
On the Duality of Data-intensive File System Design:
Reconciling HDFS and PVFS

Wittawat Tantisiriroj Swapnil Patil
Carnegie Mellon University

Garth Gibson

Seung Woo Son Samuel J. Lang
Argonne National Laboratory

Robert B. Ross

ABSTRACT
Data-intensive applications fall into two computing styles:

Internet services (cloud computing) or high-performance com-
puting (HPC). In both categories, the underlying file system
is a key component for scalable application performance. In
this paper, we explore the similarities and differences between
PVFS, a parallel file system used in HPC at large scale, and
HDFS, the primary storage system used in cloud computing
with Hadoop. We integrate PVFS into Hadoop and com-
pare its performance to HDFS using a set of data-intensive
computing benchmarks. We study how HDFS-specific opti-
mizations can be matched using PVFS and how consistency,
durability, and persistence tradeoffs made by these file sys-
tems affect application performance. We show how to em-
bed multiple replicas into a PVFS file, including a mapping
with a complete copy local to the writing client, to emulate
HDFS’s file layout policies. We also highlight implementa-
tion issues with HDFS’s dependence on disk bandwidth and
benefits from pipelined replication.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Managment—
Distributed file systems

Keywords
Hadoop, HDFS, PVFS, cloud computing, file systems

1. INTRODUCTION
Most large data-intensive applications fall into one of the

two styles of computing – Internet services (or “cloud com-
puting”) or high-performance computing (HPC) – that both
execute applications on thousands of compute nodes and
handle massive amounts of input data. In both categories,
the underlying cluster file system is a key component for
providing scalable application performance.

High-performance computing is traditionally defined by
parallel scientific applications that rely on low-latency net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

works for message passing and tiered cluster deployments
that separate compute and storage nodes. HPC applications
rely on a parallel file system for highly scalable and concur-
rent storage I/O. Examples of parallel file systems include
IBM’s GPFS [30], Oracle’s Lustre [2], Panasas’s PanFS [34],
and the open-source Parallel Virtual file system (PVFS) [29].
Parallel file systems strive to provide POSIX-like semantics
through the traditional UNIX file system interface. These
file systems support a broad range of access patterns, par-
ticularly highly concurrent data and metadata accesses, for
as many different workloads as possible.

On the other hand, Internet services seem very differ-
ent from HPC: they have a much lower degree of (per-
object) concurrency, they offer a more specialized and nar-
row storage interface to their applications, and they are ex-
plicitly aware of the anticipated workloads and access pat-
terns. Consequently Internet services rely on custom, purpose-
built storage systems and we will refer to them as Internet
services file systems. Google’s computing environment is
a great example: GoogleFS is a high-performance, fault-
tolerant distributed file system for applications written us-
ing unique semantics such as immutable, append-only op-
erations [16] and it co-designed with the MapReduce job
scheduling system, used by many Google services, that co-
locates computation on nodes that store respective input
datasets [13]. Google’s success at building scalable and avail-
able services has spawned both alternative storage archi-
tectures, such as lightweight key-value data stores [10, 14],
and open-source reincarnations, such as Hadoop and its dis-
tributed file system (HDFS) [9, 18, 32].

Because their target use-cases and interface semantics dif-
fer, parallel file systems and Internet services file systems
are often considered to be mutually inappropriate for ap-
plications of the other category. This is perhaps true for
out-of-the-box use, but at a deeper level there are more sim-
ilarities than differences. This observation is gaining mo-
mentum in both research and development. In fact, both the
cloud computing community and HPC community are start-
ing to support these two types of storage architectures and
file systems. For example, Amazon EC2 recently launched
services for running HPC applications [1] and Argonne Na-
tional Laboratory’s Magellan cluster is providing users with
different non-POSIX storage interfaces, including Amazon
S3 and HDFS [25]. Our goal in this work is to analyze the
design and implementation tradeoffs made in parallel file
systems and Internet services file systems, and understand
how these tradeoffs affect the durability, consistency, and
performance of data-intensive applications.

This paper examines PVFS, a scalable parallel file sys-
tem used in production HPC at the largest scales [23], and
HDFS, the primary storage system widely used in the Apache
Hadoop (MapReduce) cloud computing stack. Both are
open source, capable of gigabytes per second and petabytes
of capacity, and both can be configured to export disks lo-
cated on the same computers that are being used as com-
pute nodes. Because the semantics of PVFS are broader
than HDFS, we configure and integrate PVFS into Hadoop
and evaluate HDFS versus PVFS performance on a set of
data-intensive computing benchmarks and real applications.
Unmodified Hadoop applications can store and access data
in PVFS using our non-intrusive shim layer that implements
several optimizations, including prefetching data, emulating
replication and relaxed consistency, to make PVFS perfor-
mance comparable to HDFS.

This shim also helps us understand the differences between
HDFS and PVFS. The first difference is their fault tolerance
strategy. HPC systems employ RAID erasure coded redun-
dancy so that the cost of disk failure tolerance is less than
50% capacity overhead, while Internet services typically em-
ploy whole file replication at 200% capacity overhead in or-
der to tolerate the loss of a complete node (or RAID con-
troller) without data unavailability. In addition to this cost
difference, HPC systems expect RAID to be implemented
in hardware, while Internet service systems prefer software-
managed redundancy. We evaluate two different mappings
for replicating files in PVFS in terms of their performance
and similarity to HDFS strategies. Using replicated files, In-
ternet service file systems expose the location of all copies to
allow the Hadoop task scheduler to place computation near
its data storage. This mechanism that exposes data layout
is similar to the mechanism in HPC file systems that allows
users to control data layout, and we show how PVFS easily
adapts to expose the layout of data replicas. The second
difference between HDFS and PVFS is client cache consis-
tency. HPC systems support concurrent write sharing, forc-
ing limitations on aggressive client caching. When PVFS is
used with inconsistent client caching and deep prefetching,
as HDFS is used by Hadoop, apparent performance differ-
ences are reduced. Finally, our analysis also observes sig-
nificant differences in terms of resource efficiency of these
two file systems: HDFS today has a stronger dependence on
disk bandwidth, a relative weakness, and makes better use
of network bandwidth, a relative strength.

We present a primer on HDFS and PVFS in Section 2,
the implementation of a Java shim and PVFS extensions
in Section 3, the performance evaluation in Section 4, the
related work in Section 5, and conclusion in Section 6.

2. HDFS AND PVFS – A DESIGN PRIMER
Despite their different origins and contrasting use-cases,

both HDFS and PVFS have a similar high-level design. They
are user-level cluster file systems that store file data and
file metadata on different types of servers, i.e., two different
user-level processes that run on separate nodes and use the
lower-layer local file systems for persistent storage.1 The
file system metadata, including the namespace, block loca-
tion and access permission, is stored on a separate server
called the metadata server (MDS) in PVFS and namenode

1In PVFS, a node can be responsible to store data, meta-
data or both. HDFS has a stricter physical separation of
responsibility.

in HDFS. All metadata operations may be handled by a
single server, but a cluster will typically configure multi-
ple servers as primary-backup failover pairs, and in PVFS,
metadata may be distributed across many active MDSs as
well. All file data is stored on persistent storage on a dif-
ferent set of servers called I/O servers in PVFS and data
servers in HDFS. Instead of using HDFS or PVFS specific
terminology, the rest of paper will use the terms metadata
server (MDS) and data server. In a typical cluster deploy-
ment, data is distributed over many data servers while the
metadata is managed by a single MDS.

Both HDFS and PVFS divide a file into multiple pieces,
called chunks in HDFS and stripe units in PVFS, that are
stored on different data servers. Each HDFS chunk is stored
as a file in the lower-layer local file system on the data server.
Unlike HDFS’s file-per-chunk design, PVFS splits a file into
an object per data server, where each object includes all
stripe units of that file stored on that data server as a sin-
gle file in the underlying local file system. The chunk size
and stripe unit size are configurable parameters; by default,
HDFS uses 64 MB chunks and PVFS uses 64 KB stripe
units, although modern PVFS deployments use larger stripe
units (2-4 MB) to get higher data transfer bandwidth.

To access files, clients first ask the MDS which data servers
it should contact. Clients then send all read and write re-
quests directly to the data servers. Clients cache the data
server layout information received from the MDS to inter-
act repeatedly and directly with data servers (without go-
ing through the MDS). PVFS is able to easily cache a file’s
layout because a stripe unit’s location in an object is al-
gorithmically derived from its offset in the file. HDFS, on
the other hand, stores lists of chunks for each file. During
reads, HDFS can fetch and cache the chunk list of a file
because HDFS files are immutable. But during the write
phase, HDFS must contact the MDS for each new chunk al-
location (as the file grows), whereas PVFS does not. Neither
HDFS nor PVFS caches any file data at the client machines
although HDFS does prefetch as deeply as a full chunk while
PVFS does not prefetch at all.

Rest of this section contrasts the design and semantics of
HDFS and PVFS (summarized in Table 1), and occasionally
compares them with other scalable file systems.

2.1 Storage deployment architecture
The storage and compute capabilities of a cluster are or-

ganized in two ways: either co-locate storage and compute
in the same node or separate storage nodes from compute
nodes. Both HDFS and GoogleFS use the former approach
with 2-12 disks attached locally in each machine with a com-
modity processor and few gigabytes of RAM [12]. This“disk-
per-node” model is well suited for the Hadoop/MapReduce
data processing abstraction seeking to co-locate a compute
task on a node storing the required input data. This model
is an attractive approach for cost-effective high bandwidth.

PVFS is typically deployed using the other approach: stor-
age servers separate from the compute infrastructure.2 In
this model, pooling storage nodes together enables highly
parallel I/O [17] and separating storage (from compute)
helps build optimized reliability and manageability solutions
[34]. This approach has marginally higher capital costs than

2PVFS can be configured so that the same nodes are used for
both compute and storage, and Hadoop/HDFS can be configured
to separate data and compute servers.

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Deployment
model

Co-locates compute and storage on the same node
(beneficial to Hadoop/MapReduce model where
computation is moved closer to the data)

Separate compute and storage nodes (easy man-
ageability and incremental growth)

Concurrent
writes

Not supported – allows only one writer per file Guarantees POSIX sequential consistency for
non-conflicting writes, i.e., optimized writes to dif-
ferent regions of a file

Small file oper-
ations

Not optimized for small files; client-side buffering
aggregates many small requests to one file into one
large request

Uses few optimizations for packing small files, but
the lack of client-side buffering or caching may re-
sult in high I/O overhead for small write requests

Append mode Write once semantics that allows file appends us-
ing a single writer only

Full write anywhere and rewrite support (research
prototypes have extended PVFS to support con-
current appends through atomic operators)

Buffering Client-side readahead and write-behind staging
improves bandwidth, but reduces durability guar-
antees and limits support for consistency seman-
tics

No client-side prefetching or caching provides im-
proved durability and consistency for concurrent
writers

Data layout Exposes mapping of chunks to data-nodes to
Hadoop applications

Maintains stripe layout information as extended
attributes but not exposed to applications

Fault tolerance Uses rack-aware replication with, typically, three
copies of each file

No file system level support; relies on RAID sub-
systems attached to data servers

Compatibility Custom API and semantics for specific users UNIX FS API with most POSIX semantics

Table 1: Comparing the design and semantics of PVFS [29] and HDFS [9].

the disk-per-node model, but it comes at a lower operational
complexity, which is becoming a growing bane for users of
large computing infrastructure.3

2.2 File access semantics
Concurrency – The semantics of most Internet services

file systems, including HDFS, GoogleFS and Amazon S3,
are optimized for their anticipated workloads. Files in HDFS
have write-once-read-many semantics and have only one writer.
HDFS does not allow changes to a file once it is created, writ-
ten, and closed. Opening an existing file for write truncates
all old data. These semantics favor Hadoop/MapReduce
applications that typically manipulate collections of files in
one dataset. The lack of support for concurrent write shar-
ing simplifies data consistency semantics in HDFS. However,
unlike HDFS, GoogleFS supports restricted file mutation by
appending new data to a file including “atomic” operations
to support concurrent appends to a single file [16].4

Most parallel file systems support a wide variety of file op-
erations, especially for highly concurrent file access. PVFS
provides high throughput using“non-overlapping concurrent
write” semantics. If two clients write to non-overlapping
byte regions of a file, then all other clients will see the data
from the writers after their respective writes have completed.
However, if two clients concurrently write data to the same
region of a file, the result is undefined. Thus PVFS ad-
heres to the POSIX consistency semantics in the case of non-
overlapping writes by guaranteeing sequential consistency.

Like HDFS, the current PVFS release does not support

3In fact, this model is also adopted by some Internet services,
most notably Amazon’s web services platforms. In Amazon’s
cloud infrastructure the compute instances (called EC2) are sep-
arate from the underlying storage infrastructure (called EBS and
S3) [4–6]. This allows the EBS storage system to provide fea-
tures for high availability, seamless data volume migration and
data backups without being dependent on EC2.
4Newer releases of Hadoop/HDFS support file append but only
by a single writer.

appending writes to a file. Appends can be implemented
in PVFS using a “fetch-and-add” style operation using ex-
tended attributes. The End-of-File (EoF) offset of a file
can be stored as an extended attribute. PVFS clients could
atomically “fetch” the EoF offset and “add” a value to it,
returning the initial value so that the client can then write
data starting at that offset [24].

Client-side buffering and consistency – HDFS is de-
signed to enable high write throughput (instead of low la-
tency) batch processing [9]. It enables streaming writes
through “write staging” at the clients. Clients send a write
to a data server only when they have accumulated a chunk
size (64 MB) of data. Initially, clients buffer all write oper-
ations by redirecting them to a temporary file in memory.
Once filled, the clients flush this buffer to the data server
responsible for storing that file chunk. If the file is closed
when the buffer is not yet full, the buffer is flushed to the
chunk’s respective data server.

On the other hand, PVFS does not have any client-side
buffering and sends all application level write system calls
directly to an I/O server. This approach is not optimal for
small incremental write workloads; however, small file I/O
continues to be uncommon among scientific applications.
Such applications do not benefit from caching because they
operate on files that are too big to fit in memory. Moreover,
by not performing any client-side buffering, PVFS does not
require complex cache consistency protocols for concurrent
write operations to the same file. Typically in large sys-
tems with many concurrent writers, cache consistency and
synchronization mechanisms are a potential source of bot-
tleneck. Nevertheless, other HPC parallel file systems, in-
cluding GPFS, PanFS and Lustre, implement client caching.
Since HDFS allows only one writer per file, its client-side
write staging does not encounter any chunk inconsistency
issues. PVFS does not use any explicit caching on the I/O
servers either; it relies on the buffer cache of the underlying
local file system on the server.

2.3 Data layout and function shipping
Recall that large files in HDFS and PVFS are divided into

chunks and stripe units, respectively, that are distributed
across multiple data servers. However, these file systems are
different in the way they divide a file and the policies used to
layout the files (and in the way they make that information
available to higher-level applications).

The first difference between HDFS and PVFS is the loca-
tion metadata associated with a file. When HDFS creates a
file, it allocates (64 MB) chunks dynamically and the num-
ber of chunks grows as the file grows in size. PVFS has
a fixed number of objects for every file and the identifiers
of these objects remain constant throughout the lifetime of
the file. It is important to distinguish these two approaches
because PVFS clients can access data from data servers di-
rectly by caching the list of (immutable) object identifiers,
while HDFS clients need to request the metadata server for
the identifier and location of the chunk that holds the de-
sired data. In addition, many writers could overload HDFS’s
MDS with new chunk requests.

This leads us to the second difference between HDFS and
PVFS: policies used to layout the file data across servers.
HDFS uses a random chunk layout policy to map chunks
of a file to different data servers. When an MDS creates a
chunk, it randomly selects a data server to store that chunk.
This random chunk allocation may lead to a file layout that
is not uniformly load balanced. PVFS, however, makes all
layout decisions when the file is created and extends the end
of each component object when new stripe units are added
in a round robin manner.

The key facet of HDFS design is that this layout infor-
mation is exposed to the Hadoop framework for scheduling
a large parallel application on the cluster. Hadoop’s job
scheduler divides an application job into multiple tasks that
operate on an input file (which is split into chunks) stored in
HDFS. By default, the scheduler assigns one task per chunk
– it tries to assign a “map” task to a node that also stores
the respective chunk, and if such a local assignment cannot
be made, the “map” task is assigned to a remote node. Once
a node has a “map” task, it reads the input data chunks,
performs computation on each chunk, and writes the output
to intermediate files stored on local storage. A daemon pro-
cess transfers these intermediate files to the local storage of
nodes that run “reduce” tasks. These “reducer” nodes read
these files from local storage, apply the appropriate reduce
function and write the final output to files in HDFS.

Hadoop uses various optimizations proposed by Google’s
MapReduce. The job scheduler assigns tasks to nodes in a
manner that load-balances the file I/O performed in read-
ing the input data. Hadoop schedules tasks to be run out-
of-order to overcome the potential drawbacks manifesting
from the HDFS’s non-uniform chunk placement resulting
from the random chunk allocation policy. Hadoop also runs
backup tasks that help minimize a job’s response time by
re-executing “straggler” tasks that have failed to complete.

Unlike HDFS, PVFS does not expose a file’s object and
stripe unit layout to the application by default; we imple-
mented a mechanism that queries PVFS for this layout in-
formation and exposes it to the Hadoop/MapReduce frame-
work (details in Section 3).

2.4 Handling failures through replication
Failures are common in large clusters and scalable file sys-

HDFS/PVFS
server

Local FS

MDS Data servers

Hadoop/MapReduce framework
File system extensions API

(org.apache.hadoop.fs.FileSystem)!

Apps Apps Apps

PVFS Shim layer

buf map rep

libpvfs libhdfs

!"#

$%&'%&#
(&")#

*+,%-!#

!"#"$

"%%&'(")*+$

-%!#

HDFS/PVFS
server

Local FS
-%!#

!"#./0123401#$%&'%&$#

Figure 1: Hadoop-PVFS Shim Layer – The shim layer

allows Hadoop to use PVFS in place of HDFS. This layer

has three responsibilities: to perform readahead buffering

(‘buf’ module), to expose data layout mapping to Hadoop

(‘map’ module) and to emulate replication (‘rep’ module).

tems detect, tolerate and recover from component failures
[27, 31]. Most parallel file systems, including PVFS, rely
on hardware-based reliability solutions such as RAID con-
trollers attached to data servers; one exception is PanFS
which uses RAID-5 across nodes [34].

On the other hand, both GoogleFS and HDFS replicate
data for high availability [16, 32]. HDFS maintains at least
three copies (one primary and two replicas) of every chunk.
Applications that require more copies can specify a higher
replication factor, typically at file create time. All copies of
a chunk are stored on different data servers using a “rack-
aware” replica placement policy. The first copy is always
written to the local storage of a data server to avoid the
network overhead of writing remotely. To handle machine
failures, the second copy is distributed at random on a dif-
ferent data server that is in the same rack as the data server
that stored the first copy. This improves network bandwidth
utilization because intra-rack communication is often faster
than inter-rack communication. To maximize data avail-
ability in case of a rack failures, HDFS stores a third copy
distributed at random on data servers in a different rack.
In HDFS, chunks are replicated by the data servers using
“replication pipelining” where a data server that receives a
chunk sends the chunk to the data server that stores the
next copy [9]. The list of data servers that will store copies
of any chunk is determined and maintained by the MDS (at
file creation time).

3. HADOOP-PVFS EXTENSIONS
In this section, we describe our modifications to the Hadoop

Internet services stack to plug in PVFS and the functionality
extensions made to PVFS.

3.1 PVFS shim layer
Figure 1 shows the design of the PVFS shim layer that en-

ables the Hadoop framework to use PVFS instead of HDFS.
The shim uses Hadoop’s extensible abstract file system API
(org.apache.hadoop.fs.FileSystem) to use PVFS for all
file I/O operations. Prior systems like the Kosmos filesystem
(KFS) [11] and Amazon S3 [20] have similarly used this file

Server
0

(Writer)

Server
1

Server
2

Server
3

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
3

Blk
2

Blk
2

Blk
2

Blk
3

Blk
4

Blk
3

Blk
4

Blk
5

Blk
5

Blk
4

Blk
6

Blk
6

Blk
6

Blk
5

Offset

0M

64M

128M

192M

256M

384M

320M

(a) HDFS Random Layout

Server
0

(Writer)

Server
1

Server
2

Server
3Offset

0M

64M

128M

192M

256M

384M

320M

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
2

Blk
2

Blk
2

Blk
3

Blk
3

Blk
3

Blk
4

Blk
4

Blk
4

Blk
5

Blk
5

Blk
5

Blk
6

Blk
6

Blk
6

Offset

0M

64M

128M

192M

256M

320M

(b) PVFS Round-robin Layout

Server
0

(Writer)

Server
1

Server
2

Server
3

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
2

Blk
2

Blk
2

Blk
3

Blk
3

Blk
4

Blk
3

Blk
4

Blk
5

Blk
5

Blk
4

Blk
6

Blk
6

Blk
6

Blk
5

Offset

0M

64M

128M

192M

256M

384M

320M

(c) PVFS Hybrid Layout

Figure 2: Different data layout schemes used by HDFS and PVFS – HDFS places the first copy locally on the writer’s

data server and the next two copies on randomly chosen data servers. PVFS’s default strategy is a round robin policy that

stripes the three copies on three different servers. A third policy, called the hybrid layout, was created for PVFS, which places

one copy on the writer’s (local) data server and stripes the other two copies in a round-robin manner.

system API to build backend stores for Hadoop applications.
The shim layer is implemented using the Java Native Inter-
face (JNI) API to allow the Java-based Hadoop applications
make calls to the C-based PVFS library. The shim layer has
three key components: the buf module for readahead buffer-
ing, the map module for exposing file layout information to
Hadoop, and the rep module for replication. Our shim layer
implementation consists of 4,000 lines of code that includes
support for all data layouts described in this paper.

Readahead buffering (“buf” module) – While ap-
plications can be programmed to request data in any size,
the Hadoop framework uses 4KB as the default amount of
data accessed in each file system call. Instead of performing
small reads, HDFS prefetches the entire chunk (of default
size 64MB) asynchronously and then synchronously reads
a buffer at a time from the network socket providing the
prefetch. This “readahead” mechanism is important for re-
ducing file system overhead but it is also incompatible with
a non-caching file system client like PVFS. We modified the
shim to provide similar buffering for PVFS without imple-
menting a 64 MB prefetch. For every 4KB request made by
Hadoop, the shim layer synchronously reads a larger buffer
(which is a configurable parameter) from PVFS; that is,
without an asynchronous prefetch of the whole chunk. We
found that a synchronous fetch of 4MB is almost as efficient
as an asynchronous pipeline prefetching 64 MB, and much
less invasive for a system like PVFS that does not implement
a client cache consistency protocol.

Data mapping and layout (“map” module) – The
Hadoop/Mapreduce job scheduler distributes computation
tasks across many nodes in the cluster. Although not manda-
tory, it prefers to assign tasks to nodes that store input
data required for that task. This requires the Hadoop job
scheduler to be aware of the file’s layout information. For-
tunately, as a parallel file system, PVFS has this informa-
tion at the client, and exposes the file striping layout as an
extended attribute of each file. PVFS uses two extended
attributes to expose the file striping layout. The first at-
tribute, system.pvfs2.md, describes how blocks are striped
across servers; we are using“simple_stripe”which stripes a
file across all servers in a round-robin pattern using a 64MB
stripe unit. The second attribute, system.pvfs2.dh stores
the list of all servers involved in this striping pattern.5

5Actually this is a list of the PVFS object handles, but the server

Replication emulator (“rep” module) – Because a
fair comparison of replication and RAID is likely to be con-
troversial and because Internet services file systems rely on
software mechanisms for reliability, we have modified PVFS
to emulate HDFS replication. PVFS uses its distributed
layout policies to control replica placement across the clus-
ter. Although PVFS does not embed rack-level topology in
its configurations, our techniques can still place most of the
chunks on servers in different racks.6

The shim emulates HDFS-style replication by writing on
behalf of the client to three different data servers with ev-
ery write; that is, it sends three write requests to different
servers, unlike HDFS’s replication pipeline. The destina-
tion of each write is determined using the layout scheme de-
scribed in Figure 2. HDFS’s random chunk layout policy is
shown in Figure 2(a) and PVFS’s default round robin strip-
ing policy is shown in Figure 2(b). However PVFS’s default
policy is not comparable to HDFS’s layout, which writes one
replica locally and two replicas to remote nodes selected in
a rack-aware manner. In order to provide such a local write
within PVFS, we added a new layout policy, “PVFS hybrid”
in Figure 2(c), where one copy of each block is written to
the writer’s data server (like in HDFS) and the other two
copies are written to other servers in a round-robin manner
(like the default scheme in PVFS). Although this scheme re-
duces the network traffic by using a local copy, it may cause
an imbalance unless all clients are concurrently writing to
different files. Our approach was motivated by the simplic-
ity of emulating replication at the client instead of making
non-trivial changes to the PVFS server implementation.

3.2 PVFS extensions
An early version of our work shows that PVFS can be

plugged in to the Hadoop stack without any modifications
[33]. However, this does not allow the client-side shim layer
to control replica placement and consistency semantics – two
features that required about 400 lines of new code in PVFS.

Replica placement – As mentioned in the previous sec-
tion, the “rep” module in the shim layer issues three requests
to write three copies of a file and sends each of these requests
to the appropriate server computed using layouts shown in

address list can be generated from this list.
6PVFS can be modified to use rack-awareness like HDFS, but
our goal was to minimize the changes to PVFS and still achieve
properties similar to HDFS.

Figure 2. Because the shim is doing all the replication work,
the role of our PVFS extensions is only to place the first
object in the local server, i.e., we modified PVFS to enable
the HDFS policy of writing the first copy of the object on
the data server residing on the same machine as the writer.
flush() issues – In PVFS, a flush() causes the data

server to call fsync() to write the buffer cache to disk. But
flush() call in HDFS does not behave in this manner. For
fair comparison with HDFS, we disabled all fsync() calls
made by PVFS during flush(). However, PVFS will still
synchronously write to disks when starting or stopping the
server. Note that disabling all fsync() operations in PVFS
does not change the semantics from the application perspec-
tive. Both the BDB cache and the OS buffer cache are still
consistent with respect to operations from different clients.

4. EXPERIMENTAL EVALUATION
This section explores the performance of HDFS and PVFS,

with our new layouts, using microbenchmarks, Hadoop bench-
marks and real scientific applications.

4.1 Methodology
Our experimental cluster, called OpenCloud, has 51 nodes

with Hadoop-0.20.1 (including HDFS), PVFS-2.8.2 with ap-
propriate patches for different layout schemes and Java SE
Runtime 1.6.0. Both HDFS and PVFS use a single ded-
icated metadata server and 50 data servers. Each cluster
node has a 2.8 GHz dual quad core Xeon 5300 CPU, 16 GB
RAM, 10 Gbps Ethernet NIC, and four Seagate 7200 RPM
SATA disk drives. Because PVFS is typically not used with
multiple independent file systems in the same data server,
we use only one disk drive. These machines are drawn from
two racks of 32 nodes each with an Arista 7148S top-of-rack
switch and these rack switches connect to an Arista 7124
head-end switch using six 10 Gbps uplinks each. Each node
runs a Debian Lenny 2.6.32-5 Linux distribution with the
XFS file system managing the disk under test.

While one disk per 10 Gbps Ethernet network link is a
much more disk-bottlenecked balance than in many cloud
configurations, it serves to emphasize a file system’s depen-
dence on disk performance. To explore the opposite extreme,
where there is much more storage bandwidth than network
bandwidth, we run some tests with a RAMDISK per node
as a model of the highest bandwidth solid-state disks.

For all experiments, we measure the aggregate user through-
put as the number of bytes read or written by the user appli-
cation during the time it took to complete the benchmark on
all nodes that participate. This “user” throughput is what is
observed by the application; in other words, if an application
writes a 1 GB file in 10 seconds, the user throughput is 0.1
GB/s, even if the cluster file system writes three copies of
this file (i.e., 3 GB of raw data). For deployments with par-
allel clients, we measure throughput as the total user data
moved between the time when the test starts to when the
last node completes. This throughput measurement tech-
nique, instead of summing up the average throughput of
each client, accounts for the “slowest component” in a large
parallel application. One such example is slow tasks, called
stragglers, in MapReduce jobs [13, 35].

4.2 Baseline performance
To understand the baseline performance of PVFS rela-

tive to HDFS, we run a large Hadoop grep application that

 0

 100

 200

 300

 400

 500

 600

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Grep Benchmark

HDFS

Vanilla PVFS

PVFS w/
 readahead buffer

PVFS w/
 readahead buffer

 and layout

Figure 3: Benefits of using readahead buffering and lay-

out information – By using both these techniques in its

shim layer, PVFS matches the performance of HDFS for

the read-intensive Hadoop grep.

searches for a pattern in a 50 GB input dataset stored on
the 50 node setup; this dataset has 50 data files, each 1 GB
in size (i.e., ten million 100-byte records), distributed over
50 data servers. Note that grep is a highly read-intensive
benchmark that scans the entire dataset once to search for
the desired pattern. We configure Hadoop to use vanilla
PVFS through the Hadoop-PVFS shim with both readahead
and layout awareness disabled. Figure 3 shows that vanilla
PVFS is more than an order of magnitude slower than HDFS
because the latter benefits significantly from its readahead
buffering and Hadoop’s use of file layout information (while
the former has neither of these features).

We repeat the above experiment with both readahead and
file layout functionality enabled in the Hadoop-PVFS shim.
Figure 3 shows that using a 4 MB readahead buffer alone
(without file layout optimization) enables PVFS to reduce
the application completion time by 75%. By doing both
readahead and allocation of tasks nearer to the input data
based on PVFS’s file layout information, Hadoop-on-PVFS
matches the performance of Hadoop-on-HDFS. The rest of
the evaluation uses the shim, with readahead enabled and
file layout exposed, for all PVFS I/O.

As described in Section 3.1, the shim performs readahead
in a synchronous manner and this makes the readahead
buffer size an important design parameter. To choose the
appropriate buffer size, we perform an experiment where a
single client sequentially reads a 1 GB file that is striped
over 50 data servers. Starting from the beginning of the file,
a test application reads a parameterized amount, starting
with 4 KB, in each request until it reaches the end of file. In
addition to the OpenCloud cluster, referred to as“oc” in Fig-
ure 4, we repeat this experiment on another 16-node cluster,
called “ss”, with slower five-year old disks and 1 GigE NICs.
Both Hadoop and PVFS use 64 MB stripe units (chunks)
and the PVFS shim did not use any readahead buffering.

If a client’s Hadoop application requests 4 KB of data,
PVFS without readahead buffering fetches only 4 KB from
a server. By performing such small reads, PVFS’s read
throughput is dominated by high message processing over-
head and network latency. As shown in Figure 4, PVFS
reads data at less than 10 MB/s (for the 4 KB buffer size)
for both clusters. Unlike PVFS, HDFS tries to read the
entire 64 MB chunk asynchronously and then sends it to
the application as soon as the first 4 KB is received. But
the disk may not fetch all 64 MB immediately because the
network stack buffering may fill and temporarily block the
prefetching thread in the data server. Figure 4 shows how

 0

 10

 20

 30

 40

 50

 60

 70

 80

4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M

S
in

g
le

 r
e
a
d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Read request size (bytes)

HDFS on OC Cluster
PVFS on OC Cluster
HDFS on SS Cluster
PVFS on SS Cluster

Figure 4: Improved single client read throughput us-

ing readahead – Using a large enough readahead buffer,

the PVFS shim delivers a read throughput comparable to

HDFS’s in-built prefetching mechanism that reads the en-

tire 64 MB chunk for all requests.

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40 45 50

A
g
g
re

g
a
te

 w
ri
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 5: N-clients concurrently writing to N separate

1 GB files – By writing one copy locally, PVFS with hybrid

layout out-scales PVFS with round-robin layout, and both

scale much better than HDFS’s random layout policy for

more clients.

PVFS’s read performance improves with larger readahead
buffers implemented in the shim. In the slower “ss” cluster,
the readahead performance peaks when the shim layer uses a
4 MB readahead buffer; using bigger buffers does not yield
any higher read throughput because the server’s local file
system is saturated and is delivering peak read throughput.
However, in the faster “oc” cluster, the readahead perfor-
mance peaks with only a 64 KB buffer. Rest of the paper
uses a 4 MB buffer for the Hadoop-PVFS shim (optimiz-
ing for the clusters with slower components) and a 128 KB
buffer for HDFS (the recommended size for Hadoop [19]).

4.3 Microbenchmarks using file system API
We use file system microbenchmarks to help us under-

stand the behavior of HDFS and PVFS with different data
layout schemes for various read and write access patters. In
these microbenchmarks, each client either writes or reads a
1 GB file using the file system API (and not as a Hadoop
job). We use the file system API directly because it gives us
better control for understanding the different policies of the
file system, the effects of which may be masked by Hadoop’s
task assignment policies. Each file makes three copies that
are stored using the layouts described in Section 3.2. All
reported numbers were an average of three runs (with a neg-
ligible standard deviation across runs).

Concurrent writes to different files – This microbench-
mark measures the write performance when multiple clients
are concurrently writing to separate files that are each spread
over the same 50 data servers – an access pattern that em-

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30 35 40 45 50

A
g
g
re

g
a
te

 w
ri
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout
PVFS Hybrid Layout (4 Streams)

Figure 6: Impact of disk-network speed balance on write

performance – We use a RAMDISK to show that the

HDFS scalability problem in Figure 5 was caused by slow

chunk creation by a busy disk.

ulates the “reduce” phase of a MapReduce job, when the
“reducer nodes” all generate and write different output files.

Figure 5 shows the performance of writing fifty 1 GB files
using the three different layout schemes. The interesting
observation in this figure is that PVFS does not saturate
while HDFS saturates earlier and at a bandwidth much lower
than expected. We discovered that the result in Figure 5 is
strongly dependent on the file size (1 GB) and on the mem-
ory resources of our cluster (16 GB memory per node) – in
this case, all data being written (three copies of each file) can
fit in the write-back cache of the lower-layer local file system
on each node. Although all data may fit in the write-back
cache, the dirty data is written to the disk in the background
by a Linux process, called pdflush, as the amount of dirty
data in the write-back cache reaches a threshold [21]. Once
this benchmark uses 15 clients, the amount of data in each
dirty write-back cache exceeds the threshold. During this
period, we observed that the time taken to create one file
can be up to a few hundred milliseconds; this slow create
during writeback is not a problem for PVFS because all
creation is done at file creation, so it continues to fill the
writeback buffer while data is being flushed to disk. But
HDFS creates a file for each chunk dynamically and no new
data is written into the writeback buffer while the file for a
chunk is being created. In this way, HDFS performance is
often limited and saturated by the time to create files while
the disk is busy flushing dirty data.

Figure 6 shows the same experiment except that rather
than using the local disk on each node we create a 4 GB in-
memory file system (Linux tmpfs) and use it as the storage
under test. This results in much higher throughput: HDFS
throughput rises by a factor of three while PVFS through-
put changes very little. HDFS performance, when all the
data being written fits in the write-back cache, is strongly
dependent on a time taken to create a file while PVFS per-
formance is not.

Figure 6 also shows that using four concurrent instances
(streams) of the benchmark on each node to write to PVFS
with hybrid layout matches HDFS’s higher throughput. PVFS
network transfer protocols are not achieving as much con-
currency as HDFS. This happens because HDFS uses its
data servers to implement file replication; that is, when a
client application writes a chunk of a file to a server, this
server writes the second copy to another server, and this
second server writes the third copy of the chunk to yet an-

 0

 200

 400

 600

 800

 5 10 15 20 25 30 35 40 45 50

A
g
g
re

g
a
te

 w
ri
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 7: Impact of smaller write-back cache on write

performance – HDFS’s random layout policy loses the ben-

efit from its replication pipeline and the amount of time

taken to create files has less effect on HDFS’s random layout

policy performance.

other server. As a result, when a single chunk is written
by a client, this HDFS replication pipeline invokes two more
servers to act as“proxy clients” to write the replicas on other
servers [9]. HDFS involves more nodes in the cluster to write
a file than PVFS because the PVFS shim layer at the client
is performing all the replication work serially: it writes the
first copy, then the second copy and then the third copy.
If the application has sufficient concurrency, this serial ver-
sus pipeline replication does not matter but at lower con-
currency it does matter. In both Figure 5 and Figure 6,
PVFS with hybrid layout continuously outperforms PVFS
with round-robin layout because the former avoids some net-
work traffic by writing the first copy locally.

Figure 7 shows the disk version of the same experiment
where the size of Linux’s write-back cache is reduced to one-
tenth of the original size; in other words, we are emulating
a case where disks become the bottleneck much sooner. For
all layout policies in both file systems, the write through-
put saturates with an increasing number of clients because
the amount of write-back cache available to each client de-
creases. HDFS’s random layout policy loses the benefit from
its replication pipeline because its better use of cycles in
all nodes does not matter when writing is blocked on a
full writeback buffer and the disks are saturated. HDFS
throughput is only slightly lower than PVFS with hybrid
layout throughput because the time to create a file for an
HDFS chunk is significantly lower than the time to write 64
MB of chunk data to disk.

Finally, to demonstrate the scalability of HDFS and PVFS
with our modification, we perform an experiment that writes
1 GB per client to a setup with variable number of server
resources All the preceding evaluation was done on a cluster
with 50 data servers; Figure 8 shows the performance of
HDFS and PVFS with a varying number of data servers. In
this experiment, we vary the number of servers from 5 to 50
and we configure each data server to also act as a client; for
example, the 10 server case shows a configuration with 10
nodes, each acting as a data server and as a client. Since the
number of data servers is equal to the number of clients, the
amount of write-back cache available to each client is fixed.
Figure 8 shows that the performance of all layouts starts
lower but increases almost linearly without saturating.

Concurrent reads from different files – In this mi-
crobenchmark, each client reads the file it just wrote; this
emulates the common read pattern in the MapReduce frame-
work. We use 5-50 clients, each sequentially reading a dif-

 0

 200

 400

 600

 800

 5 10 15 20 25 30 35 40 45 50

A
g
g
re

g
a
te

 w
ri
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients and servers

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 8: Performance of HDFS and PVFS as a system

scales out servers as well as clients for concurrent writing.

ferent 1 GB file, stored on the same node, and all caches are
flushed to ensure that data is read from the disk.

Figure 9(a) shows that both PVFS with the hybrid lay-
out and HDFS with its random layout outperform PVFS’s
default round-robin layout. This happens because the latter
scheme always writes all copies on remote servers and does
not see the benefit that the other two layouts receive from
writing the first copy locally.

To show the performance impact of not using the local
copy, we use a microbenchmark similar to the previous ex-
periment (in Figure 9(a)) where 50 clients are concurrently
reading different 1 GB files than the ones they wrote, guar-
anteeing that there is rarely a “local” copy. The main dif-
ference in this microbenchmark is that all client reads are
from a remote server. Figure 9(b) shows that all layout
configurations deliver the same aggregate read throughput,
but the performance is significantly lower than when the
clients read a local copy and is about the same as PVFS
with round-robin layout, as shown in Figure 9(a). Note that
this difference in performance with and without a local copy
may be much larger on a cluster with 1 GigE links (Figure
9 reports results from a cluster with 10 GigE links and only
one disk under test).

Finally, we perform an experiment to evaluate the scala-
bility of read performance of HDFS and PVFS by varying
the number of data servers. Unlike Figure 9 that used a
cluster with 50 data servers, we vary the number of data
servers from 5 to 50 and we configure each data server to
also act as a client; for example, the 10 server case shows
the configuration with 10 nodes, each acting as a data server
and as a client. Figure 10 shows that the read throughput of
all layouts scales linearly as the number of data servers in-
creases. Both PVFS with the hybrid layout and HDFS with
its random layout outperform PVFS’s default round-robin
layout because of the benefit of a complete local copy.

Lessons:

• With the vast resources in data-intensive clusters, sig-
nificant performance benefits are possible if a coupling
to disk performance is avoided (when possible).

• Delegating replication to servers (as “proxy clients”)
can significantly improve parallelism and resource uti-
lization over driving replication from clients when disks
are not the bottleneck.

• Changing the cluster file system’s layout policy to write
one copy “locally” on the same node as the writer has a
significant benefit for both read and write throughput.

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40 45 50A
g
g
re

g
a
te

 r
e
a
d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

(a) Clients reading from the server they wrote to

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout
 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40 45 50A
g
g
re

g
a
te

 r
e
a
d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

(b) Clients reading from a different server

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 9: Benefits of keeping a local copy for read performance – N-clients concurrently reading from N files from (a)

the same server they wrote to, and (b) a server different from the one they wrote to (i.e., non-local copy).

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40 45 50

A
g
g
re

g
a
te

 r
e
a
d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients and servers

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 10: Performance of HDFS and PVFS as a sys-

tem scales out servers as well as clients for concurrent

reading.

4.4 Benchmarks using Hadoop applications
The previous section showed the performance of differ-

ent layout schemes for applications that use the file system
directly; in this section we will evaluate file system perfor-
mance for Hadoop jobs. That is, each job, written as “map”
and “reduce” tasks, is inserted into Hadoop’s queues and
Hadoop schedules a task per 64 MB of data according to its
load balancing policies (quite possibly out of order within
the file). We run these jobs on the cluster configurations
described earlier in Section 4.3 and use a dataset of fifty 1
GB files (with three copies of each file). Each experiment
is run 20 times and we report the average completion time
(and its standard deviation) of the Hadoop job.

Figure 11 shows the performance of four Hadoop bench-
marks: one write-intensive, two read-intensive and one read-
write intensive. The write-intensive benchmark, called write,
uses Hadoop to write a large dataset using 50 “map” tasks
that each write a single 1 GB file to the underlying file sys-
tem. This data is then processed by two read-intensive and
one read-write intensive Hadoop applications. The former
consists of a dummy read application that simply reads the
whole dataset without processing (or generating any out-
put) and a grep application that searches for a rare pattern
(with a hit rate smaller than 0.0006%) in the dataset, and
the latter is a sort application that reads the whole dataset,
sorts it and writes back the same amount. While the latter
three applications use 750 “map” tasks that each processes
a single 64 MB chunk, they process the input data in a dif-
ferent manner: the dummy read and grep applications have
zero “reduce” tasks, and sort runs with 90 “reduce” tasks to
write out the sorted output. We run only one of these three
applications at any given time.

Figure 11 shows a large standard deviation in run time
of each benchmark, even after 20 iterations. Large runtime

variance is common in MapReduce usage [7]. Given that
the runtime of most experiments is within one standard de-
viation of the mean of comparable experiments with other
layout schemes, it is not clear that there is much difference in
performance when using Hadoop (unlike the significant dif-
ferences shown in prior sections). There is some indication
in Figure 11, however, that the write benchmark performs
as expected from results in the previous section; by writing
the first copy locally and the remaining two writes in a well-
balanced round-robin manner, PVFS’s hybrid layout allows
applications to complete a little faster than if they were using
the other two layout schemes. However, the read-intensive
benchmarks, both dummy read and grep, do not exhibit the
benefits of local copy and round-robin distribution shown in
the previous section. Figure 11 shows that both of these ap-
plications run to completion faster when they use HDFS’s
random layout because Hadoop’s job scheduler is able to
mask the sub-optimal performance of HDFS’s non-uniform
file layout by scheduling tasks in a manner that achieves
load balancing across all nodes. Note that grep runs a bit
longer than the dummy read application because of the ad-
ditional processing time required to search the data for the
matching pattern. Because the sort application writes the
same amount of data as it reads, it takes twice as long to
complete and PVFS round-robin layout writes more slowly,
so it is slower in this test.

Lesson:

• For read-intensive jobs, Hadoop’s job scheduler masks
the inefficiencies of a layout policy. Coupling job schedul-
ing policies with file system layout strategies can help
to balance I/O workloads across the system and sig-
nificantly improve system utilization.

 0

 20

 40

 60

 80

 100

 120

 140

write read grep sortC
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Benchmark

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 11: Performance of Hadoop benchmarks – On

50 nodes processing 50 one GB files, the standard deviation

of run times is large (for 20 runs of each test).

 0

 100

 200

 300

 400

 500

 600

 700

sampling fof twitterC
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Application

PVFS Hybrid Layout
HDFS Random Layout

PVFS Round-robin Layout

Figure 12: Comparing HDFS and PVFS performance

for real Hadoop-based applications (completion time and

standard deviation).

4.5 Performance of Scientific Applications
We compare the performance of PVFS with HDFS using

three data-intensive scientific applications programmed to
use the Hadoop/MapReduce framework with replication en-
abled (three copies). These applications were obtained from
users of a production Hadoop cluster at Carnegie Mellon
University. First two applications, sampling and FoF clus-
tering, are based on a distributed astrophysics algorithm,
called DiscFinder, that identifies large-scale astronomical
structures from massive observation and simulation datasets
[15]. The main idea is to partition the input dataset into
regions, then execute a sequential clustering procedure for
each partition, and finally join the clusters across partitions.
In the Hadoop implementation of DiscFinder, the sampling
job determines the appropriate regions and the FoF clus-
tering job executes the clustering and joining phases. Dis-
cFinder is designed to operate on datasets with tens of bil-
lions of astronomical objects, even when the dataset is much
larger than the aggregate memory of compute cluster used
for the processing [15]. The third application is a Twitter
analyzer that processes raw Twitter data into a different
format for other tools to operate on [22]. This is primarily
an I/O intensive application that uses CPU only to reformat
the input data using JSON serialization.

For each application, Table 2 reports the size of the Hadoop
job (number of map and reduce tasks) and the amount of
I/O performed by these applications using the cluster file
system (HDFS and PVFS) and temporary files in the local
file system on the node. Figure 12 shows that the perfor-
mance of PVFS is essentially the same as with HDFS for all
three data-intensive applications. Sampling is a read-only
workload that only reads and processes the data and writes
a neglible amount to the file system, while both FoF clus-
tering and Twitter analyzer read and write twice as much
from the local file system than the cluster file system. These
results show the HDFS disk bottlenecks that limited scala-
bility in our small (1 GB per node) synthetic experiments
are not often exposed to data-intensive applications man-
aged by the Hadoop task scheduler.

5. RELATED WORK
Understanding the similarities and differences between In-

ternet services and HPC is starting to generate significant
interest from both researchers and practitioners. Develop-
ers of most major parallel file systems have demonstrated
the feasibility of using their respective file systems with the
Hadoop stack; this includes GPFS [8], Ceph [26], and Lustre
[3]. An early version of our work was the first to demon-
strate how PVFS can replace HDFS in the Hadoop frame-

Sampling FoF Twitter

Number of map tasks 1,164 1,164 1,504
Number of reduce tasks 124 124 100
Data read from cluster
FS (GB)

71.4 71.4 23.9

Data written to cluster
FS (GB)

0.002 0.0 56.1

Data read from local
temporary files (GB)

0.004 155.7 106.5

Data written to local
temporary files (GB)

0.012 140.7 155.6

Table 2: Information about Hadoop applications.

work [33]; and this effort was simultaneously reproduced by
GPFS [8] and Lustre [3] users. All these efforts focused on
showing the benefits of efficient file striping (such as large
stripe units and exposing layout distribution) and optimal
data prefetching to the Hadoop layer. In comparison, we
make several new contributions including PVFS extensions
to emulate HDFS-style data layout, replication and consis-
tency semantics, and studying how tradeoffs in HDFS and
PVFS affect application performance.

Another project, similar in spirit but from a different di-
rection, proposed to use HPC-style separated storage and
compute nodes in the Hadoop framework [28]. This work
configured a few HDFS datanodes, designated as Super-
DataNodes, to have an order of magnitude more disks than
the rest of the datanodes which allowed Hadoop clusters to
be configured for workloads that need a much higher ratio
of storage to compute nodes.

6. SUMMARY
The last few years have seen an emerging convergence

of two data-intensive scalable computing paradigms: high
performance computing and Internet services. HPC clus-
ters are beginning to deploy Internet services stacks, such as
the Hadoop framework, and their storage systems, such as
HDFS and Amazon S3.

This paper explores the relationship between modern par-
allel file systems, represented by PVFS, and purpose-built
Internet services file systems, represented by HDFS, in the
context of their design and performance. While both file
systems have contrasting deployment models, file access se-
mantics and concurrency mechanisms, we observe that the
biggest difference stems from their fault tolerance models
and consistency semantics. We show that lightweight mid-
dleware and simple file system extensions can be employed
to make HPC file systems functionally equivalent to Internet
services file systems and operate efficiently in the Hadoop In-
ternet services stack. Our middleware shim layer performs
readahead buffering and file layout caching to enable unmod-
ified Hadoop applications to store and access data in PVFS.
We also proposed file layout extensions to PVFS that allow
our shim to provide HDFS’s rack-aware replication function-
ality in PVFS. Our evaluation, using microbenchmarks and
real data-intensive applications, demonstrates that PVFS
can perform as well as HDFS in the Hadoop framework.
We observed, particularly when the dataset size is compa-
rable to memory size, that writing one copy of data locally
when replicating data has a significant performance benefit
for both writes and reads.

Acknowledgments
We would like to thank several people who made significant
contributions: Robert Chansler, Tsz Wo Sze, and Nathan
Roberts from Yahoo! helped diagnose HDFS behavior, Philip
Carns from ANL helped debug the flush() issues in PVFS,
and Bin Fu and Brendan Meeder helped us with their sci-
entific applications and data-sets for evaluation. This work
is based on research supported in part by the Department
of Energy under award number DE-FC02-06ER25767, by
the Los Alamos National Laboratory under contract number
54515-001-07, by the Betty and Gordon Moore Foundation,
by the Qatar National Research Fund under award number
NPRP 09-1116-1-172, by the National Science Foundation
under awards CCF-1019104 and SCI-0430781, and by the
Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy under Contract DE-
AC02-06CH11357. We also thank the members and compa-
nies of the PDL Consortium (including APC, EMC, Face-
book, Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI,
Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Sam-
sung, Seagate, STEC, Symantec, and VMware) for their in-
terest, insights, feedback, and support.

References
[1] Amazon Web Services - High Performance Computing.

http://aws.amazon.com/hpc-applications/.

[2] Lustre File System. http://www.lustre.org.

[3] Using Lustre with Apache Hadoop. http://wiki.
lustre.org/images/1/1b/Hadoop_wp_v0.4.2.pdf,
Jan. 2010.

[4] Amazon-EBS. Amazon Elastic Block Storage (Amazon
EBS). http://www.amazon.com/s3.

[5] Amazon-EC2. Amazon Elastic Compute Cloud (Ama-
zon EC2). http://www.amazon.com/ec2.

[6] Amazon-S3. Amazon Simple Storage Service (Amazon
S3). http://www.amazon.com/s3.

[7] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the Outliers in Map-Reduce Clusters using Mantri. In
Proceedings of the 9th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’2010),
Vancouver, Canada, October 2010.

[8] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha,
P. Sarkar, M. Shah, and R. Tewari. Cloud analytics: Do
we really need to reinvent the storage stack? In Pro-
ceedings of the 1st USENIX Workshop on Hot Topics
in Cloud Computing (HOTCLOUD ’2009), San Diego,
CA, USA, June 2009.

[9] D. Borthakur. The Hadoop Distributed File System:
Architecture and Design. http://hadoop.apache.org/
core/docs/r0.16.4/hdfsdesign.html.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A Distributed Storage System
for Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’2006), Seattle, WA, USA, November
2006.

[11] Cloudstore. Cloudstore distributed file system (for-
merly, Kosmos file system). http://kosmosfs.
sourceforge.net/.

[12] J. Dean. Experiences with MapReduce, an Abstraction
for Large-Scale Computation. Slides from Keynote talk
at the 15th International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT ’2006) on
September 18, 2006 in Seattle WA.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of
the 6th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’2004), San Francisco,
CA, USA, December 2004.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP ’2007), Stevenson, WA, USA, October 2007.

[15] B. Fu, K. Ren, J. Lopez, E. Fink, and G. Gibson. Dis-
cFinder: A data-intensive scalable cluster finder for
astrophysics. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed
Computing (HPDC ’2010), Chicago, IL, USA, June
2010.

[16] S. Ghemawat, H. Gobioff, and S.-T. Lueng. Google File
System. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’2003), Bolton
Landing, NY, USA, October 2003.

[17] G. A. Gibson, B. B. Welch, D. B. Nagle, and B. C.
Moxon. ObjectStorage: Scalable Bandwidth for HPC
Clusters. In Proceedings of 1st Cluster World Confer-
ence and Expo, San Jose, CA, USA, June 2003.

[18] Hadoop. Apache Hadoop Project. http://hadoop.
apache.org/.

[19] Hadoop-Docs. The Hadoop Cluster Setup.
http://hadoop.apache.org/core/docs/current/
cluster_setup.html.

[20] Hadoop-S3. Using the Amazon S3 backend on Hadoop.
http://wiki.apache.org/hadoop/AmazonS3.

[21] N. Horman. Understanding Virtual Memory In
Red HatEnterprise Linux 4. Red Hat white pa-
per, Raleigh, NC, 2005, http://people.redhat.com/
nhorman/papers/rhel4_vm.pdf.

[22] U. Kang, B. Meeder, and C. Faloutsos. Spectral Anal-
ysis for Billion-Scale Graphs: Discoveries and Imple-
mentation. In Proceedings of the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD ’2010), Hyderabad, India, June 2010.

[23] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and
W. Allcock. I/O performance challenges at leadership
scale. In Proceedings of the 22nd ACM/IEEE Con-
ference on High Performance Computing (SC ’2009),
Portland, OR, USA, November 2009.

[24] S. Lang, R. Latham, R. B. Ross, and D. Kimpe. Inter-
faces for coordinated access in the file system. In Pro-
ceedings of the 11th IEEE International Conference on
Cluster Computing (CLUSTER ’2009), New Orleans,
LA, USA, August 2009.

[25] Magellan. Argonne’s DOE Cloud Computing: Magel-
lan, A Cloud for Science. http://magellan.alcf.anl.
gov/.

[26] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. J.
Nelson, S. A. Brandt, and S. Weil. Ceph as a scalable
alternative to the Hadoop Distributed File System. ;lo-
gin: The USENIX MAGAZINE, 35(4), August 2010.

[27] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proceed-
ings of the 5th USENIX Conference on File and Storage
Technologies (FAST ’2007), San Jose, CA, USA, Febru-
ary 2007.

[28] G. Porter. Towards Decoupling Storage and Compu-
tation in Hadoop with SuperDataNodes. In Proceed-
ings of the 3rd ACM SIGOPS International Workshop
on Large Scale Distributed Systems and Middleware
(LADIS ’2009), Big Sky, MT, USA, October 2009.

[29] PVFS2. Parallel Virtual File System, Version 2. http:
//www.pvfs.org.

[30] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of
the 1st USENIX Conference on File and Storage Tech-
nologies (FAST ’2002), Monterey, CA, USA, January
2002.

[31] B. Schroeder and G. A. Gibson. Disk Failures in the
Real World: What Does an MTTF of 1,000,000 Hours
Mean to You? In Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies (FAST ’2007),
San Jose, CA, USA, February 2007.

[32] K. Shvachko, H. Huang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In Proceedings of the
26th IEEE Symposium on Mass Storage Systems and
Technologies (MSST ’2010), Incline Village, NV, USA,
May 2010.

[33] W. Tantisiroj, S. V. Patil, and G. Gibson. Data-
intensive file systems for Internet services: A rose by
any other name Technical Report CMU-PDL-08-
114, Carnegie Mellon University, Oct. 2008.

[34] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scal-
able Performance of the Panasas Parallel File System.
In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST ’2008), San Jose, CA,
USA, February 2008.

[35] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in Het-
erogeneous Environments. In Proceedings of the 8th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’2008), San Diego, CA, USA,
December 2008.

