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Abstract
Numeric time series data has unique storage require-

ments and access patterns that can benefit from special-
ized support, given its importance in Big Data analyses.
Popular frameworks and databases focus on addressing
other needs, making them a suboptimal fit. This paper
describes the support needed for numeric time series,
suggests an architecture for efficient time series storage,
and illustrates its potential for satisfying key require-
ments.

1 Introduction
“Big Data” analysis is being used today to yield extraor-
dinary insights in a variety of fields, including cancer re-
search, traffic congestion, and datacenter health. Since
no single model is sufficient for all data [28], recent
research has led to the creation of many frameworks
for storing and supporting analyses on different data
types. Examples include frameworks for querying mul-
tidimensional maps [6], analyzing hierarchically struc-
tured records [19], and analyzing graphs [14]. But, apart
from a few recent efforts (e.g., [26]), one important type
of Big Data has received remarkably little attention—
numeric time series.

We are swimming in numeric time series data. Though
much work has demonstrated the utility of analyzing
such data via stream processing [2, 7] and data min-
ing [10,12,15], support for efficiently storing and query-
ing time series data has languished. For example, tradi-
tional frameworks (e.g., relational databases) do not eas-
ily cater to the usage models of numeric time series. As
such, many important Big Data analyses on time series
data (see Figure 1 for examples) are instead performed
in ad hoc fashion—e.g., via text files that are read into
MATLAB and R. Not only is this ad-hoc process ineffi-
cient, it also severely limits ease of use and scalability.

To address the growing needs of time series Big Data,
this paper enumerates properties needed from a stor-
age framework to efficiently support numeric time series
storage and common access patterns. It shows that tradi-
tional databases do not fit the bill, because they are good
at supporting unneeded features (e.g., arbitrary updates),
but inefficient at supporting the needed ones (e.g., multi-
stream analyses and strong compression). Based on the
properties identified, we propose an architecture for ef-
ficiently supporting numeric time series’ unique needs.
Initial experiments illustrate the potential of this archi-
tecture to provide efficient storage through compression.

Computer system performance metrics: Capacity planning,
modeling failures and anomalies
Stock prices: Backtesting financial models, market character-
ization, mathematical finance
Audio signals: Language translation, music matching
EEG, ECG signals: Illness identification, brain research
Sensor networks: Retrospective surveillance, weather pattern
identification, infrastructure planning

Figure 1: Common numeric time series and example Big
Data analyses for which they are useful.

2 Unneeded, currently efficient features
Traditional databases support a number of operations and
guarantees that are unnecessary for numeric time series,
adding inefficiency and unneeded complexity. This sec-
tion describes five examples.

[U1] Support for non-numeric queries: traditional
expensive operations such as string-based LIKE and
equality JOIN, which are also present in many stream-
processing languages [2, 4, 20], are inapplicable to nu-
meric observational data. This reduces the demand for
auxiliary structures such as bitmap indices. Point queries
that ask for only a single fact (e.g., the natural query for
a key-value store) are also much less common.

[U2] Support for arbitrary updates to stored data:
whereas more general data can have multiple versions,
observational numeric time series are only sensed once.
Updates to one observation stream do not read the writes
of another stream or write to the same logical location.
This property greatly simplifies any approach to provid-
ing the guarantees of concurrency control—in particular,
consistency maintenance and isolation.

[U3] Arbitrary deletion: “random-access” deletion
need not be supported: observations of numeric time se-
ries are removed, cleaned, or coalesced in large, tem-
porally contiguous swaths. Removal techniques used in
practice for time series (e.g., round-robin databases [21]
and log rotation) delete or downsample the oldest data.

[U4] Variable ingest rates: many (though not all) obser-
vational data sources, including sensors, numeric mon-
itoring systems, and investment markets, emit data at
predictable, near-constant rates. Some of the avoidable
complexity of general stream processing systems arises
from the requirement to deal with data with a highly vari-
able ingest rate [2, 20, 27].

[U5] Strong durability guarantees: as operational data
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that might otherwise be discarded, the need for immedi-
ate durability for time series is naturally lower than for
transactional data. Furthermore, the storage systems that
would run a time series archival system are often more
robust than the data sources (e.g., sensors) feeding them.

3 Time series data mining needs
The statistics and data mining approaches commonly ap-
plied to archived time series do not resemble traditional
database operations. Although many of the inputs of
such analyses can be extracted from a general frame-
work, they stress operations that are not typically a pri-
mary focus of existing platforms. Furthermore, it is not
possible to stream all these approaches over the data (i.e.,
with a stream processing engine). Three key require-
ments for these analyses are:

[range] Support for raw access patterns: A central
primitive shared by most time series mining methods that
access raw data is a range query between two points in
time. This access pattern is visible in the first column
of Table 1, which summarizes a few techniques for time
series analysis and their common patterns. For example,
an analogy to LIKE for time series is matching a shorter
time series (subsequence) within a longer one; methods
for doing so on raw data require scanning ranges of the
longer series. Some methods (primarily, techniques that
correlate or cluster time series) operate on ranges of mul-
tiple streams, as seen in the third column (“multivar”).

[summ] Support for preprocessing and summariza-
tion: A first step taken in most methods is resampling
a stream at a fixed rate (here, “preprocessing”), which
can be lower than the original signal. Such multireso-
lution data, even when not explicitly required (the sec-
ond column in Table 1), can be useful for approximate
queries and visualization. Furthermore, many time series
data mining approaches do not operate on raw time series
data; to keep analyses computationally tractable, they
rely on higher-level representations of the data [10, 24].
For the subsequence matching example, a line of work
has built specialized indices to accelerate queries [11].
These abstractions use signal processing (e.g., FFT), to
summarize and index streams.
As one example of a summarization access pattern, con-
sider running an FFT over each of multiple streams for
preprocessing, indexing, or analysis. This requires all
data within the desired summarization range of each
stream (some algorithms can parallelize a first step over
even and odd elements), but each operation only accesses
a single stream.

[comp] Accommodating compression: Raw numeric
time series are often machine-generated and large. As a
system for analysis of data that often might otherwise be
thrown away, the burden an analysis framework places
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Basic operations
Plotting 3 - 3
Zooming visualization 3 3

Preprocessing
Decimation & interpolation - - -
Similarity, correlation (on raw data)
Many clustering techniques use summaries
Auto- & cross-correlation 3 2 3
Convolution - 2 - -
SVD (+SVD-based [23]) 3 - N - -
Raw dynamic time warping 3 - 2 3
Raw elementwise distance 2 3

Prediction
AR(I)MA(X) (forecast) - -
AR(I)MA(X) (ID/model) 3 - 3

Query by content (search for similar subsequences)
Most techniques use summaries such as DFT or PAA
Sequential Scan 3 3

Segmentation / changepoint detection
Sliding-window - 3
Top-down & Bottom-up 3 - 3

Summarization
Wavelet (DWT, FWT) 3 3 3
Spectral (DCT, FFT) 3 3
Symbolic (PAA, iSAX [25]) 3 - 3
Amnesic [22] (PLR,. . . ) 3

Table 1: Access patterns of common time series queries:
Columns correspond to access patterns for some (-) or nearly
all (3) surveyed algorithms for a method (rows), and mean:

• Range: reads contiguous data in the time dimension
• Multires: uses or produces multiresolution data
• Multivar: accesses multiple streams: 2 or multiple (N)
• All data: requires the entire time range of operation
• Streaming: can operate in purely streaming fashion

on infrastructure should be as low as possible without
compromising the ability to mine the data. Storing data
so that it may be losslessly compressed is, therefore, a
key desire.

4 The state of the art
Of the existing systems that could satisfy the demands of
numeric time series laid out above, column stores come
the closest. By storing sorted timestamps and obser-
vations in separate, internally contiguous regions, these
databases can perform range queries and compress data
much more effectively than traditional databases. How-
ever, they fall short by having an ingest layer that does
not fully exploit the desire to query time series streams
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Compression Selected architectural differences from ideal
Ideal 3 3 3 ¬SQL specialized
DataGarage [18] 3 3 3 SQL domain spec. specialized for sys. monitoring, SQL DB-backed
RRDtool [21] 3 3 range none no timestamps, fixed-length raw & aggregate data
FinanceDB [1] 3 3 custom proprietary static partitioning, offline merge to historical store
tsdb [8] 3 chunk generic thin layer on Berkeley DB, all small chunks
TSDS [29] 3 3 filters generic mostly a caching layer on top of other stores
OpenTSDB [26] 3 3 range generic layer on multidimensional map, no subsecond res.
Dremel [19] 3 SQL generic optimized for aggregation queries on nested data
Vertica [17] 3 3 SQL multiple [13] general-purpose column store
DataSeries [3] 3 modules multiple record-oriented trace format

Table 2: Archival frameworks for time series data. A 3 in a column signifies: Numeric: focused on numeric time series,
Multires: supports storing or caching multiresolution data, All data: supports operations that map over entire streams.

in the same order they arrive (see the second design prin-
ciple in Section 5.1).

We survey existing systems that are described in
the literature in Table 2. Most are effectively (if not
nominally) column stores. Among the more widely
used tools in practice are RRDtool [21] and (recently)
OpenTSDB [26], a column-family store. Both are used
primarily in monitoring interfaces. Of all the systems,
DataGarage [18] comes close to ideal, but is specialized
for datacenter monitoring. We believe time series access
demands do not have much overlap with a SQL-based
interface, as detailed in Section 6, so we list the ideal
API as not SQL. The last column highlights additional
differences from an “ideal” solution.

5 Toward improved time series datastores
Based on the requirements above, this section identifies
three design principles for addressing the needs of time
series data and queries more efficiently by dropping sup-
port for generality. An architecture that integrates these
principles is shown in Figure 2; its guiding notion is to
partition input streams into time-ordered blocks that are
specialized for range queries and compression.

5.1 Design principles
Separate incoming timestamps and values: As data
from a given numeric time series source enters the frame-
work, it should be separated into two components: times-
tamp streams and value streams. Just as in a table,
multiple value streams can be associated with a single
timestamp stream to reduce the storage overhead. How-
ever, this association need not be limited to a predefined
schema, particularly when such a schema is not known
in advance (e.g., due to adaptive monitoring [16]).

When separated, timestamp streams can frequently be
represented compactly. A start value and time inter-
val captures the common case of a fixed sample period
[U4] [21], with data indices obtained through computa-

tion. The combination of encoding the differences be-
tween observations (deltas) and runs in the result gener-
alizes this notion to mostly-periodic timestamp streams,
can be done online, and still presents opportunities for ef-
ficient overlying index structures [comp]. The next two
principles make use of this clean separation.
Partition buffered values: As value streams arrive,
they should be partitioned in memory (and/or fast non-
volatile storage, if immediate persistence is desired) by
the unique identity of the stream (for example, a sen-
sor name plus metric). By doing so, new observations
can simply be appended to the tail of time-ordered lists,
which support range queries without sorting [range].
Also thanks to this ordering, amnesic [22] or simple mul-
tiresolution summaries can be updated online [summ].
Archive in time-ordered blocks: Raw range queries
and summary construction demand access to large, tem-
porally contiguous regions of data [range][summ]. To
meet these demands and take advantage of the write-
once nature of data [U2][U3], the archival primitive of

Figure 2: Possible design for numeric time series archival.
Streams are separated into timestamps and values, buffered,
and written back to a store of compressed blocks. Not shown
are metadata storage, higher-level query architecture, or pos-
sible distribution across nodes. A stream processing engine
(SPE) emphasizes that streaming queries on incoming data are
not within scope and can be handled separately.
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numeric time series should be blocks of values and times-
tamps that are ordered by time. Value blocks can contain
either raw data or time-oriented summaries [summ].

Incoming numeric time series data naturally arrives
time-ordered. When combined with the other two prop-
erties, this property allows incoming data to be appended
to the current block (or to start a new one) rather than
having to be sorted into previously stored blocks. Also,
since data is indexed only on time [range][U1], times-
tamp blocks are the only necessary index, and they can be
used for direct lookup without structures such as bloom
filters in a table store [6].

Furthermore, unlike SSTables in a table store, these
blocks do not need to be recompacted: they are already
sorted in their final order and compressed, and they are
never updated after they are complete [U2]. Intermittent
table store compaction is, therefore, unnecessary [comp].

Unlike the primitives of many of the systems in Ta-
ble 2, these blocks (once uncompressed) are in a form
that is suitable for direct analysis: summarization and
resampling techniques can map over them, and aging
out older data [U3] amounts to removing the appropri-
ate large value blocks.

5.2 Initial promise: compact storage
To show the potential of our architecture, this section
evaluates its ability to support effective compression.
Our initial experiments examine how compactly these
large persistent blocks can store numeric time series.
Specifically, we compare existing systems and our pro-
totype implementation of large time-ordered blocks with
regards to how their internal storage representation can
compress four datasets. These datasets, shown in Ta-
ble 3, are selected to be diverse and reasonably large.

The implementation of our proposed layout uses one
file per timestamp stream. A given timestamp stream
may be associated with multiple value streams, which
are also single files (with a maximum size of 4006K),
according to the schema of the input data. Timestamps
are delta+RLE (DRLE) encoded, and value streams use
one of two compressors (LZO or gzip).

For comparison, we use three representative data
stores: OpenTSDB, FinanceDB, and SQLite. To our
knowledge, OpenTSDB represents the state-of-the-art
in large-scale general time series databases, and Fi-
nanceDB is a high-performance financial database (its
license precludes us from publishing its name). Row-
oriented storage such as the default SQLite backend is
also widely used. For example, historical stream query
work in the database community has built on systems
such as PostgreSQL (e.g., [5]) and MySQL (e.g., [9]).

Figure 3 shows the results of comparing our layout
with existing storage systems. All measurements are ob-
tained with du on the same NTFS filesystem (4K clus-
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Figure 3: Space used by storage layouts. Different variations
on existing and potential approaches are grouped horizontally.

• SQLite tables are built for the schema of incoming data
• OpenTSDB 1.0.0 with default configuration is backed

by a single-node HBase server (CDH4 distribution) with
LZO HFile compression. Sizes are taken after a com-
pleted major compaction, and measure the data table only.

• We compare two compressors in FinanceDB, -A and -B

ter size). Since the stocks data consists of many small
files in the proposed layout, we conservatively show the
larger (actual) size on disk. As a row store, SQLite can-
not compress columns, and we suspect that its smaller-
than-binary size is due to its variable-width integer for-
mat. We believe that the overhead for OpenTSDB is at
least partly due to the overhead of row key duplication in
HBase, an area of active development for the database.

In all, these early experiments show promise. Even a
separation of numeric time series with lightweight times-
tamp encoding and generic value compression can de-
liver storage sizes that are similar to the optimized Fi-
nanceDB, smaller than more broadly-used systems, and
significantly more compact than the raw formats used for
analysis. With data-specific compressors, we would ex-
pect additional reduction in size.

6 Discussion
While this initial experiment examines potential space
savings, performance is clearly an important considera-
tion, as compression comes at the cost of query latency
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Dataset # Streams (t/v) Granularity

opencirrus 78/1170 60 sec
One month of long-term systems monitoring data

vcloud 2209/4315 20 sec
Systems monitoring data from a virtualized cluster

stocks 8238/34513 1 day
Historical investment prices from Yahoo! Finance

sensors 58/477 1 sec1

Sensor network data (temperature, humidity, power, . . . )

Table 3: Datasets used for experiment. # Streams lists the
number of timestamp/value (t/v) streams in each, which are
sampled at the period in Granularity, modulo jitter. Times-
tamps are seconds since the epoch, and like values are 4-byte
integers. The vcloud dataset does not have a natural tabular
schema; we build schemas that deduplicate timestamps.

and (often, though not always) throughput. A natural
next step is to explore the tradeoff between space and
speed for numeric time series archival. Opportunities for
achieving better points in this tradeoff space include in-
dexing built on top of encoded timestamps and fast spe-
cialized time series compressors, which can help reduce
latencies for interactive analyses.

Important questions surround how this architecture in-
teracts with existing systems. For queries, the presence
of existing systems that offer a range-based interface (see
Table 2) suggests that an API that offers range queries
and simple aggregates might meet many current needs,
and that there are use cases that view numeric data in
isolation. Nonetheless, there are certainly broader op-
tions worth considering—for example, offering common
summaries as built-in operations. Alternately, the sys-
tem need not be a complete database, and could simply
exist as another storage engine within a DBMS. For in-
gest, it may be desirable to not demand a schema upfront
(which was necessary for SQLite and FinanceDB), to re-
duce the burden of adding or modifying data sources. For
the system itself, many components ought to take advan-
tage of existing underlying infrastructure: for example, a
file-like interface that supports seek and append seems a
natural fit for the block store.

7 Conclusion
Despite the variety of existing frameworks for warehous-
ing large data, the needs of numeric time series mining
could benefit from a more focused solution that has the
potential to be more efficient. We contend that there is a
significant opportunity to rethink the fundamentals of nu-
meric time series storage and demonstrate through pre-

1Recorded timestamps are lower resolution than the inherent 640ms
sample rate of the data. As was done with a previous import of the data,
we have removed duplicate observations within a single interval.

liminary experiments that following a few guiding prin-
ciples with even simple methods can often archive data
more compactly than existing frameworks.
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