Throughput (Mops)

Figure 13: End-to-end latency of the original Memcached
and MICA as a function of throughput.



e=e MICA ~ 4 MemC3 =—a RAMCloud
4 % Masstree v-¥ Memcached

—
(=}
9

H
<
T

Throughput (Mops)
=

H
9

10%

10

10}

Throughput (Mops)

1071

Number of cores

Figure 14: End-to-end throughput of in-memory key-
value systems using a varying number of cores. All sys-
tems use our lightweight network stack.

GET workloads on tiny items. MICA uses EREW. The
client varies the request rate to observe the relationship
between throughput and latency.

Figure 13 plots the end-to-end latency as a function
of throughput; the error bars indicate 5th- and 95th-
percentile latency. The original Memcached exhibits al-
most flat latency up to certain throughput, whereas MICA
shows varied latency depending on the throughput it
serves. MICA’s latency lies between 24—52 ps. At the sim-
ilar latency level of 40 us, MICA shows 69 Mops—more
than two orders of magnitude faster than Memcached.

Because MICA uses a single round-trip per request
unlike RDMA-based systems [35], we believe that MICA
provides best-in-class low-latency key-value operations.
Summary: MICA achieves both high throughput and
latency near the network minimum.

5.4 Scalability

CPU scalability: We vary now the number of CPU cores
and compare the end-to-end throughput. We allocate cores
evenly to both NUMA domains so that cores can effi-
ciently access NICs connected to their CPU socket. We
use skewed workloads on tiny items because it is gener-
ally more difficult for partitioned stores to handle skewed
workloads. MICA uses EREW.

Figure 14 (upper) compares core scalability of systems
with 50% GET. Only MICA and Masstree perform better
with more cores. Memcached, MemC3, and RAMCloud
scale poorly, achieving their best throughput at 2 cores.

The trend continues for 95% GET requests in Figure 14

e=e MICA r 4 MemC3 =—a RAMCloud
4 % Masstree v-¥ Memcached

o
T

m
< .--------——7
o
= 0
g L S =-=e
=}
£
2 10°}-{50% GET |- e |
c { =
sy =
= e —y

1071 L

2 4 8
Number of NIC ports

10? -
m
Q.
o N *
= 10 R e J
5 /
Qo Frrmmmmmmm= - -
e
2 10 95% GET |-+ natt? LA
=2 S Seciaidhiiintel
c Wt L N
'_

107! .

2 4 8

Number of NIC ports

Figure 15: End-to-end throughput of in-memory key-
value systems using a varying number of NIC ports. All
systems use our lightweight network stack.

(lower); MICA and Masstree scale well as before. The
rest also achieve higher throughput, but still do not scale.
Note that some systems scale differently from their origi-
nal papers. For example, MemC3 achieves 5.7 Mops at
4 cores, while the original paper shows 4.4 Mops at 16
cores [15]. This is because using our network stack in-
stead of their network stack reduces I/O cost, which may
expose a different bottleneck (e.g., key-value data struc-
tures) that can change the optimal number of cores for the
best throughput.

Network scalability: We also change the available net-
work bandwidth by varying the number of NIC ports we
use for request processing. Figure 15 shows that MICA
again scales well with high network bandwidth, because
MICA can use almost all available network bandwidth
for request processing. The GET ratio does not affect
the result for MICA significantly. This result suggests
that MICA can possibly scale further with higher net-
work bandwidth (e.g., multiple 40 Gbps NICs). MICA
and Masstree achieve similar performance under the 95%
GET workload when using 2 ports, but Masstree and other
systems do not scale well with more ports.

Summary: MICA scales well with more CPU cores
and more network bandwidth, even under write-intensive
workloads where other systems tend to scale worse.

5.5 Necessity of the Holistic Approach

In this section, we demonstrate how each component of
MICA contributes to its performance. Because MICA is
a coherent system that exploits the synergy between its



3 Uniform, 50% GET
[ Uniform, 95% GET

EZ3 Skewed, 50% GET
[Z7] Skewed, 95% GET

80 T T
76.976.370.4 76.8]765 724
& 0l 763 55 ) .. 693 694 |

Q.

S 60} - 58.1

< 501

3 40

S 30t

>

2 20}

o

= 10
0

EREW CREW CRCW

Figure 16: End-to-end performance using MICA’s
EREW, CREW, and CRCW.

Method [ Workload [ Throughput
Uniform 33.9 Mops

Software-only Skewed 28.1 Mops
Client-assisted Uniform 76.9 Mops
hardware-based Skewed 70.4 Mops

Table 1: End-to-end throughput of different request direc-
tion methods.

components, we compare different approaches for one
component while keeping the other components the same.
Parallel data access: We use end-to-end experiments to
measure how different data access modes affect the sys-
tem performance. We use tiny items only. Figure 16 shows
the end-to-end results. EREW shows consistently good
performance. CREW achieves slightly higher through-
put with high GET ratios on skewed workloads com-
pared to EREW (white bars at 95% GET) because de-
spite the overheads from bucket version management,
CREW can use multiple cores to read popular items with-
out incurring excessive inter-core communication. While
CRCW performs better than any other compared systems
(Section 5.2), CRCW offers no benefit over EREW and
CREW; this suggests that we should avoid CRCW.
Network stack: As shown in Section 5.2, switching
Masstree to our network stack resulted in much higher
throughput (16.5 Mops without request batching) than
the throughput from the original paper (8.9 Mops with re-
quest batching [30]); this indicates that our network stack
provides efficient I/O for key-value processing.

The next question is how important it is to use hard-
ware to direct requests for exclusive access in MICA. To
compare with MICA’s client-assisted hardware request di-
rection, we implemented software-only request direction:
clients send requests to any server core in a round-robin
way, and the server cores direct the received requests to
the appropriate cores for EREW data access. We use Intel
DPDK’s queue to implement message queues between
cores. We use 50% GET on tiny items.

Table 1 shows that software request direction achieves
only 40.0-44.1% of MICA’s throughput. This is due to the
inter-core communication overhead of software request

Method ‘ Workload | Throughput
Partitioned | 50% GET 5.8 Mops
Masstree 95% GET 17.9 Mops
50% GET 70.4 Mops

MICA 95% GET 65.6 Mops

Table 2: End-to-end throughput comparison between par-
titioned Masstree and MICA using skewed workloads.

direction. Thus, MICA’s request direction is crucial for
realizing the benefit of exclusive access.

Key-value data structures: MICA’s circular logs, lossy
concurrent hash indexes, and bulk chaining permit high-
speed read and write operations with simple memory
management. Even CRCW, the slowest data access mode
of MICA, outperforms the second best system, Masstree
(Section 5.2).

We also demonstrate that partitioning existing data
structures does not simply grant MICA’s high perfor-
mance. For this, we compare MICA with “partitioned”
Masstree, which uses one Masstree instance per core, with
its support for concurrent access disabled in the source
code. This is similar to MICA’s EREW. We also use the
same partitioning and request direction scheme.

Table 2 shows the result with skewed workloads on tiny
items. Partitioned Masstree achieves only 8.2-27.3% of
MICA'’s performance, with the throughput for 50% GET
even lower than non-partitioned Masstree (Section 5.2).
This indicates that to make best use of MICA’s parallel
data access and network stack, it is important to use key-
value data structures that perform high-speed writes and
to provide high efficiency with data partitioning.

In conclusion, the holistic approach is essential; any
missing component significantly degrades performance.

6 Related Work

Most DRAM stores are not partitioned: Memcached [32],
RAMCloud [37], MemC3 [15], Masstree [30], and
Silo [45] all have a single partition for each server node.
Masstree and Silo show that partitioning can be efficient
under some workloads but is slow under workloads with
a skewed key popularity and many cross-partition trans-
actions. MICA exploits burst I/O and locality so that even
in its exclusive EREW mode, loaded partitions run faster.
It can do so because the simple key-value requests that it
targets do not cross partitions.

Partitioned systems are fast with well-partitioned data.
Memcached on Tilera [6], CPHash [33], and Chronos [25]
are partitioned in-memory key-value systems that exclu-
sively access partitioned hash tables to minimize lock con-
tention and cache movement, similar to MICA’s EREW
partitions. These systems lack support for other parti-
tioning such as MICA’s CREW that can provide higher
throughput under read-intensive skewed workloads.



H-Store [44] and VoltDB [46] use single-threaded exe-
cution engines that access their own partition exclusively,
avoiding expensive concurrency control. Because work-
load skew can reduce system throughput, they require
careful data partitioning, even using machine learning
methods [40], and dynamic load balancing [25]. MICA
achieves similar throughput under both uniform and
skewed workloads without extensive partitioning and load
balancing effort because MICA’s keyhash-based partition-
ing mitigates the skew using and its request processing
for popular partitions exploits burst packet I/O and cache-
friendly memory access.

Several in-memory key-value systems focus on low
latency request processing. RAMCloud achieves 4.9—
15.3 ps end-to-end latency for small objects [1], and
Chronos exhibits average latency of 10 us and a 99th-
percentile latency of 30 ps, on low latency networks such
as InfiniBand and Myrinet. Pilaf [35] serves read requests
using one-sided RDMA reads on a low-latency network.
Our MICA prototype currently runs on 10-Gb Ethernet
NIC whose base latency is much higher [16]; we plan to
evaluate MICA on a low-latency network.

Prior work studies providing a high performance re-
liable transport service using low-level unreliable data-
gram services. The Memcached UDP protocol relies on
application-level packet loss recovery [36]. Low-overhead
user-level implementations for TCP such as mTCP [24]
can offer reliable communication to Memcached applica-
tions without incurring high performance penalties. Low-
latency networks such as InfiniBand often implement
hardware-level reliable datagrams [35].

Affinity-Accept [41] uses Flow Director on the com-
modity NIC hardware to load balance TCP connections
across multiple CPU cores. Chronos [25] directs remote
requests to server cores using client-supplied informa-
tion, similar to MICA; however, Chronos uses software-
based packet classification whose throughput for small
key-value requests is significantly lower than MICA’s
hardware-based classification.

Strict or complex item eviction schemes in key-
value stores can be so costly that it can reduce system
throughput significantly. MemC3 [15] replaces Mem-
cached [32]’s original LRU with a CLOCK-based ap-
proximation to avoid contention caused by LRU list man-
agement. MICA’s circular log and lossy concurrent hash
index use its lossy property to support common eviction
schemes at low cost; the lossy concurrent hash index is
easily extended to support lossless operations by using
bulk chaining.

A worthwhile area of future work is applying MICA’s
techniques to semantically richer systems, such as those
that are durable [37], or provide range queries [13, 30]
or multi-key transactions [45]. Our results show that ex-
isting systems such as Masstree can benefit considerably

simply by moving to a lightweight network stack; never-
theless, operations in these systems may cross partitions,
it remains to be seen how to best harness the speed of
exclusively accessed partitions.

7 Conclusion

MICA is an in-memory key-value store that provides high-
performance, scalable key-value storage. It provides con-
sistently high throughput and low latency for read/write-
intensive workloads with a uniform/skewed key popular-
ity. We demonstrate high-speed request processing with
MICA’s parallel data access to partitioned data, efficient
network stack that delivers remote requests to appropriate
CPU cores, and new lossy and lossless data structures
that exploit properties of key-value workloads to provide
high-speed write operations without complicating mem-
ory management.

Acknowledgments

This work was supported by funding from the National
Science Foundation under awards CCF-0964474 and
CNS-1040801, Intel via the Intel Science and Technol-
ogy Center for Cloud Computing (ISTC-CC), and Ba-
sic Science Research Program through the National Re-
search Foundation of Korea funded by MSIP (NRF-
2013R1A1A1076024). Hyeontaek Lim was supported
in part by the Facebook Fellowship. We would like to
thank Nick Feamster, John Ousterhout, Dong Zhou, Yan-
dong Mao, Wyatt Lloyd, and our NSDI reviewers for their
valuable feedback, and Prabal Dutta for shepherding this

paper.

References

[1] Ramcloud project wiki: clusterperf November 12, 2012,
2012. https://ramcloud.stanford.edu/wi
ki/display/ramcloud/clusterperf+Novemb
er+12%2C+2012.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. J. Smola. Scalable inference in latent variable models.
In Proceedings of the fifth ACM international conference
on Web search and data mining, Feb. 2012.

[3] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and
S. Nath. Cheap and large CAMs for high performance
data-intensive networked systems. In Proc. 7th USENIX
NSDI, Apr. 2010.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast ar-
ray of wimpy nodes. In Proc. 22nd ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2009.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In Proceedings of the SIGMETRICS 12, June 2012.

[6] M. Berezecki, E. Frachtenberg, M. Paleczny,
and K. Steele. Many-core key-value store.


https://ramcloud.stanford.edu/wiki/display/ramcloud/clusterperf+November+12%2C+2012
https://ramcloud.stanford.edu/wiki/display/ramcloud/clusterperf+November+12%2C+2012
https://ramcloud.stanford.edu/wiki/display/ramcloud/clusterperf+November+12%2C+2012

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

http://gigaom2.files.wordpress.com/20
11/07/facebook-tilera-whitepaper.pdf,
2011.

M. Blott, K. Karras, L. Liu, K. Vissers, J. Bir, and Z. Istvan.
Achieving 10Gbps line-rate key-value stores with FPGAs.
In Proceedings of the 5th USENIX Workshop on Hot Topics
in Cloud Computing, June 2013.

CityHash. http://code.google.com/p/cityha
sh/, 2014.

B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with
YCSB. In Proc. 1st ACM Symposium on Cloud Computing
(SOCC), June 2010.

J. Dean and L. A. Barroso. The tail at scale. Communica-
tions of the ACM, 56(2):74-80, Feb. 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. 21st ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2007.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software
routers. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2009.

R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A dis-
tributed, searchable key-value store. In Proc. ACM SIG-
COMM, Aug. 2012.

Facebook’s memcached multiget hole: More machines
= more capacity. http://highscalability.co
m/blog/2009/10/26/facebooks—memcached-
multiget-hole-more-machines-more-cap
acit.html, 2009.

B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber caching
and smarter hashing. In Proc. 10th USENIX NSDI, Apr.
2013.

M. Flajslik and M. Rosenblum. Network interface design
for low latency request-response protocols. In Proceedings
of the 2013 USENIX Conference on Annual Technical
Conference, June 2013.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, May
1994.

D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste. XIA: Efficient support
for evolvable internetworking. In Proc. 9th USENIX NSDI,
Apr. 2012.

S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
a GPU-accelerated software router. In Proc. ACM SIG-
COMM, Aug. 2010.

S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: a new programming interface for scalable net-

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

work I/O. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation, Oct.
2012.

M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. IEEE Transactions on Computers, 38(12):
1612-1630, Dec. 1989.

Intel. Intel Data Plane Development Kit (Intel DPDK).
http://www.intel.com/go/dpdk, 2014.

Intel 82599 10 Gigabit Ethernet Controller: Datasheet.
http://www.intel.com/content/www/us/e
n/ethernet-controllers/82599-10-gbe-
controller-datasheet.html, 2014.

E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mTCP: a highly scalable user-level TCP stack
for multicore systems. In Proc. 11th USENIX NSDI, Apr.
2014.

R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable low latency for data
center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, Oct. 2012.

D. E. Knuth. The Art of Computer Programming, Volume
1: Fundamental Algorithms. Addison Wesley Longman
Publishing Co., Inc., 1997. First edition published in 1968.
D. Lea. A memory allocator. http://g.oswego.e
du/dl/html/malloc.html, 2000.

H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:
A memory-efficient, high-performance key-value store.
In Proc. 23rd ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2011.

K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and
T. F. Wenisch. Thin servers with Smart Pipes: Design-
ing SoC accelerators for Memcached. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, June 2013.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proc. 7th ACM
European Conference on Computer Systems (EuroSys),
Apr. 2012.

Mellanox ConnectX-3 product brief. http:
//www.mellanox.com/related-docs/prod
_adapter_cards/ConnectX3_EN_Card.pdf,
2013.

A distributed memory object caching system. http://
memcached.org/, 2014.

Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHash:
a cache-partitioned hash table. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Feb. 2012.

M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms
and architectures, July 2002.

C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA
reads to build a fast, CPU-efficient key-value store. In
Proceedings of the 2013 conference on USENIX Annual
technical conference, June 2013.


http://gigaom2.files.wordpress.com/2011/07/facebook-tilera-whitepaper.pdf
http://gigaom2.files.wordpress.com/2011/07/facebook-tilera-whitepaper.pdf
http://code.google.com/p/cityhash/
http://code.google.com/p/cityhash/
http://highscalability.com/blog/2009/10/26/facebooks-memcached-multiget-hole-more-machines-more-capacit.html
http://highscalability.com/blog/2009/10/26/facebooks-memcached-multiget-hole-more-machines-more-capacit.html
http://highscalability.com/blog/2009/10/26/facebooks-memcached-multiget-hole-more-machines-more-capacit.html
http://highscalability.com/blog/2009/10/26/facebooks-memcached-multiget-hole-more-machines-more-capacit.html
http://www.intel.com/go/dpdk
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_EN_Card.pdf
http://memcached.org/
http://memcached.org/

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling Mem-
cache at Facebook. In Proc. 10th USENIX NSDI, Apr.
2013.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast crash recovery in RAMCloud.
In Proc. 23rd ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2011.

Optimized approximative pow() in C / C++. http:
//martin.ankerl.com/2012/01/25/optim
ized-approximative-pow—-in-c-and-cpp/,
2012.

R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122—144, May 2004.

A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP sys-
tems. In SIGMOD ’12: Proceedings of the 2012 interna-
tional conference on Management of Data, May 2012.

A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Im-
proving network connection locality on multicore systems.
In Proceedings of the 7th ACM european conference on
Computer Systems, Apr. 2012.

P. Purdom, S. Stigler, and T.-O. Cheam. Statistical in-
vestigation of three storage allocation algorithms. BIT
Numerical Mathematics, 11(2), 1971.

L. Rizzo. netmap: a novel framework for fast packet I/O.
In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, June 2012.

M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era (it’s time for a complete rewrite). In Proc. VLDB, Sept.
2007.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
Proc. 24th ACM Symposium on Operating Systems Princi-
ples (SOSP), Nov. 2013.

VoltDB, the NewSQL database for high velocity applica-
tions. http://voltdb.com/, 2014.

P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. Lecture
Notes in Computer Science, 1995.

D. Zhou, B. Fan, H. Lim, D. G. Andersen, and M. Kamin-
sky. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proc. 9th International Conference
on emerging Networking EXperiments and Technologies
(CoNEXT), Dec. 2013.


http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://voltdb.com/

	Introduction
	System Goals
	Key Design Choices
	Parallel Data Access
	Network Stack
	Network I/O
	Request Direction

	Key-Value Data Structures
	Memory Allocator
	Indexing: Read-oriented vs. Write-friendly


	MICA Design
	Parallel Data Access
	Keyhash-Based Partitioning
	Operation Modes

	Network Stack
	Direct NIC Access
	Client-Assisted Hardware Request Direction

	Data Structure
	Circular Log
	Lossy Concurrent Hash Index
	Store Mode


	Evaluation
	Evaluation Setup
	System Throughput
	Latency
	Scalability
	Necessity of the Holistic Approach

	Related Work
	Conclusion

