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Abstract
Multi-stage log-structured (MSLS) designs, such as Lev-
elDB, RocksDB, HBase, and Cassandra, are a family of
storage system designs that exploit the high sequential
write speeds of hard disks and flash drives by using mul-
tiple append-only data structures. As a first step towards
accurate and fast evaluation of MSLS, we propose new
analytic primitives and MSLS design models that quickly
give accurate performance estimates. Our model can al-
most perfectly estimate the cost of inserts in LevelDB,
whereas the conventional worst-case analysis gives 1.8–
3.5X higher estimates than the actual cost. A few minutes
of offline analysis using our model can find optimized
system parameters that decrease LevelDB’s insert cost by
up to 9.4–26.2%; our analytic primitives and model also
suggest changes to RocksDB that reduce its insert cost
by up to 32.0%, without reducing query performance or
requiring extra memory.

1 Introduction
Log-structured store designs provide fast write and easy
crash recovery for block-based storage devices that have
considerably higher sequential write speed than random
write speed [37]. In particular, multi-stage versions of
log-structured designs, such as LSM-tree [36], COLA [2],
and SAMT [42], strive to balance read speed, write speed,
and storage space use by segregating fresh and old data
in multiple append-only data structures. These designs
have been widely adopted in modern datastores including
LevelDB [19], RocksDB [12], Bigtable [8], HBase [45],
and Cassandra [27].

Given the variety of multi-stage log-structured (MSLS)
designs, a system designer is faced with a problem of
plenty, raising questions such as: Which design is best for
this workload? How should the systems’ parameters be
set? How sensitive is that choice to changes in workload?
Our goal in this paper is to move toward answering these
questions and more through an improved—both in quality
and in speed—analytical method for understanding and
comparing the performance of these systems. This analyt-
ical approach can help shed light on how different design
choices affect the performance of today’s systems, and it
provides an opportunity to optimize (based on the analy-
sis) parameter choices given a workload. For example, in

Section 6, we show that a few minutes of offline analysis
can find improved parameters for LevelDB that decrease
the cost of inserts by up to 9.4–26.2%. As another exam-
ple, in Section 7, we reduce the insert cost in RocksDB
by up to 32.0% by changing its system design based upon
what we have learned from our analytic approach.

Prior evaluations of MSLS designs largely reside at the
two ends of the spectrum: (1) asymptotic analysis and
(2) experimental measurement. Asymptotic analysis of
an MSLS design typically gives a big-O term describ-
ing the cost of an operation type (e.g., query, insert), but
previous asymptotic analyses do not reflect real-world
performance because they assume the worst case. Ex-
perimental measurement of an implementation produces
accurate performance numbers, which are often limited to
a particular implementation and workload, with lengthy
experiment time to explore various system configurations.

This paper proposes a new evaluation method for
MSLS designs that provides accurate and fast evalua-
tion without needing to run the full implementations. Our
approach uses new analytic primitives that help model the
dynamics of MSLS designs. We build upon this model by
combining it with a nonlinear solver to help automatically
optimize system parameters to maximize performance.

This paper makes four key contributions:
• New analytic primitives to model creating the log

structure and merging logs with redundant data (§3);
• System models for LevelDB and RocksDB, represen-

tative MSLS designs, using the primitives (§4, §5);
• Optimization of system parameters with the LevelDB

model, improving real system performance (§6); and
• Application of lessons from the LevelDB model to

the RocksDB system to reduce its write cost (§7).
Section 2 describes representative MSLS designs and

common evaluation metrics for MSLS designs. Section 8
broadens the applications of our analytic primitives. Sec-
tion 9 discusses the implications and limitations of our
method. Appendix A provides proofs. Appendices B
and C include additional system models.

2 Background
This section introduces a family of multi-stage log-
structured designs and their practical variants, and ex-
plains metrics commonly used to evaluate these designs.
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2.1 Multi-Stage Log-Structured Designs
A multi-stage log-structured (MSLS) design is a storage
system design that contains multiple append-only data
structures, each of which is created by sequential writes;
for instance, several designs use sorted arrays and ta-
bles that are often called SSTables [19, 42]. These data
structures are organized as stages, either logically or phys-
ically, to segregate different classes of data—e.g., fresh
data and old data, frequently modified data and static data,
small items and large items, and so forth. Components in
LSM-tree [36] and levels in many designs [2, 19, 42] are
examples of stages.

MSLS designs exploit the fast sequential write speed of
modern storage devices. On hard disk and flash drives, se-
quential writes are up to an order of magnitude faster than
random writes. By restricting most write operations to
incur only sequential I/O, MSLS can provide fast writes.

Using multiple stages reduces the I/O cost for data
updates. Frequent changes are often contained within a
few stages that either reside in memory and/or are cheap
to rewrite—this approach shares the same insight as the
generational garbage collection used for memory man-
agement [25, 28]. The downside is that the system may
have to search in multiple stages to find a single item
because the item can exist in any of these stages. This can
potentially reduce query performance.

The system moves data between stages based upon
certain criteria. Common conditions are the byte size
of the data stored in a stage, the age of the stored data,
etc. This data migration typically reduces the total data
volume by merging multiple data structures and reducing
the redundancy between them; therefore, it is referred to
as “compaction” or “merge.”

MSLS designs are mainly classified by how they or-
ganize log structures and how and when they perform
compaction. The data structures and compaction strategy
significantly affect the cost of various operations.

2.1.1 Log-Structured Merge-Tree

The log-structured merge-tree (LSM-tree) [36] is a write-
optimized store design with two or more components,
each of which is a tree-like data structure [35]. One com-
ponent (C0) resides in memory; the remaining compo-
nents (C1,C2,. . . ) are stored on disk. Each component can
hold a set of items, and multiple components can contain
multiple items of the same key. A lower-numbered com-
ponent always stores a newer version of the item than any
higher-numbered component does.

For query processing, LSM-tree searches in potentially
multiple components. It starts from C0 and stops as soon
as the desired item is found.

Handling inserts involves updating the in-memory com-
ponent and merging data between components. A new en-
try is inserted into C0 (and is also logged to disk for crash
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Figure 1: A simplified overview of LevelDB data structures.
Each rectangle is an SSTable. Note that the x-axis is the key
space; the rectangles are not to scale to indicate their byte size.
The memtable and logs are omitted.
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Figure 2: Compaction between two levels in LevelDB.

recovery), and the new item is migrated over time from
C0 to C1, from C1 to C2, and so on. Frequent updates of
the same item are coalesced in C0 without spilling them
to the disk; cold data, in contrast, remains in C1 and later
components which reside on low-cost disk.

The data merge in LSM-tree is mostly a sequential I/O
operation. The data from Cl is read and merged into Cl+1,
using a “rolling merge” that creates and updates nodes in
the Cl+1 tree incrementally in the key space.

The authors of LSM-tree suggested maintaining com-
ponent sizes to follow a geometric progression. The size
of a component is r times larger than the previous compo-
nent size, where r is commonly referred to as a “growth
factor,” typically between 10 and 20. With such size selec-
tion, the expected I/O cost per insert by the data migration
is O((r + 1) logr N), where N is the size of the largest
component, i.e., the total number of unique keys. The
worst-case lookup incurs O(logr N) random I/O by ac-
cessing all components, if finding an item in a component
costs O(1) random I/O.

2.1.2 LevelDB

LevelDB [19] is a well-known variant of LSM-tree. It
uses an in-memory table called a memtable, on-disk log
files, and on-disk SSTables. The memtable plays the same
role as C0 of LSM-tree, and write-ahead logging is used
for recovery. LevelDB organizes multiple levels that corre-
spond to the components of LSM-tree; however, as shown
in Figure 1, LevelDB uses a set of SSTables instead of a
single tree-like structure for each level, and LevelDB’s
first level (level-0) can contain duplicate items across
multiple SSTables.

Handing data updates in LevelDB is mostly similar
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to LSM-tree with a few important differences. Newly
inserted data is stored in the memtable and appended to
a log file. When the log size exceeds a threshold (e.g.,
4 MiB1), the content of the memtable is converted into
an SSTable and inserted to level-0. When the table count
in level-0 reaches a threshold (e.g., 4), LevelDB begins
to migrate the data of level-0 SSTables into level-1. For
level-1 and later levels, when the aggregate byte size of
SSTables in a level reaches a certain threshold, LevelDB
picks an SSTable from that level and merges it into the
next level. Figure 2 shows the compaction process; it takes
all next-level SSTables whose key range overlaps with
the SSTable being compacted, replacing the next-level
SSTables with new SSTables containing merged items.

The SSTables created by compaction follow several
invariants. A new SSTable has a size limit (e.g., 2 MiB),
which makes the compaction process incremental. An
SSTable cannot have more than a certain amount of over-
lapping data (e.g., 20 MiB) in the next level, which limits
the future cost of compacting the SSTable.

LevelDB compacts SSTables in a circular way within
the key space for each level. Fine-grained SSTables and
round-robin SSTable selection have interesting implica-
tions in characterizing LevelDB’s write cost.

There are several variants of LevelDB. A popular ver-
sion is RocksDB [12], which claims to improve write per-
formance with better support for multithreading. Unlike
LevelDB, RocksDB picks the largest SSTable available
for concurrent compaction. We discuss the impact of this
strategy in Section 7. RocksDB also supports “univer-
sal compaction,” an alternative compaction strategy that
trades read performance for faster writes.

We choose to apply our analytic primitives and mod-
eling techniques to LevelDB in Section 4 because it cre-
ates interesting and nontrivial issues related to its use
of SSTables and incremental compaction. We show how
we can analyze complex compaction strategies such as
RocksDB’s universal compaction in Section 5.

2.2 Common Evaluation Metrics
This paper focuses on analytic metrics (e.g., per-insert
cost factors) more than on experimental metrics (e.g.,
insert throughput represented in MB/s or kOPS).

Queries and inserts are two common operation types.
A query asks for one or more data items, which can also
return “not found.” An insert stores new data or updates
existing item data. While it is hard to define a cost metric
for every type of query and insert operation, prior studies
extensively used two metrics defined for the amortized
I/O cost per processed item: read amplification and write
amplification.

Read amplification (RA) is the expected number of
random read I/O operations to serve a query, assuming

1Mi denotes 220. k, M, and G denote 103, 106, and 109, respectively.
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Figure 3: Write amplification is an important metric; increased
write amplification decreases insert throughput on LevelDB.

that the total data size is much larger than the system mem-
ory size, which translates to the expected I/O overhead
of query processing [7, 29]. RA is based on the fact that
random I/O access on disk and flash is a critical resource
for query performance.

Write amplification (WA) is the expected amount of
data written to disk or flash per insert, which measures the
I/O overhead of insert processing. Its concept originates
from a metric to measure the efficiency of the flash trans-
lation layer (FTL), which stores blocks in a log structure-
like manner; WA has been adopted later in key-value store
studies to project insert throughput and estimate the life
expectancy of underlying flash drives [12, 19, 29, 30, 43].

WA and insert throughput are inversely related. Fig-
ure 3 shows LevelDB’s insert throughput for 1 kB items
on a fast flash drive.2 We vary the total data volume from
1 GB to 10 GB and examine two distributions for the
key popularity, uniform and Zipf. Each configuration is
run 3 times. Workloads that produce higher WA (e.g.,
larger data volume and/or uniform workloads) have lower
throughput.

In this paper, our main focus is WA. Unlike RA, whose
effect on actual system performance can be reduced by
dedicating more memory for caching, the effect of WA
cannot be mitigated easily without changing the core sys-
tem design because the written data must be eventually
flushed to disk/flash to ensure durability. For the same
reason, we do not to use an extended definition of WA
that includes the expected amount of data read from disk
per insert. We discuss how to estimate RA in Section 8.

3 Analytic Primitives
Our goal in later sections is to create simple but accu-
rate models of the write amplification of different MSLS
designs. To reach this goal, we first present three new
analytic primitives, Unique, Unique−1, and Merge, that
form the basis for those models. In Sections 4 and 5, we
show how to express the insert and growth behavior of
LevelDB and RocksDB using these primitives.

2We use Intel® SSDSC2BB160G4T with fsync enabled for Lev-
elDB.
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3.1 Roles of Redundancy
Redundancy has an important effect on the behavior of
an MSLS design. Any given table store (SSTable, etc.)
contains at most one entry for a single key, no matter how
many inserts were applied for that key. Similarly, when
compaction merges tables, the resulting table will also
contain only a single copy of the key, no matter how many
times it appeared in the tables that were merged. Accurate
models must thus consider redundancy.

Asymptotic analyses in prior studies ignore redundancy.
Most analyses assume that compactions observe no du-
plicate keys from insert requests and input tables being
merged [2, 19]. The asymptotic analyses therefore give
the same answer regardless of skew in the key popularity;
it ignores whether all keys are equally popular or some
keys are more popular than others. It also estimates only
an upper bound on the compaction cost—duplicate keys
mean that less total data is written, lowering real-world
write amplification.

We first clarify our assumptions and then explain how
we quantify the effect of redundancy.

3.2 Notation and Assumptions
Let K be the key space. Without loss of generality, K is
the set of all integers in [0,N − 1], where N is the total
number of unique keys that the workload uses.

A discrete random variable X maps an insert request
to the key referred to by the request. fX is the probability
mass function for X , i.e., fX (k) for k ∈ K is the proba-
bility of having a specific key k for each insert request,
assuming the keys in the requests are independent and
identically distributed (i.i.d.) and have no spatial locality
in popularity. As an example, a Zipf key popularity is
defined as fX (h(i)) = (1/is)/(∑N

n=1 1/ns), where s is the
skew and h maps the rank of each key to the key.3 Since
there is no restriction on how fX should look, it can be
built from a key popularity distribution inferred by an
empirical workload characterization [1, 38, 49].

Without loss of generality, 0 < fX (k)< 1. We can re-
move any key k satisfying fX (k) = 0 from K because k
will never appear in the workload. Similarly, fX (k) = 1
degenerates to a workload with exactly one key, which is
trivial to analyze.

A table is a set of the items that contains no duplicate
keys. Tables are constructed from a sequence of insert
requests or merges of other tables.

L refers to the total number of standard levels in an
MSLS design. Standard levels include only the levels that
follow the invariants of the design; for example, the level-
0 in LevelDB does not count towards L because level-0

3Note that s = 0 leads to a uniform key popularity, i.e., fX (k) =
1/N. We use s = 0.99 frequently to describe a “skewed” or simply
“Zipf” distribution for the key popularity, which is the default skew in
YCSB [11].
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Figure 4: Unique key count as a function of request count for
100 million unique keys, with varying Zipf skew (s).

contains overlapping tables, while other levels do not, and
has a different compaction trigger that is based on the
table count in the level, not the aggregate size of tables
in a level. L is closely related to read amplification; an
MSLS design may require L random I/Os to retrieve an
item that exists only in the last level (unless the design
uses additional data structures such as Bloom filters [5]).

To avoid complicating the analysis, we assume that all
items have equal size (e.g., 1000 bytes). This assumption
is consistent with YCSB [11], a widely-used key-value
store benchmark. We relax this assumption in Section 8.

3.3 Counting Unique Keys
A sequence of insert requests may contain duplicate keys.
The requests with duplicate keys overwrite or modify the
stored values. When storing the effect of the requests in a
table, only the final (combined) results survive. Thus, a
table can be seen as a set of distinct keys in the requests.

We first formulate Unique, a function describing the
expected number of unique keys that appear in p requests:
Definition 1.

Unique(p) := N −∑k∈K (1− fX (k))
p for p ≥ 0.

Theorem 1. Unique(p) is the expected number of unique
keys that appear in p requests.

Figure 4 plots the number of unique keys as a function
of the number of insert requests for 100 million unique
keys (N = 108). We use Zipf distributions with varying
skew. The unique key count increases as the request count
increases, but the increase slows down as the unique key
count approaches the total unique key count. The unique
key count with less skewed distributions increases more
rapidly than with more skewed distributions until it is
close to the maximum.

In the context of MSLS designs, Unique gives a hint
about how many requests (or how much time) it takes
for a level to reach a certain size from an empty state.
With no or low skew, a level quickly approaches its full
capacity and the system initiates compaction; with high
skew, however, it can take a long time to accumulate
enough keys to trigger compaction.

We examine another useful function, Unique−1, which
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Merge

Unique key countRequest count

Add
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Figure 5: Isomorphism of Unique. Gray bars indicate a certain
redundant key.

is the inverse function of Unique. Unique−1(u) estimates
the expected number of requests to observe u unique
keys in the requests.4 By extending the domain of Unique
to the real numbers, we can ensure the existence of
Unique−1:
Lemma 1. Unique−1(u) exists for 0 ≤ u < N.

We further extend the domain of Unique−1 to include
N by using limits. Unique(∞) := limp→∞ Unique(p) = N;
Unique−1(N) := limu→N Unique−1(u) = ∞.

It is straightforward to compute the value of
Unique−1(u) by solving Unique(p) = u for p numeri-
cally or by approximating Unique and Unique−1 with
piecewise linear functions.

3.4 Merging Tables
Compaction takes multiple tables and creates a new set of
tables that contain no duplicate keys. Nontrivial cases in-
volve tables with overlapping key ranges. For such cases,
we can estimate the size of merged tables using a combi-
nation of Unique and Unique−1:
Definition 2. Merge(u,v) := Unique(Unique−1(u) +
Unique−1(v)) for 0 ≤ u,v ≤ N.
Theorem 2. Merge(u,v) is the expected size of a merged
table that is created from two tables of sizes u and v.

In worst-case analysis, merging tables of size u and v
results in a new table of size u+ v, assuming the input
tables contain no duplicate keys. The error caused by
this assumption grows as u and v approach N and as
the key popularity has more skew. For example, with
100 million (108) total unique keys and Zipf skew of
0.99, Merge(107,9× 107) ≈ 9.03× 107 keys, whereas
the worst-case analysis expects 108 keys.

Finally, Unique is an isomorphism as shown in Fig-
ure 5. Unique maps the length of a sequence of requests
to the number of unique keys in it, and Unique−1 does
the opposite. Adding request counts corresponds to ap-

4 Unique−1 is similar to, but differs from, the generalized coupon
collector’s problem (CCP) [16]. Generalized CCP terminates as soon as
a certain number of unique items has been collected, whereas Unique−1

is merely defined as the inverse of Unique. Numerically, solutions of
the generalized CCP are typically smaller than those of Unique−1 due
to CCP’s eager termination.

plying Merge to unique key counts; the addition calcu-
lates the length of concatenated request sequences, and
Merge obtains the number of unique keys in the merged
table. Translating the number of requests to the number
of unique keys and vice versa makes it easy to build an
MSLS model, as presented in Section 4.

3.5 Handling Workloads with Dependence
As stated in Section 3.2, our primitives assume i.i.d.,
that insertions are independent, yet real-world work-
loads can have dependence between keys. A common
scenario is using composite keys to describe multiple
attributes of a single entity [26, 34]: [book100|title],
[book100|author], [book100|date]. Related composite
keys are often inserted together, resulting in dependent
inserts.

Fortunately, we can treat these dependent inserts as in-
dependent if each insert is independent of a large number
of (but not necessarily all) other inserts handled by the sys-
tem. The dependence between a few inserts causes little
effect on the overall compaction process because com-
paction involves many keys; for example, the compaction
cost difference between inserting keys independently and
inserting 10 related keys sharing the same key prefix as a
batch is only about 0.2% on LevelDB when the workload
contains 1 million or more total unique keys (for depen-
dent inserts, 100,000 or more independent key groups,
each of which has 10 related keys). Therefore, our prim-
itives give good estimates in many practical scenarios
which lack strictly independent inserts.

4 Modeling LevelDB
This section applies our analytic primitives to model a
practical MSLS design, LevelDB. We explain how the
dynamics of LevelDB components can be incorporated
into the LevelDB model. We compare the analytic esti-
mate with the measured performance of both a LevelDB
simulator and the original implementation.

We assume that the dictionary-based compression [10,
17, 21] is not used in logs and SSTables. Using compres-
sion can reduce the write amplification (WA) by a certain
factor; its effectiveness depends on how compressible
the stored data is. Section 8 discusses how we handle
variable-length items created as a result of compression.

Algorithm 1 summarizes the WA estimation for Lev-
elDB. unique() and merge() calculate Unique and Merge
as defined in Section 3. dinterval() calculates DInterval,
defined in this section.

4.1 Logging
LevelDB’s write-ahead logging (WAL) writes roughly
the same amount as the data volume of inserts. We do
not need to account for key redundancy because logging
does not perform redundancy removal. As a consequence,
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1 // @param L maximum level
2 // @param wal write-ahead log file size
3 // @param c0 level-0 SSTable count
4 // @param size level sizes
5 // @return write amplification
6 function estimateWA_LevelDB(L, wal, c0, size[]) {
7 local l, WA, interval[], write[];
8
9 // mem -> log

10 WA = 1;
11
12 // mem -> level-0
13 WA += unique(wal) / wal;
14
15 // level-0 -> level-1
16 interval[0] = wal * c0;
17 write[1] = merge(unique(interval[0]), size[1]);
18 WA += write[1] / interval[0];
19
20 // level-l -> level-(l+1)
21 for (l = 1; l < L; l++) {
22 interval[l] = interval[l-1] + dinterval(size, l);
23 write[l+1] = merge(unique(interval[l]),

size[l+1]) + unique(interval[l]);
24 WA += write[l+1] / interval[l];
25 }
26
27 return WA;
28 }

Algorithm 1: Pseudocode of a model of WA of LevelDB.

logging contributes 1 unit of WA (line #10). An advanced
WAL scheme [9] can lower the logging cost below 1 unit.

4.2 Constructing Level-0 SSTables
LevelDB stores the contents of the memtable as a new
SSTable in level-0 whenever the current log size reaches
a threshold wal, which is 4 MiB by default.5 Because
an SSTable contains no redundant keys, we use Unique
to compute the expected size of the SSTable correspond-
ing to the accumulated requests; for every wal requests,
LevelDB creates an SSTable of Unique(wal), which adds
Unique(wal)/wal to WA (line #13).

4.3 Compaction
LevelDB compacts one or more SSTables in a level into
the next level when any of the following conditions is
satisfied: (1) level-0 has at least c0 SSTables; (2) the ag-
gregate size of SSTables in a level-l (1 ≤ l ≤ L) reaches
Size(l) bytes; or (3) an SSTable has observed a certain
number of seeks from query processing. The original Lev-
elDB defines c0 = 4 SSTables6 and Size(l) = 10l MiB.
The level to compact is chosen based on the ratio of the
current SSTable count or level size to the triggering con-
dition, which can be approximated as prioritizing levels

5We use the byte size and the item count interchangeably based on
the assumption of fixed item size, as described in Section 3.2.

6LevelDB begins compaction with 4 level-0 SSTables, and new insert
requests stall if the compaction of level-0 is not fast enough that the
level-0 SSTable count reaches 12.

Level l

Key space

Level l-1
Fast

Slow

Figure 6: Non-uniformity of the key density caused by the
different compaction speed of two adjacent levels in the key
space. Each rectangle represents an SSTable. Vertical dotted
lines indicate the last compacted key; the rectangles right next
to the vertical lines will be chosen for compaction next time.

in their order from 0 to L in the model. The seek trigger
depends on the distribution of queries as well as of insert
requests, which is beyond the scope of this paper.

We examine two quantities to estimate the amortized
compaction cost: a certain interval (a request count) that
is large enough to capture the average compaction be-
havior of level-l, denoted as Interval(l); and the expected
amount of data written to level-(l +1) during that inter-
val, denoted as Write(l +1). The contribution to WA by
the compaction from level-l to level-(l + 1) is given by
Write(l+1)/ Interval(l) by the definition of WA (line #18,
#24).

4.3.1 Compacting Level-0 SSTables

LevelDB picks a level-0 SSTable and other level-0 SSTa-
bles that overlap with the first SSTable picked. It chooses
overlapping level-1 SSTables as the other compaction in-
put, and it can possibly choose more level-0 SSTables
as long as the number of overlapping level-1 SSTables
remains unchanged. Because level-0 contains overlapping
SSTables with a wide key range, a single compaction com-
monly picks multiple level-0 SSTables; to build a concise
model, we assume that all level-0 SSTables are chosen
for compaction whenever the trigger for level-0 is met.

Let Interval(0) be the interval of creating c0 SSTa-
bles, where Interval(0) = wal · c0 (line #16). Com-
paction performed for that duration merges the SSTa-
bles created from Interval(0) requests, which con-
tain Unique(Interval(0)) unique keys, into level-1
with Size(1) unique keys. Therefore, Write(1) =
Merge(Unique(Interval(0)),Size(1)) (line #17).

4.3.2 Compacting Non-Level-0 SSTables

While the compaction from level-l to level-(l +1) (1 ≤
l < L) follows similar rules as level-0 does, it is more
complicated because of how LevelDB chooses the next
SSTable to compact. LevelDB remembers LastKey(l),
the last key of the SSTable used in the last compaction
for level-l and picks the first SSTable whose smallest
key succeeds LastKey(l); if there exists no such SSTable,
LevelDB picks the SSTable with the smallest key in the
level. This compaction strategy chooses SSTables in a
circular way in the key space for each level.

Non-uniformity arises from round-robin compaction.
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Compaction removes items from a level, but its effect is
localized in the key space of that level. Compaction from
a lower level into that level, however, tends to push items
across the key space of the receiving level: the lower level
makes faster progress compacting the entire key space
because it contains fewer items, as depicted in Figure 6.
As a result, the recently-compacted part of the key space
has a lower chance of having items (low density), whereas
the other part, which has not been compacted recently,
is more likely to have items (high density). Because the
maximum SSTable size is constrained, the low density
area has SSTables covering a wide key range, and the
high density area has SSTables with a narrow key range.

This non-uniformity makes compaction cheaper. Com-
paction occurs for an SSTable at the dense part of the
key space. The narrow key range of the dense SSTable
means a relatively small number of overlapping SSTa-
bles in the next level. Therefore, the compaction of the
SSTable results in less data written to the next level.

Some LevelDB variants [22] explicitly pick an SSTable
that maximizes the ratio of the size of that SSTable to the
size of all overlapping SSTables in the next level, in hope
of making the compaction cost smaller. Interestingly, due
to the non-uniformity, LevelDB already implicitly realizes
a similar compaction strategy. Our simulation results (not
shown) indicate that the explicit SSTable selection brings
a marginal performance gain over LevelDB’s circular
SSTable selection.

To quantify the effect of the non-uniformity to com-
paction, we model the density distribution of a level. Let
DInterval(l) be the expected interval between compaction
of the same key in level-l. This is also the interval to merge
the level-l data into the entire key space of level-(l +1).
We use d to indicate the unidirectional distance from the
most recently compacted key LastKey(l) to a key in the
key space, where 0 ≤ d < N. d = 0 represents the key
just compacted, and d = N − 1 is the key that will be
compacted next time. Let Density(l,d) be the probability
of having an item for the key with distance d in level-l.
Because we assume no spatial key locality, we can for-
mulate Density by approximating LastKey(l) to have a
uniform distribution:
Theorem 3. Assuming P(LastKey(l) = k) = 1/N
for 1 ≤ l < L, k ∈ K, then Density(l,d) =
Unique(DInterval(l) ·d/N)/N for 1 ≤ l < L, 0 ≤ d < N.

We also use a general property of the density:
Lemma 2. ∑N−1

d=0 Density(l,d) = Size(l) for 1 ≤ l < L.

The value of DInterval(l) can be obtained by solving it
numerically using Theorem 3 and Lemma 2.

We see that DInterval(l) is typically larger than
Unique−1(Size(l)) that represents the expected interval
of compacting the same key without non-uniformity. For
example, with Size(l) = 10 Mi, N = 100 M (108), and

Level l

Level l+1
Key space

False overlaps

Figure 7: False overlaps that occur during the LevelDB com-
paction. Each rectangle indicates an SSTable; its width indicates
the table’s key range, not the byte size.

a uniform key popularity distribution, DInterval(l) is at
least twice as large as Unique−1(Size(l)): 2.26×107 vs.
1.11×107. This confirms that non-uniformity does slow
down the progression of LastKey(l), improving the effi-
ciency of compaction.

Interval(l), the actual interval we use to calculate the
amortized WA, is cumulative and increases by DInterval,
i.e., Interval(l) = Interval(l−1)+DInterval(l) (line #22).
Because compacting lower levels is favored over compact-
ing upper levels, an upper level may contain more data
than its compaction trigger as an overflow from lower
levels. We use a simple approximation to capture this
behavior by adding the cumulative term Interval(l −1).

False overlaps are another effect caused by the incre-
mental compaction using SSTables in LevelDB. Unlike
non-uniformity, they increase the compaction cost slightly.
For an SSTable being compacted, overlapping SSTables
in the next level may contain items that lie outside the
key range of the SSTable being compacted, as illustrated
in Figure 7. Even though the LevelDB implementation
attempts to reduce such false overlaps by choosing more
SSTables in the lower level without creating new over-
lapping SSTables in the next level, false overlaps may
add extra data writes whose size is close to that of the
SSTables being compacted, i.e., Unique(Interval(l)) for
Interval(l). Note that these extra data writes caused by
false overlaps are more significant when Unique for the
interval is large, i.e., under low skew, and they diminish
as Unique becomes small, i.e., under high skew.

Several proposals [30, 41] strive to further reduce false
overlaps by reusing a portion of input SSTables, essen-
tially trading storage space and query performance for
faster inserts. Such techniques can reduce WA by up to
1 per level, and even more if they address other types
of false overlaps; the final cost savings, however, largely
depend on the workload skew and the degree of the reuse.

By considering all of these factors, we can calculate the
expected size of the written data. During Interval(l), level-
l accepts Unique(Interval(l)) unique keys from the lower
levels, which are merged into the next level containing
Size(l +1) unique keys. False overlaps add extra writes
roughly as much as the compacted level-l data. Thus,
Write(l+1) =Merge(Unique(Interval(l)),Size(l+1))+
Unique(Interval(l)) (line #23).
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Figure 8: Effects of the workload skew on WA. Using 100
million unique keys, 1 kB item size.

4.4 Sensitivity to the Workload Skew
To examine how our LevelDB model reacts to the work-
load skew, we compare our WA estimates with worst-case
analysis results. Our worst-case scenarios make the same
assumption as prior asymptotic analyses [2, 36, 39], that
the workload has no redundancy; therefore, merging two
SSTables yields an SSTable whose size is exactly the
same as the sum of the input SSTable sizes. In other
words, compacting levels of size u and v results in u+ v
items in the worst case.

Figure 8 plots the estimated WA for different Zipf skew
parameters. Because our analytic model (“LevelDB-ana”)
considers the key popularity distribution of the workload
in estimating WA, it clearly shows how WA decreases
as LevelDB handles more skewed workloads; in contrast,
the worst-case analysis (“Worst-case analysis”) gives the
same result regardless of the skew.

4.5 Comparisons with the Worst-Case
Analysis, Simulation, and Experiment

We compare analytic estimates of WA given by our Lev-
elDB model with the estimates given by the worst-case
analysis, and the measured cost by running experiments
on a LevelDB simulator and the original implementation.

We built a fast LevelDB simulator in C++ that follows
the LevelDB design specification [20] to perform an item-
level simulation and uses system parameters extracted
from the LevelDB source code. This simulator does not
intend to capture every detail of LevelDB implementation
behaviors; instead, it realizes the high-level design com-
ponents as explained in the LevelDB design document.
The major differences are (1) our simulator runs in mem-
ory; (2) it performs compaction synchronously without
concurrent request processing; and (3) it does not imple-
ment several opportunistic optimizations: (a) reducing
false overlaps by choosing more SSTables in the lower
level, (b) bypassing level-0 and level-1 for a newly created
SSTable from the memtable if there are no overlapping
SSTables in these levels, and (c) dynamically allowing
more than 4 level-0 SSTables under high load.

For the measurement with the LevelDB implementa-
tion, we instrumented the LevelDB code (v1.18) to report
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Figure 9: Comparison of WA between the estimation from our
LevelDB model, the worst-case analysis, LevelDB simulation,
and implementation results, with a varying number of total
unique keys. Using 1 kB item size. Simulation and implementa-
tion results with a large number of unique keys are unavailable
due to excessive runtime.

the number of bytes written to disk via system calls. We
use an item size that is 18 bytes smaller than we do in
the analysis and simulation, to compensate for the in-
creased data writes due to LevelDB’s own storage space
overhead. For fast experiments, we disable fsync and
checksumming,7 which showed no effects on WA in our
experiments. We also avoid inserting items at an excessive
rate that can overload level-0 with many SSTables and
cause a high lookup cost.

Both LevelDB simulator and implementation use a
YCSB [11]-like workload generator written in C++. Each
experiment initializes the system by inserting all keys
once and then measures the average WA of executing
random insert requests whose count is 10 times the total
unique key count.

Figure 9 shows WA estimation and measurement with
a varying number of total unique keys. Due to exces-
sive experiment time, the graph excludes some data
points for simulation (“LevelDB-sim”) and implemen-
tation (“LevelDB-impl”) with a large number of unique
keys. The graph shows that our LevelDB model success-
fully estimates WA that agrees almost perfectly with the
simulation and implementation results. The most signif-
icant difference occurs at 330 M unique keys with the
uniform popularity distribution, where the estimated WA
is only 3.0% higher than the measured WA. The standard
worst-case analysis, however, significantly overestimates
WA by 1.8–3.5X compared to the actual cost, which high-
lights the accuracy of our LevelDB model.

Figure 10 compares results with different write buffer
size (i.e., the memtable size), which determines how much
data in memory LevelDB accumulates to create a level-0
SSTable (and also affects how long crash recovery may

7MSLS implementations can use special CPU instructions to acceler-
ate checksumming and avoid making it a performance bottleneck [23].
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Figure 10: Comparison of WA between the estimation from our
LevelDB model and implementation results, with varying write
buffer sizes. Using 10 million unique keys, 1 kB item size.

take). In our LevelDB model, wal reflects the write buffer
size. We use write buffer sizes between LevelDB’s default
size of 4 MiB and 10% of the last level size. The result in-
dicates that our model estimates WA with good accuracy,
but the error increases as the write buffer size increases
for uniform key popularity distributions. We suspect that
the error comes from the approximation in the model to
take into account temporal overflows of levels beyond
their maximum size; the error diminishes when level sizes
are set to be at least as large as the write buffer size. In
fact, avoiding too small level-1 and later levels has been
suggested by RocksDB developers [14], and our optimiza-
tion performed in Section 6 typically results in moderately
large sizes for lower levels under uniform distributions,
which makes this type of error insignificant for practical
system parameter choices.

5 Modeling Universal Compaction
This section focuses on how we can model complex com-
paction strategies such as “universal compaction” imple-
mented in RocksDB [15]. Section 7 revisits RocksDB to
compare its “level style compaction” with LevelDB.

Universal compaction combines three small com-
paction strategies. RocksDB keeps a list of SSTables or-
dered by the age of their data, and compaction is restricted
to adjacent tables. Compaction begins when the SSTable
count exceeds a certain threshold (Precondition). First,
RocksDB merges all SSTables whose total size minus the
last one’s size exceeds the last one’s size by a certain fac-
tor (Condition 1); second, it merges consecutive SSTables
that do not include a sudden increase in size beyond a
certain factor (Condition 2); third, it merges the newest
SSTables such that the total SSTable count drops below
a certain threshold (Condition 3). Condition 1 avoids ex-
cessive duplicate data across SSTables, and Conditions 2
and 3 prevent high read amplification.

In such a multi-strategy system, it is difficult to de-
termine how frequently each condition will cause com-
paction and what SSTables will be chosen for compaction.

We take this challenge as an opportunity to demonstrate
how our analytic primitives are applicable to analyzing
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Figure 11: Comparison of WA between the estimation from
our table-level simulation and implementation results for
RocksDB’s universal compaction, with a varying number of
total unique keys. Using 1 kB item size.

a complex system by using a table-level simulation. Un-
like full simulators that keep track of individual items, a
table-level simulator calculates only the SSTable size. It
implements compaction conditions as the system design
specifies, and it estimates the size of new or merged SSTa-
bles by using our analytic primitives. Dividing the total
size of created SSTables by the total number of inserts
gives the estimated WA. Unlike our LevelDB model that
understands incremental compaction, a model for univer-
sal compaction does not need to consider non-uniformity
and false overlaps. Interested readers may refer to Ap-
pendix C for the full pseudocode of the simulator.

Figure 11 compares WA obtained by our table-level
simulation and the full RocksDB implementation. We
use the default configuration, except for the SSTables
count for compaction triggers set to 12. The simulation
result (“RocksDBUC-sim”) is close to the measured WA
(“RocksDBUC-impl”). The estimated WA differs from
the measured WA by up to 6.5% (the highest error with
33 M unique keys and skewed key inserts) though the
overall accuracy remains as high as our LevelDB model
presented in Section 4.

6 Optimizing System Parameters
Compared to full simulators and implementations, an
analytic model offers fast estimation of cost metrics for
a given set of system parameters. To demonstrate fast
evaluation of the analytic model, we use an example of
optimizing LevelDB system parameters to reduce WA
using our LevelDB model.

Note that the same optimization effort could be made
with the full LevelDB implementation by substituting our
LevelDB model with the implementation and a synthetic
workload generator. However, it would take prohibitively
long to explore the large parameter space, as examined in
Section 6.4.

6.1 Parameter Set to Optimize
The level sizes, Size(l), are important system parameters
in LevelDB. They determine when LevelDB should initi-
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Figure 12: Improved WA using optimized level sizes on our
analytic model and simulator for LevelDB.
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Figure 13: Improved WA using optimized level sizes on the
LevelDB implementation.

ate compaction for standard levels and affect the overall
compaction cost of the system. The original LevelDB de-
sign uses a geometric progression of Size(l) = 10l MiB.
Interesting questions are (1) what level sizes different
workloads favor; and (2) whether the geometric progres-
sion of level sizes is the optimal for all workloads.

Using different level sizes does not necessarily trade
query performance or memory use. The log size, level-0
SSTable count, and total level count—the main determi-
nants of query performance—are all unaffected by this
system parameter.

6.2 Optimizer

We implemented a system parameter optimizer based on
our analytic model. The objective function to minimize
is the estimated WA. Input variables are Size(l), exclud-
ing Size(L), which will be equal to the total unique key
count. After finishing the optimization, we use the new
level sizes to obtain new WA estimates and measurement
results on our analytic model and simulator. We also force
the LevelDB implementation to use the new level sizes
and measure WA. Our optimizer is written in Julia [4] and
uses Ipopt [47] for nonlinear optimization. To speed up
Unique, we use a compressed key popularity distribution
which groups keys with similar probabilities and stores
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Figure 14: Original and optimized level sizes with varying Zipf
skew. Using 100 million unique keys, 1 kB item size.

Source Analysis Simulation
No opt Opt No opt Opt

mem→log 1.00 1.00 1.00 1.00
mem→level-0 1.00 1.00 1.00 1.00

level-0→1 1.62 3.85 1.60 3.75
level-1→2 4.77 4.85 4.38 4.49
level-2→3 6.22 4.82 6.04 4.66
level-3→4 6.32 4.65 6.12 4.58
level-4→5 4.89 3.50 5.31 3.93

Total 25.82 23.67 25.45 23.41

Table 1: Breakdown of WA sources on the analysis and simu-
lation without and with the level size optimization. Using 100
million unique keys, 1 kB item size, and a uniform key popular-
ity distribution.

their average probability.8

6.3 Optimization Results
Our level size optimization successfully reduces the insert
cost of LevelDB. Figures 12 and 13 plot WA with opti-
mized level sizes. Both graphs show that the optimization
(“LevelDB-ana-opt,” “LevelDB-sim-opt,” and “LevelDB-
impl-opt”) improves WA by up to 9.4%. The analytic
estimates and simulation results agree with each other as
before, and the LevelDB implementation exhibits lower
WA across all unique key counts.

The optimization is effective because level sizes differ
by the workload skew, as shown in Figure 14. Having
larger lower levels is beneficial for relatively low skew as
it reduces the size ratio of adjacent levels. On the other
hand, high skew favors smaller lower levels and level sizes
that grow faster than the standard geometric progression.
With high skew, compaction happens more frequently
in the lower levels to remove redundant keys; keeping
these levels small reduces the cost of compaction. This
result suggests that it is suboptimal to use fixed level
sizes for different workloads and that using a geometric
progression of level sizes is not always the best design to
minimize WA.

8For robustness, we optimize using both the primal and a dual form
of the LevelDB model presented in Section 4. The primal optimizes
over Size(l) and the dual optimizes over Unique−1(Size(l)). We pick
the result of whichever model produces the smaller WA.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 159

3 4 5 6 7 8

Level count

0

10

20

30

40

50

60

70

80

90
W

rit
e

am
pl

ifi
ca

tio
n

Worst-case analysis
LevelDB-ana (Uniform)
LevelDB-ana (Zipf)

LevelDB-ana-opt (Uniform)
LevelDB-ana-opt (Zipf)

Figure 15: WA using varying numbers of levels. The level count
excludes level-0. Using 100 million unique keys, 1 kB item size.
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Figure 16: Improved WA using optimized level sizes on the
LevelDB implementation, with a large write buffer. Using 10
million unique keys, 1 kB item size.

Table 1 further examines how the optimization affects
per-level insert costs, using the LevelDB model and simu-
lation. Per-level WA tends to be more variable using the
original level sizes, while the optimization makes them
relatively even across levels except the last level. This
result suggests that it may be worth performing a run-
time optimization that dynamically adjusts level sizes to
achieve the lower overall WA by reducing the variance of
the per-level WA.

By lowering WA, the system can use fewer levels to
achieve faster lookup speed without significant impact
on insert costs. Figure 15 reveals how much extra room
for query processing the optimization can create. This
analysis changes the level count by altering the growth
factor of LevelDB, i.e., using a higher growth factor for a
lower level count. The result shows that the optimization
is particularly effective with a fewer number of levels, and
it can save almost a whole level’s worth of WA compared
to using a fixed growth factor. For example, with the
optimized level sizes, a system can use 3 levels instead of
4 levels without incurring excessively high insert costs.

A LevelDB system with large memory can further ben-
efit from our level size optimization. Figure 16 shows
the result of applying the optimization to the LevelDB
implementation, with a large write buffer. The improve-
ment becomes more significant as the write buffer size
increases, reaching 26.2% of WA reduction at the buffer
size of 1 million items.

6.4 Optimizer Performance
The level size optimization requires little time due to
the fast evaluation of our analytic model. For 100 mil-
lion unique keys with a uniform key popularity distribu-
tion, the entire optimization took 2.63 seconds, evaluat-
ing 17,391 different parameter sets (6,613 evaluations per
second) on a server-class machine equipped with Intel®
Xeon® E5-2680 v2 processors. For the same-sized work-
load, but with Zipf skew of 0.99, the optimization time
increased to 79 seconds, which is far more than the uni-
form case, but is less than 2 minutes; for this optimization,
the model was evaluated 16,680 times before convergence
(211 evaluations per second).

Evaluating this many system parameters using a full
implementation—or even item-level simulation—is pro-
hibitively expensive. Using the same hardware as above,
our in-memory LevelDB simulator takes 45 minutes to
measure WA for a single set of system parameters with
100 million unique keys. The full LevelDB implementa-
tion takes 101 minutes (without fsync) to 490 minutes
(with fsync), for a smaller dataset with 10 million unique
keys.

7 Improving RocksDB
In this section, we turn our attention to RocksDB [12],
a well-known variant of LevelDB. RocksDB offers im-
proved capabilities and multithreaded performance, and
provides an extensive set of system configurations to tem-
porarily accelerate bulk loading by sacrificing query per-
formance or relaxing durability guarantees [13, 14]; nev-
ertheless, there have been few studies of how RocksDB’s
design affects its performance. We use RocksDB v4.0 and
apply the same set of instrumentation, configuration, and
workload generation as we do to LevelDB.

RocksDB supports “level style compaction” that is sim-
ilar to LevelDB’s data layout, but differs in how it picks
the next SSTable to compact. RocksDB picks the largest
SSTable in a level for compaction,9 rather than keeping
LevelDB’s round-robin SSTable selection. We learned in
Section 4, however, that LevelDB’s compaction strategy
is effective in reducing WA because it tends to pick SSTa-
bles that overlap a relatively small number of SSTables in
the next level.

To compare the compaction strategies used by LevelDB
and RocksDB, we measure the insert cost of both systems
in Figure 17. Unfortunately, the current RocksDB strat-
egy produces higher WA (“RocksDB-impl”) than Lev-
elDB does (“LevelDB-impl”). In theory, the RocksDB
approach may help multithreaded compaction because
large tables may be spread over the entire key space so
that they facilitate parallel compaction; this effect, how-

9Recent versions of RocksDB support additional strategies for
SSTable selection.
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Figure 17: Comparison of WA between LevelDB, RocksDB,
and a modified RocksDB with LevelDB-like SSTable selection.

ever, was not evident in our experiments using multi-
ple threads. The high insert cost of RocksDB is entirely
caused by RocksDB’s compaction strategy; implementing
LevelDB’s SSTable selection in RocksDB (“RocksDB-
impl-rr”) reduces RocksDB’s WA by up to 32.0%, making
it comparable to LevelDB’s WA. This result confirms that
LevelDB’s strategy is good at reducing WA as our analytic
model predicts.

We have not found a scenario where RocksDB’s current
strategy excels, though some combinations of workloads
and situations may favor it. LevelDB and RocksDB devel-
opers may or may have not intended any of the effects on
WA when designing their systems. Either way, our ana-
lytic model provides quantitative evidence that LevelDB’s
table selection will perform well under a wide range of
workloads despite being the “conventional” solution.

8 Estimating Read Amplification
This section presents read amplification (RA) estimation.

We introduce a weighted variant of our analytic prim-
itives. A per-key weight w, which is nontrivial (i.e.,
w(k) �= 0 for some k) and nonnegative, specifies how
much contribution each key makes to the result:
Definition 3.
Unique(p,w) := ∑k∈K [1− (1− fX (k))

p]w(k) for p ≥ 0.
We construct w(k) to indicate the probability of having

key k for each query. For level-l, let s(l) and e(l) be
the expected age of the newest and oldest item in level-
l in terms of the number of inserts, obtained by using
the system model presented in Section 4. We find c(l),
the expected I/O cost to perform a query at level-l. The
expected I/O cost to perform queries that finish at level-l
is [Unique(e(l),w)−Unique(s(l),w)] · c(l). Adding the
expected I/O cost of each level gives the overall RA.

As another use case, the weighted variant can add sup-
port for variable-length items to the system models pre-
sented in Sections 4 and 5. By setting w(k) to the size of
the item for key k, Unique returns the expected size of
unique items instead of their expected count. Because
weighted Unique is still strictly monotonic, weighted
Unique−1 and Merge exist.

9 Discussion
Analyzing an MSLS design with an accurate model can
provide useful insights on how one should design a new
MSLS to exploit opportunities provided by workloads.
For example, our analytic model reveals that LevelDB’s
byte size-based compaction trigger makes compaction
much less frequent and less costly under skew; such a
design choice should be suitable for many real-world
workloads with skew [1].

A design process complemented with accurate analysis
can help avoid false conclusions about a design’s perfor-
mance. LevelDB’s per-level WA is less (only up to 4–6)
than assumed in the worst case (11–12 for a growth factor
of 10), even for uniform workloads. Our analytical model
justifies LevelDB’s high growth factor, which turns out
to be less harmful for insert performance than standard
worst-case analysis implies.

Our analytic primitives and modeling are not without
limitations. Assumptions such as independence and no
spatial locality in requested keys may not hold if there
are dependent keys that share the same prefix though a
small amount of such dependence does not change the
overall system behavior and thus can be ignored as dis-
cussed in Section 3.5. Our modeling in Section 4 does not
account for time-varying workload characteristics (e.g.,
flash crowds) or special item types such as tombstones
that represent item deletion, while the simulation-oriented
modeling in Section 5 can handle such cases. We leave ex-
tending our primitives further to accommodate remaining
cases as future work.

Both design and implementation influence the final sys-
tem performance. Our primitives and modeling are useful
for understanding the design of MSLS systems. Although
we use precise metrics such as WA to describe the sys-
tem performance throughout this work, these metrics are
ultimately not identical to implementation-level metrics
such as operations per second. Translating a good sys-
tem design into an efficient implementation is critical to
achieving good performance, and remains a challenging
and important goal for system developers and researchers.

10 Related Work
Over the past decade, numerous studies have proposed
new multi-stage log-structured (MSLS) designs and eval-
uated their performance. In almost every case, the authors
present implementation-level performance [2, 12, 18, 19,
22, 29, 30, 32, 39, 40, 41, 42, 43, 46, 48]. Some employ
analytic metrics such as write amplification to explain the
design rationale, facilitate design comparisons, and gener-
alize experiment results [12, 22, 29, 30, 32, 39, 43], and
most of the others also use the concept of per-operation
costs. However, they eventually rely on the experimental
measurement because their analysis fails to offer suffi-



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 161

ciently high accuracy to make meaningful performance
comparisons. LSM-tree [36], LHAM [33], COLA [2],
bLSM [39], and B-tree variants [6, 24] provide extensive
analysis on their design, but their analyses are limited to
asymptotic complexities or always assume the worst case.

Despite such a large number of MSLS design proposals,
there is little active research to devise improved evaluation
methods for these proposals to fill the gap between asymp-
totic analysis and experimental measurement. The sole
existing effort is limited to a specific system design [31],
but does not provide general-purpose primitives. We are
unaware of prior studies that successfully capture work-
load skew and the dynamics of compaction to the degree
that the estimates are close to simulation and implementa-
tion results, as we present in this paper.

11 Conclusion
We present new analytic primitives for modeling multi-
stage log-structured (MSLS) designs, which can quickly
and accurately estimate their performance. We have pre-
sented a model for the popular LevelDB system, which
estimates write amplification very close to experimentally
determined actual costs; using this model, we were able
to find more favorable system parameters that reduce the
overall cost of writes. Based upon lessons learned from
the model, we propose changes to RocksDB to lower its
insert costs. We believe that our analytic primitives and
modeling method are applicable to a wide range of MSLS
designs and performance metrics. The insights derived
from the models facilitate comparisons of MSLS designs
and ultimately help develop new designs that better ex-
ploit workload characteristics to improve performance.
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A Proofs
This section provides proofs for theorems presented in
this paper.

Theorem 1. (in Section 3.3) Unique(p) is the expected
number of unique keys that appear in p requests.

Proof. Key k counts towards the unique key count if
k appears at least once in a sequence of p requests,
whose probability is 1− (1− fX (k))p. Therefore, the ex-
pected unique key count is ∑k∈K (1− (1− fX (k))p) =
N −∑k∈K (1− fX (k))p = Unique(p).

Lemma 1. (in Section 3.3) Unique−1(u) exists for 0 ≤
u < N.

Proof. Suppose 0 ≤ p < q. (1− fX (k))q < (1− fX (k))p

because 0 < 1− fX (k) < 1. Unique(q)−Unique(p) =
−∑k∈K (1− fX (k))q + ∑k∈K (1− fX (k))p > 0. Thus,
Unique is a strictly monotonic function that is defined
over [0,N).

Theorem 2. (in Section 3.4) Merge(u,v) is the expected
size of a merged table that is created from two tables
whose size is u and v.

Proof. Let p and q be the expected numbers of in-
sert requests that would produce tables of size u
and v, respectively. The merged table is expected
to contain all k ∈ K except those missing in both
request sequences. Therefore, the expected merged
table size is N − ∑k∈K (1− fX (k))p(1− fX (k))q =
Unique(p + q). Because p = Unique−1(u) and q =
Unique−1(v), Unique(Unique−1(u) + Unique−1(v)) =
Merge(u,v).

Theorem 3. (in Section 4.3) Assuming P(LastKey(l) =
k) = 1/N for 1 ≤ l < L, k ∈ K, then Density(l,d) =
Unique(DInterval(l) ·d/N)/N for 1 ≤ l < L, 0 ≤ d < N.

Proof. Suppose LastKey(l) = k ∈ K. Let k′ be (k− d +
N) mod N. Let r be DInterval(l) · d/N. There are r re-
quests since the last compaction of k′. Level-l has k′

if any of r requests contains k′, whose probability is
1− (1− fX (k′))r.

By considering all possible k and thus all possi-
ble k′, Density(l,d) = ∑k∈K (1/N)(1− (1− fX (k))r) =
Unique(DInterval(l) ·d/N)/N.

Lemma 2. (in Section 4.3) ∑N−1
d=0 Density(l,d) = Size(l)

for 1 ≤ l < L.

Proof. The sum over the density equals to the expected
unique key count, which is the number of keys level-l
maintains, i.e., Size(l).

Theorem 4. (in Section 8) The expected I/O cost to
perform queries that finishes at level-l is given by
[Unique(e(l),w)−Unique(s(l),w)] · c(l), where w de-
scribes the query distribution and c(l) is the expected
I/O cost to perform a query at level-l.

Proof. For key k to exist in level-l and be used for query
processing (without being served in an earlier level), it
must appear in at least one of e(l)− s(l) requests and in
none of other s(l) requests. The first condition ensures the
existence of the key in level-l, and the second condition
rejects the existence of the key in an earlier level (other-
wise, queries for key k will be served in that level). Thus,
the probability of such a case is (1− (1− fX (k))e(l)−s(l)) ·
(1− fX (k))s(l) = (1− fX (k))s(l)− (1− fX (k))e(l).

The expected I/O cost to perform a query for key k that
finishes at level-l is

[
(1− fX (k))s(l)− (1− fX (k))e(l)

]
·

c(l).
Because the fraction of the queries for key k

among all queries is given by w(k), the expected
I/O cost to perform queries that finishes at level-
l is ∑

k∈K

[
(1− fX (k))s(l)− (1− fX (k))e(l)

]
c(l)w(k) =

∑
k∈K

[(
(1− (1− fX (k))e(l)

)
−
(

1− (1− fX (k))s(l)
)]

w(k)

c(l) = [Unique(e(l),w)−Unique(s(l),w)] · c(l).

B Modeling COLA and SAMT
The cache-oblivious lookahead array (COLA) [2] is a
generalized and improved binomial list [3]. Like LSM-
tree, COLA has multiple levels whose count is �logr N�,
where r is the growth factor. Each level contains zero or
one SSTable. Unlike LSM-tree, however, COLA uses the
merge count as the main compaction criterion; a level in
COLA accepts r−1 merges with the lower level before
the level is merged into the next level.

COLA has roughly similar asymptotic complexities to
LSM-tree’s. A query in COLA may cost O(logr N) ran-
dom I/O per lookup if looking up a level costs O(1) ran-
dom I/O. COLA’s data migration costs O((r−1) logr N)
I/O per insert. r is usually chosen between 2 and 4.

The Sorted Array Merge Tree (SAMT) [42] is similar
to COLA but performs compaction differently. Instead of
eagerly merging data to have a single log structure per
level, SAMT keeps up to r SSTables before merging them
and moving the merged data into the next level. Therefore,
a lookup costs O(r logr N) random I/O, whereas the per-
update I/O cost decreases to O(logr N).

A few notable systems implementing a version of
COLA and SAMT are HBase [45] and Cassandra [27, 44].

Algorithm 2 presents models for COLA and SAMT.
Both models assume that the system uses write-ahead
log files whose count is capped by the growth factor r.
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1 // @param L maximum level
2 // @param wal write-ahead log file size
3 // @param r growth factor
4 // @return write amplification
5 function estimateWA_COLA(L, wal, r) {
6 local l, j, WA, interval[], write[];
7 // mem -> log
8 WA = 1;
9 // mem -> level-1; level-l -> level-(l+1)

10 interval[0] = wal;
11 for (l = 0; l < L - 1; l++) {
12 interval[l + 1] = interval[l] * r;
13 write[l + 1] = 0;
14 for (j = 0; j < r - 1; j++)
15 write[l + 1] += merge(unique(interval[l]),

unique(interval[l] * j));
16 WA += write[l + 1] / interval[l + 1];
17 }
18 // level-(L-1) -> level-L
19 WA += unique(∞) / interval[L - 1];
20 return WA;
21 }
22
23 function estimateWA_SAMT(L, wal, r) {
24 local l, WA, interval[], write[];
25 // mem -> log
26 WA = 1;
27 // mem -> level-1; level-l -> level-(l+1)
28 interval[0] = wal;
29 for (l = 0; l < L - 1; l++) {
30 interval[l + 1] = interval[l] * r;
31 write[l + 1] = r * unique(interval[l]);
32 WA += write[l + 1] / interval[l + 1];
33 }
34 // level-(L-1) -> level-L
35 WA += unique(∞) / interval[L - 1];
36 return WA;
37 }

Algorithm 2: Pseudocode of models of WA of COLA and
SAMT.

In COLA, line #15 calculates the amount of writes for a
level that has already accepted j merges (0 ≤ j < r−1).
Compaction of the second-to-last level is treated specially
because the last level must be large enough to hold all
unique keys and has no subsequent level (line #19). The
SAMT model is simpler because it defers merging the
data in the same level.

C Modeling Universal Compaction
Algorithm 3 models RocksDB’s universal compaction
using a table-level simulation presented in Section 5.
Line #15 estimates the size of a new SSTable created from
insert requests. Line #26, #43, and #55 predict the out-
come of SSTable merges caused of different compaction
triggers.

merge_all() takes a list of (multiple) SSTable sizes
and returns the expected size of the merge result (i.e.,
Unique(∑i Unique−1(sizes[i]))).
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1 // @param wal write-ahead log file size
2 // @param level0_file_num_compaction_trigger number of files to trigger compaction
3 // @param level0_stop_writes_trigger maximum number of files
4 // @param max_size_amplification_percent parameter for Condition 1
5 // @param size_ratio parameter for Condition 2
6 // @param tables list of initial SSTable sizes
7 // @param num_inserts number of inserts to simulate
8 // @return write amplification
9 function estimateWA_UC(wal, level0_file_num_compaction_trigger, level0_stop_writes_trigger,

max_size_amplification_percent, size_ratio, tables, num_inserts) {
10 local inserts, writes, done, last, start_i, last_i, i, candidate_count, candidate_size, table_size;
11 inserts = writes = 0;
12 while (inserts < num_inserts) {
13 if (len(tables) < level0_stop_writes_trigger) {
14 // a new SSTable
15 table_size = unique(wal);
16 writes += wal; // mem -> log
17 writes += table_size; // mem -> level-0
18 inserts += wal;
19 tables = [table_size] + tables;
20 }
21 // Precondition
22 if (len(tables) >= level0_file_num_compaction_trigger) {
23 last = len(tables) - 1;
24 // Condition 1
25 if (sum(tables[0...last-1]) / tables[last] > max_size_amplification_percent / 100) {
26 table_size = merge_all(tables);
27 tables = [table_size];
28 writes += table_size; // level-0 -> level-0
29 } else {
30 done = false;
31 // Condition 2
32 for (start_i = 0; start_i < len(tables); start_i++) {
33 candidate_count = 1;
34 candidate_size = tables[start_i];
35 for (i = start_i + 1; i < len(tables); i++) {
36 if (candidate_size * (100 + size_ratio) / 100 < tables[i])
37 break;
38 candidate_size += tables[i];
39 candidate_count++;
40 }
41 if (candidate_count >= 2) {
42 last_i = start_i + candidate_count - 1;
43 table_size = merge_all(tables[start_i...last_i]);
44 tables = tables[0...start_i-1] + [table_size] + tables[last_i+1...last]);
45 writes += table_size; // level-0 -> level-0
46 done = true;
47 break;
48 }
49 }
50 // Condition 3
51 if (done == false) {
52 candidate_count = len(tables) - level0_file_num_compaction_trigger;
53 if (candidate_count >= 2) {
54 last_i = candidate_count - 1;
55 table_size = merge_all(tables[0...last_i]);
56 tables = [table_size] + tables[last_i+1...last];
57 writes += table_size; // level-0 -> level-0
58 }
59 }
60 }
61 }
62 }
63 return writes / inserts;
64 }

Algorithm 3: Pseudocode of a table-level simulation of RocksDB’s universal compaction.




