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Abstract

Fast concurrent hash tables are an increasingly important
building block as we scale systems to greater numbers of cores
and threads. This paper presents the design, implementation,
and evaluation of a high-throughput and memory-efficient
concurrent hash table that supports multiple readers and writ-
ers. The design arises from careful attention to systems-level
optimizations such as minimizing critical section length and
reducing interprocessor coherence traffic through algorithm
re-engineering. As part of the architectural basis for this
engineering, we include a discussion of our experience and
results adopting Intel’s recent hardware transactional memory
(HTM) support to this critical building block. We find that
naively allowing concurrent access using a coarse-grained
lock on existing data structures reduces overall performance
with more threads. While HTM mitigates this slowdown
somewhat, it does not eliminate it. Algorithmic optimizations
that benefit both HTM and designs for fine-grained locking
are needed to achieve high performance.

Our performance results demonstrate that our new hash
table design—based around optimistic cuckoo hashing—
outperforms other optimized concurrent hash tables by up
to 2.5x for write-heavy workloads, even while using substan-
tially less memory for small key-value items. On a 16-core
machine, our hash table executes almost 40 million insert and
more than 70 million lookup operations per second.

1. Introduction

High-performance, concurrent hash tables are one of the fun-
damental building blocks for modern systems, used both in
concurrent user-level applications and in system applications
such as kernel caches. As we continue our hardware-driven
race towards more and more cores, the importance of having
high-performance, concurrency-friendly building blocks in-
creases. Obtaining these properties increasingly requires a
combination of algorithmic engineering and careful attention
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Figure 1: Highest throughput achieved by different hash ta-
bles on a 4-core machine. (*) are our new hash tables.

to systems issues such as internal parallelism, cache align-
ment, and cache coherency.

At the outset of this research, we hoped to capitalize on the
recently introduced hardware transactional memory (HTM)
support in Intel’s new Haswell chipset, the TSX instruc-
tions [1]. Contrary to our expectations, however, we ended up
implementing a design that performs well regardless of its use
of HTM, and the bulk of our time was not spent dealing with
concurrency mechanisms, but rather in algorithm and data
structure engineering to optimize for concurrent access. For
fast hash tables, HTM’s biggest benefit may be to software en-
gineering, by reducing the intellectual complexity of locking,
with a modest performance gain as a secondary benefit.

As a result of these efforts, this paper presents the design
and implementation of the first high-performance, multiple-
reader/writer hash table that achieves the memory efficiency
of multi-way Cuckoo hashing [18]. Most fine-grained con-
current hash tables today store entries in a linked-list with
per-bucket locks [2] or Read-Copy-Update (RCU) mecha-
nisms [17, 19]. While often fast, the pointers used in these
approaches add high overhead when the key/value items are
small. In contrast, our Cuckoo-based design achieves high
occupancy with no pointers.

We contribute a design that provides high throughput for
multiple writers; prior work we build upon [8] allowed only
a single writer, limiting the generality of the data structure.
Our design uses algorithmic engineering of Cuckoo hashing,
combined with architectural tuning in the form of effective
prefetching, use of striped fine-grained spinlocks, and an
optimistic design that minimizes the size of the locked critical
section during updates.

The result of these engineering efforts is a solid building
block for small key-value storage. On a 16-core machine, our
table achieves almost 40 million inserts per second, outper-



forming the concurrent hash table in Intel’s Thread Building
Blocks by 2.5x, while using less than half of the memory
for 64 bit key/value pairs. Figure 1 gives an example of
how our scheme (cuckoo+) outperforms other hash tables
with mixed random read/write workloads. Section 6 presents
a performance evaluation detailing the advantages of this
cuckoo-based approach for multicore applications.

2. Background and Related Work
This section provides background information on hash ta-
bles and concurrency control mechanisms. We conclude with
a brief performance evaluation of the effects of naively ap-
plying standard concurrency control techniques to several
common hash table implementations. These results remind
that high-performance concurrency is not trivial: careful al-
gorithm engineering is important regardless of the underlying
concurrency control mechanisms, and the algorithmic effects
dominate the choice of concurrency mechanism.

2.1 Hash Tables

As used in this paper, a hash table provides Lookup,
Insert, and Delete operations for indexing all key-value
objects. Hash tables do not support retrieval by any key order-
ing. Popular designs vary in their support for iterating through
the hash table in the presence of concurrent modifications; we
omit consideration of this feature.

Interface. On Lookup, a value is returned for the given
key, or “does not exist” if the key cannot be found. On
Insert, the hash table returns success, or an error code to
indicate whether the hash table is too full or the key already
exists. Delete simply removes the key’s entry from the
hash table. We focus on Lookup and Insert, as Delete
is very similar to Lookup.

High-performance single-thread hash tables. As an exam-
ple of a modern, extremely fast hash table, we compare in
several places against Google’s dense_hash_map, a hash
table available in the Google SparseHash [9] library. Dense
hash sacrifices space efficiency for extremely high speed: It
uses open addressing with quadratic internal probing. It main-
tains a maximum 0.5 load factor by default, and stores entries
in a single large array.

C++11 introduces an unordered_map implemented as
a separate chaining hash table. It has very fast lookup perfor-
mance, but also at the cost of more memory usage.

The performance of these hash tables does not scale with
the number of cores in the machine, because only one writer
or one reader is allowed at the same time.

Multiple-reader, single-writer hash tables. As a middle
ground between no thread safety and full concurrency, single-
writer tables can be extended to permit many concurrent read-
ers. Such designs often use optimistic techniques such as
versioning or the read-copy-update (RCU) [17] techniques
becoming widely used within the Linux kernel.

Our work builds upon one such hash table design. Cuckoo
hashing [18] is an open-addressed hashing technique with
high memory efficiency and O(1) amortized insertion time
and retrieval. As a basis for its hashing, our work uses the
multi-reader version of cuckoo hashing from MemC3 [8],
which is optimized for high memory efficiency and fast con-
current reads.

Scalable concurrent hash tables. The Intel Threading
Building Blocks library (Intel TBB) [2] provides a
concurrent_hash_map that allows multiple threads to
concurrently access and update values. This hash table is also
based upon the classic separate chaining design, where keys
are hashed to a bucket that contains a linked list of entries.
This design is quite popular for concurrent hash tables: Be-
cause a key hashes to one unique bucket, holding a per-bucket
lock permits guaranteed exclusive modification while still
allowing fine-grained access. Further care must be taken if
the hash table permits expansion.

2.2 Concurrency Control Mechanisms

As noted earlier, part of our motivation was to explore the
application of hardware transactional memory to this core
data structure. All concurrent data structures require some
mechanism for arbitrating concurrent access, which we briefly
list below, focusing on those used in this work.

Locking. Multi-threaded applications take advantage of in-
creasing number of cores to achieve high performance. To
ensure thread-safety, multiple threads have to serialize their
operations when accessing shared data, often through the use
of a critical section protected by a lock.

The simplest form of locking is to wrap a coarse-grained
lock around the whole shared data structure. Only one thread
can hold the lock at the same time. This tends to be pes-
simistic, since the thread with the lock prevents any other
threads from accessing the shared resource, even if they only
want to read the data or make non-conflicting updates.

Another option is to use fine-grained locking by splitting
the coarse-grained lock into multiple locks. Each fine-grained
lock is responsible for protecting a region of the data, and
multiple threads can operate on different regions of the data
at the same time. Fine-grained locking can improve the over-
all performance of a concurrent system. However, it must
be carefully designed and implemented to behave correctly
without deadlock, livelock, starvation, etc.

Hardware Transactional Memory (HTM). It is often hard
to write fast and correct multi-threaded code using fine-
grained locking. Transactional memory [10] is designed to
make the creation of reliable multi-threaded programs easier.
Much like database transactions, all shared memory accesses
and their effects are applied atomically, i.e., they are either
committed together or discarded as a group. With transac-
tional memory, threads no longer need to take locks when
accessing the shared data structures held in memory, yet the
system will still guarantee thread safety.



Previous experience, implementations and evaluations of
HTM include Sun’s Rock [3, 6] processor, AMD advanced
synchronization family [5, 4], IBM Blue Gene/Q [21] and
System Z [13].

Recently, Intel released Transactional Synchronization Ex-
tensions (TSX) [1], an extension to the Intel 64 architecture
that adds transactional memory support in hardware. Part of
the recently-released Intel Haswell microarchitecture, TSX al-
lows the processor to determine dynamically whether threads
need to serialize through lock-protected critical sections, and
to serialize only when required. With TSX, the program can
declare a region of code as a transaction. A transaction exe-
cutes and atomically commits all results to memory when the
transaction succeeds, or aborts and cancels all the results if
the transaction fails (e.g., conflicts occur). We focus on the
use of Restricted Transactional Memory (RTM) interface of
TSX, which gives the programmer the flexibility to start, com-
mit and abort transactional execution. Intel evaluated TSX
for high-performance computing workloads [22], already op-
timized for parallelism, and showed that TSX provides an
average speedup of 1.41x.

2.3 Naive use of concurrency control fails

Before making deeper changes, we begin by examining the
performance of several hash tables without algorithmic opti-
mization, using both naive global locking and using Intel’s
TSX to optimize this approach. While the poor performance
of these approaches is not surprising, their relative simplicity
makes them an important starting baseline for understanding
further improvements.

Haswell’s hardware memory transactions are a best-effort
model intended for fast paths. The hardware provides no
guarantees as to whether a transactional region will ever suc-
cessfully commit. Therefore, any transaction implemented
with TSX needs a fallback path. The simplest fallback mecha-
nisms is “lock elision”: the program executes a lock-protected
region speculatively as a transaction, and only falls back to
use normal locking if the transaction does not succeed. An
implementation of TSX lock elision for glibc [20] has been
released. It adds a TSX elided lock as a new type of POSIX
mutex. Applications linked against this new glibc library
automatically have their pthread locks elided.

Lock elision may seem promising for designing a concur-
rent, multi-writer hash table: multiple threads may be able
to update different sets of non-conflicting entries of the hash
table at the same time. Through a set of experiments, we
make two observations about TSX lock elision: It outper-
forms the naive use of a global lock, but it does not ensure
that multicore concurrent writes are faster than single-core
exclusive access.

We evaluated the Insert throughput of the optimistic
cuckoo hash table in MemC3, std::unordered_map in
C++11, and dense_hash_map in Google SparseHash [9]
library, both with and without TSX lock elision, on a quad-
core machine with hyperthreading enabled. All these hash
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Figure 2: Insert throughput vs. number of threads for
single writer hash tables with and without TSX lock elision.
Each thread is pinned to a different hyper-threaded core. 16
million different keys are inserted in each table.

tables allow only one writer at a time, as each Insert has
to lock the entire table. Global counters were removed in
cuckoo hash table and dense_hash_map to avoid obvious
common data conflicts.

Figure 2 shows the results of our experiment. With global
pthread locks, each hash table’s multi-thread aggregate write
throughput is much lower than that of a single thread, due
to extensive lock contention. By enabling TSX lock elision,
the aggregation write throughput is higher than that with
pthread global locks, but still much lower than the single
thread throughput. This is because most transactions fail and
abort, forcing the program to take the fallback lock frequently,
resulting in sequential behavior. According to Intel Perfor-
mance Counter Monitor [12], the transactional abort rates are
above 80% for all three hash tables with 8 concurrent writers.
We will discuss the reasons for transactional aborts and how
to reduce the abort rate in Section 5.

Through this experiment, we find that naively making a
data structure concurrent may harm its performance. Simply
applying lock elision using hardware transactional memory
could mitigate the performance degradation caused by lock
contention, but may not be able to scale up throughput as
more cores access the same lock protected data structure.

3. Principles to Improve Concurrency
Given that naive application of global locking with or with-
out hardware transactional memory support fails to provide
scalable performance, what must be done? In this section
we present our design principles to improve the concurrent
performance of data structures. Although these principles
are general and well known, we state them here to illustrate
the framework within which our algorithmic engineering dis-
cussed in the next section optimizes for concurrent access in
cuckoo hashing. In general, the key to improving concurrency
for a data structure is to reduce lock contention. We present
three principles to help achieve this reduction:

P1. Avoid unnecessary or unintentional access to common



data. When possible, make globals thread-local; for ex-
ample, disable instant global statistics counters in favor of
lazily aggregated per-thread counters. These simple opti-
mizations are already included in our results for cuckoo
hash table and Google dense_hash_map in Figure 2.
Without them, concurrent performance was much worse.

P2. Minimize the size and execution time of critical sections.
A promising strategy is to move data accesses out of the
critical section whenever possible. As we show in the
following section, an optimistic approach can work well
here if there are search-like operations that must be per-
formed: Perform the entire search outside of a critical
section, and then transactionally execute by only verifying
that the found value remains unchanged.

P3. Optimize the concurrency control mechanism. Tune the
concurrency control implementation to match the expected
behavior of the data structure. For example, because the
critical sections of our optimized hash tables are all very
short, we use lightweight splinlocks and lock striping in the
fine-grained locking implementation, and optimize TSX
lock elision to reduce transactional abort rate when apply-
ing it to the coarse-grained locking implementation.

By following these principles, data structures can reduce
the possibility of multiple threads attempting to access data
protected by a shared lock or within a same transactional
region, thus improve the concurrent performance with either
fine-grained or coarse-grained locking. We show how to
apply these principles to the design of a concurrent cuckoo
hash table in the next two sections, to greatly improve multi-
threaded read/write throughput.

4. Concurrent Cuckoo Hashing
We now present the design of a multi-reader/multi-writer
cuckoo hash table that is optimized for fast concurrent writes.
By applying the principles previously described, our result-
ing design achieves high and scalable multi-threading perfor-
mance for both read- and write-heavy workloads.

We begin by presenting the basic operation of cuckoo hash-
ing [18], followed by the multiple-reader/single-writer ver-
sion that we build upon to create our final solution [8].

4.1 Cuckoo Hashing

Cuckoo hashing [18] is an open-addressed hash table design.
All items are stored in a large array, with no pointers or linked
lists. To resolve collisions, two techniques are used: First,
items can be stored in one of two buckets in the array, and
they can be moved to their other location if the first is full.
Second, in common use, the hash buckets are multi-way set
associative, i.e., each bucket has B “slots” for items. B = 4
is a common value in practice.1 A lookup for key proceeds

1Without set-associativity, basic cuckoo hashing allows only 50% percent
of the table entries to be occupied before unresolvable collisions occur. It
is possible to improve the space utilization to over 90% by using 4-way (or
higher) set associative hash table [7].
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Figure 3: Cuckoo hash table overview: Each key is mapped
to 2 buckets by hash functions and associated with 1 version
counter. ∅ represents an empty slot. “a→ b→ c→∅” is a
cuckoo path to make one bucket available to insert key y.

by computing two hashes of key to find buckets b1 and b2
that could be used to store the key, and examining all of the
slots within each of those buckets to determine if the key is
present. A basic “2,4-cuckoo” hash table (two hash functions,
four slots per bucket) is shown in Figure 3.

A consequence of this is that Lookup operations are both
fast and predictable, always checking 2B keys.

To Insert a new key into the table, if either of the two
buckets has an empty slot, it is then inserted in that bucket; if
neither bucket has space, a random key from one candidate
bucket is displaced by the new item. The displaced item is
then relocated to its own alternate location, possibly displac-
ing another item, and so on, until a maximum number of
displacements is reached. If no vacant slot is found, the hash
table is considered too full to insert and an expansion process
is scheduled.

We call the sequence of displaced keys in an Insert
operation a cuckoo path, as illustrated in Figure 3. Write
performance of cuckoo hashing degrades as the table occu-
pancy increases, since the cuckoo path length will increase,
and more random reads/writes are needed for each Insert.

4.2 Prior Work in Concurrent Cuckoo

Basic cuckoo hashing does not support concurrent access.
Our work builds upon the two major prior approaches to con-
current cuckoo hashing: Herlihy’s lock-striped approach [11],
and the optimistic cuckoo with separated path discovery and
item movement from MemC3 [8]. Our resulting design re-
alizes the strengths of each: The low space overhead of
MemC3’s approach and the concurrent writer support of Her-
lihy’s approach.

Our starting point was MemC3’s table, which used three
building blocks:

• To eliminate reader/writer false misses, change the order
of the basic cuckoo hashing insertions. Allow concurrent
reads and cuckoo movement by moving “holes” backwards
along the cuckoo path instead of moving “items” forward



along the cuckoo path. This ensures that an item can always
be found by a reader thread; if it is undergoing concurrent
cuckoo movement, it may be present twice in the table, but
will never be missing.
Providing this property requires separating the process of
searching for a cuckoo path from using it: find the empty
slot, and then use the path. As we show, this has a second
benefit: This searching process can be moved outside of
the critical section.

• Implement efficient concurrency control by using lock strip-
ing. Lock striping [11] uses a smaller vector of locks (or, in
MemC3, version counters) that each maps to a set of items
in the hash table. To lock a bucket, a writer thread computes
the lock stripe entry corresponding to the bucket and locks
that entry. By using reasonable size lock tables, such as
1K-8K entries, the locking can be both very fine-grained
and low-overhead.

• Allow reads to be performed with no cache line writes by
using optimistic locking [14]. Instead of locking for reads,
the hash table uses a lock-striped version counter associated
with the buckets, updates it upon insertion or displacement,
and looks for a version change during lookup.

By using these techniques with only version counters and a
simple global lock for writers, MemC3 provided substantial
gains for read-intensive workloads, but still performed poorly
for write-heavy workloads. Unfortunately, the basic scheme
used in MemC3 was not obviously amenable to fine-grained
locking:

1. The cuckoo path can be very long. Grabbing a few hundred
locks in the right order to avoid deadlock and livelock is
tricky. There is also a nontrivial probability that a path
becomes invalid, and the execution of Insert needs to
restart, further complicating locking, increasing the risk of
livelock, and harming performance.

2. The Insert procedure for optimistic concurrent cuckoo
hashing in MemC3 [8] involves nested locks if fine-grained
locking is implemented, which can easily cause deadlocks.

4.3 Algorithmic Optimizations

4.3.1 Lock After Discovering a Cuckoo Path

In MemC3 cuckoo hashing, each Insert operation locks the
hash table at the very beginning of the process, and releases
the lock after the insertion completes. The separated phases
of search and execution of the cuckoo path are all protected
by the lock within one (big) critical section.

To reduce the size of critical sections, our first optimization
was to search for an empty slot before acquiring the lock,
then only lock the table when displacing the items along the
cuckoo path and inserting the new item. In this way, multiple
Insert threads can look for their cuckoo paths at the same
time without interfering with each other. Inserts are still
serialized, but the critical section is smaller.

Algorithm 1 shows the basic Insert procedure that al-

Algorithm 1 MemC3 Cuckoo Insert Procedure.
Region between dashed lines is the largest possible critical section.

1: function INSERT(h, x) . Insert key x to table h
2: b1, b2← two buckets mapped by key x
3: LOCK(h)

4: if ADD(h, b1, x) or ADD(h, b2, x) then
5: UNLOCK(h); return true
6: if path←SEARCH(h, b1, b2) then
7: EXECUTE(h, path)

8: UNLOCK(h); return true
9: UNLOCK(h); return f alse

Algorithm 2 Cuckoo Insert – lock after discovering a path.
Region between dashed lines is the largest possible critical section.

1: function INSERT(h, x) . Insert key x to table h
2: b1, b2← two buckets mapped by key x
3: for i← 1,2 do
4: if AVAILABLE(h, bi) then . if bi has an empty slot
5: LOCK(h)
6: if ADD(h, bi, x) then
7: UNLOCK(h); return true
8: UNLOCK(h)
9: while path←SEARCH(h, b1, b2) do

10: LOCK(h)

11: if VALIDATE_EXECUTE(h, path) then

12: UNLOCK(h); return true
13: UNLOCK(h)
14: return f alse

lows concurrent reads. ADD(h, b, x) tries to insert key x
to bucket b, returns true on success or f alse if the bucket
is full. SEARCH(h, b1 b2) searches for a cuckoo path that
makes either bucket b1 or b2 available to insert a new item.
EXECUTE(h, path) moves items backwards along the cuckoo
path, and then inserts key x to the bucket made available. The
critical section of this algorithm is the whole process. When
the table occupancy is high, this may involve hundreds of
bucket reads to search for a cuckoo path, followed by hun-
dreds of item displacements along that path, during which all
Insert operations of other threads are blocked.

Algorithm 2 shows our new Insert procedure. The lock
is acquired only when doing the actual writes to the hash table.
As the search phase is not protected by the lock, there exists
a potential race condition: After one thread reads a bucket
to extend its cuckoo path, another thread can write to the
same bucket and cause the first thread to read corrupted data.
Therefore, Insert must re-check if the related entries have
been modified before each item displacement in the execution
phase, which is handled by VALIDATE_EXECUTE(h, path).
If the existing path becomes invalid, it restarts and looks for
a new path. Each displacement relocates only one item to



*	
   a	
  
*	
   t	
  

d	
   *	
  
e	
   *	
  

*	
   f	
  
*	
   x	
  
*	
   ∅	
  
*	
   h	
  
b	
   *	
  

(a) Random displacements

*	
   a	
  

*	
   *	
   z	
   *	
  

*	
   *	
  

*	
   *	
  

*	
   u	
  

*	
   *	
  

*	
   *	
   *	
   ∅	
  

(b) Breadth-first search

Figure 4: Search for an empty slot by Insert in a 2-way
set-associative hash table. Left(4a) is the traditional approach,
right(4b) is our approach. Slots in gray are examined before
the empty slot is found. Alphabet letters are keys selected to
be moved to their alternate locations along the cuckoo path
represented by the arrows (→).

its alternate bucket, so there is no undo needed if execution
aborts. We omit the steps to check if key x already exists in
both Algorithm 1 and 2, which should be proceeded within
each critical section.

To summarize, each Insert optimistically searches for
a cuckoo path, displacing items along the path with lock
protection. Execution terminates at the end of the path or if
the path becomes invalid (and then Insert restarts). How
often does a path become invalid after being discovered? We
can estimate the probability that a cuckoo path of one writer
overlaps with paths of other writers: Let N denote the number
of entries in the hash table, L (� N) denote the maximum
length of a cuckoo path, and T denote the number of threads.
For a given writer, the maximum probability that its cuckoo
path overlaps with at least one of other paths is as below
(derivation can be found in Appendix B).

Pinvalid_max ≈ 1−
(
(N−L)/N

)L(T−1) (1)

For example, the maximum length of a cuckoo path in
MemC3 is L = 250. Suppose N = 10 million, T = 8, then
Pinvalid < 4.28%. This upper bound assumes all paths are
at maximum length, which occurs only rarely; the expected
probability is much lower. It is, however, non-negligible. We
apply further algorithmic optimizations next to reduce the
odds of such a failure by several orders of magnitude.

4.3.2 Breadth-first Search for an Empty Slot

Basic cuckoo hashing searches for an empty slot using a
greedy algorithm: if the current bucket is full, a random key
is “kicked out” to its alternate location, and possibly kicks
out another random key there, until a vacant position is found.
Each bucket touched by the process is a part of the cuckoo
path. As table occupancy grows, the average length of cuckoo
paths increases, because it needs to examine more buckets to

find an empty slot. It may require hundreds of displacements
for one Insert, which greatly slows down the performance.

A cuckoo hash table can be viewed as an undirected graph
called a cuckoo graph, which has a vertex for each bucket,
and an edge for each key in the table, connecting the two
alternative buckets of the key. The “random displacements”
scheme used by basic cuckoo hashing to look for an empty
slot is thus a random depth-first search (DFS) of the graph.
To reduce the number of item displacements and the size of
critical sections, we use breadth-first search (BFS) instead.
Each slot in a bucket is considered as a possible path, and
extends its own path to alternate buckets in the same way.

Figure 4 shows an example of the two searching schemes
in a 2-way set-associative hash table. Both schemes examine
18 slots (9 buckets) to find an empty slot in the search with
no item actually moved. Figure 4a is the traditional searching
scheme where each time only one random key is displaced.
The cuckoo path discovered is a→ e→ b→ h→ x→ f →
d→ t → ∅. Figure 4b uses BFS to look for an empty slot.
While the number of examined slots are same, the BFS cuckoo
path is a→ z→ u→∅, which is much shorter.

The prior work on MemC3 used an optimization of tracking
two cuckoo paths in parallel, completing when either found
an empty slot, but still used a DFS strategy. This strategy, in
general, reduced the expected length of a cuckoo path by a
factor of two. In contrast, the BFS strategy we present here
reduces the expected length to a logarithmic factor: For a
B-way set-associative cuckoo hash table, where the maximum
number of slots to be checked to look for an available bucket
before declaring the table is too full is M, then the maximum
lengths of cuckoo paths from BFS is as below (derivation can
be found in Appendix C).

LBFS =
⌈

logB
(
M/2−M/(2B)+1

)⌉
. (2)

As used in MemC3, B = 4, M = 2000. With two-way DFS,
the maximum number of displacements for a single Insert
is 250, whereas with LBFS = 5.

This optimization is key to reducing the size of the critical
section: While the total number of slots examined is still
M, this is work that can be performed without a lock held.
With BFS, however, at most five buckets must be examined
and modified with the lock actually held, reducing both the
duration of the critical section and the number of cache lines
dirtied while doing so.

Shorter cuckoo paths also reduce the chance of a path
becoming invalid (and of transactional aborts). Based on
Eq. 1, with LBFS = 5, and the same settings of the example at
the end of §4.3.1 , the new worst-case Pinvalid < 1.75×10−5

— an extremely rare event.

Prefetching. BFS provides a second benefit: because the
schedule of buckets to visit is predictable, we can prefetch
buckets into cache before they are accessed to reduce the
cache-miss penalty. In the cuckoo graph, each alternative
bucket of the keys in the current bucket are considered neigh-
bors of that bucket. BFS scans all neighbors of a bucket to



extend the cuckoo path. Before scanning one neighbor, the
processor can load the next_neighbor in cache, which will be
accessed soon if no empty slot is found in the current neigh-
bor. This cannot be done with the traditional DFS approach,
because the next bucket location is unknown until one key in
the current bucket is “kicked out”.

4.3.3 Increase Set-associativity

As discussed in §4.1, higher set-associativity improves space
utilization. Then cuckoo hash table in MemC3 is 4-way set-
associative, which achieves 95% maximum load factor, and
high performance for read-intensive workloads.

The impact of set-associativity on the read and write per-
formance of cuckoo hashing is two-fold:

• Higher set-associativity leads to lower read throughput,
since each Lookup must scan up to 2B slots from two
buckets in an B-way set-associative hash table. If a bucket
fits in a cache line, then the read throughput would not be
affected too much.

• Higher set-associativity may improve write throughput, be-
cause each Insert can read fewer random buckets (with
fewer cache misses) to find an empty slot, and needs fewer
item displacements to insert a new item. However, the
set-associativity cannot be too high, since a Lookup is
required to check if the new key already exits in the hash
table before each Insert, which becomes slower as set-
associativity increases.

To achieve a good balance between read- and write-heavy
workloads, we use a 8-way set-associative hash table. §6
evaluates the performance with different set-associativities
and different workloads. Our choice of 8-way associativity
may require reading more than one cache line per bucket,
but this extra cost is offset by the fact that the two lines can
be fetched together, costing only memory bandwidth, not
latency, and that sequential memory reads are substantially
faster because they typically hit in the DRAM row buffer.

4.4 Fine-grained Locking

Fine-grained locking is often used to improve concurrency.
However, it is non-trivial to implement fine-grained per-
bucket locking for traditional cuckoo hashing. There are
high deadlock and livelock risks.

In basic cuckoo hashing, it is not known before displac-
ing the keys how many and which buckets will be modified,
because each displaced key depends on the one previously
kicked out. Therefore, standard techniques to make Insert
atomic and avoid deadlock, such as acquiring all necessary
locks in advance, are not obviously applicable. As noted
earlier, simply using the optimization of finding the path in
advance was not enough to solve this problem because of
lingering locking complexity issues.

By reducing the length of the cuckoo path and reordering
the locking procedure, our optimizations make fine-grained
locking practical. To do so, we go back to the basic design

of lock-striped cuckoo hashing and maintain an actual lock
in the stripe in addition to the version counter (our lock uses
the high-order bit of the counter). Here we favor spinlocks
using compare-and-swap over more general purpose mutexes.
A spinlock wastes CPU cycles spinning on the lock while
other writers are active, but has low overhead, particularly
for uncontended access. Because the operations that our hash
tables support are all very short and have low contention, very
simple spinlocks are often the best choice.

To Insert each new key-value pair, there is at most one
new item inserted and four item displacements. Each insert or
displacement involves exactly two buckets. The Insert op-
eration only locks the pair of buckets associated with ongoing
insertion or displacement, and releases the lock immediately
after it completes, before locking the next pair. Locks of the
pair of buckets are ordered by the bucket id to avoid deadlock.
If two buckets share the same lock, then only one lock is ac-
quired and released during the process. In summary, a writer
must only lock at most five (usually fewer than three) pairs of
buckets sequentially for an Insert operation.

Although there is a small chance that any cuckoo insert
will abort because of other concurrent inserts, it is likely to
succeed on a re-try. It is worth noting that this design only
avoids livelock probabilistically. A writer thread that encoun-
ters excessive insert aborts could pessimistically acquire a
full-table lock by acquiring each of the 2048 locks in the
lock-striped table, but we have never observed a condition
where this would be warranted.

The combination of these techniques results in a cuckoo
hash table that (i) retains high memory efficiency (the effi-
ciency of the basic table plus the small additional lock-striping
table), (ii) permits highly concurrent read-write access, and
(iii) has a minimally-sized critical section that reads and dirt-
ies few cache lines while holding the lock or executing under
hardware transactional memory.

5. Optimizing for Intel TSX
As shown in §2.3, naive use of TSX lock elision to hash ta-
bles with a global lock does not provide high multi-threaded
throughput. The key to improving concurrent performance
is to reduce the “transactional abort rate.” In the Haswell im-
plementation of TSX, the underlying hardware transactional
memory system uses tags in the L1 cache to track the read-
and write-sets of transactions at a granularity of a cache line.
Transactions abort for three common reasons:

1. Data conflict on a transactionally accessed address. A
transaction encounters a conflict if a cache line in its read-
set is written by another thread, or if a cache line in its
write-set is read or written by another thread.

2. Limited resources for transactional stores. A transaction
will abort if there is not enough space to buffer its reads
and writes in cache. Current implementations can track
only 16KB of data.

3. TSX-unfriendly instructions. Several instructions (e.g.,



XABORT, PAUSE) and system calls (e.g., mmap) cause
transactions to abort.

For high performance, the program must minimize trans-
actional aborts. From the first two causes, we draw several
conclusions about general issues with transactional aborts:

• Transactions that touch more memory are more likely to
conflict with others, as well as to exceed the L1-cache-
limited capacity for transactional reads and writes.

• Transactions that take longer to execute are more likely to
conflict with others.

• Sharing of commonly-accessed data, such as global statis-
tics counters, can greatly increase conflicts.

• Because the hardware tracks reads and writes at the granu-
larity of a cache line, false sharing can create transactional
conflicts even if no data appears to be shared.

The observant reader will no doubt note that many of these
same issues arise in cache-centric performance optimizations.
Our solutions are similar but not identical. To address these is-
sues and improve the multi-threaded concurrent performance
of cuckoo hashing with coarse-grained locking and TSX lock
elision enabled, we just need to follow principle P1 and P2
presented in §3, which are detailed in §4. Our algorithmic
optimizations can significantly reduce the size of the transac-
tional region in a cuckoo Insert process from hundreds of
bucket reads and writes to only a few bucket writes, which
greatly reduces the transactional abort rate caused by data
conflicts or limited transactional stores.

The third cause of transactional abort indicates that a pro-
gram should minimize the occurrence of TSX-unfriendly in-
structions within transactional regions. A common example
is if dynamic memory allocation must invoke a system call
such as brk, futex, or mmap. While our implementation of
Cuckoo hashing does not do this, we observed this problem
when testing TSX using chained hashing and Masstree [16].
It is therefore useful to pre-allocate structures that may be
needed inside the transactional region. If they are not used,
one can simply store them in a per-thread cache and use for
a subsequent transaction (or preallocate and free if using a
malloc that already does this, such as tcmalloc). This is
an application of principle P3.

Further, we use a tuned version of TSX lock elision that
matches the expected behavior of the data structure. The
generic glibc version of TSX lock elision for pthread mutexes
can be improved substantially if the application’s transac-
tional behavior is known in advance, as is the case for our
optimized cuckoo hash table, in which every transaction is
small. This is another application of principle P3. We detail
our implementation of TSX lock elision in Appendix A.

6. Evaluation

In this section, we investigate how the proposed techniques
and optimizations contribute to the improvements of read and

write performance in cuckoo hashing.

Platform. Most experiments (except Figure 7) run on a 4-
core Haswell-microarchitecture Intel i7-4770 at 3.4GHz. This
is the highest core count currently available with TSX support.
The L1 D-cache is 32KB; the L2 cache is 256KB, the L3
cache is 8MB. The machine is equipped with 16GB of DDR3
SDRAM.

Method and Workloads. 8 byte keys and 8 byte values are
used for most experiments. The default cuckoo hash table is
8-way set-associative with 227 = 134,217,728 slots, which
uses about 2 GB memory. Each bucket has all the keys come
first and then the values, and fits exactly two cache lines: one
for 8 keys and another for 8 values. We evaluate different
set-associativities in §6.3 and key-value sizes in §6.4.

We focus on the performance benefit from our optimiza-
tions and TSX support for workloads with concurrent writes
by measuring the aggregate throughput of multiple threads
accessing the same hash table. We focus on three workloads:
a) 100% Insert, b) 50% Insert and 50% Lookup, and
c) 10% Insert and 90% Lookup.

Each experiment first creates an empty cuckoo hash table
and then fills it to 95% capacity, with random mixed concur-
rent reads and writes as per the specified insert/lookup ratio.
Because Cuckoo hashing slows down as the table fills (more
items must be moved), we measure both overall throughput
and throughput for certain load factor intervals (e.g., empty
to 50% full). Each data point in the graphs of this section is
the average of 10 runs. We observed that the performance is
always stable, so we do not include error bars in the graphs.

6.1 Factor Analysis of Insert Performance

This experiment investigates how much our optimizations
and the use of Intel TSX improve the Insert performance
of cuckoo hashing. We break down the performance gap
between basic optimistic cuckoo hashing and our optimized
concurrent cuckoo hashing. We measure different hash ta-
ble designs with the Insert-only workload starting from
the basic cuckoo and adding optimizations cumulatively as
follows:

• cuckoo: The optimistic concurrent multi-reader/single-
writer cuckoo hashing used in MemC3 [8]. Each Insert
locks the whole hash table.

• +lock later: Lock after discovering a cuckoo path.
• +BFS: Look for an empty slot by breadth-first search.
• +prefetch: Prefetch the next bucket into cache.
• +TSX-glibc: Use the released glibc TSX lock elision [20]

to support concurrent writers.
• +TSX*: Use our TSX lock elision implementation that is

optimized for short transactions (Appendix A) instead of
TSX-glibc.

Single-thread Insert performance is shown in Figure 5a.
All locks are disabled, so “lock later” and “TSX” do not
apply here. At high load factors, BFS improves single-thread
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Figure 5: Contribution of optimizations to the hash table Insert performance. Optimizations are cumulative.

write performance by ∼ 26%, and data prefetching further
increases the throughput by ∼ 9%.

At low table occupancy, these optimizations are less impor-
tant. In most cases, there are plenty of empty slots, and so
no keys need to be moved. Further, when the cuckoo paths
are all short, there is no savings in item motion to outweigh
the slightly increased search cost of BFS over DFS. At high
occupancy, BFS substantially reduces the number of item
displacements, and prefetching is more useful because more
buckets need to be evaluated as insertion candidates.

Multi-thread insert performance is shown in Figure 5b,
measured by aggregating the throughput from 8 threads ac-
cessing the same hash table. A global lock is used for each
Insert in the optimistic cuckoo hashing. Due to lock con-
tention, the multi-threaded aggregate throughput of the opti-
mistic cuckoo hashing is much lower than the single-thread
throughput. The performance difference between the origi-
nal optimistic cuckoo hashing scheme and optimized cuckoo
hashing with TSX lock elision is roughly 20×.

To understand the source of these benefits, the upper plot of
Figure 5b shows the optimization sequence with lock elision
enabled first and algorithmic optimizations applied later. With

no algorithmic optimizations, using the customized TSX*
elision improves overall throughput by ∼ 4.3× over basic
TSX lock elision. Comparing the top and bottom figures,
when TSX* is applied after our algorithmic changes, it still
improves throughput by almost 2x. This demonstrates the
importance of using TSX in a way that is well-matched to
the properties of the transactions it is handling. The improve-
ments from fine-grained locking (not shown) are similar to
those from applying TSX*, but slightly slower.

Simply reducing the size of the critical section without TSX
or fine-grained locking results in only modest improvements
(bottom graph, far left): from 1.38 to 3.7 million operations
per second. However, once the system is capable of support-
ing fine-grained concurrent access, the improvement from
algorithmic improvements is large (top graph, far left): from
7.94 to 29.2 million operations per second.

High performance is a consequence of both sufficiently fine-
grained concurrency and data structures optimized to make
that concurrency efficient. Neither of these optimizations
alone was able to achieve more than 8 million operations per
second, but they combine to achieve almost 30 million. Of
particular note was that the algorithmic improvements needed
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Figure 6: Throughput vs. number of threads. “cuckoo” is the optimistic cuckoo hashing used in MemC3, “cuckoo+” is cuckoo
with optimizations in §4.3. TSX lock elision is the optimized version in Appendix A. The cuckoo hash table is 2 GB with
∼ 134.2 million slots. Table occupancy is for cuckoo hashing only. TBB concurrent_hash_map is inserted with the same number
and size of key-value pairs, with 2× to 3× more memory used than cuckoo hash table.

here were concurrency-specific: Without concurrency, for
example, the BFS changes were performance-neutral, but
with fine-grained locking, BFS increased performance by
over 30%.

This latter conclusion is particularly true under high con-
tention: The rightmost graphs in the figure show the perfor-
mance improvements for the highly-loaded portion of the
hash table fill, growing from 90% to 95% (a load factor that
might occur with a heavy insert/delete workload). In this case,
the performance gains of the algorithmic engineering are even
more important: The high contention means that TSX alone
encounters frequent aborts, only improving performance by
about 10%. The algorithmic optimizations then provide a
roughly 11x improvement.

6.2 Multi-core Scaling Comparison

This section evaluates hash table performance under an
increasing number of cores, comparing both our orig-
inal and optimized table, and also the Intel TBB [2]
concurrent_hash_map for comparison. We initialize
the TBB table with the same number of buckets and key-
value type, then operate with the same workloads.

Cuckoo+ scales well as the number of cores increases,
on both our 4-core Haswell machine (Figure 6), as well as
when using fine-grained locking on a 16-core Xeon machine
without TSX support (Figure 7). On the Haswell machine,
the performance increase from 4 to 8 cores is slightly lower

than up to 4 cores because there are only 4 physical cores.
In comparison, the basic optimistic cuckoo hash table

scales poorly for a write-heavy workload, even using TSX
lock elision. As shown in Figure 6, its total Insert through-
put actually drops as more cores are used, except for the
read-heavy workloads (rightmost graphs) for which its opti-
mistic design works well. Notably, however, even under 10%
inserts, cuckoo+ still substantially outperforms optimistic
cuckoo.

The fine-grained locking version of Cuckoo+ also scales
well for all workloads. Its absolute performance is up to 20%
less than the TSX-optimized version, however, suggesting
that there is a non-negligible benefit from hardware support.

To put these numbers in perspective, we also compare
against the Intel Thread Building Blocks hash table. This
comparison is slightly unfair: TBB supports concurrent itera-
tion and other features that our hash table does not, but at a
high level, it demonstrates both that our table’s performance
is good (it outperforms TBB substantially), particularly for
read-intensive workloads, and that Cuckoo+ retains the mem-
ory efficiency advantages of the core Cuckoo design: It uses
2−3× less memory for these small key-value objects, occu-
pying only about 2GB of DRAM versus TBB’s 6GB.

The results in Figure 7 show that these results also extend to
larger machines, using a dual-socket Xeon server with 16 total
cores, each a bit slower than those in the Haswell machine.
Neither server has perfect speedup after 8 cores—memory
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Figure 7: Overall throughput vs number of cores. On a 16-core machine without TSX support.

operations begin to traverse the QPI interconnect between
the sockets—but Cuckoo+ continues to scale for write-heavy
workloads where TBB scales only for read-heavy workloads.

6.3 Set-associativity and Load Factor
In this section, we evaluate the impact of set-associativity
and load factor on cuckoo hashing performance, using the
optimized cuckoo hashing with TSX lock elision. The ex-
periments use the same workloads and hash table with same
number of slots as before.

Figure 8 shows the aggregate Lookup-only throughput of
8 threads for 4- 8- and 16-way set associative hash tables,
all at 95% table occupancy. As expected, lower associativity
improves throughput, because each reader needs to check
fewer slots in order to find the key. Each Lookup in a 4-way
set-associative hash table needs at most two cache line reads
to find the key and get the value. Each Lookup in a 8-way
set-associative hash table needs at most two cache line reads
to find the key and one more cache line read to get the value.
Each Lookup in a 16-way set-associative hash table needs at
most four cache line reads to find the key and one more cache
line read to get the value.

Figure 9 shows the 8-thread aggregate throughput of table
with different set-associativities, for different workloads at
different table occupancy. Write performance degrades as the
table occupancy increases, since an Insert operation has
to read more buckets to find an empty slot, and needs more
item displacements to insert the new key.

The load factor is important in this discussion because of
the different use modes for hash tables: Some applications
may simply fill the table in one go and then use it (perhaps
modifying inserted values but not deleting keys), thus caring
more about total insert rate. Others may issue inserts and
deletes to a table at high occupancy, thus caring more about
90%-95% insert throughput.

Our results show that 8-way set-associativity has the
best overall performance. It always outperforms 4-way set-
associativity for 100% and 50% Insert workloads, and for
10% Insert workloads when the load factor is above 0.85.
16-way set-associativity always performs worst at low or
moderate table occupancy. It starts to outperform 4-way set-
associativity when the load factor is above 0.75, and achieves
the highest throughput for write-heavy workloads when the
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Figure 8: 8-thread aggregate Lookup throughput of hash
tables with different set-associativities at 95% occupancy.
Use optimized cuckoo hashing with TSX lock elision.

load factor is above 0.92. We therefore use 8-way associativ-
ity as our default because of its generality.

6.4 Different Key-Value Sizes

All previous experiments used workloads with 8 byte keys
and 8 byte values. In this section, we evaluate the cuckoo
hash table performance with different value sizes. Figure 10
shows the results of our two experiments.

In Figure 10a, we configure the hash table with 225 entries,
show throughput as the value size increases from 8 bytes to
256 bytes. As expected, the throughput decreases as the value
size increases because of the increased memory bandwidth
needed. On our 4-core machine, hyperthreading becomes
much less effective with large values, because the machine
runs out of memory bandwidth, and so performance scales
only to the point of running one thread on each of the 4 phys-
ical cores. For example, with 256 byte values, single-thread
throughput is 3.05 millions reqs per second, 4-thread through-
put is 3.6× higher than 1-thread throughput, but 8-thread
throughput is only 27% higher than 4-thread throughput.

Figure 10b reveals an interesting consequence of our cur-
rent design when used with TSX: Large values increase the
amount of memory touched during the transaction and there-
fore increase the odds of a transactional abort. For this experi-
ment, we fix the hash table at 4GB and increase the key-value
pair size to 1024 bytes. TSX lock elision outperforms fine-
grained locking with small key-value sizes, but is worse at
1024 bytes. Improving our table design to reduce this effect
seems a worthwhile area of future improvement.
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Figure 10: Throughput with 8 byte keys and different sizes of
values. thr stands for thread, ins for insert.

7. Discussion and Implementation
Availability

Our results about TSX can be interpreted in two ways. On
one hand, in almost all of our experiments, hardware trans-
actional memory provided a modest but significant speedup
over either global locking or our best-engineered fine-grained
locking, and it was easy to use. This confirms other recent
results showing, e.g., a “free” 1.4x speedup from using TSX
in HPC workloads [22]. On the other hand, the benefits of
data structure engineering for efficient concurrent access con-
tributed substantially more to improving performance, but
also required deep algorithmic changes to the point of being
a research contribution on their own.

The focus of this paper was on the algorithmic and systems
changes needed to achieve the highest possible hash table
performance. As is typical in a research paper, this results
in a fast, but somewhat “bare-bones” building block with
several limitations, such as supporting only short fixed-length
key-value pairs. To facilitate the wider applicability of our
results, one of our colleagues has, subsequent to the work de-
scribed herein, incorporated this design into an open-source
C++ library, libcuckoo [15]. The libcuckoo library offers
an easy-to-use interface that supports variable length key
value pairs of arbitrary types, including those with pointers
or strings, provides iterators, and dynamically resizes itself
as it fills. The price of this generality is that it uses locks
for reads as well as writes, so that pointer-valued items can
be safely dereferenced, at the cost of a 5-20% slowdown.
Specialized applications will, of course, still get the most
performance using the hybrid locking/optimistic approach de-
scribed herein, and part of our future work will be to provide
one implementation that provides the best of both of these
worlds.

8. Conclusion

This paper describes a new high performance, memory-
efficient concurrent hash table based on cuckoo hashing. We
demonstrate that careful algorithm and data structure engi-
neering is a necessary first step to achieving increased perfor-
mance. Our re-design minimizes the size of the hash table’s
critical sections to allow for significantly increased paral-
lelism. These improvements, in turn, allow for two very dif-
ferent concurrency control mechanisms, fine-grained locking
and hardware transactional memory. On a 16-core machine,
with write heavy workloads, our system outperforms existing
concurrent hash tables by up to 2.5x while using less than
half of the memory for small key-value objects.
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A. Optimized TSX lock elision
Intel TSX provides two interfaces for transactional memory.
The first is Hardware Lock Elision (HLE), a legacy compat-
ible instruction set extension that allows easy conversion of
lock-based programs to transactional programs. The second
mode is Restricted Transactional Memory (RTM), a new in-
struction set interface with more complete transactional mem-
ory implementation. It provides three explicit instructions—
XBEGIN, XEND, and XABORT—for programmers to start,
commit, and abort a transactional execution, respectively.
RTM is not backwards compatible, but it allows much finer
control of the transactions than HLE. We focus on the use of
RTM since it is more powerful and flexible than HLE and can
serve as a upper bound of the performance improvements one
may realize through TSX.

The released TSX RTM lock elision implementation for
glibc [20] can be improved by specializing it for our hash
tables. As a generic implementation, it is designed to work
well for any mix of transactions, including the case of a mix
of short transactions that must potentially coexist with long-
running ones. In contrast, in the hash table workloads, all
transactions are short. We further observed that the generic
version misuses the EAX abort status code for RTM and takes
the fallback lock too frequently. This causes performance to
suffer because whenever a fallback lock is taken by one core,
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void elided_lock_wrapper(lock) {
xbegin_retry = 0; abort_retry = 0;
while (xbegin_retry < _MAX_XBEGIN_RETRY) {
// Start transaction
if (status=_xbegin() == _XBEGIN_STARTED) {

// Check lock and put into read-set
if (lock is free)
return; //Execute in transaction

// Abort transaction as lock is busy
_xabort (_ABORT_LOCK_BUSY);

}
// Transaction may not succeed on a retry
if (!(status & _ABORT_RETRY)) {

// There is no chance for a retry
if (abort_retry >= _MAX_ABORT_RETRY)
break;

abort_retry ++ ;
}
xbegin_retry ++;

}
take fallback lock;

}

void elided_unlock_wrapper(lock) {
if (lock is free)
_xend(); // Commit transaction

else
unlock lock;

}

Figure 11: Optimized TSX lock elision

all the other cores have to abort their concurrent transactions.
We implemented our own TSX elision wrapper around ex-

isting lock functions. It is optimized for short transactions and
elides the lock more aggressively. Figure 11 shows the im-
plementation of our RTM elision wrapper, a modified version
of the released glibc one [20]. It is a small library separated
from glibc pthread, and thus does not require building a new
glibc library. Its fallback lock can be of any type, including
the custom spinlocks we use for cuckoo hashing.

Implementation details. _xbegin(), _xabort(), and
_end() calls are wrappers around the special instructions
that begin, abort, and commit the transaction. _xbegin()
returns _XBEGIN_STARTED if the transaction begins suc-
cessfully. _ABORT_RETRY is an EAX abort status code
which indicates the transaction may succeed on a retry. We
found that even if _ABORT_RETRY is not set in the EAX
register, the transaction may succeed still on a retry. When-
ever _ABORT_RETRY is not set, however, the glibc TSX
lock elision aborts the transaction and takes the fallback lock
immediately, forcing all other concurrent transactions to abort.
Instead, we always retry several times before taking the fall-
back lock (using more retries if _ABORT_RETRY is set).

B. Cuckoo path overlap probability
Upper bound for the probability of a cuckoo path being
invalid. Let N denote the number of entries in the hash table,
L (� N) denote the maximum length of a cuckoo path, and
T denote the number of concurrent writers. A cuckoo path
has the highest possibility of overlapping with others when
all the T paths are at their maximum length L. For a cuckoo

path with length L, the probability that it does not overlap
with another cuckoo path with length L is

P =

(
N−L

L

)/(N
L

)
=

L−1

∏
i=0

N−L− i
N− i

. (3)

The probability that the cuckoo path overlaps with at least
one of other (T −1) paths is

Pinvalid_max = 1−PT−1 = 1−
L−1

∏
i=0

(N−L− i
N− i

)(T−1)
. (4)

Because i� N, we can assume N−L−i
N−i ≈

N−L
N , so that

Pinvalid_max ≈ 1−
(
(N−L)/N

)L(T−1)
. (5)

C. BFS cuckoo path length
Maximum length of cuckoo paths by breadth-first search.
Let B denote the set-associatitivity of the hash table, M denote
the maximum number of slots to be examined when looking
for an empty slot before declaring the table is full, LBFS
denote the maximum length of the cuckoo path. The search
process expands to two BFS tree rooted by the two alternative
buckets of the key to be inserted. Each tree has at most M/2
slots. Therefore,

B+B2 +B3 + · · ·+BLBFS ≥M/2, (6)

which gives us

LBFS =
⌈

logB
(
M/2−M/(2B)+1

)⌉
. (7)
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