
51

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University
PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh
TODD C. MOWRY, Carnegie Mellon University

Many modern high-performance processors prefetch blocks into the on-chip cache. Prefetched blocks can
potentially pollute the cache by evicting more useful blocks. In this work, we observe that both accurate
and inaccurate prefetches lead to cache pollution, and propose a comprehensive mechanism to mitigate
prefetcher-caused cache pollution.

First, we observe that over 95% of useful prefetches in a wide variety of applications are not reused
after the first demand hit (in secondary caches). Based on this observation, our first mechanism simply
demotes a prefetched block to the lowest priority on a demand hit. Second, to address pollution caused by
inaccurate prefetches, we propose a self-tuning prefetch accuracy predictor to predict if a prefetch is accurate
or inaccurate. Only predicted-accurate prefetches are inserted into the cache with a high priority.

Evaluations show that our final mechanism, which combines these two ideas, significantly improves
performance compared to both the baseline LRU policy and two state-of-the-art approaches to mitigating
prefetcher-caused cache pollution (up to 49%, and 6% on average for 157 two-core multiprogrammed work-
loads). The performance improvement is consistent across a wide variety of system configurations.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles

General Terms: Design, Performance, Memory

Additional Key Words and Phrases: Prefetching, caches, cache pollution, cache insertion/promotion policy

ACM Reference Format:
Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and
Todd C. Mowry. 2015. Mitigating prefetcher–caused pollution using informed caching policies for prefetched
blocks. ACM Trans. Architec. Code Optim. 11, 4, Article 51 (January 2015), 22 pages.
DOI: http://dx.doi.org/10.1145/2677956

1. INTRODUCTION

Hardware caching and prefetching are two techniques typically employed by modern
high-performance processors to mitigate the impact of long memory access latency.
In many such processors [Intel 2006; Oracle 2011; Kalla et al. 2010], the hardware
prefetcher prefetches blocks into the on-chip cache. Doing so has three benefits com-
pared to prefetching data into a separate prefetch buffer: (1) it avoids statically parti-
tioning the data storage between the cache and the prefetch buffer—prior work [Srinath

Authors’ addresses: V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, and T. C. Mowry, Carnegie Mellon Univer-
sity, 5000 Forbes Avenue, Pittsburgh PA 15213; emails: vseshadr@cs.cmu.edu, samihanyedkar@gmail.com,
hxin@cs.cmu.edu, onur@cmu.edu, tcm@cs.cmu.edu; P. B. Gibbons and M. A. Kozuch, Intel Pittsburgh,
Collaborative Innovation Center, 4720 Forbes Avenue, Pittsburgh PA 15213; emails: {phillip.b.gibbons,
michael.a.kozuch}@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1544-3566/2015/01-ART51 $15.00

DOI: http://dx.doi.org/10.1145/2677956

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

http://dx.doi.org/10.1145/2677956
http://dx.doi.org/10.1145/2677956

51:2 V. Seshadri et al.

Fig. 1. Usage distribution of prefetched blocks.

et al. 2007] has shown that a large prefetch buffer (≈64KB) is required to achieve rea-
sonably good performance with an aggressive prefetcher; (2) it simplifies on-chip cache
coherence since coherence requests have to snoop only the cache; and (3) it avoids the
need to design a separate prefetch buffer as most processors have a cache anyway.

One major limitation of prefetching data into the on-chip cache is that prefetched
blocks can potentially evict more useful blocks from the cache, increasing the num-
ber of cache misses. This problem is referred to as prefetcher-caused cache pollution.
Prefetcher-caused cache pollution can degrade performance significantly, especially in
a multicore system, in which prefetched blocks of one application evict useful blocks of
another application. Several prior works (e.g., Srinath et al. [2007], Wu et al. [2011],
Zhuang and Lee [2003], and Lin et al. [2001b]) aim to address this problem. In this work,
we propose a new and simple solution to address prefetcher-caused cache pollution.

Prefetched blocks fall into one of two categories: inaccurate prefetches – those that
are not used later by the application, and accurate prefetches – those that are used by
the application. We first observe that a significant majority of accurate prefetches are
used only once by the application. This observation is valid only for secondary caches
(L2, L3, etc.) and not for the primary L1 caches, in which multiple demand requests
may access different words within a prefetched block. The main intuition behind why
the majority of the accurate prefetched blocks are used only once is that prefetching
typically works well for large data structures that do not fit into the cache. Blocks of
such data structures have a large reuse distance, and thus are unlikely to get used
more than once while in the cache.

To confirm this observation, we conducted a study in which we ran each application
on a system with a 1MB L3 cache. A multi-entry stream prefetcher [Le et al. 2007]
analyzes the misses from the L2 cache and prefetches data into the LLC (Section 5
provides more details of our methodology). Figure 1 plots the fraction of prefetched
blocks that are (1) unused, (2) used once, or (3) used more than once by the application.
As Figure 1 indicates, a majority of the prefetched blocks are either unused or used
only once. In fact, over 95% of the accurate prefetches are used only once.1

The traditional LRU policy is suboptimal for both unused and used-once prefetched
blocks. Figure 2 demonstrates the shortcomings of the LRU policy and indicates the
good policies that reduce pollution caused by inaccurate and accurate prefetches.
The x-axis indicates time and the y-axis indicates the position of a prefetched block

1Figure 1 does not include blocks that are not prefetched. The aim of this study is not to show that prefetched
blocks are less likely to be reused than demand-fetched blocks. Rather, it is to show that prefetched blocks
are less likely to be used more than once. While there may be other demand-fetched blocks that do not
exhibit any reuse, our mechanism does not aim to mitigate pollution caused by such nonprefetched blocks.
Our results in Section 7 show that just mitigating pollution caused by prefetched blocks can significantly
improve performance.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:3

Fig. 2. Effect of different policies on the cache occupancy of (a) an inaccurate and (b) an accurate prefetch.
Each line corresponds to a specific insertion/promotion policy followed for prefetched blocks.

in the LRU stack. Each line in Figures 2(a) and 2(b) correspond to a specific policy
followed for a prefetched block. There are three points to note regarding the figure.

First, inserting an inaccurate prefetch at the MRU position is bad, as the block
unnecessarily pollutes the cache without any use (Figure 2(a)). Second, the LRU
policy inserts an accurate prefetch at the MRU position and promotes the block on its
first use (Figure 2(b)). This is bad, as our observation indicates that such accurate
prefetches will likely not be used more than once. Finally, prior work [Srinath et al.
2007] has proposed to insert all prefetches at the LRU position when prefetches are
determined to cause pollution. However, inserting an accurate prefetch at the LRU
position is bad since it can cause the block to be evicted even before it is used by the
application, thereby rendering the prefetch useless (Figure 2(b)).

In this work, we propose a mechanism to comprehensively address pollution due
to both accurate prefetches and inaccurate prefetches without losing the benefits of
prefetching. Our proposed mechanism, Informed Caching policies for Prefetched blocks
(ICP) has two component policies.

First, based on our observation that over 95% of the useful prefetches are not reused
after the first demand hit, the first component simply demotes a prefetched block to the
lowest priority when it is used by a demand request. This ensures that the prefetched
block does not pollute the cache after its single use (Figure 2(b)). We refer to this
mechanism as ICP-Demotion (ICP-D). This mechanism only requires a single bit per
tag entry to track whether the corresponding block is prefetched, and it is very effective
in mitigating pollution caused by accurate prefetches.

Second, to address the pollution caused by inaccurate prefetches, our mechanism pre-
dicts the accuracy of each prefetched block and inserts predicted-inaccurate prefetches
with a low priority into the cache.2 As such, we take an approach similar to prior work
[Lin et al. 2001b; Zhuang and Lee 2003; Srinath et al. 2007]. However, we observe
that the metric used by prior works to estimate the accuracy of a prefetcher, fraction
of useful prefetches generated by the prefetcher, can potentially lead to a positive feed-
back loop. Inserting all predicted-inaccurate prefetches with a low priority into the
cache will make it less likely for the prefetcher to generate useful prefetches. This can
cause the prefetcher to get stuck in a state in which all its prefetches are classified
as inaccurate, even though they may actually be useful. To address this problem, we
propose a Self-Tuning Accuracy Predictor, the second component of our mechanism. We
refer to this mechanism as ICP-Accuracy Prediction (ICP-AP). To detect cases when
an accurate prefetch is falsely classified as inaccurate, ICP-AP tracks the addresses of
a small set of recently evicted prefetched blocks in a structure called Evicted-Prefetch

2Note that while inaccurate prefetches can be dropped altogether to reduce memory bandwidth consumption
[Lee et al. 2008], we do not drop prefetches, as the focus of this work is on mitigating cache pollution caused
by prefetches.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:4 V. Seshadri et al.

Filter (EPF). On a demand miss, if the missed block address is present in the EPF, it
indicates a case of a misclassified prefetch, and ICP-AP increases its estimate of the
accuracy of the prefetches generated by the prefetcher.

Note that prior works [Wu et al. 2011; Srinath et al. 2007; Lin et al. 2001b; Zhuang
and Lee 2003] have proposed mechanisms to address prefetcher-caused cache pollution.
We perform a detailed qualitative (Section 4) and quantitative (Sections 6 and 7)
comparison of ICP to these prior works.

Our analysis in Section 6 shows that both ICP-D and ICP-AP are effective in reducing
the pollution caused by prefetched blocks (i.e., reducing the time for which prefetches
stay in the cache) without losing the benefit of prefetching (i.e., without increasing
the cache miss rate). Across 157 two-core multiprogrammed workloads, ICP improves
system performance by as much as 49% (6% on average) compared to the baseline
and by as much as 43% (5% on average) compared to two state-of-the-art approaches
to mitigate prefetcher-caused pollution (FDP [Srinath et al. 2007] and PACMan [Wu
et al. 2011]).

We make the following contributions.

—We show that promoting prefetched blocks when they receive a demand hit leads to
cache pollution in a majority of cases. To address this problem, we propose a simple
mechanism that demotes a prefetched block on a demand hit.

—We observe that prior mechanisms to predict prefetch accuracy can get stuck in a pos-
itive feedback loop—a prefetcher classified as inaccurate continues to get classified
as inaccurate. We propose a self-tuning accuracy predictor to address this problem.

—We compare our proposed mechanism with the baseline LRU policy and two state-
of-the-art approaches (FDP [Srinath et al. 2007] and PACMan [Wu et al. 2011]) on
a wide variety of workloads and system configurations (e.g., varying cache sizes,
memory latency, core counts, and cache replacement policies). Our evaluations show
that ICP consistently outperforms both the baseline and prior approaches.

2. ICP: MECHANISM

Our proposed mechanism to mitigate prefetcher-caused cache pollution consists of two
components. The first component addresses the problem of unnecessary promotion
of prefetched blocks, thereby mitigating pollution caused by accurate prefetches. The
second component addresses the pollution caused by inaccurate prefetches. In this
section, we describe each component in detail.

2.1. ICP-Demotion (ICP-D)

The first component of our mechanism aims to address pollution caused by accurate
prefetches. Our analysis of the prefetch-usage distribution (Figure 1) showed that in a
system in which the prefetcher prefetches blocks into the last-level cache (LLC), over
95% of the accurate prefetches are used only once in the LLC. Based on this observation,
our mechanism, ICP-Demotion (ICP-D), tracks blocks that were prefetched by the
hardware prefetcher and demotes a prefetched block to the lowest priority when it
receives a demand hit. Thereby, ICP-D prevents prefetched blocks from polluting the
cache unnecessarily after they are used by the application.

ICP-D makes an implicit prediction that a prefetched block will not be reused after
the first demand hit. Our evaluations show that this prediction is accurate for the
majority (95%) of the cases. However, depending on the available cache space and
working set of the application, some prefetchable data structure that is reused by the
application may fit into the cache. In such cases, it may be useful to retain the prefetched
blocks of such data structures so that subsequent accesses to the data structure do not
have to be (pre)fetched from memory. To this end, we explored the possibility of using

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:5

a reuse predictor to explicitly predict the reuse behavior of a prefetched block when it
receives a demand hit. On a demand hit to a prefetched block, the cache consults the
reuse predictor [Seshadri et al. 2012]. If the block is predicted to have high reuse, it is
promoted to a high priority. Otherwise, it is demoted to the lowest priority. However,
our evaluations showed that the reuse predictor did not provide significant benefit on
top of ICP-D’s implicit prediction.

2.2. ICP-Accuracy Prediction (ICP-AP)

The second component of our proposed mechanism aims to mitigate pollution caused
by inaccurate prefetches. Our approach, similar to another prior work [Zhuang and
Lee 2003], is to predict the accuracy of each individual prefetched request and use
the prediction to determine the policy for the prefetch request. Specifically, our mecha-
nism inserts only predicted-accurate prefetched blocks with a high priority and inserts
predicted-inaccurate prefetched blocks with a low priority.

To measure the accuracy of a prefetcher, many prior works (e.g., Srinath et al. [2007],
Zhuang and Lee [2003], Ebrahimi et al. [2009b, 2011], Dahlgren et al. [1995], Nesbit
et al. [2004], and Lee et al. [2008]) use the fraction of useful prefetches generated by
the prefetcher. At a high level, the mechanism uses two counters: one to track the total
number of prefetches (total) and another to track the number of useful prefetches
(used). When a block is prefetched into the cache, the total counter is incremented.
When a prefetched block receives a demand hit, the used counter is incremented. If the
ratio of used over total is above a threshold, the prefetcher is classified as accurate.
Otherwise, it is classified as inaccurate.

Using this metric to determine the accuracy of prefetched blocks has a shortcoming.
When a prefetcher is classified as inaccurate, any block prefetched is inserted with a low
priority. As a result, if the prefetcher was misclassified as inaccurate, the prefetched
block may get evicted from the cache even before the demand request arrives. This
reduces the likelihood of an increase in the prefetcher’s used counter, which in turn
will cause the prefetcher to be classified as inaccurate.

To address this problem, we propose a self-tuning accuracy predictor, ICP-Accuracy
Prediction (ICP-AP). The key idea behind ICP-AP is to detect cases when an accurate
prefetch is misclassified as inaccurate, and increase the estimate of the accuracy of
the prefetcher in such cases. To detect such cases of misclassification, ICP-AP tracks
the addresses of a small set of recently evicted prefetched blocks that were predicted to
be inaccurate in a structure called Evicted-Prefetch Filter (EPF).3 On a demand miss,
if the missed block address is present in the EPF, it indicates that an accurate prefetch
was misclassified as inaccurate.

ICP-AP works as follows. It augments the prefetcher with a saturating counter that
measures the accuracy of the prefetcher. If the counter value is above a threshold,
the prefetcher is classified as accurate. Otherwise, it is classified as inaccurate. ICP-
AP augments the cache with an EPF that tracks recently evicted predicted-inaccurate
prefetched blocks. The accuracy counter is incremented in two cases: (1) when a demand
request hits on a prefetched block, and (2) when the address of a demand miss is present
in the EPF. Both cases indicate that the prefetcher generated an accurate prefetch.
Similarly, the accuracy counter is decremented in two cases: (1) when a prefetched
block address is evicted from the EPF, and (2) when a prefetched block predicted to be
accurate is evicted from the cache. Both cases indicate that the prefetcher generated a
likely inaccurate prefetch.

When a prefetch is generated, ICP-AP uses the accuracy counter to determine the
accuracy of the prefetch. If the prefetch is predicted to be accurate, the prefetch is

3The Evicted-Prefetch Filter is similar to the Evicted-Address Filter [Seshadri et al. 2012], which keeps
track of addresses of recently evicted demand-fetched blocks to predict the reuse behavior of future accesses.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:6 V. Seshadri et al.

Fig. 3. Implementation of ICP. Thick lines indicate changes introduced by ICP. Each MSHR entry also
requires a P-bit. We do not show this in the figure, for clarity.

inserted with a high priority (in case of a cache miss) or promoted to a high priority (in
case of a cache hit). If the prefetch is predicted to be inaccurate, it is inserted with the
lowest priority (cache miss) or its priority is unchanged (cache hit).

As our study in Section 1 indicates, for many applications, the prefetcher gener-
ates a significant fraction of both accurate and inaccurate prefetches. To improve the
prefetch accuracy for such applications, we use a separate accuracy counter for each
stream tracked by the prefetcher.4 Our evaluations show that, on average, our pro-
posed accuracy predictor reduces the number of misclassified prefetches from 25% to
14% compared to the accuracy predictor used by FDP [Srinath et al. 2007], which is
also used in many other prior works [Zhuang and Lee 2003; Ebrahimi et al. 2009b,
2011; Dahlgren et al. 1995; Nesbit et al. 2004; Lee et al. 2008].

2.3. ICP: Summary of Changes to the Caching Policies

Our final mechanism, ICP, combines the policies employed by both ICP-D and ICP-AP.
In summary, ICP introduces five changes to the baseline caching mechanism, which
follows the same policy for demand-fetched and prefetched blocks.

(1) When a demand request hits in the cache, if the corresponding block was prefetched,
then ICP demotes the block to the lowest priority (see Section 2.1).

(2) When a demand request misses in the cache, if there is an outstanding prefetch
request for the block (as indicated by the MSHRs), the block is inserted with the
lowest priority (as this scenario is equivalent to the block being prefetched and the
demand request hitting in the cache).

(3) When a prefetch request hits in the cache, ICP promotes the block to a high priority
only if the prefetched block is predicted to be accurate. Otherwise, the block’s
replacement state is left unchanged (see Section 2.2).

(4) When a prefetch request misses in the cache, ICP inserts the prefetched block with
a high priority only if it is predicted to be accurate. Otherwise, the block is inserted
with the lowest priority (see Section 2.2).

(5) When a predicted-inaccurate prefetched block gets evicted from the cache, its ad-
dress is inserted into the EPF.

3. IMPLEMENTATION AND OVERHEAD ANALYSIS

Figure 3 illustrates the hardware changes required to implement ICP. We now describe
these changes in detail.

4Our evaluations use per-stream accuracy counters for prior works as well.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:7

3.1. Implementing ICP-D

Implementing ICP-D requires only a single bit in each tag entry and each MSHR entry
to indicate if the entry corresponds to a prefetched block. We refer to this bit as the P-
bit,. For an outstanding prefetch request, the P-bit of the corresponding MSHR entry is
set. Similarly, when a block is prefetched into the cache, the P-bit of the corresponding
tag entry is set. When a demand request hits in the cache (or is present in the MSHR),
the P-bit is cleared and the block is demoted to the lowest priority (or inserted with
the lowest priority). For a 1MB cache with 64B block size, the overhead of the P-bit is
2KB (<0.2% of the cache size). With this modest 0.2% overhead, ICP-D significantly
improves system performance (as shown in our evaluations in Section 7).

3.2. Implementing ICP-AP

Implementing our accuracy predictor (ICP-AP) requires four changes on top of the P-
bit, required by ICP-D: (1) one accuracy counter per entry in the prefetcher; (2) the
EPF, which tracks the addresses of recently evicted prefetched blocks predicted to
be inaccurate; (3) a bit per tag indicating if the prefetched block was predicted to
be inaccurate (I-bit); and (4) one ID per tag (Pref-ID), indicating which entry in the
prefetcher prefetched the block.

The size of the EPF determines how long after the eviction of a mispredicted-
inaccurate prefetched block the demand request can arrive for the EPF to detect the
misprediction. We find that for each entry keeping track of as many addresses in the
EPF as the maximum distance of the prefetcher (D) is sufficient to provide high per-
formance. To further reduce the storage overhead of EPF, we use partial address tags
(T bits for each tag). The I-bit and the Pref-ID are required to train the accuracy
predictor for each entry. This is in contrast to the P-bit, which is required to determine
the promotion policy for each prefetched block. The final storage overhead of ICP-AP is
given by nA+nDT + B(1+ log n) bits, where n is the number of entries in the prefetcher
and B is the number of blocks in the cache. For the configuration used in our evaluation
(n = 16, A = 4, D = 24, T = 8, B = 16384), the storage overhead of ICP-AP amounts
to 10.38KB (≈1.01% of the 1MB cache size).

4. PRIOR WORK ON MITIGATING PREFETCHER-CAUSED CACHE POLLUTION

In this section, we describe two closely related, state-of-the-art mechanisms to address
prefetcher-caused pollution (Section 8 discusses other related work): (1) Prefetch-Aware
Cache Management [Wu et al. 2011], and (2) Feedback-Directed Prefetching (FDP)
[Srinath et al. 2007], qualitatively comparing them to ICP. In our evaluations (Sec-
tions 6 and 7), we quantitatively compare ICP with these two mechanisms. The funda-
mental novelty of ICP is that it avoids the unnecessary promotion of prefetched blocks
on a demand hit based on the observation that an overwhelming majority of useful
prefetched blocks are used only once in the cache, thereby significantly mitigating
pollution caused by accurate prefetches at the level in which they are inserted.

4.1. Prefetch-Aware Cache Management (PACMan)

PACMan aims to mitigate LLC pollution in a system in which prefetched blocks are
inserted into both L3 and L2. PACMan [Wu et al. 2011] proposes two policies. First, it
observes that all the demand requests for the accurately prefetched blocks are served
by the L2 cache itself, thus they are not used at the L3 cache and can be inserted at the
LRU position in the L3 cache. Based on this observation, the first policy, PACMan-M,
inserts all prefetched blocks (accurate and inaccurate) at the LRU position. Second,
since blocks that receive a prefetch request are potentially “prefetchable,” the second
policy, PACMan-H, does not modify the replacement state of a block that receives a

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:8 V. Seshadri et al.

hit due to a prefetch request. PACMan-HM employs both PACMan-H and PACMan-M.
The final mechanism, PACMan-Dyn, uses set dueling [Qureshi et al. 2007] to choose
the best of the different policies.

The main shortcoming of PACMan is that it does not mitigate pollution at the level
in which prefetched blocks are inserted. This is because, to mitigate pollution at a
particular cache level, PACMan inserts prefetched blocks in the previous level, which
filters all the demand requests to the prefetched blocks. In contrast, ICP exploits our
observation that a majority of useful cache prefetches are used only once to mitigate
pollution at the level in which prefetched blocks are inserted.

Specifically, in the system evaluated by PACMan, prefetched blocks are inserted both
into the L3 cache and the L2 cache. The PACMan approach mitigates pollution only
in the L3 cache and does not mitigate pollution in the L2 cache. However, aggressively
prefetching data into the L2 cache will pollute the L2 cache and can potentially degrade
both individual application and overall system performance, especially in systems em-
ploying multithreading [Intel 2006; Kalla et al. 2010], in which the L2 cache is also
shared by applications concurrently running on the same core. In contrast, ICP can
mitigate pollution in the L2 cache as well as the L3 cache. In fact, we find that our
observation is true for a system with only two levels of cache as well.

In our evaluations (Section 7.4), we find that the baseline that prefetches only into
the L3 cache performs better than the baseline that prefetches data into both the L2
and L3 caches (as explained in Section 7.4). While PACMan improves performance
in systems that insert prefetched blocks into both L2 and L3, ICP provides the best
performance across all prior approaches.

4.2. Feedback-Directed Prefetching

FDP proposes mechanisms to (1) control the aggressiveness of the prefetcher and (2)
mitigate prefetcher-caused cache pollution by inserting prefetched blocks at various
positions in the LRU stack. To mitigate prefetcher-caused pollution, FDP first estimates
the degree of prefetcher-caused pollution by counting the number of demand misses
that are caused due to prefetched blocks. FDP augments the cache with a pollution filter
that tracks addresses of demand blocks evicted by insertion of prefetched blocks. If the
degree of prefetcher-caused pollution is high, then FDP inserts all prefetches at the
LRU position. The main shortcoming of FDP is that it inserts all prefetches at the LRU
position when prefetcher-caused pollution is high. This can lead to some accurately
prefetched blocks getting inserted at the LRU position. Inserting an accurate prefetch
at the LRU position may lead to the block getting evicted from the cache before a
demand request that needs it arrives, resulting in one additional miss for that block.
As a result, FDP can potentially degrade performance for applications with a significant
fraction of both accurate and inaccurate prefetches.

5. METHODOLOGY

We use an in-house, event-driven x86 multicore simulator [Seshadri 2014] (released
publicly) that models both in-order and out-of-order cores. All simulated systems use a
three-level cache hierarchy similar to many modern processors (e.g., Intel [2006] and
Kalla et al. [2010]). The L1 and L2 caches are private to each core, whereas the L3
cache is shared across all cores. All caches uniformly use a 64B block size. We do not
enforce inclusion in any level of the cache hierarchy, similar to many recent works
[Duong et al. 2012; Albericio et al. 2013; Seshadri et al. 2012; Pekhimenko et al. 2012;
Khan et al. 2014; Sim et al. 2012; Wu et al. 2011], including the closely related prior
work, PACMan. In Section 7.5, we describe how our mechanism can be extended to
inclusive caches. All caches use the traditional LRU replacement policy. Writebacks do

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:9

Table I. Main Simulation Parameters

Core 4Ghz, in-order/out-of-order x86
L1-D Cache Private, 32KB, 2-way associative, 1 cycle
L2 Cache Private, 256KB, 8-way associative, 8 cycles
L3 Cache Shared, 1MB, 16-way associative
Prefetcher 16 streams/core, Degree = 4, Distance = 24
Memory 8 banks, bank conflicts and bus conflicts modeled, 200-cycle bank access latency

not update the replacement policy state. All the proposed mechanisms aim to mitigate
prefetcher-caused pollution in the shared LLC.

For our evaluations, we use a multistream prefetcher similar to the one employed in
IBM Power6 [Le et al. 2007] used by many prior works [Srinath et al. 2007; Lee et al.
2009; Ebrahimi et al. 2009a, 2009b, 2011; Lee et al. 2008]. The prefetcher monitors
the L2 cache misses and prefetches blocks into the LLC. At a high level, each entry in
the prefetcher tracks a potential stream. It learns the direction of the stream based
on the first few accesses (2 in our evaluations) and then starts prefetching data. The
prefetcher always stays a fixed distance (number of cache blocks between current
demand access and the most recently prefetched block) ahead of the current demand
access. The number of simultaneous prefetches sent by the prefetcher is limited by the
degree of the prefetcher. Table I describes the details of the major system parameters.

As mentioned in Section 4.1, PACMan [Wu et al. 2011] uses a different prefetcher
configuration wherein prefetched blocks are inserted both into the L2 and L3 caches.
Our evaluations (in Section 7.4) show that our baseline configuration outperforms this
other possible prefetcher configuration. However, for completeness, in Section 7.4, we
describe three possible prefetcher configurations and compare prior approaches and
ICP on top of them. Our evaluations show that ICP on top of our baseline, which
inserts prefetched blocks only into the L3 cache, outperforms all other combinations.

For our evaluations, we use benchmarks from SPEC CPU2000/CPU2006 suites, three
TPC-H queries, one TPC-C server and an Apache web server. We exclude benchmarks
with L2 cache misses per 1000 instructions less than 5 from our evaluations as these
benchmarks do not exert significant pressure on the L3 cache. All results are collected
by running a representative portion of the benchmarks for 1 billion instructions de-
termined using Simpoint [Sherwood et al. 2002]. The first 500 million instructions are
used to warm up the system and the statistics are collected for the next 500 million
instructions. For multiprogrammed workloads, all benchmarks keep running till the
slowest running benchmark completes 1 billion instructions. Section 7 describes our
methodology for generating multiprogrammed workloads in more detail.

For our single-core systems, we use instructions-per-cycle (IPC) to evaluate per-
formance. For multiprogrammed systems, we use four metrics to evaluate perfor-
mance and fairness: (1) weighted speedup [Snavely and Tullsen 2000; Eyerman and
Eeckhout 2008], (2) instruction throughput (IPC), (3) harmonic speedup [Luo et al.
2001; Eyerman and Eeckhout 2008], and (4) maximum slowdown [Kim et al. 2010a,
2010b; Vandierendonck and Seznec 2011; Das et al. 2009].

We compare ICP to three different mechanisms from prior work: (1) Feedback-
Directed Prefetching5 (FDP) [Srinath et al. 2007], (2) Prefetch-Aware Cache Manage-
ment (PACMan) [Wu et al. 2011], and (3) Feedback-Directed Prefetching-Accuracy
Prediction (FDP-AP), which uses the accuracy prediction mechanism proposed by

5For FDP, we only implement the portion that modifies the cache insertion policy based on degree of cache
pollution. The feedback control mechanism proposed by Srinath et al. [2007] can be combined with our
mechanism, as it is solving a complementary problem.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:10 V. Seshadri et al.

Srinath et al. [2007] to determine the insertion priority for prefetched blocks. Since
FDP and PACMan employ a similar approach to address prefetcher-caused pollution,
we present results only for PACMan, as PACMan performs better than FDP.

6. SINGLE-CORE ANALYSIS

In this section, we analyze the effect of prefetcher-caused pollution on individual ap-
plications. Not all applications are sensitive to cache space. Therefore, even if the
prefetches of an application cause high pollution, it may not affect the application’s
performance if the application is not sensitive to cache space. However, in a multicore
system, pollution caused by prefetches of one application can affect the performance of
another application. Therefore, there is still benefit in mitigating pollution caused by
an application even though that application by itself may not benefit from it.

Our mechanisms primarily aim to mitigate cache pollution caused by prefetches.
Since the amount of cache pollution caused by an application does not necessarily cor-
relate with its own performance, we need a metric to directly measure the amount of
pollution caused by prefetches. For this purpose, we introduce a metric called prefetch
lifetime. The goal of our mechanisms is to reduce the prefetch lifetime (i.e., mitigate
cache pollution), without losing the benefit of prefetching (i.e., without degrading per-
formance). Note that even though our mechanism may greatly reduce the prefetch
lifetime of an application, it may not lead to performance improvement, especially if
the application is running alone and is not sensitive to cache space. However, we pro-
vide an analysis of the prefetch lifetime metric, as it provides more insight into how
our mechanisms can potentially improve overall performance in multicore systems.

We define the prefetch lifetime metric in Section 6.1. In Section 6.2, we analyze the
effectiveness of different policies on the prefetch lifetime and performance of different
applications.

6.1. Quantifying Prefetcher-Caused Cache Pollution

The prefetch lifetime metric is a measure of the time a prefetched block stays in
the cache unnecessarily. There are two phases when a prefetched block stays in the
cache unnecessarily: (1) before its first use, and (2) after its last use. The first phase
indicates how early the block was prefetched before it was actually required by the
application. The second phase indicates how long the block stays in the cache without
any further use. We define the prefetch lifetime of a prefetched block as the sum of
the time intervals of the above two phases. We measure prefetch lifetime of a block
in terms of the number of misses to the corresponding cache set. For an inaccurate
prefetch, the prefetch lifetime consists only of phase 1, as the block never gets used
by the application. For a used-once prefetch, the prefetch lifetime is the same as the
total amount of time the block stays in the cache, as the first use of the block is also
its last use. Finally, for a prefetched block that is used more than once, we just count
phase 1, as after the first use, the block becomes “demand-fetched” and any change to
the promotion policy of prefetched blocks will not affect the phase 2 of such a block.

For an application that has only inaccurate or used-once prefetched blocks, the ideal
average prefetch lifetime is 1 – any inaccurate prefetch is evicted from the cache on the
next miss, and any accurately prefetched block is used immediately after it is brought
in and evicted on the next miss.6 If all accurate prefetches of an application are used
immediately after they are brought into the cache, the average prefetch lifetime for the
application is the same as the associativity of the cache (16 in our experiments).

6If inaccurate prefetches can be dropped altogether (as in Lee et al. [2008]), the ideal prefetch lifetime would
be less than 1. However, since the focus of this work is on mitigating cache pollution caused by prefetches,
we do not evaluate the benefits of dropping inaccurate prefetches (e.g., memory bandwidth savings).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:11

Fig. 4. Reduction in prefetch lifetime due to different mechanisms.

Fig. 5. Effect of different mechanisms on IPC.

As mentioned in the beginning of this section, not all applications are sensitive to
cache space. As a result, reduction in prefetch lifetime may not necessarily result in
improved performance. For example, a mechanism that inserts all prefetched blocks
at the LRU position will likely have a prefetch lifetime of 1 (as most prefetched blocks
will be evicted on a subsequent miss to the corresponding cache set). However, this
mechanism can significantly degrade performance, as many useful prefetches may get
evicted before they are actually used. Therefore, the goal of our mechanisms is to
reduce the average prefetch lifetime for an application while improving, or at least not
degrading, the performance of the application.

6.2. Comparison Between Different Mechanisms

Figure 4 plots the average prefetch lifetime of different applications7 using six differ-
ent policies: the baseline system, the two prior approaches (FDP-AP and PACMan),
the two components of our proposed mechanism (ICP-D and ICP-AP), and our final
mechanism (ICP). Figure 5 plots the effect of these mechanisms on the performance
(IPC) of different applications. The benchmarks are sorted based on the increasing
order of fraction of inaccurate prefetches generated by the prefetcher. We draw three
conclusions from Figures 4 and 5.

First, both our individual mechanisms ICP-D and ICP-AP significantly reduce the
prefetch lifetime of different applications. On the one hand, for applications with a
significant fraction of unused prefetches (left end of Figure 4, e.g., milc, omnetpp),

7For clarity, we exclude applications from Figures 4 and 5 that are not sensitive to cache space and those
that do not benefit from prefetching.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:12 V. Seshadri et al.

ICP-AP reduces prefetch lifetime more compared to ICP-D. This is because, unlike ICP-
D, ICP-AP inserts most of the inaccurate prefetches of such applications at the LRU
position. On the other hand, for applications with a high fraction of prefetches that
are used exactly once (right end of Figure 4, e.g., bwaves, libquantum), ICP-D reduces
prefetch lifetime more compared to ICP-AP. This is because, ICP-D demotes the used-
once prefetched blocks to the LRU position after their first use, thereby preventing them
from unnecessarily polluting the cache. Combining the two policies, ICP significantly
reduces average prefetch lifetime across all applications from 13.81 to 2.16 (ideal =
1). Therefore, our results indicate that ICP eliminates most of the pollution caused by
prefetches for most applications.

Second, for certain cache-sensitive applications (e.g., twolf , art, tpcc64), the reduction
in prefetch lifetime results in significant improvement in performance (up to 24% for
art). However, as mentioned in the beginning of this section, not all applications are
cache sensitive. Therefore, the reduction in prefetch lifetime for such cache-insensitive
applications (e.g., lbm, libquantum) does not result in any performance improvement.
However, as we will show in our multicore evaluations (Section 7), ICP significantly
improves performance of workloads for which pollution caused by prefetches of one
application (e.g., libquantum) degrades the performance of other co-running cache-
sensitive applications (e.g., twolf).

Third, both FDP-AP and PACMan reduce the prefetch lifetime of certain applications
that have a high fraction of unused prefetches (e.g., omnetpp, twolf , bzip2). For these
applications, both mechanisms also improve performance compared to the baseline.
FDP-AP is more effective in reducing prefetch lifetime than PACMan because, while
FDP-AP always inserts predicted-inaccurate prefetched blocks at the LRU position,
PACMan inserts prefetched blocks at the LRU position only when inserting prefetched
blocks at the MRU position degrades performance. However, except for bzip2, which
has a significant number of prefetches used more than once (Figure 1), ICP outper-
forms or performs comparably to FDP-AP and PACMan on both prefetch lifetime and
performance for all applications. There are two reasons for this. First, unlike FDP-AP
or PACMan, ICP mitigates the pollution caused by used-once prefetched blocks. Sec-
ond, the accuracy predictor used by ICP is better than the accuracy predictor used
by FDP-AP. This allows ICP to mitigate the pollution caused by inaccurate prefetches
while retaining the benefit of useful prefetches.

In summary, ICP significantly mitigates prefetcher-caused pollution and, as a result,
improves performance for cache-sensitive applications (as much as 24% for art and 3%,
on average, compared to the baseline), outperforming two state-of-the-art approaches
to address prefetcher-caused pollution.

7. MULTICORE ANALYSIS

For evaluating multicore systems, we first classify the set of applications in our suite
into four categories based on whether their performance is sensitive to cache size and
whether they benefit from prefetching. For this classification, we ran each application
with four different system configurations: 256KB LLC and 1MB LLC, with and without
prefetching. An application is said to benefit from caching if increasing the cache size
from 256KB to 1MB improves its performance by at least 5% (both with and without
prefetching). Similarly, an application is said to benefit from prefetching if turning on
prefetching improves its performance by at least 5% (for both 256KB and 1MB LLC).
Table II lists the benchmarks in each category.

Applications in the NC-NP category are neither cache sensitive nor do they bene-
fit from prefetching. Applications in the NC-P category are not cache sensitive, but
they benefit significantly from prefetching. These applications have large working sets

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:13

Table II. Benchmark Classification

Category Label Benchmarks
Not cache sensitive, No prefetch benefit NC-NP astar, galgel, milc, omnetpp, xalancbmk, zeusmp
Not cache sensitive, Prefetch benefit NC-P bwaves, sphinx3, equake, GemsFDTD, libquantum
Cache sensitive, No prefetch benefit C-NP ammp, apache20, bzip2, mcf , soplex, twolf , vpr
Cache sensitive, Prefetch benefit C-P art, leslie3d, swim, tpcc64, tpch2, tpch6, tpch17

Table III. Two-Core Workload Types

Type App-1 App-2 Primary Source of Pollution # Workloads
Type-1 NC∗ NC∗ Neither 30
Type-2 NC-P C-NP NC-P (Acc) 35
Type-3 NC-P C-P NC-P (Acc) 35
Type-4 C-P C-P Both (Acc + Inacc) 28
Type-5 C-NP C-NP Both (Inacc) 28
∗NC includes NC-NP and NC-P. Acc: Pollution due to accurate prefetches.
Inacc: Pollution due to inaccurate prefetches.

Fig. 6. Two-core – System performance.

and almost all of their useful prefetches are used only once (as shown in Figure 1).
Hence, although they do not benefit from caching themselves, when following the tra-
ditional policies, the prefetched blocks of these applications cause high pollution (e.g.,
libquantum, bwaves). Applications from the C-NP category are sensitive to cache space.
However, they do not benefit from prefetching. Therefore, the performance of these ap-
plications can get affected by the pollution caused by prefetches of other co-running
applications. Finally, applications in the C-P category benefit both from additional cache
space and from prefetching. They can potentially suffer performance degradation due
to cache pollution and can also cause high pollution.

7.1. Two-Core: System Performance

Based on this classification, we generate five different groups of 2-core workloads to
evaluate our 2-core system. Table III lists the benchmark categories for each workload
type and the number of evaluated workloads in each type. In this section, we present the
results comparing the efficacy of different mechanisms to mitigate prefetcher-caused
pollution for such workloads.

Figure 6 shows the improvement in weighted speedup due to different mechanisms
compared to the baseline system that employs prefetching. For each workload type,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:14 V. Seshadri et al.

Figure 6 shows the average weighted speedup improvement across all workloads that
belong to that type. We draw several conclusions from the figure.

First, Type-1 workloads have no cache-sensitive applications. As such, there is little
opportunity to improve performance by mitigating prefetcher-caused cache pollution.
This is reflected in our results, which show that ICP improves performance by only 1%
compared to the baseline.

Second, Type-2 and Type-3 workloads have one application from the NC-P category.
While applications in the NC-P category benefit significantly from prefetching, existing
policies for managing their prefetched blocks cause a lot of pollution by unnecessar-
ily promoting prefetched blocks that are used only once. On the other hand, ICP-D
mitigates this problem by demoting the prefetched blocks after their first use, thereby
significantly improving performance (10%, on average, for Type-2 and 7%, on average,
for Type-3).

Third, Type-4 workloads have both applications from the C-P category. Many applica-
tions in this category (e.g., art, tpcc64) have a significant fraction of both inaccurate and
used-once prefetches. As a result, both ICP-D and ICP-AP improve weighted speedup
by 6% and 2%, respectively, compared to the baseline. ICP combines the benefits of
both policies and improves weighted speedup by 8% compared to the baseline.

Fourth, Type-5 workloads have both applications from the C-NP category. The pri-
mary source of prefetcher-caused cache pollution for these workloads is inaccurate
prefetches that evict more useful blocks from the cache. ICP-AP, which reduces prefetch
lifetime of such applications by inserting inaccurate prefetches at the LRU position,
improves weighted speedup by 2% across all 28 Type-5 workloads.

Fifth, FDP-AP, in general, degrades performance for multicore workloads, in con-
trast to single-core systems. This is because the accuracy predictor used by FDP-AP
suffers from the positive feedback problem wherein a prefetcher entry classified as
inaccurate continues to get classified as inaccurate. As mentioned earlier, this problem
becomes worse in multicore systems, in which a misclassified accurate-prefetch of one
application can get evicted by a block of another application. Our proposed accuracy
predictor, ICP-AP, avoids this problem by keeping track of a small set of prefetched
blocks predicted to be inaccurate.

Finally, we find that PACMan has little impact on performance for most workloads.
As we described in Section 4.1, the policies of PACMan were specifically designed to
address prefetcher pollution in the L3 cache when blocks were prefetched into the L2
cache. Our evaluations in Section 7.4 show that the PACMan policies improve perfor-
mance on such systems. However, ICP on top of our baseline prefetcher configuration
performs best across all possible prior approaches. In addition, in configurations that
prefetch blocks into both L2 and L3 caches, unlike prior approaches, our approach can
be used to mitigate pollution in both cache levels.

Summary of Multicore Results. Figure 7 shows the system performance improvement
of ICP across all 2-core workloads. The workloads are sorted based on the performance
improvement due to ICP. On average, across all the 157 evaluated 2-core workloads,
ICP improves performance by 6% compared to both the baseline (with prefetching) and
the best previous mechanism. ICP performs better than or comparably to the baseline
for 151 of the 157 workloads. For the remaining 6 workloads, ICP degrades performance
by 1% at most. We conclude that ICP is effective at improving system performance by
reducing prefetcher-caused cache pollution.

In general, the performance improvements due to ICP-AP are not significant in spite
of its ability to significantly reduce the prefetch lifetime of the inaccurately prefetched
blocks. ICP-D, on the other hand, significantly improves performance by mitigating
pollution caused by accurately prefetched blocks.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:15

Fig. 7. Two-core: System performance for all workloads.

Table IV. Two-core: Other Metrics

Instruction Harmonic Maximum
Throughput Speedup Slowdown

Type Improvement Improvement Reduction
Type-1 3% 3% 3%
Type-2 10% 10% 6%
Type-3 7% 7% 4%
Type-4 9% 8% 8%
Type-5 2% 2% 1%
All 6% 6% 4%

7.2. Two-Core: Other Metrics

Table IV plots the improvement of ICP over baseline for 2-core workloads on three
other metrics: (1) instruction throughput, (2) harmonic speedup [Luo et al. 2001], and
(3) maximum slowdown [Kim et al. 2010b, 2010a; Vandierendonck and Seznec 2011;
Das et al. 2009]. As our results indicate, ICP improves both performance and fairness,
compared to the baseline, across all evaluated metrics.

7.3. Sensitivity to Different Parameters

In this section, we analyze the sensitivity of our proposed mechanisms to different
system parameters. We focus our attention on the 98 Type-2, Type-3, and Type-4
workloads that suffer significantly from prefetcher-caused pollution.

7.3.1. Effect of Varying Cache Size. Figure 8 shows the effect of varying the cache size
on the performance improvement due to our proposed mechanisms compared to the
baseline system. As the results indicate, in general, system performance improvement
decreases with increasing cache size. This is expected, as prefetcher-caused pollution
becomes less of a problem as cache size increases. However, even for 4MB and 8MB
cache sizes, ICP improves performance by as much as 14% and 27% compared to the
baseline, respectively.

7.3.2. Effect of Varying Memory Latency. Figure 9 shows the effect of increasing memory
latency on performance improvement due to our proposed mechanisms compared to the
baseline system. With increasing memory latency, the performance improvements due
to ICP also increase. This is because, as the memory latency increases, effective cache
utilization becomes more important for system performance. By mitigating prefetcher-
caused pollution, ICP creates more cache space for the cache-sensitive applications
in the workloads, thereby improving overall cache utilization. As such, we conclude
that ICP is an attractive mechanism for future systems, which are expected to have

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:16 V. Seshadri et al.

Fig. 8. Effect of varying cache size (percentage on
top indicates the peak improvement of ICP for the
corresponding category).

Fig. 9. Effect of varying memory latency (the x-axis
indicates the memory latency in terms of number of
cycles).

Fig. 10. In-order vs. out-of-order cores.

high memory access latency due to contention between multiple concurrently running
applications.

7.3.3. In-Order vs. Out-of-Order. So far, we have presented results with systems that use
in-order cores. Figure 10 compares the performance improvement due to ICP over a
baseline system using in-order cores and out-of-order cores. Our simulator models a
single-issue, out-of-order core with a 64-entry instruction window. For each workload
on the x-axis, the “in-order” curve plots the performance improvement of ICP in an
in-order system compared to the in-order baseline. The corresponding “out-of-order”
curve plots the performance improvement of ICP in an out-of-order system compared
to the out-of-order baseline. In general, the performance improvement of ICP in an
out-of-order system is less than the corresponding improvement in an in-order system.
This is expected, as the out-of-order core is more tolerant of memory latency. This
is because it generates multiple concurrent cache misses that are served in parallel
by the memory system, overlapping the latency of such misses. However, even in the
out-of-order system, ICP improves performance by as much as 39% compared to the
baseline (5% on average). Only 7 out of the 98 workloads experience small (at most
2%) performance degradation. These results indicate that ICP is effective even with
out-of-order cores.

7.3.4. Benefits with Stride Prefetching. The results presented so far use a stream
prefetcher [Le et al. 2007]. However, our proposed mechanisms can be naturally im-
plemented with any prefetching scheme. To evaluate this benefit, we ran experiments
with a system that uses a stride prefetcher [Baer and Chen 1995]. Across the 2-core

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:17

Table V. Effect of the Cache Replacement Policy on ICP

Weighted Speedup
Mechanism Increase over Baseline
ICP + LRU 6%
DRRIP [Jaleel et al. 2010b] 1%
ICP + DRRIP 8%

Table VI. Effect of Varying Number of Cores

Weighted speedup improvement 2-core 4-core 8-core
over baseline 6% 12% 26%

workloads, ICP improves system performance by as much as 28% (2% on average).
The average improvements are low compared to a system using stream prefetching be-
cause, unlike the stream prefetcher used in our main evaluations, the stride prefetcher
is conservative and issues prefetches only when it detects a regular stride. The pol-
lution caused by prefetches is thus low to begin with. However, our baseline stream
prefetcher provides better performance compared to the stride prefetcher (10% across
the single-core applications).

7.3.5. Effect of the Cache Replacement Policy. So far, in our evaluations, the LLC uses the
LRU replacement policy. However, ICP can be applied on top of any cache replacement
policy (e.g., Jaleel et al. [2010b], Hallnor and Reinhardt [2000], Qureshi et al. [2007,
2006], Rajan and Ramaswamy [2007], Chaudhuri [2009], Keramidas et al. [2007], Basu
et al. [2007], and Seznec [1993]). We evaluate this by implementing ICP on top of the
recently proposed Dynamic Re-reference Interval Prediction (DRRIP) policy [Jaleel
et al. 2010b]. We insert predicted-accurate prefetches with the long re-reference pre-
diction value (RRPV), demote prefetched blocks to the distant RRPV (lowest priority).
Predicted-inaccurate prefetches are inserted with the distant RRPV. The insertion and
promotion policies for demand-fetched blocks are not changed. We refer the reader to
Jaleel et al. [2010b] for more details on the DRRIP policy. Table V shows the weighted
speedup of ICP using different replacement policies normalized to the baseline.

We make two observations. First, in the presence of prefetching, the DRRIP policy
only slightly improves performance compared to the baseline LRU policy for SPEC
CPU2006 applications. This is in line with the results and observations made by prior
work, PACMan [Wu et al. 2011] (refer to Figures 1 and 12 of the PACMan paper).

Second, ICP on DRRIP improves performance by 7% compared to the baseline DRRIP
policy. Based on this, we conclude that ICP can significantly improve performance on
top of the state-of-the-art, prefetch-unaware replacement policies.

7.3.6. Sensitivity to Number of Cores. We study the effect of increasing the number of
cores on the performance improvement due to ICP. For these experiments, we fix the
size of the LLC at 4MB. We generate 20 four-core and 20 eight-core workloads (similar
to Type-2 two-core workloads). Table VI summarizes the results of these experiments.

As the number of cores increases, the performance improvement due to ICP also
increases. This is because, for a fixed cache size, the cache pressure increases with
increasing number of cores. Consequently, the negative impact of prefetcher-caused
pollution also increases. We conclude that ICP is an attractive mechanism for future
many-core systems with a shared LLC.

7.4. Other Prefetcher Configurations

So far, we have discussed results with a prefetcher that trains on L2 misses and in-
serts prefetched blocks only into the L3. However, prior approaches (e.g., Wu et al.
[2011]) have used other potential prefetcher configurations. Table VII lists three

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:18 V. Seshadri et al.

Table VII. Baseline Prefetcher Configurations

Label Prefetcher trains on Prefetches inserted into
C1 L2 misses L3 only
C2 L2 misses L2 and L3
C3 L1 misses L2 and L3

Table VIII. Two-Core Performance with Different
Prefetcher Configurations

Normalized
Mechanism Weighted Speedup
Baseline C1 1.00
Baseline C2 0.88
Baseline C3 0.97
PACMan [Wu et al. 2011] + C1 1.00
PACMan + C2 0.96
PACMan + C3 1.01
ICP + C1 1.06

possible prefetcher configurations. The baseline used so far in our evaluations cor-
responds to C1. The configuration C2 is where the prefetcher is trained on L2 misses
and the prefetches are inserted both into L2 and L3. Finally, configuration C3 is one in
which the prefetcher is trained on L1 misses and prefetches are inserted both into L2
and L3.

Table VIII presents average 2-core performance across all 157 two-core workloads for
various combinations of prefetcher configurations and pollution mitigating approaches.
The results are normalized to the baseline C1 configuration.

Several conclusions are in order. First, our baseline C1 configuration outperforms the
other two configurations. This is because both C2 and C3 lead to L2 cache pollution.
In addition, C2 filters the accesses to prefetched blocks from the prefetcher, preventing
the prefetcher from staying ahead of the demand access stream. Second, the insights
proposed by PACMan [Wu et al. 2011] work well when the prefetched blocks are inserted
both into the L2 and L3, as indicated by the performance improvement of PACMan over
the C2 (9%) and C3 (4%) configurations. Note that although PACMan was proposed
as a modification to DRRIP, the insights of PACMan are very much applicable on top
of an LRU baseline, as evidenced by the 4% improvement in performance for the C3
baseline across 157 workloads. However, our mechanism ICP with the C1 configuration
performs the best across all systems.

The goal of this experiment was to establish the performance of different possible
baselines and show that ICP improves performance significantly on top of the best
baseline. Having said this, we believe that our observations can be exploited to improve
performance for any prefetcher configuration.

7.5. Extending ICP to Inclusive Caches

Although we have presented and evaluated our mechanism in a noninclusive LLC, we
believe our observation can be used to improve performance for any cache/prefetcher
configuration. For example, in a system with an inclusive cache hierarchy, evicting a
block from the LLC requires the block to be evicted from all previous levels of the
cache. Our mechanism demotes a prefetched block to the lowest priority on a demand
hit. This may lead to premature eviction of the block from all the caches and may
result in L1 cache miss for accesses that may have otherwise hit in the L1 cache. This
is a problem with any cache management policy that inserts/demotes blocks at/to the
lowest priority (e.g., Qureshi et al. [2007] and Jaleel et al. [2010b]). A recent prior
work [Jaleel et al. 2010a] has proposed a number of temporal-locality aware policies

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:19

to address this problem. The idea behind their mechanism is to not evict a block from
the LLC if the block is still present in any previous level of cache. While we are unable
to evaluate the effect of our mechanism on inclusive caches due to limitations in our
infrastructure, it is clear that our observations can be effectively combined with this
mechanism to further improve performance for inclusive caches. While ICP can demote
a prefetched block as soon as it is consumed by a demand access, the policies proposed
by Jaleel et al. [2010a] can be used to delay the eviction until the block is fully utilized
by the higher-level caches (e.g., L1). As such, the insights in this article can be adapted
and applied to different ways of handling inclusion/exclusion in caches.8

8. RELATED WORK

The primary contribution of this work is a comprehensive mechanism to address cache
pollution caused by both inaccurate and accurate prefetches. To our knowledge, this is
the first work to identify the shortcoming of the promotion policy employed by existing
cache management policies when a demand request hits on a prefetched block. We
have already provided qualitative comparisons to the most closely related prior work:
Feedback-Directed Prefetching (FDP) [Srinath et al. 2007], and Prefetch-Aware Cache
Management (PACMan) [Wu et al. 2011]. In this section, we discuss other related work.

Our ICP-D mechanism essentially uses a demand hit on a prefetched block as an
indicator that the block is dead. Prior works [Lai et al. 2001; Khan et al. 2010; Hu et al.
2002] have proposed many mechanisms to predict dead blocks. Lai et al. [2001] and Hu
et al. [2002] propose dead block prediction mechanisms for L1 caches. On the one hand,
these mechanisms are complex to implement in large L2 and L3 caches. On the other
hand, our approach does not work effectively for primary L1 caches, where different
words within a prefetched block may be accessed by different demand requests.
Therefore, we believe these mechanisms can be combined favorably with our proposed
mechanisms. Khan et al. [2010] propose a sampling dead block predictor for LLCs. This
mechanism identifies program counters that generate the last access to different cache
blocks and uses this information to predict dead blocks. In contrast to this mechanism,
our mechanism is simpler—it requires only one bit per tag entry and does not require
the program counter information from the processor core to be propagated to the LLC.

The Prefetch Pollution Filter [Zhuang and Lee 2003] aims to filter away inaccurate
prefetches from polluting the L1 cache by using a table of counters (indexed based on
the address of blocks evicted from the cache) to track the accuracy of prefetches gener-
ated. Extending this mechanism to the LLC will require a large table to track blocks
evicted from the LLC. This mechanism also suffers from the positive feedback problem
described in Section 2.2. Lin et al. [2001b] propose a density vector, a mechanism to
drop superfluous prefetches generated by a Scheduled Region Prefetcher [Lin et al.
2001a]. The proposed mechanism is very specific to the Scheduled Region Prefetcher.

Prior works [Srinath et al. 2007; Ebrahimi et al. 2009a, 2009b, 2011; Dahlgren
et al. 1995; Nesbit et al. 2004] proposed techniques to control the aggressiveness
of the prefetcher depending on the various metrics (e.g., accuracy, coverage, degree
of pollution, interference caused to other cores). While varying the aggressiveness of
a prefetcher may help mitigate pollution caused by inaccurate prefetches, it does not
address the pollution caused by promoting used-once prefetches. We believe ICP is com-
plementary to these throttling techniques because (1) ICP-D can mitigate the pollution
caused by accurate prefetches, and (2) ICP-AP can be used to make better throttling
decisions.

8Note that many modern processors do not employ a strictly inclusive cache hierarchy (e.g., AMD [2012]
and VIA [2005]). Our mechanism can be easily integrated into such processors to significantly improve
performance.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

51:20 V. Seshadri et al.

Jain et al. [2001] proposed a mechanism to throttle prefetching to mitigate cache
pollution. Their mechanism used software hints to mark cache blocks as dead and
prefetches are inserted into the cache only if there is a dead block in the corresponding
set. This mechanism can potentially throttle useful prefetches, degrading the perfor-
mance of applications that benefit from aggressive prefetching.

Alameldeen and Wood [2007] proposed a mechanism to identify prefetcher-caused
pollution by using the extra hardware tags provisioned for cache compression. Similar
to the techniques proposed by FDP [Srinath et al. 2007], this approach can only mitigate
pollution caused by inaccurate prefetches.

Prior works [Cao et al. 1995; Patterson et al. 1995; Albers and Büttner 2003] have
studied the interaction between prefetching and caching in the context of file systems.
However, these works assume that the future reference stream to the data blocks in
disk is known a priori (e.g., through software hints). Based on that information, they
make informed decisions about whether and when to prefetch a disk block. However,
such a priori information is difficult to obtain for main memory access streams.

9. CONCLUSION

Caching and prefetching are techniques employed by modern high-performance proces-
sors to mitigate the impact of long memory latency. Prefetching data into the on-chip
caches, as done by many such processors, can lead to prefetcher-caused cache pollution,
that is, prefetched blocks evict more useful blocks from the cache.

In this work, we identified two root causes for prefetcher-caused pollution: (1) un-
necessarily promoting an accurately prefetched block on a demand hit, and (2) insert-
ing inaccurate prefetches with a high priority into the cache. We presented Informed
Caching policies for Prefetched blocks (ICP), a comprehensive mechanism to mitigate
prefetcher-caused cache pollution. ICP mitigates pollution by demoting a prefetched
block to the lowest priority on a demand hit (as such blocks are rarely reused) and
predicting the accuracy of each prefetched block and inserting only likely-accurate
prefetches with a high priority into the cache. ICP incurs only a modest storage over-
head (1.25% of the LLC size).

Our evaluations show that ICP significantly mitigates prefetcher-caused pollution
and, as a result, improves performance for workloads that suffer from prefetcher-caused
pollution (up to 47%) on a wider variety of workloads and system configurations. We
conclude that ICP is an effective and low-cost mechanism to mitigate the performance
degradation caused by prefetcher-caused pollution.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. We acknowledge members of the SAFARI and LBA
groups for their feedback and for the stimulating research environment they provide. We specifically thank
Lavanya Subramanian and Nandita Vijaykumar for their feedback and comments on early versions of this
paper. We acknowledge the generous support of Intel, Qualcomm, and Samsung. This work is supported
in part by NSF grants 0953246, 1212962, 1320531, the Intel Science and Technology Center for Cloud
Computing, and the Semiconductor Research Corporation.

REFERENCES

Alaa R. Alameldeen and David A. Wood. 2007. Interactions between compression and prefetching in chip
multiprocessors. In HPCA.

Jorge Albericio, Pablo Ibáñez, Vı́ctor Viñals, and José M. Llaberı́a. 2013. The reuse cache: downsizing the
shared last-level cache. In MICRO.

Susanne Albers and Markus Büttner. 2003. Integrated prefetching and caching in single and parallel disk
systems. In SPAA.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies 51:21

AMD. 2012. AMD Phenom II processor model. Retrieved November 11, 2014 from http://www.amd.com/
en-us/products/processors/desktop/phenom-ii. (2012).

Jean-Loup Baer and Tien-Fu Chen. 1995. Effective hardware-based data prefetching for high-performance
processors. IEEE TC (1995).

Arkaprava Basu, Nevin Kirman, Meyrem Kirman, Mainak Chaudhuri, and Jose F. Martinez. 2007. Scav-
enger: a new last level cache architecture with global block priority. In MICRO.

Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. 1995. A study ofintegrated prefetching and caching
strategies. In SIGMETRICS.

Mainak Chaudhuri. 2009. Pseudo-LIFO: the foundation of a new family of replacement policies for last-level
caches. In MICRO.

Fredrik Dahlgren, Michel Dubois, and Per Stenström. 1995. Sequential hardware prefetching inshared-
memory multiprocessors. IEEE TPDS.

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das. 2009. Application-aware prioritization
mechanisms for on-chip networks. In MICRO.

Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V. Veidenbaum. 2012.
Improving cache managementpolicies using dynamic reuse distances. In MICRO.

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2011. Prefetch-aware shared resource
management for multi-core systems. In ISCA.

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009b. Coordinated control of multiple
prefetchers in multi-core systems. In MICRO.

Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2009a. Techniques for bandwidth-efficient prefetching of
linked data structures in hybrid prefetching dystems. In HPCA.

Stijn Eyerman and Lieven Eeckhout. 2008. System-level performance metrics for multiprogram workloads.
IEEE Micro.

Erik G. Hallnor and Steven K. Reinhardt. 2000. A fully associative software-managed cache design. In ISCA.
Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. 2002. Timekeeping in the memory system: predict-

ing and optimizing memory behavior. In ISCA.
Intel. 2006. Inside Intel Core microarchitecture and smart memory access. Intel White Paper.
Prabhat Jain, Srini Devadas, and Larry Rudolph. 2001. Controlling Cache Pollution in Prefetching with

Software-assisted Cache Replacement. Technical Report CSG-462. Massachusetts Institute of Technol-
ogy, Cambridge, MA.

Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely Jr., and Joel Emer. 2010a. Achieving non-
inclusive cache performance with inclusive caches: temporal locality aware (TLA) cache management
policies. In MICRO.

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. 2010b. High performance cache
replacement using re-reference intervalprediction (RRIP). In ISCA.

Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. 2010. Power7: IBM’s next-generation
server processor. IEEE Micro.

Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. 2007. Cache replacement based on reuse-
distance prediction. In ICCD.

Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A. Jimenez. 2014. Improving
cache performance using read-write partitioning. In HPCA.

Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling dead block prediction for
last-level caches. In MICRO.

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010a. ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In HPCA.

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010b. Thread cluster memory
scheduling: exploiting differences in memory access behavior. In MICRO.

An-Chow Lai, Cem Fide, and Babak Falsafi. 2001. Dead-block prediction and dead-block correlating prefetch-
ers. In ISCA.

H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz,
and M. T. Vaden. 2007. IBM Power6 microarchitecture. IBM JRD.

Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. 2008. Prefetch-aware DRAM controllers.
In MICRO.

Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt. 2009. Improving memory bank-level
parallelism in the presence of prefetching. In MICRO.

Wei-Fen Lin, Steven K. Reinhardt, and Doug Burger. 2001a. Reducing DRAM latencies with an integrated
memory hierarchy design. In HPCA.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

http://www.amd.com/en-us/products/processors/desktop/phenom-ii
http://www.amd.com/en-us/products/processors/desktop/phenom-ii

51:22 V. Seshadri et al.

Wei-Fen Lin, Steven K. Reinhardt, Doug Burger, and Thomas R. Puzak. 2001b. Filtering superfluous
prefetches using density vectors. In ICCD.

Kun Luo, Jayanth Gummaraju, and Manoj Franklin. 2001. Balancing throughput and fairness in SMT
processors. In ISPASS.

Kyle J. Nesbit, Ashutosh S. Dhodapkar, and James E. Smith. 2004. AC/DC: An adaptive data cache prefetcher.
In PACT.

Oracle. 2011. Oracle’s Sparc T4 server architecture. Oracle White Paper.
R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. 1995. Informed

prefetching and caching. In SOSP.
Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C.

Mowry. 2012. Base-delta-immediate compression: practical data compression for on-chip caches. In
PACT.

Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer. 2007. Adaptive Insertion
Policies for High Performance Caching. In ISCA.

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. 2006. A case for MLP-aware cache
replacement. In ISCA.

Kaushik Rajan and Govindarajan Ramaswamy. 2007. Emulating optimal replacement with a shepherd
cache. In MICRO.

Vivek Seshadri. 2014. Source code for Mem-Sim. Retrieved November 11, 2014 from www.ece.cmu.edu/∼
safari/tools.html. (2014).

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry. 2012. The evicted-address filter: a
unified mechanism to address both cache pollution and thrashing. In PACT.

André Seznec. 1993. A case for two-way skewed-associative caches. In ISCA.
Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automatically characterizing

large scale program behavior. In ASPLOS.
Jaewoong Sim, Jaekyu Lee, Moinuddin K. Qureshi, and Hyesoon Kim. 2012. FLEXclusion: balancing cache

capacity and on-chip bandwidth via flexible exclusion. In ISCA.
Allan Snavely and Dean M. Tullsen. 2000. Symbiotic job scheduling for a simultaneous multithreaded

processor. In ASPLOS.
Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback directed prefetching: im-

proving the performance and bandwidth-efficiency of hardware prefetchers. In HPCA.
Hans Vandierendonck and André Seznec. 2011. Fairness metrics for multithreaded processors. IEEE Com-

puter Architecture Letters (Jan. 2011).
VIA. 2005. VIA C7 Processor. Retrieved November 11, 2014 from http://www.via.com.tw/en/products/

processors/c7/. (2005).
Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely, Jr., and Joel Emer. 2011. PACMan:

prefetch-aware cache management for high performance caching. In MICRO.
Xiaotong Zhuang and Hsien-Hsin S. Lee. 2003. A hardware-based cache pollution filtering mechanism for

aggressive prefetches. In ICPP.

Received February 2014; revised October 2014; accepted October 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 51, Publication date: January 2015.

file:www.ece.cmu.edu/~safari/tools.html
file:www.ece.cmu.edu/~safari/tools.html
http://www.via.com.tw/en/products/processors/c7/
http://www.via.com.tw/en/products/processors/c7/

