
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

STRADS-AP: Simplifying Distributed Machine
Learning Programming without Introducing

a New Programming Model
Jin Kyu Kim and Abutalib Aghayev, Carnegie Mellon University;

Garth A. Gibson, Carnegie Mellon University, Vector Institute, University of Toronto;
Eric P. Xing, Petuum Inc, Carnegie Mellon University

https://www.usenix.org/conference/atc19/presentation/kim-jin

STRADS-AP: Simplifying Distributed Machine Learning Programming

without Introducing a New Programming Model

Jin Kyu Kim1 Abutalib Aghayev1 Garth A. Gibson1,2,3 Eric P. Xing1,4

1Carnegie Mellon University 2Vector Institute 3University of Toronto 4Petuum, Inc.

Abstract

It is a daunting task for a data scientist to convert sequential

code for a Machine Learning (ML) model, published by an ML

researcher, to a distributed framework that runs on a cluster

and operates on massive datasets. The process of fitting the

sequential code to an appropriate programming model and data

abstractions determined by the framework of choice requires

significant engineering and cognitive effort. Furthermore, in-

herent constraints of frameworks sometimes lead to inefficient

implementations, delivering suboptimal performance.

We show that it is possible to achieve automatic and efficient

distributed parallelization of familiar sequential ML code by

making a few mechanical changes to it while hiding the details

of concurrency control, data partitioning, task parallelization,

and fault-tolerance. To this end, we design and implement a

new distributed ML framework, STRADS-Automatic Paral-

lelization (AP), and demonstrate that it simplifies distributed

ML programming significantly, while outperforming a pop-

ular data-parallel framework with a non-familiar program-

ming model, and achieving performance comparable to an

ML-specialized framework.

1 Introduction

The systems community has made significant progress on

simplifying distributed parallel programming, producing many

high-level frameworks such as MapReduce [13], Spark [54],

Pregel [34], PowerGraph [19], GraphX [20], PyTorch [40],

and TensorFlow [2]. To automatically parallelize computation

while achieving essential requirements such as fault tolerance

and load balancing, these frameworks offer constrained

programming models and limited data abstractions. For

example, Spark offers Resilient Distributed Datasets (RDDs)

without fine-grained write access; Spark and MapReduce

ask programmers to specify a program using a handful of

operators such as map and reduce while GraphLab requires

adopting a rarely used vertex-centric programming model.

The programming models of these frameworks are different

from a sequential programming model that is widely taught

and easily understood [27]. Therefore, it is not surprising

that rewriting sequential ML code using the data abstractions

and programming models provided by the frameworks incurs

significant effort. Furthermore, the simplicity of the mecha-

nisms provided can often result in suboptimal use of cluster

resources. These frameworks abstract away data placement,

task mapping, and communication, which comes at the cost

of limited access to hardware resources, and challenge in

implementing ML algorithms efficiently. Studies show that a

single threaded [35] or an MPI implementation [50] of popular

ML algorithms is up to two orders of magnitude faster than the

corresponding implementations on popular frameworks. In

summary, a high-level framework often requires data scientists

to switch to a different mental programming model with

its own peculiarities, and it can end up delivering suboptimal

performance. We believe that the complexity surrounding

distributed ML programming as well as the inefficiency in exe-

cution are incidental and not inherent. That is, many sequential

ML code can be automatically parallelized to make near

optimal use of cluster resources. To prove our point, we present

STRADS-AP, a novel distributed ML framework that provides

an API requiring minimally-invasive, mechanical changes to

sequential ML program code, and a runtime that automatically

parallelizes the code on an arbitrary-sized cluster while deliver-

ing the performance of hand-tuned distributed ML programs.

STRADS-AP is an evolution of STRADS [26] that provides

a framework for parallelizing the execution of ML programs

according to user-specified scheduling plan. The plan usually

avoids data conflicts, thereby improving statistical progress

per iteration. The challenge with STRADS is that the user

needs to understand the code and manually come up with a

scheduling plan. STRADS-AP addresses this challenge by

automatically generating data conflict-free scheduling plan.

STRADS-AP’s API frees data scientists from the challenge

of molding sequential ML code to a framework’s program-

ming model. To achieve this, the STRADS-AP API offers

Distributed Data Structures (DDSs), such as vector and map,

that allow fine-grained read/write access to elements, as well

as two familiar loop operators. During runtime, these loop

operators parallelize loop bodies over a cluster following two

popular ML parallelization strategies: asynchronous parallel

execution, and synchronous parallel execution, with strong

or relaxed consistency.

STRADS-AP’s workflow, shown in Figure 1, starts with

a data scientist making mechanical changes to sequential

code (Figure 1(a, b).) The code is then preprocessed by

STRADS-AP’s preprocessor and complied into binary code by

a C++ compiler (Figure 1(c).) Next, STRADS-AP’s runtime

executes the binary on nodes of a cluster while hiding details

of distributed programming (Figure 1(d).) The runtime system

is responsible for (1) transparently partitioning DDSs that

store training data and model parameters, (2) parallelizing

slices of ML computations across a cluster, (3) fault-tolerance,

and (4) enforcing strong consistency on shared data if required,

or synchronizing partial outputs with relaxed consistency.

To fill the gap of debugging tools for distributed ML pro-

USENIX Association 2019 USENIX Annual Technical Conference 207

stl::vector<T1> D; // input data

stl::map<T2> P, Q; // model parameter

float alpha(0.1); // hyper parameters

for(i=0; i<max_iter; i++){

for(j=0; j<N; j++){

- optimization routine

- read i,j, alpha, elements of D

- read/write elements of P,Q

}

alpha *= 0.99;

}

stradsap::dvector<T1> D;

stradsap::dmap<T2> P,Q;

float alpha(0.1);

for(i=0; i<N; i++){

stradsap::ParallelFor

(D, [I, alpha, &D, &P, &Q](int j){

- optimization routine

- read i,j, alpha, elements of D

- read/write elements of P,Q

}, stradsap::ConsistencyModel, stradsap:ReFlag);

alpha *= 0.99;

}

Add few mechanical

changes

STRADS-AP preprocessor Augmented with

language specific

annotations

Binary code

C++ compiler

(d) The STRADS-AP runtime(e) Debugging

(a) Sequential code (b) STRADS-AP code (c) STRADS-AP preprocessor

Log execution ordering

Cluster

Cluster replay

Execution log

2

1

3
Single node replay

Figure 1: STRADS-AP workflow: (a) Data scientist implements an ML algorithm in sequential code; (b) Derives STRADS-AP

parallel code with mechanical changes; (c) STRADS-AP preprocessor adds more annotation to address language-specific

constraints, and the source code is compiled by a native compiler; (d) The STRADS-AP runtime runs the binary in parallel on a

cluster; (e) Debugging features of STRADS-AP: Logging parallel execution order, and replaying it on a cluster 2© for deterministic

re-execution, or on a single node 3© for easy debugging.

grams, STRADS-AP offers two debugging modes—cluster

replay and single-node replay—as shown in Figure 1(e). In

cluster replay mode, the parallel execution log from the pre-

vious parallel run is replayed by obeying the same lock grant

ordering and message ordering (2© in Figure 1(e)), allowing de-

terministic re-execution. In single-node replay mode, the paral-

lel execution log is replayed on a single node (3© in Figure 1(e))

allowing easier inspection of program state with a debugger.

TensorFlow and PyTorch simplify programming Deep

Neural Networks (DNN) models, which is just one of the

plethora of ML models. Implementing or researching non-

DNN models and algorithms in these frameworks, however,

often requires adding new kernel operators for parallelization,

taking significant effort (Section 6.1). STRADS-AP, on the

other hand, provides automatic parallelization of a wide range

of non-DNN algorithms by requiring few mechanical changes

to a serial implementation.

We implement STRADS-AP as a C++ library in about

16,000 lines of code.1 STRADS-AP is largely rewritten

from scratch, reusing some components of STRADS. We

evaluate its performance on a moderate-sized cluster with

four widely-used ML applications, using real data sets. To

evaluate the increase in user productivity, we ask a group of

students to convert a serial ML application to a distributed

one using STRADS-AP, and we report our findings. The key

contributions of our work are:

• The STRADS-AP API, a familiar C++ STL-like data struc-

tures and loop operators, requiring minimal changes when

converting sequential ML code to STRADS-AP parallel code.

1Reported by CLOC [1] tool, skipping blanks and comments.

• The STRADS-AP runtime that achieves low latency DDS

access, fault-tolerance, and concurrency control.

• Two debugging modes that simplify debugging and

verification of distributed ML programs.

• Performance and productivity evaluation with four well-

established ML applications implemented on STRADS-AP.

In the rest of this paper, we first make the case for STRADS-

AP by presenting the complications imposed by high-level

frameworks on users (Section 2), as well as the performance

bottlenecks caused by their simple mechanisms, giving

specific examples. We then present the STRADS-AP API

(Section 3), and runtime implementation details (Section 4).

Next, we give an overview of STRADS-AP’s debugging

features (Figure 5), followed by an extensive performance

and productivity evaluation (Section 6). Finally, we cover the

related work (Section 7) and conclude (Section 8).

2 The Cost of Using a Framework

In this section, we demonstrate that converting sequential

ML code into high-level framework code requires substantial

programming effort and leads to suboptimal performance

Algorithm 1 Pseudocode for SGDMF

1: A: a set of ratings. Each rating contains (i:user id, j:item id, r: rating)

2: W :M×K matrix; initialize W randomly

3: H:N×K matrix; initialize H randomly

4: for each rating r in A

5: err = r.r - W [r.i]∗H[r.j]

6: ∆W = γ∗(err∗H[r.j] -λ∗W [r.i])

7: ∆H = γ∗(err∗W [r.i] -λ∗H[r.j])

8: W [r.i] += ∆W

9: H[r.j] += ∆H

208 2019 USENIX Annual Technical Conference USENIX Association

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

vector<T1> A = LoadRatings(Datafile_Path);

vector<T2> W(M); RandomInit(W);

vector<T2> H(N); RandomInit(H);

float gamma(.01f), lambda(.1f);

for(int i=0;i<maxiter;i++){

for(int j=0; j<A.size(); j++){

const T1 &r = A[j];

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

}

}

(a) Sequential SGDMF code

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

float gamma(.01f), lambda(.1f);

vector<mutex> WLock(M), HLock(N);

for(auto i(0);i<maxiter;i++){

#pragma omp parallel for

for(int j=0; j<A.size(); j++){

const T1 &r = A[j];

WLock(r.i).lock() // locks to avoid data race

HLock(r.j).lock()// on shared W,H matrices

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

HLock(r.j).unlock()

WLock(r.i).unlock()

// Note that locks are released in reverse

// ordering of obtaining to avoid deadlock

}

}

(b) Code in (a) parallelized with OpenMP

 0

 500

 1000

 1500

 2000

1 16 32 64 128 256

T
im

e
(s

)

Number of Cores

Serial
OpenMP

STRADS-AP
MPI

Spark

 5000

 10000

 15000

 20000

 25000

(e) Time for 60 iterations with Netflix dataset [24], rank = 1000.

struct rate{int i, int j, float r};

typedef rate T1;

typedef array<float, K> T2;

dvector<T1> &A = ReadFromFile(Datafile_Path, parser);

dvector<T2> &W = MakeDVector(M, RandomInit);

dvector<T2> &H = MakeDVector(N, RandomInit);

float gamma(.01f), lambda(.1f);

for(int i=0;i<maxiter;i++){

AsyncFor(0, A.size()-1, [gamma, lambda, &A,&W,&H](int j){

const T1 rate &r = A[j];

T2 err = r.r - W[r.i]*H[r.j];

T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);

T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);

W[r.i] += Wd;

H[r.j] += Hd;

});

}

(c) Code in (a) parallellized with STRADS-AP API

1 val P = K // number of executors

2 val ratings = sc.textFile(rfile, P).map(parser)

3 val blks=sc.parallelize(0 until P, P).persist()

4 val W = blks.map(a->Create_WpSubmatrix(a))

5 var H = blks.map(a->Create_HpSubmatrix(a))

6 var AW = ratings.join(W,P)

7 var AWH = AW.join(H,P).mapPartitions(a->ComputeFunc(a,0))

8 float gamma(.01f), lambda(.1f);

9 for(auto i(0);i<maxiter;i++){

10 for(auto sub(0);sub<P;sub++){ // subiteration

11 val idx = i*P + sub;

12 if(idx > 0){

13 AWH = AW(idx).join(H,P).

14 mapPartitions(a->ComputeFunc(a,subepoch))

15 }

16 AW = AWH(idx).mapPartitions(x->separateAW_Func(x))

17 H = AWH.map(x->separateH_and_Shift_Func(x))

18 }

19 }

20 def ComputeFunc(it:Iterator to AWH){

21 val tmp = ArrayBuffer[type of AWH]

22 for(e <- it){

23 val Ap = e.Ap

24 var Wp = e.Wp

25 var Hp = e.Hp

26 for(auto r: Ap){

27 if(r.2 not belong to Hp)

28 continue //skip if not in Hp item indices

29 val err = r.3 - Wp[r.1]*Hp[r.2]

30 val Wd = gamma*(err*Wp[r.1]-lambda*Hp[r.2])

31 val Hd = gamma*(err*Hp[r.2]-lambda*Wp[r.1])

32 Wp[r.i] += Wd

33 Hp[r.j] += Hd

34 } // end of for(auto r ..

35 tmp += Tuple2(e.key, ((Ap, Wp), Hp));

36 } // end of for(e ..

37 val ret = tmp.toArray

38 ret.iterator

39 } // end of def update_Func

(d) Algorithm 1 reimplemented with Spark

Figure 2: SGDMF (Algorithm 1) implemented as sequential code (a), and parallelized using OpenMP (b), STRADS-AP (c) and

Spark (d). The code snippets show only the core training routine, and do not include data loading and parsing code. STRADS-AP

code requires fewer changes to the sequential code compared to OpenMP code, while achieving efficient distributed parallelism

in addition to shared-memory parallelism. Spark, on the other hand, requires a complete reimplementation using its abstractions.

STRADS-AP outperforms Spark by more than an order of magnitude (e) and continues to scale up to 256 cores, while Spark

stops scaling at 64 cores. Hand-tuned MPI code is faster than STRADS-AP by 22% on 256 cores at the cost of a significantly

longer programming and debugging effort.

USENIX Association 2019 USENIX Annual Technical Conference 209

that is orders of magnitude slower than a STRADS-AP

implementation, or a hand-tuned implementation.

As a concrete example, we choose Spark as the framework,

and Matrix Factorization (MF) as the algorithm—a popular

recommender systems algorithm. First, we write sequential

code that solves MF using Stochastic Gradient Descent (SGD),

denoted as SGDMF in Algorithm 1. Then, we convert the

sequential code into three different parallel implementations—

shared-memory, STRADS-AP, and Spark—and compare their

performance.

2.1 Programming Effort

MF learns user’s preferences over all items from an incomplete

rating dataset represented as a sparse matrix A∈R
M×N where

M and N are the number of users and items, respectively. MF

factorizes the incomplete matrix A into two low-rank matrices,

W ∈R
M×K and H∈R

N×K , such that W ·HT approximates A.

Algorithm 1 iterates through the ratings in the matrix A and

for each rating ri, j, it calculates gradients ∆W [i], ∆H[j] and

adds the gradients to W [i], H[j], respectively. The computed

parameter values for the rating ri, j are immediately visible

when computing the next rating, which is an example of

asynchronous computation.

2.1.1 Sequential SGDMF code

Sequential implementation of Algorithm 1 is a direct

translation of the pseudocode as shown in Figure 2(a).

2.1.2 OpenMP Parallel SGDMF

We parallelize the sequential code in Figure 2(a) using

OpenMP [12] to form a single-node baseline. We make two

modifications to the sequential code as shown in Figure 2 (b):

annotate the loop with parallel-for pragma to let the OpenMP

runtime know what to parallelize, and add mutexes to avoid

data race on shared matrices W and H. OpenMP parallelizes

the inner loop over loop indices using fork-join model where

threads run the loop body with different loop indices and join

at the completion.

2.1.3 STRADS-AP Distributed SGDMF

Parallelizing the same sequential code using STRADS-AP

is done almost mechanically by (1) replacing serial data

structures with STRADS-AP’s distributed data structures, and

(2) replacing the inner loop with STRADS-AP’s AsyncFor

loop operator, as shown in Figure 2(c).

Unlike OpenMP code, STRADS-AP code has no explicit

locking. The runtime is responsible for addressing data

conflicts on matrices W and H while executing the loop

body in a distributed setting, relieving users from writing

error-prone locking code. With little effort, STRADS-AP

achieves efficient distributed parallelism, in addition to

shared-memory parallelism.

2.1.4 Spark Distributed SGDMF

Unlike with STRADS-AP, parallelizing the sequential code

in Figure 2 (a) with Spark requires significant programming

effort as detailed below.

Concurrency Control: Spark lacks concurrency control

primitives. Since the inner loop of SGDMF leads to data

dependencies when parallelized, we need to implement

a scheduling plan for correct execution. Reasoning about

concurrency control is application-specific and often requires

a significant design effort. For SGDMF, we use the Strata

scheduling algorithm by Gemulla [18]. The scheduling code

shown in Figure 2(d) (lines 9-19) and the training code (lines

20-40) were abridged to fit the page.

Molding SGDMF to Spark API: Even after handling

concurrency, implementing SGDMF in Spark requires

substantial programming effort for the following reasons.

First, Spark operators, such as map, operate on a single

RDD object, while the inner loop body in Figure 2(a) accesses

multiple objects: the input data A, and the parameter matrices

W and H. To parallelize the inner loop with map we need to

merge A, W , and H into a single RDD, requiring multiple join

operations involving costly data shuffling.

Second, merging via join operator requires changes to data

structures. Since join operator works only on RDD[Key,Value]

type, we have to replace the vectors A,W,H, in Figure 2(a),

with RDD[K,V] where V might be also key-value pair type.

Finally, data movement for concurrency control requires

extra join and map operations. At the end of every subiteration,

the Strata scheduling algorithm moves H partitions among

nodes, which requires two extra operations for every subiter-

ation: (1) a map operation that separates H from the merged

RDD and modifies the key field of H, (2) a join operation that

remerges H and AW into AWH for the next subiteration, as

shown in Figure 2(d) (lines 9-19.)

In summary, engineering the Spark implementation of

SGDMF algorithm involves a large amount of incidental

complexity that stems from the limitations of Spark API and

its data abstractions. As we show next, in addition to the loss

in productivity, there is also a loss in efficiency.

2.2 Performance Cost

As a baseline for the distributed implementations, we

implement SGDMF using MPI [16] and OpenMP, which are

efficient at the cost of larger programming effort. MPI SGDMF

uses the same Strata scheduling algorithm and point-to-point

communication to circulate H partitions among nodes. All

SGDMF implementations achieve proper concurrency control,

making similar statistical progress per iteration. Therefore,

our performance comparison focuses only on elapsed time

for running 60 iterations, after which all implementations con-

verge. We run experiments with Netflix dataset using up to 256

cores on 16 machines that are connected via 40Gbps Ethernet.

As Figure 2(e) shows, Spark is about 68× slower than MPI

on 256 cores. In the same setting, STRADS-AP is slower than

210 2019 USENIX Annual Technical Conference USENIX Association

Requires Changing Programming Application-Level Hides Details of Fault Tolerance Debuggability for

Programming Model Language Concurrency Control Distributed Programming Distributed ML

STRADS-AP No C++ Yes Yes Yes (Fast re-execution) Yes

STRADS [26] Yes (model-schedule) C++ Yes(user defined schedule) Partly (communication) Yes (Checkpoint) No

Orion [49] No Julia Yes Yes Yes (Checkpoint) No

GraphLab [19] Yes (vertex-centric) C++ Yes Yes Yes (Checkpoint) No

Spark [54] Yes (map/reduce/...) Multi No Yes Yes (RDD) Partly

TensorFlow [2] Yes (data-flow) Multi No Yes Yes (Checkpoint) Yes

Parameter Server [31] Yes (key-value) C++ No Partly (parameter comm) Yes (Replication) No

MPI [16] Yes (message-passing) C No Partly (communication) No No

UPC [14] Yes (PGAS) C Partly (lock APIs) Yes No No

Table 1: Summary of features of frameworks used in distributed ML programming. For detailed comparison, refer to Section 2.3

and Section 7. For efficiency comparison, see Section 6

MPI by only 22%, whereas it is over 50× faster than Spark. The

suboptimal performance of Spark implementation is due to the

aforementioned factors (Section 2.1.4). STRADS-AP is 38.8

and 4.6 times faster than sequential and OpenMP, respectively.

2.3 Other High-Level Frameworks

Our findings of incidental complexity and suboptimal perfor-

mance are not limited to the example of Spark and SGDMF.

For example, PowerGraph provides concurrency control mech-

anisms, but its vertex-centric programming model requires

users to redesign data structures to fit to a graph representation

and express computations using GAS (Gather, Apply, Scatter)

routines. TensorFlow provides a very high-level programming

model taking a loss function and automates the gradient update

process but does not support serializable asynchronous compu-

tation well. Parameter Servers (PS) [3,11,31,48] abstract away

the details of parameter communication through the key-value

store interface but many other details of distributed parallel pro-

gramming, such as data partitioning, parallelization of tasks,

and application-level concurrency control, are left to the user;

that is, PS does not provide an illusion of sequential program-

ming. UPC [14] extends the C programming language with Par-

titioned Global Address Space (PGAS) programming model

that burdens the programmer with the job of doing careful per-

formance tuning (i.e. affinity between threads and shared mem-

ory partitions, low-level data layout, use of collective functions

such as gather, scatter, reduce.) As Table 1 shows, STRADS-

AP and Orion [49] are the only frameworks that allow users

to take their sequential code and automatically parallelize it to

run on a cluster without sacrificing productivity or efficiency.

STRADS-AP owes this flexibility to its familiar API and data

structures that we describe next. The differences between

STRADS-AP and Orion are described in detail in Section 7.

3 STRADS-AP Programming Interface

STRADS-AP targets ML applications with a common struc-

tural pattern consisting of two parts: (1) pretraining part that

initializes the model and input data structures, and performs

coarse-grained transformations; (2) training part that itera-

tively optimizes the objective function using nested loop(s)

where inner loop(s) perform optimization computations.

To implement a STRADS-AP application, a user writes a

simple driver program that declares hyper-parameters, invokes

Create and initialize data structures D for input data

Create and initialize data structures P for model parameters

// run transformations on input data or parameter if necessary

Create and initialize hyper parameters V to control training

(a) Pretraining part

for(i=0; i<maxiter; i++){// outer loop

for(j=0; j<N; j++){// inner loop

// Computations for optimization happen here

Read a part of input data D

Read hyper parameters V and loop indices i,j

Read/writes to a part of model paraemters P

}

change hyper parameters

if(stop condition is true)

break;

}
(b) Training part

Figure 3: ML applications targeted by STRADS-AP are

divided into two parts: (a) pretraining part and (b) training part.

operators to create and transform DDSs (Figure 3 (a)), and

then invokes STRADS-AP loop operators for optimization

(Figure 3(b).) We describe each of these in the following

subsections.

3.1 Distributed Data Structures (DDSs)

Table 2 shows a subset of STRADS-AP programming inter-

face. DDS[T] is a mutable in-memory container that partitions

a collection of elements of type T over a cluster. DDSs provide

a global address space abstraction with fine-grained read/write

access and uniform access model independent of whether the

accessed element is stored in a local memory or in the memory

of a remote node. STRADS-AP offers three types of contain-

ers: dvector, dmap, and dmultimap, with interfaces similar to

their C++ STL counterparts. These DDSs allow all threads

running on all nodes to read and write arbitrary elements while

unaware of details such as data partitioning and placement.

Support for distributed and fine-grained read/write accesses

gives STRADS-AP an important advantage over other frame-

works. It allows reuse of data structures and routines from a

sequential program by changing just the declaration of the data

type. We describe the inner workings of DDSs in Section 4.3.

3.2 STRADS-AP Operators

The two parts of ML applications, pretraining and training

(Figure 3), have different workload characteristics. Pretraining

is data-intensive, non-iterative, and embarrassingly-parallel,

USENIX Association 2019 USENIX Annual Technical Conference 211

Type Description

Distributed Data dvector[T] A distributed vector of type T elements with per-element read/write access

Structures (DDSs) dmap[K,V] A distributed map of [K,V] element pairs of type K and V with per-element read/write access

dmultimap[K,V] A distributed multimap of [K,V] element pairs of type K and V with per-element read/write access

Loop Operators AsyncFor(int64 S, int64 E, UDF F) Parallelizes closure F over indices [S, E] in isolated manner—avoid ing data conflicts

SyncFor(DDS[T] &D, int M, UDF F, Parallelizes closure F over minibatches of D each of size M using synchronization option S

SyncOpt S, bool RE) in data-parallel manner. RE indicates whether to perform Reconnaissance Execution(§ 4.2)

Table 2: A subset of STRADS-AP API—DDSs, and loop operators for ML training.

whereas training is compute-intensive and iterative, and the

inner loop(s) may have data dependencies. STRADS-AP

provides two sets of operators that allow natural expression

of both types of computation.

3.2.1 Pretraining Operators

STRADS-AP provides Map, Reduce, Join, Load, and Create

operators for loading, storing, and creating DDSs during

pretraining. However, STRADS-AP puts no constraints on

their usage for expressing training computations.

3.2.2 Loop Operators

STRADS-AP provides loop operators shown in Table 2 to

replace the inner loop(s) in the training part of ML programs

(Figure 3 (b)). The loop operators take a user-defined closure

as the loop body. The closure is a C++ lambda expression

that captures the specified DDSs and variables in the scope,

and implements the loop body by reading from and writing

to arbitrary elements of the captured DDSs. This allows users

to mechanically change the loop body of a sequential ML pro-

gram to STRADS-AP code that is automatically parallelized.

STRADS-AP supports four models of parallelizing

ML computations: (1) serializable asynchronous [33], (2)

synchronous (BSP [46]), (3) stale-synchronous (SSP [23]),

and (4) lock-free asynchronous (Hogwild! [38]) within a node

and synchronous across nodes, which we call Hybrid.

STRADS-AP offers two loop operators to support these

models. A user can choose AsyncFor loop operator for serializ-

able asynchronous model. For the remaining models a user can

choose SyncFor operator and specify the desired model as an

argument to the loop operator, as shown in Table 2. Other than

choosing the appropriate loop operator, a user does not have

to write any code for concurrency-control—the STRADS-AP

runtime will enforce the chosen model as described next.

AsyncFor parallelizes the loop over loop indices and ensures

isolated execution of the loop bodies even if loop bodies have

shared data. In other words, it ensures serializability: the

output of the parallel execution matches the ordering of some

sequential execution.

AsyncFor takes three arguments: the start index S, the end

index S+N, and a C++ lambda expression F . It executes N+1

lambda instances, F(S),F(S+1),...,F(S+N) concurrently.

At runtime, STRADS-AP partitions the index range S,...,S+N

into P chunks of size C, and schedules up to P nodes to

concurrently execute F with different indices. A node

schedules multiple threads to run C lambda instances allowing

arbitrary reads and writes to DDSs.

If the lambda expression modifies a DDS, then data conflicts

will happen. Although ML algorithms are error-tolerant [23],

some algorithms, like Coordinate Descent Lasso [29, 45],

LDA [5, 53], and SGDMF [18, 28] converge slowly in the

presence of numerical errors due to data conflicts. Following

previous work [26], STRADS-AP runtime improves statistical

progress by avoiding data conflicts using data conflict-free

scheduling for lambda executions. Figure 2(c) shows an

example use of AsyncFor implementing SGDMF.

SyncFor parallelizes the loop over the input data. It splits

input data into P chunks, where each chunk is processed by P

nodes in parallel. Each node processes its data chunk, updating

a local replica of model parameters.

SyncFor takes five arguments: the input data D of type

DDS[T], the size of a mini-batch M, a C++ lambda expression

F , a synchronization option (BSP, SSP, or Hybrid), and a

flag indicating whether it should perform Reconnaissance

Execution (Section 4.2). The runtime partitions the input

data chunk of a node into L mini-batches of size M (typically

L is much larger than the number of threads per node), and

then schedules multiple threads to process mini-batches

concurrently. A thread executes the lambda expression

with a local copy of captured variables, and allows reads

and writes only to the local copy while running F . At the

end of processing a mini-batch, a separate per-node thread

synchronizes the local copy of only those DDSs captured by

reference across the nodes, and synchronizes local threads

according to the sync option. Figure 4 shows an example use

of SyncFor that reimplements Google’s Word2vec model [22].

By default, SyncFor performs averaging aggregation

of model parameters. Users can override this behavior by

registering an application-specific aggregation function to a

DDS through RegisterAggregationFunc() method.

4 Implementation
This section covers important details of STRADS-AP

implementation: the driver program execution (Section 4.1),

Reconnaissance Execution (Section 4.2), DDSs (Section 4.3),

Concurrency Control (Section 4.4), and STRADS-AP

preprocessor (Section 4.5).

4.1 Execution of Driver Program

In the STRADS-AP driver program, the statements are classi-

fied into three categories: sequential statements, STRADS-AP

212 2019 USENIX Annual Technical Conference USENIX Association

typedef vector<word> T1;

typedef vector<array<float, vec_size>> T2;

dvector<T1> &inputD = ReadFromFile<T1>(path, parser);

dvector<T2> &Syn0 = MakeVector<T2>(vocsize, initrow1);

dvector<T2> &Syn1 = MakeVector<T2>(vocsize, initrow1);

float alpha = 0.025;

int W = 5, N = 10;

vector<int> &dtable = InitUnigramtable();

expTable &e = MakeExpTable();

for (int i = 0; i < maxiter; i++){

SyncFor(inputD, mini-batchsize,

[W, N, alpha, e, dtable, &Syn0, &Syn1]

(const vector<T1> &m){

for (auto &sentence: m){

//for each window in setence, pick up W words

// for each word in the window

// run N negative sampling using dist. table

// r/w to N rows of Syn0 and Syn1 tables

}

}, Hybrid, false);

}

Figure 4: Reimplementing Google’s Word2vec model using

STRADS-AP API.

data processing statements, and STRADS-AP loop statements.

The runtime maintains a state machine with one state per

category to keep track of the type of code to execute. A

driver node starts the driver program in sequential state, and

performs sequential execution locally until the first invocation

of a STRADS-AP operator. On a STRADS-AP operator

invocation, the state machine switches to the corresponding

state and the runtime parallelizes the operator over multiple

nodes. At the completion of the STRADS-AP operator, the

runtime switches back to sequential state and continues

running the driver program locally.

The key challenges of the STRADS-AP runtime design are:

(1) full automation of concurrency control when parallelizing

loop operators, and (2) reducing the latency of accessing DDS

elements located on remote nodes. To address these challenges,

STRADS-AP implements Reconnaissance Execution.

4.2 Reconnaissance Execution

The runtime system keeps track of the number of invocations of

all loop operators in the driver program. On the first invocation

of a loop operator, the runtime starts Reconnaissance Execu-

tion (RE)—a virtual execution of the loop operator. RE is a

read-only execution that performs all reads to DDSs, and dis-

covers read/write sets for individual loop bodies. A read/write

access record of a loop body is a list of tuples, each consisting

of a DDS identifier and a list of read/write element indices.

The runtime uses a read/write set for two purposes: (1)

performing dependency analysis and generating a data

conflict-free scheduling plan for concurrent execution of loop

bodies in the AsyncFor operator, and (2) prefetching and

caching of DDS elements on remote nodes for low-latency

access during the real execution.

For the SyncFor operator, when the parameter access is

sparse (that is, a small portion of parameters are accessed when

processing a mini-batch), the runtime reduces the amount of

data transferred by referring to access records of RE. However,

in applications with dense parameter access, (that is, most

parameters are accessed when processing a mini-batch), RE

does not help to improve the performance. Therefore, the

SyncFor operator’s boolean RE parameter (Table 2) allows

users to skip RE and prefetch/cache all elements of DDSs

captured by the corresponding lambda expression.

To reduce RE overhead, STRADS-AP runs it once per

parallel loop operator in the driver program, and reuses

read/write set for subsequent iterations. This optimization

is based on two assumptions about ML workloads: (1)

iterativeness—a loop operator is repeated many times until

convergence, and (2) static control flow—read/write sets of

loop bodies do not change over different iterations. That is,

the control flow of the inner loop does not depend on model

parameter values. Both assumptions are routinely accepted

in ML algorithms [3–5, 8, 17, 24, 28, 30, 41, 45, 51–53, 55].

4.3 Distributed Data Structures

On the surface, a DDS is a C++ class template that provides

index- or key-based uniform access operator. Under the hood,

the elements of a DDS are stored in a distributed in-memory

key-value store as key-value pairs. The key is uniquely com-

posed of the table id plus the element index for dvector, and the

table id plus the element key for dmap/dmultimap. Each node

in a cluster runs a server of the distributed key-value store con-

taining the elements of a DDS partitioned by the key hash. The

implementation of DDS class template reduces the element

access latency by prefetching and caching remote elements

based on the access records generated by RE (Section 4.2).

The DDSs achieve fault-tolerance through checkpointing.

At the completion of a STRADS-AP operator that runs

on DDSs, the runtime takes snapshots of any DDSs that

were modified or created by the operator. The checkpoint

I/O time overhead is negligible because ML programs

are compute-intensive, and the input data DDSs are not

checkpointed (except once at creation), as they are read-only.

The traditional approach to checkpointing is to dump the

whole program state onto storage during the checkpoint, and

load the state from the last successful checkpoint during the

recovery. Since an ML program may have an arbitrary number

of non-DDS variables (like hyper-parameters), the traditional

approach would require users to write boilerplate code for

saving and restoring the state of these variables, reducing

productivity and increasing opportunities for introducing

bugs. Therefore, STRADS-AP takes a different approach to

checkpointing that obviates the need for such boilerplate code.

Upon a node failure, STRADS-AP restarts the application

program in fast re-execution mode. In this mode, when the

runtime encounters a parallel operator op executing iteration i,

it first checks to see whether a checkpoint for opi exists. If yes,

the runtime skips the execution of opi and loads the DDS state

from the checkpoint. Otherwise, it continues normal execution.

Hence, the state of non-DDS variables are quickly and

correctly restored without forcing the users to write extra code.

USENIX Association 2019 USENIX Annual Technical Conference 213

4.4 Concurrency Control

STRADS-AP implements two concurrency control engines:

(1) serializable engine for the AsyncFor operator, and (2) data-

parallel engine for the SyncFor operator. Both engines use the

read/write set from Reconnaissance Execution (Section 4.2)

for prefetching remote DDS elements, while the serializable en-

gine also uses it for making data conflict-free execution plans.

4.4.1 Serializable Engine for AsyncFor

In the serializable engine, a task is defined as the loop body

with a unique loop index value i, which ranges from S to

E, where S and E are AsyncFor arguments (Table 2). The

serializable engine implements a scheduler module that

takes the read/write set from RE, analyzes data dependencies,

generates a dependency graph, and generates a parallel exe-

cution plan that avoids data conflicts. To increase parallelism,

the serializable engine may change the execution order of

tasks assuming that any serial reordering of the loop body

executions is acceptable. This assumption is also routinely

accepted in ML computations [26, 33, 39].

The scheduler divides the loop bodies into N task groups,

where N is much larger than the number of nodes in a cluster,

using an algorithm that combines the ideas of static scheduling

from STRADS [26] and connected component-based schedul-

ing from Cyclades [39]. The algorithm allows dependencies

within a task group but ensures no dependency across task

groups. At runtime, the scheduler places task groups on nodes,

where each node keeps a pool of task groups.

To balance the load, serializable engine runs a greedy

algorithm that sorts task groups in the descending order of

size, and assigns task groups to the node whose load is the

smallest so far. Once task group placements are finalized, the

runtime system starts the execution of the loop operator.

The execution begins by each node initializing DDSs to

prefetch necessary elements from the key-value store into a

per-node DDS cache. Then each node creates a user-specified

number of threads, and dispatches task groups from the task

pool to the threads. All threads on a node access the per-node

DDS cache without locking, since each thread executes a task

group sequentially, and the scheduling algorithm guarantees

that there will be no data conflicts across the task groups. In

the case of an excessively large task group, we split it among

the threads and use locking to avoid data races, which leads

to non-deterministic execution.

To reduce scheduling overhead, the serializable engine

caches the scheduling plan and reuses it over multiple itera-

tions based on the aforementioned assumptions (Section 4.2).

Hence, the overhead of RE and computing a scheduling plan

is amortized over multiple iterations.

4.4.2 Data-Parallel Engine for SyncFor

In the data-parallel engine, a task is defined as the loop body

with a mini-batch of D with size M, where D and M are

SyncFor arguments (Table 2). Hence, a single SyncFor call

generates multiple tasks with different mini-batches. The

engine places the tasks on nodes that hold the associated

mini-batches, where nodes form a pool of assigned tasks.

Similar to the serializable engine, an execution begins by

each node initializing DDSs to prefetch necessary elements

from the key-value store into the per-node DDS cache, based

on the read/write set from RE, and continues by creating a

user-specified number of threads.

Unlike the serializable engine, the threads contain a per-

thread cache, and are not allowed to access the per-node cache,

since in this case there is no guarantee of data conflict-free

access. When a node dispatches a task from the task pool to a

thread, it copies the parameter values from the per-node cache

to the per-thread cache.

Upon task completion, a thread returns the delta between the

computed parameter values and the starting parameter values.

The node dispatches a new task to the thread, accumulates

deltas from all threads, and synchronizes per-node cache with

the key-value store by sending the aggregate delta and pulling

fresh parameter values.

The SyncFor operator allows users to choose among BSP,

SSP, and Hybrid (Section 3.2.2) models of parallelizing

ML computations. The BSP [46] and SSP [23] models are

well-known, and our implementation follows previous work.

Hybrid, on the other hand, is a lesser-known model [25]. It

allows lock-free asynchronous update of parameters among

threads within a node (Hogwild! [38]), but synchronizes

across machines at fixed intervals. In the Hybrid model, a

node creates a single DDS cache that is accessed by all threads

without taking locks. When all of the threads complete a single

task, which denotes a subiteration, the node synchronizes the

DDS cache with the key-value store.

4.5 STRADS-AP Preprocessor

While there exist mature serialization libraries for C++, none of

them support serializing lambda function objects. The lack of

reflection capability in C++, and the fact that lambda functions

are implemented as anonymous function objects [36], make

serializing lambda challenging. We overcome this challenge

by implementing a preprocessor that analyzes the source code

using Clang AST Matcher library [10], identifies the types of

STRADS-AP operator arguments, and generates RPC stub

code and a uniquely-named function object for each lambda

expression that is passed to STRADS-AP operators.

The preprocessor also analyzes the source code to see if it

declares DDSs of user-defined types. While DDSs of built-in

types are automatically serialized using Boost Serialization li-

brary [6], for user-defined types the library requires adding boil-

erplate code, which is automatically added by the preprocessor.

5 Debugging STRADS-AP Applications
STRADS-AP supports two debugging modes: (1) cluster

replay mode, and (2) single-node replay mode. Currently,

STRADS-AP debugging modes support only serializable

parallel execution generated by AsyncFor operator whose

214 2019 USENIX Annual Technical Conference USENIX Association

Dataset Workload Feature Size Application Purpose

Netflix [24] 100M ratings 489K users, 17K movies, rank=1000 2.2 GB SGDMF Recommendations

1Billion [9] 1 billion words Vocabulary size 308K, vector size=100 4.5 GB Word2Vec Word Embeddings

ImageNet [43] 285K images 1K classes, 21K features, preprocessed by LCC feature extraction [47] 21 GB MLR Multi-Class Classification

FreeBase-15K [7] 483K facts 14,951 entities, 1,345 relations, vector size=100 36 MB TransE Graph Embeddings

Table 3: Datasets used in benchmarks.

Application Serial OpenMP MPI STRADS-AP TF Spark

SGDMF X X X X X

MLR X X X X X

Word2vec X X X X X

TransE X X

Table 4: ML programs used for benchmarking. Serial and

OpenMP are single core and multi-core applications on

a shared-memory machine, respectively, while the rest

are distributed parallel applications. MPI applications use

OpenMP for shared-memory parallelism within the nodes.

execution can be non-deterministic (Section 4.4.1). The

support for SyncFor operator is in progress.

Cluster Replay: The AsyncFor operator allows non-

deterministic execution for achieving high performance.

Instead of predefined deterministic execution [32], STRADS-

AP logs the execution order including lock grant ordering and

message ordering, and allows users to replay the log. For this

purpose, STRADS-AP implements record/replay modules.

The record module records the ordering of lock grantings in

every node, and the ordering of message arrivals in the DDS

key-value store into persistent storage. To avoid coordination

overhead and bottlenecking a single node, each node records

partial ordering locally, without making a total ordering. When

replaying the log, each node enforces the same partial order.

Single-node Replay: Debugging an ML program can be

classified into two categories: (1) search for a traditional

software bug, and (2) the inspection of the optimization path.

Unfortunately, these debugging tasks are not easy to do in a dis-

tributed environment since step-by-step tracing of a distributed

application is hard. To address this problem, STRADS-AP

offers single-node replay mode for parallel ML applications.

The single-node replay mode takes a parallel execution log,

and replays the ordering in a single node setting, where users

can trace the program execution using a debugger like GDB.

6 Evaluation

We evaluate STRADS-AP on (1) application performance, and

(2) programmer productivity, using the following real world

ML applications: SGDMF, Multinomial Logistic Regression

(MLR), Word2vec, and TransE [7], summarized in Table 4.

For performance evaluation, as a baseline we implement

these applications as (1) a sequential C++ application, (2) a

single-node shared-memory parallel C++ application using

OpenMP, and (3) a distributed- and shared-memory parallel

C++ application using MPI and OpenMP. We then compare

the iteration throughput (time per epoch) and the statistical

accuracy of Spark, TensorFlow (TF), and STRADS-AP

implementations of these applications to those of the baselines,

while running them on real datasets shown in Table 3. For

brevity, in the rest of the paper, when we mention that an

application is implemented using MPI, we mean that it uses

OpenMP on a single node and MPI among the nodes.

For productivity evaluation, we conduct two user studies on

a group of students with Word2vec and TransE applications.

As a measure of productivity, we count the lines of code

produced, and measure the time it took students to convert a

serial implementation of the algorithm into a STRADS-AP

implementation.

All experiments were run on a cluster with 16 machines

each with 64 GB of memory and 16-core Intel Xeon E5520

CPUs, running Ubuntu 16.04 Linux distribution, connected

with 40 Gbps Ethernet network. The reported numbers are the

averages of at least three runs. Error bars are not included due

to low variance among the runs.

6.1 Word2Vec

Word2vec is a Natural Language Processing (NLP) model

developed by Google that computes vector representations

of words, called “word embeddings”. These representations

can be used for various NLP tasks, such as discovering

semantic similarity. Word2vec can be implemented using

two architectures: continuous bag-of-words (CBOW) or

continuous skip-gram, the latter of which produces more

accurate results for large datasets [22].

We implement the skip-gram architecture in STRADS-AP

based on Google’s open source multithreaded implementa-

tion [22] written in C. We make two changes to Google’s

implementation: (1) modify it to keep all the input data in mem-

ory to avoid I/O during training, and (2) replace POSIX threads

with OpenMP. After our changes, we observe 6% increase in

performance on 16 cores. We then run our improved implemen-

tation using a single thread for the serial baseline, and using 16

threads on 16 cores for the shared-memory parallel baseline.

Google recently released a highly-optimized multithreaded

Word2vec [21] implementation on TensorFlow with two

custom kernel operators written in C++. As of now, Google

has not yet released a distributed version of Word2vec on

TensorFlow. Therefore, we extend Google’s implementation

to run in a data-parallel distributed setting. To this end, we

modify the kernel operators to work on partitions of input data,

and synchronize parameters among nodes using MPI.

Performance Evaluation: Figure 5 shows the execution time

USENIX Association 2019 USENIX Annual Technical Conference 215

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 16 128 256

Max:

22,160s

Max:

115,100s

T
im

e
(s

)

Number of Cores

Serial OpenMP STRADS-AP MPI

Figure 5: Time for 10 iterations of Word2Vec on 1 Billion

word dataset [9] with vector size = 100, window = 5, negative

sample count = 10.

Cores
Similarity Analogy

STRADS-AP MPI TF STRADS-AP MPI TF

128 0.601 0.601 0.602 0.566 0.564 0.568

256 0.603 0.597 0.601 0.562 0.557 0.561

Serial 0.610 0.570

OpenMP 0.608 0.571

Table 5: The top table reports similarity test accuracy [15],

and analogy test accuracy [37] for distributed Word2Vec

implementations on 1 Billion word dataset, after 10 iterations.

The bottom table shows respective values for the serial and

OpenMP implementations.

of Word2vec for 10 iterations with a 1 billion word data set.

On 256 cores (16 machines), MPI performs better than Tensor-

Flow and STRADS-AP by 9.4% and 10.1%, respectively; that

is, a STRADS-AP program obtained by mechanical changes

to serial code matches the performance of a highly optimized

TensorFlow program. The higher performance of an MPI pro-

gram stems from the serialization overhead in TensorFlow and

STRADS-AP. The MPI implementation stores parameters in

arrays of built-in types, and uses in-place MPI_Allreduce call

to operate on values directly. STRADS-AP outperforms serial

and OpenMP implementations by 45× and 8.7×, respectively.

Table 5 shows the similarity test accuracy [15] and the anal-

ogy test [37] accuracy, after running 10 iterations. Using the

accuracy of the serial algorithm as the baseline, we see that par-

allel implementations report slightly lower accuracy (within

1.1%) than the baseline due to the use of stale parameter values.

Productivity Evaluation: Table 6 shows the line counts

of Word2vec implementations in the first column. The

STRADS-AP implementation has 15% fewer lines than the

serial implementation, which stems mainly from the coding

style and the use of STRADS-AP’s built-in text-parsing library.

If we focus the comparison on the core of the program—the

training routine—both implementations have around 100

lines, since STRADS-AP implementation takes the serial code

and makes a few simple changes to it.

The TensorFlow implementation, however, has three times

more lines in the training routine. The increase is due to

(1) splitting the training into two kernel operators to fit the

Implementation Word2vec MLR SGDMF

Serial 468 235 271

STRADS-AP 404 245 279

MPI 559 313 409

TensorFlow 646∗ 155 (Python) N/A

Spark N/A N/A 249 (Scala)

Table 6: Line counts of model implementations using different

frameworks. Unless specified next to the lines counts, the

language is C++. ∗TensorFlow implementation of Word2vec

has 282 lines in Python and 364 lines in C++.

 0

 30

 60

 90

 120

 150

64 128

T
im

e
(s

)

Number of Cores

STRADS-AP
MPI

TF(minibatch=0.5K)
TF(minibatch=1K)

 0.75

 1

 0 1000 2000 3000 4000P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

Time (s)

Figure 6: The left figure shows time for a single iteration. We

run the TensorFlow implementation with a minibatch sizes

of 500 and 1,000. STRADS-AP and MPI implementations do

not use vector instructions, therefore, we run them with a mini-

batch size of 1. Serial and OpenMP implementations (omitted

from the graph) also run with a minibatch size of 1, and take

3,380 and 467 seconds to complete, respectively. The right

figure shows prediction accuracy as the training progresses.

While each implementation runs for 60 iterations, the graph

shows only the time until all of them converge to a stable value.

dataflow model, (2) converting tensors into C++ Eigen library

matrices and back, and (3) lock management.

While TensorFlow enables users to write simple models

easily, it requires a lot more effort and knowledge, which most

data scientists lack, to produce high-performance distributed

model implementations with custom kernel operators. On

the other hand, STRADS-AP allows ordinary users to easily

obtain performance on par with the code that was optimized by

Google, by making trivial changes to a serial implementation.

6.2 Multinomial Logistic Regression

We implement a serial, OpenMP, MPI, TensorFlow, and

STRADS-AP versions of MLR. Our distributed TensorFlow

implementation uses TensorFlow parameter servers, and is

based on the MNIST code in the TensorFlow repository. Simi-

lar to other implementations in our benchmark, our TensorFlow

implementation preloads the dataset into memory before

starting the training, and uses the Gradient Descent optimizer.

Performance Evaluation: Figure 6 shows single iteration

time on 25% of the ImageNet dataset [43] on the left, and accu-

racy after 60 iterations on the right. TensorFlow makes heavy

use of vector instructions, which explains the 30% decrease in

runtime when increasing the minibatch size from 500 to 1,000,

and almost two times shorter runtime than MPI and STRADS-

216 2019 USENIX Annual Technical Conference USENIX Association

Subject Major (Main PL) C++ Skill Level [T1] [T2] [T3] [T4] [T5] Total Challenges

Student 1 Data Mining (Python) Low 0.25 0.1 0.25 0.1 1.7 2.4 Lack of C/C++ experience

Student 2 Data Mining (Java) Low 0.3 0.2 0.1 0.2 1.4 2.2 Lack of C/C++ experience

Student 3 Machine Learning (Python) Low 0.3 0.5 0.5 0.5 1 2.8 Lack of C/C++ experience

Student 4 Compilers (Java) High 0.3 0.3 0.2 0.1 1.0 1.9 Lack of ML programming familiarity

Student 5 Systems (C++) High 0.25 0.25 0.5 0.25 0.25 1.5 N/A

Table 7: The breakdown of times (in hours) of five students that converted the serial implementation of the TransE [7] graph

embedding algorithm to a distributed STRADS-AP implementation. We split the conversion task into five subtasks: [T1] understand

the algorithm, [T2] understand the reference serial code, [T3] review STRADS-AP API guide, [T4] review the provided serial

MLR code and the corresponding STRADS-AP code, [T5] convert the serial implementation to STRADS-AP implementation.

AP implementations, which do not use vector instructions.

On the other hand, as the right graph in Figure 6 shows,

TensorFlow sacrifices accuracy for higher throughput. Unlike

the MPI and STRADS-AP implementations that achieve

99.5% accuracy after about 2,800 seconds, the accuracy of

TensorFlow remains under 98.4 even after 4,000 seconds. The

difference in accuracy is due to STRADS-AP and MPI imple-

mentations running with a minibatch size of 1, given that they

do not use vector instructions. A single iteration of TensorFlow

with a minibatch size of 1 (for which it was not optimized)

took about 6 hours, which we omitted from the graph.

Productivity Evaluation: Table 6 shows the line counts of

MLR implementations in the second column. The TensorFlow

implementation has 38% and 50% fewer lines than the

STRADS-AP and MPI implementations, respectively, because

while both of the latter implement large chunks of code to

compute gradients and apply them to parameters, TensorFlow

hides all of these under library function calls. On the other

hand, most of the TensorFlow implementation consists of code

for partitioning data and setting up the cluster and parameter

server variables. This is counter-productive for users who do

not want to deal with cluster setup and data partitioning, but

want to change the algorithms.

6.3 Matrix Factorization

We already covered (Section 2.1) the implementation details

and performance evaluation of solving Matrix Factorization

algorithm using SGD optimization (SGDMF). Therefore, we

continue with the productivity evaluation.

Productivity evaluation: Table 6 shows line counts of

SGDMF implementations in the third column. SGDMF

implementation in Scala, even after including the line count

for Gemulla’s Strata scheduling algorithm (Section 2.1.4),

has about 15% fewer lines than STRADS-AP implementation.

This is not surprising, given that functional languages like

Scala tend to have more expressive power than imperative

languages like C++. However, the difficulty of implementing

the Strata scheduling algorithm is not captured well in the line

count. Figuring out how to implement this algorithm using the

limited Spark primitives, and tuning the performance so that

the lineage graph would not consume all the memory on the

cluster took us about a week, whereas deriving STRADS-AP

implementation from the pseudocode took us about an hour.

The line count of MPI is higher than serial code due to Strata

scheduling implementation and manual data partitioning.

6.4 User Study

To further evaluate the productivity gains of using STRADS-

AP, we conducted two more user studies. In the first study, as a

capstone project we assigned a graduate student to implement

a distributed version of Word2vec using STRADS-AP and

MPI, after studying Google’s C implementation [22]. The

student had C and C++ programming experience, and had

just finished an introductory ML course. After studying

the reference source code, the student spent about an hour

studying the STRADS-AP API and experimenting with it. It

then took him about two hours to deliver a working distributed

Word2vec implemented with STRADS-AP API. On the other

hand, it took the student two days to deliver a distributed

Word2vec implemented with MPI. The MPI implementation

was not able to match the STRADS-AP implementation in

terms of accuracy and performance until the student had

invested two weeks of performance optimizations.

In the second study, we conducted an experiment similar

to a programming exam, with five graduate students. We

provided the students with a two-page STRADS-AP API

documentation, example serial MLR code, and the corre-

sponding STRADS-AP code. We then gave the students a

serial C++ program written by an external NLP research group

that implemented the TransE [7] graph embedding algorithm,

and asked them to produce a distributed version of the same

program using STRADS-AP.

Table 7 shows the breakdown of times each student spent

at different phases of the experiment, including the students’

backgrounds, and the primary challenges they faced. While

most students lacked proficiency in C++, they still managed

to complete the conversion in a reasonable amount of time.

Student 5, who was the most proficient in C++, finished the

experiment in 1.5 hours, while Student 1 took 2.4 hours, most

of which he spent in the last subtask debugging syntax errors,

after breezing through the previous subtasks. Feedback from

the participants indicated that (1) converting serial code into

STRADS-AP code was straightforward because data struc-

tures, the control flow, and optimization functions in the serial

program were reusable with a few changes, and (2) the lack

of C++ familiarity was the main challenge. The list of reported

USENIX Association 2019 USENIX Annual Technical Conference 217

mistakes included C++ syntax errors, forgetting to resize local

C++ STL vectors before populating them, and an attempt to

create a nested DDS, which STRADS-AP does not currently

support. We evaluated the students’ implementations by

running them on FreeBase-15K [7] dataset for 1000 iterations

with vector size of 50. The students’ implementations were

about 22× faster than the serial implementation on 128 cores,

averaging at 45.3% accuracy, compared to 46.1% accuracy

achieved by the serial implementation.

6.5 Scope and Limitations of STRADS-AP

STRADS-AP facilitates converting serial ML programs

into distributed ML programs with minimal changes. Our

evaluation shows that the converted ML programs achieve

performance comparable to hand-tuned distributed implemen-

tations, and to implementations written using ML-specialized

frameworks. To achieve higher performance, STRADS-AP

relies on two optimizations: reordering of loop indices to find

more opportunities for parallelism, and reuse of RE output to

amortize the overhead of running RE and making scheduling

decision over multiple iterations. These optimizations require

ML programs to meet three assumptions: serializability (4.4.1),

iterativeness (4.2), and static control flow (4.2). Fortunately,

these three assumptions are commonly found in a broad

range of ML applications. However, STRADS-AP has some

limitations on its expressiveness. For example, it does not

support nested parallel loops and user defined data structures

having nested DDSs.

7 Related Work
STRADS-AP’s design elements rely on a body of previous

work. The virtual iteration of IterStore parameter server [11]

inspired Reconnaissance Execution (RE). IterStore uses the

read/write set only for prefetching parameters into nodes

from the parameter server. STRADS-AP, however, uses the

read/write set for generating a data conflict-free execution

schedule as well as prefetching.

Calvin [44] introduces reconnaissance queries for efficient

distributed transactions with low locking overhead. However,

Calvin cannot reuse the results of the query because DBMS

workloads do not generally have the iterativeness and static

control flow properties of ML workloads. STRADS-AP

runtime runs RE on just the first invocation, and the output of

RE is reused for every iteration until convergence, amortizing

the cost of RE.

OpenMP [12] and Distributed R [42] are popular among ML

programmers and provide parallel loop operators. However

they lack the support of high-level abstractions to parallelize

ML programs in which the ML training routine has data depen-

dencies. For example, when loop bodies of a parallel loop have

data dependencies on shared ML model parameters, OpenMP

and Distributed R delegate concurrency control to the ML

programmer. This requires ML programmers to write routines

for aggregating shared parameters in the case of synchronous

parallel execution, and handling data dependencies in the case

of asynchronous execution. On the contrary, the STRADS-AP

runtime hides parameter aggregation and concurrency control

from ML programmers through Sync/Async loop operators.

GraphLab [19, 33], Cyclades [39], and STRADS [26, 29]

present ML scheduling ideas that avoid executing updates

with data conflicts to improve statistical progress per iteration.

However, GraphLab expects users to express a serial ML algo-

rithm using GAS (Gather, Apply, Scatter) primitives, Cyclades

targets a single shared-memory machine, limiting scalability,

and STRADS requires users to design and implement data

conflict-free scheduling strategy. STRADS-AP addresses all

of these limitations by (1) allowing users to convert a serial pro-

gram into parallel program through mechanical changes, (2)

scaling out to an arbitrary-sized cluster, and (3) automatically

generating data conflict-free execution schedules.

More recently, Orion [49] proposed automatic paralleliza-

tion using static analysis of matrix index access patterns.

STRADS-AP and Orion [49] share the same goal of automating

scheduling decision. However, while Orion targets ML pro-

grams written in Julia scripting language, STRADS-AP targets

C++ ML programs because there are a large number of serial

ML programs in written in C++. This difference in the choice of

programming language leads us to explore substantially differ-

ent design options, such as STL-like DDSs and dynamic anal-

ysis, instead of distributed matrix and static analysis. Specif-

ically, Orion’s static analysis requires that data dependencies

are determined statically in the form of a linear combination

of loop variables. This assumption does not hold frequently

in real-world ML applications. On the contrary, STRADS-AP

performs dynamic analysis that captures data accesses and

dependencies at runtime without relying on such assumptions.

8 Conclusion

Despite the availability of a plethora of frameworks for

distributed Machine Learning (ML) programming, we

believe distributed ML programming is still unnecessarily

complicated. Each framework comes with its own restricted

programming model and abstractions, its inefficiencies, and

peculiarities that add to the growing list of things that data sci-

entists should master. We take a step back and ask: how can we

take a serial imperative implementation of an ML model, and

parallelize it over a cluster with minimal effort from the user.

Our answer is STRADS-AP—a distributed ML framework,

which is a combination of a runtime and an API comprised

of Distributed Data Structures (DDSs) and parallel loop

operators. Using four real-world applications, we show that

STRADS-AP allows data scientists to easily convert a serial

implementation of an ML model to a distributed implemen-

tation that achieves performance comparable to hand-tuned

MPI and TensorFlow implementations, while outperforming

a Spark implementation by more than an order of magnitude.

218 2019 USENIX Annual Technical Conference USENIX Association

Acknowledgements
We thank our shepherd Steven Hand and the anonymous

reviewers. This research is supported in part by National Sci-

ence Foundation under awards CCF-1629559, IIS-1563887,

and IIS-1617583. We thank the member companies of the

PDL Consortium (Alibaba, Broadcom, Dell EMC, Facebook,

Google, Hewlett-Packard, Hitachi, IBM, Intel, Micron,

Microsoft, MongoDB, NetApp, Oracle, Salesforce, Samsung,

Seagate, Two Sigma, Toshiba, Veritas, and Western Digital)

for their interest, insights, feedback, and support.

References
[1] CLOC: Count Lines of Code. http://cloc.

sourceforge.net/.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay

Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: A system for large-scale

machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 265–283, 2016.

[3] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan

Narayanamurthy, and Alexander J. Smola. Scalable

inference in latent variable models. In Proceedings of

the Fifth ACM International Conference on Web Search

and Data Mining, WSDM ’12, pages 123–132, New

York, NY, USA, 2012. ACM.

[4] Arthur Asuncion, Max Welling, Padhraic Smyth, and

Yee Whye Teh. On Smoothing and Inference for Topic

Models. In Proceedings of the Twenty-Fifth Conference

on Uncertainty in Artificial Intelligence, UAI ’09, pages

27–34, Arlington, Virginia, United States, 2009. AUAI

Press.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

Latent dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, March 2003.

[6] Boost. Boost C++ Library - Serialization.

http://www.boost.org/doc/libs/1_66_0/libs/

serialization/doc/index.html.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán,

Jason Weston, and Oksana Yakhnenko. Translating

Embeddings for Modeling Multi-relational Data. In Pro-

ceedings of the 26th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’13,

pages 2787–2795, USA, 2013. Curran Associates Inc.

[8] Joseph K. Bradley, Aapo Kyrola, Danny Bickson,

and Carlos Guestrin. Parallel coordinate descent for

l1-regularized loss minimization. In Proceedings of

the 28th International Conference on International

Conference on Machine Learning, ICML’11, pages

321–328, USA, 2011. Omnipress.

[9] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,

Thorsten Brants, Phillipp Koehn, and Tony Robinson.

One billion word benchmark for measuring progress in

statistical language modeling. Technical report, Google,

2013.

[10] Clang. AST Matcher Reference. http://clang.llvm.

org/docs/LibASTMatchersReference.html.

[11] Henggang Cui, Alexey Tumanov, Jinliang Wei,

Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong

Ho, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. Exploiting Iterative-ness for

Parallel ML Computations. In Proceedings of the ACM

Symposium on Cloud Computing, SOCC ’14, pages

5:1–5:14, New York, NY, USA, 2014. ACM.

[12] Leonardo Dagum and Ramesh Menon. OpenMP: An

Industry-Standard API for Shared-Memory Program-

ming. IEEE Comput. Sci. Eng., 5(1):46–55, January

1998.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-

fied data processing on large clusters. In Proceedings of

the 6th Conference on Symposium on Operating Systems

Design & Implementation - Volume 6, OSDI’04, pages

10–10, Berkeley, CA, USA, 2004. USENIX Association.

[14] Tarek El-Ghazawi and Lauren Smith. Upc: Unified

parallel c. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC ’06, New York, NY,

USA, 2006. ACM.

[15] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,

Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Rup-

pin. Placing Search in Context: The Concept Revisited.

In Proceedings of the 10th international conference on

World Wide Web, pages 406–414. ACM, 2001.

[16] Message P Forum. MPI: A Message-Passing Interface

Standard. Technical report, Knoxville, TN, USA, 1994.

[17] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani.

Pathwise Coordinate Optimization. Annals of Applied

Statistics, 1(2):302–332, 2007.

[18] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and

Yannis Sismanis. Large-scale matrix factorization with

distributed stochastic gradient descent. In Proceedings

of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’11,

pages 69–77, New York, NY, USA, 2011. ACM.

USENIX Association 2019 USENIX Annual Technical Conference 219

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
http://clang.llvm.org/docs/LibASTMatchersReference.html

[19] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny

Bickson, and Carlos Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In Pro-

ceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, OSDI’12, pages

17–30, Berkeley, CA, USA, 2012. USENIX Association.

[20] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,

Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.

GraphX: Graph Processing in a Distributed Dataflow

Framework. In Proceedings of the 11th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’14, pages 599–613, Berkeley, CA, USA, 2014.

USENIX Association.

[21] Google. TensorFLow Optimized Word2vec. https:

//github.com/tensorflow/models/blob/master/

tutorials/embedding/word2vec_optimized.py.

[22] Google. word2vec. https://code.google.com/

archive/p/word2vec/.

[23] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim,

Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson,

Gregory R. Ganger, and Eric P. Xing. More effective

distributed ml via a stale synchronous parallel parameter

server. In Proceedings of the 26th International

Conference on Neural Information Processing Systems

- Volume 1, NIPS’13, pages 1223–1231, USA, 2013.

Curran Associates Inc.

[24] James Bennett and Stan Lanning and Netflix Netflix.

The Netflix Prize. In In KDD Cup and Workshop in

conjunction with KDD, 2007.

[25] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey.

Parallelizing Word2Vec in Multi-Core and Many-Core

Architectures. CoRR, abs/1611.06172, 2016.

[26] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng,

Wei Dai, Garth A. Gibson, and Eric P. Xing. STRADS:

A Distributed Framework for Scheduled Model Parallel

Machine Learning. In Proceedings of the Eleventh

European Conference on Computer Systems, EuroSys

’16, pages 5:1–5:16, New York, NY, USA, 2016. ACM.

[27] Keith Kirkpatrick. Parallel Computational Thinking.

Commun. ACM, 60(12):17–19, November 2017.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix

factorization techniques for recommender systems.

Computer, 42(8):30–37, August 2009.

[29] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,

Garth A. Gibson, and Eric P. Xing. On model paralleliza-

tion and scheduling strategies for distributed machine

learning. In Proceedings of the 27th International

Conference on Neural Information Processing Systems -

Volume 2, NIPS’14, pages 2834–2842, Cambridge, MA,

USA, 2014. MIT Press.

[30] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J.

Smola. Reducing the Sampling Complexity of Topic

Models. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, KDD ’14, pages 891–900, New York, NY,

USA, 2014. ACM.

[31] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.

Smola, Amr Ahmed, Vanja Josifovski, James Long,

Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. In 11th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 583–598, Broomfield,

CO, 2014. USENIX Association.

[32] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.

Dthreads: Efficient Deterministic Multithreading. In

Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP ’11, pages

327–336, New York, NY, USA, 2011. ACM.

[33] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos

Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.

Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud. Proc. VLDB

Endow., 5(8):716–727, 2012.

[34] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. Pregel: A system for large-scale graph pro-

cessing. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’10, pages 135–146, New York, NY, USA, 2010. ACM.

[35] Frank McSherry, Michael Isard, and Derek G. Murray.

Scalability! but at what COST? In 15th Workshop on

Hot Topics in Operating Systems (HotOS XV), Kartause

Ittingen, Switzerland, 2015. USENIX Association.

[36] Microsoft Developer Network. Lambda Expressions

in C++. https://msdn.microsoft.com/en-us/

library/dd293608.aspx, 2015.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,

and Jeffrey Dean. Distributed Representations of Words

and Phrases and Their Compositionality. In Proceedings

of the 26th International Conference on Neural Infor-

mation Processing Systems - Volume 2, NIPS’13, pages

3111–3119, USA, 2013. Curran Associates Inc.

[38] Feng Niu, Benjamin Recht, Christopher Re, and

Stephen J. Wright. Hogwild!: A lock-free approach to

parallelizing stochastic gradient descent. In Proceedings

220 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://msdn.microsoft.com/en-us/library/dd293608.aspx
https://msdn.microsoft.com/en-us/library/dd293608.aspx

of the 24th International Conference on Neural Infor-

mation Processing Systems, NIPS’11, pages 693–701,

USA, 2011. Curran Associates Inc.

[39] Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris

Papailiopoulos, Ce Zhang, Michael I. Jordan, Kannan

Ramchandran, Chris Re, and Benjamin Recht. Cyclades:

Conflict-free asynchronous machine learning. In

Proceedings of the 30th International Conference on

Neural Information Processing Systems, NIPS’16, pages

2576–2584, USA, 2016. Curran Associates Inc.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,

Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. In NIPS 2017

Autodiff Workshopt: The Future of Gradient-based

Machine Learning Software and Techniques, Long

Beach, CA, US, December 9, 2017.

[41] István Pilászy, Dávid Zibriczky, and Domonkos Tikk.

Fast ALS-based Matrix Factorization for Explicit and

Implicit Feedback Datasets. In Proceedings of the Fourth

ACM Conference on Recommender Systems, RecSys ’10,

pages 71–78, New York, NY, USA, 2010. ACM.

[42] R Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2014.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale

Visual Recognition Challenge. Int. J. Comput. Vision,

115(3):211–252, December 2015.

[44] Alexander Thomson, Thaddeus Diamond, Shu-Chun

Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin:

Fast Distributed Transactions for Partitioned Database

Systems. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, SIG-

MOD ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[45] R. Tibshirani. Regression Shrinkage and Selection via

the Lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267–288, 1996.

[46] Leslie G. Valiant. A bridging model for parallel com-

putation. Commun. ACM, 33(8):103–111, August 1990.

[47] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv,

Thomas S. Huang, and Yihong Gong. Locality-

constrained linear coding for image classification. In

CVPR, pages 3360–3367. IEEE Computer Society, 2010.

[48] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho,

Henggang Cui, Gregory R. Ganger, Phillip B. Gibbons,

Garth A. Gibson, and Eric P. Xing. Managed Commu-

nication and Consistency for Fast Data-parallel Iterative

Analytics. In Proceedings of the Sixth ACM Symposium

on Cloud Computing, SoCC ’15, pages 381–394, New

York, NY, USA, 2015. ACM.

[49] Jinliang Wei, Garth A. Gibson, Phillip B. Gibbons, and

Eric P. Xing. Automating dependence-aware paralleliza-

tion of machine learning training on distributed shared

memory. In Proceedings of the Fourteenth EuroSys

Conference 2019, EuroSys ’19, pages 42:1–42:17, New

York, NY, USA, 2019. ACM.

[50] Jinliang Wei, Jin Kyu Kim, and Garth A. Gibson.

Benchmarking Apache Spark with Machine Learning

Applications. Technical report, Carnegie Mellon

University, 2016.

[51] T.T. Wu and K. Lange. Coordinate Descent Algorithms

for Lasso Penalized Regression. The Annals of Applied

Statistics, 2(1):224–244, 2008.

[52] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon.

Scalable coordinate descent approaches to parallel

matrix factorization for recommender systems. In

Proceedings of the 2012 IEEE 12th International

Conference on Data Mining, ICDM ’12, pages 765–774,

Washington, DC, USA, 2012. IEEE Computer Society.

[53] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei,

Xun Zheng, Eric Po Xing, Tie-Yan Liu, and Wei-Ying Ma.

Lightlda: Big topic models on modest computer clusters.

In Proceedings of the 24th International Conference on

World Wide Web, WWW ’15, pages 1351–1361, Republic

and Canton of Geneva, Switzerland, 2015. International

World Wide Web Conferences Steering Committee.

[54] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th

USENIX Conference on Networked Systems Design and

Implementation, NSDI’12, pages 2–2, Berkeley, CA,

USA, 2012. USENIX Association.

[55] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and

Rong Pan. Large-scale parallel Collaborative Filtering

for the Netflix Prize. In Algorithmic Aspects in Informa-

tion and Management, pages 337–348. Springer, 2008.

USENIX Association 2019 USENIX Annual Technical Conference 221

	Introduction
	The Cost of Using a Framework
	Programming Effort
	Sequential SGDMF code
	OpenMP Parallel SGDMF
	STRADS-AP Distributed SGDMF
	Spark Distributed SGDMF

	Performance Cost
	Other High-Level Frameworks

	STRADS-AP Programming Interface
	Distributed Data Structures (DDSs)
	STRADS-AP Operators
	Pretraining Operators
	Loop Operators

	Implementation
	Execution of Driver Program
	Reconnaissance Execution
	Distributed Data Structures
	Concurrency Control
	Serializable Engine for AsyncFor
	Data-Parallel Engine for SyncFor

	STRADS-AP Preprocessor

	Debugging STRADS-AP Applications
	Evaluation
	Word2Vec
	Multinomial Logistic Regression
	Matrix Factorization
	User Study
	Scope and Limitations of STRADS-AP

	Related Work
	Conclusion

