
30

Storage-Based Intrusion Detection

ADAM G. PENNINGTON, JOHN LINWOOD GRIFFIN, JOHN S. BUCY,
JOHN D. STRUNK, and GREGORY R. GANGER
Carnegie Mellon University

Storage-based intrusion detection consists of storage systems watching for and identifying data
access patterns characteristic of system intrusions. Storage systems can spot several common
intruder actions, such as adding backdoors, inserting Trojan horses, and tampering with audit
logs. For example, examination of 18 real intrusion tools reveals that most (15) can be detected
based on their changes to stored files. Further, an Intrusion Detection System (IDS) embedded
in a storage device continues to operate even after client operating systems are compromised. We
describe and evaluate a prototype storage IDS, built into a disk emulator, to demonstrate both
feasibility and efficiency of storage-based intrusion detection. In particular, both the performance
overhead (< 1%) and memory required (1.62MB for 13995 rules) are minimal.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software (e.g., viruses, worms, Trojan horses);
unauthorized access (e.g. hacking, phreaking)

General Terms: Security

Additional Key Words and Phrases: Storage, intrusion detection

ACM Reference Format:
Pennington, A. G., Griffin, J. L., Bucy, J. S., Strunk, J. D., and Ganger, G. R. 2010. Storage-based
intrusion detection. ACM Trans. Inf. Syst. Secur. 13, 4, Article 30 (December 2010), 27 pages.
DOI = 10.1145/1880022.1880024. http://doi.acm.org/10.1145/1880022.1880024.

1. INTRODUCTION

Many Intrusion Detection Systems (IDSs) have been developed over the
years [Axelsson 1998; Lunt and Jagannathan 1988; Porras and Neumann
1997], with most falling into one of two categories: network-based or

This material is based on research sponsored in part by the Air Force Research Laboratory, under
agreement number F49620-01-1-0433, and by the Army Research Office, under agreement number
DAAD19-02-1-0389, APC, IBM, Intel, NetApp, and Seagate provided hardware grants which sup-
ported our research.
Authors’ address: A. G. Pennington (corresponding author), J. L. Griffin, J. S. Bucy, J. D. Strunk,
and G. R. Ganger, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213; email: adamp@andrew.cmu.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1094-9224/2010/12-ART30 $10.00 DOI: 10.1145/1880022.1880024.

http://doi.acm.org/10.1145/1880022.1880024.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 2 · A. G. Pennington et al.

host-based. Network IDSs (NIDSs) are usually embedded in sniffers or fire-
walls, scanning traffic to, from, and within a network environment for at-
tack signatures and suspicious traffic [Cheswick and Bellovin 1994; NFR
2002]. Host-based IDSs (HIDSs) are fully or partially embedded within each
host’s Operating System (OS). They examine local information (such as system
calls [Forrest et al. 1996]) for signs of intrusion or suspicious behavior. Many
environments employ multiple IDSs, each watching activity from its own van-
tage point.

The storage system is another interesting vantage point for intrusion de-
tection. Several common intruder actions [Denning 1999, p. 218; Scambray
et al. 2001, pp. 363–365] are quite visible at the storage interface. Examples
include manipulating system utilities (e.g., to add backdoors or Trojan horses),
tampering with audit log contents (e.g., to eliminate evidence), and resetting
attributes (e.g., to hide changes). By design, a storage server sees all changes
to persistent data, allowing it to transparently watch for suspicious changes
and issue alerts about the corresponding client systems. Also, like a NIDS,
a storage IDS can be compromise-independent of the host OS, meaning that
it cannot be disabled by an intruder who only successfully gets past a host’s
OS-level protection.

This article motivates and describes storage-based intrusion detection. It
presents several kinds of suspicious behavior that can be spotted by a storage
IDS. Using sixteen “rootkits” and two worms as examples, we describe how
fifteen of them would be exposed rapidly by our storage IDS. (The other three
do not modify any stored files.) Most of them are exposed by modifying system
binaries, adding files to system directories, scrubbing the audit log, or using
suspicious file names. Of the fifteen detected, three modify the kernel to hide
their presence from host-based detection, including FS integrity checkers like
Tripwire [Kim and Spafford 1994]. In general, intruders cannot hide their
changes from the storage device if they wish to persist across reboots; to be
reinstalled upon reboot, their tools must manipulate stored files.

A storage IDS could be embedded in many kinds of storage systems. The
extra processing power and memory space required should be feasible for file
servers, disk array controllers, and even augmented disk drives. Most detec-
tion rules will also require FS-level understanding of the stored data. Such
understanding exists trivially for a file server and may be explicitly provided to
block-based storage devices. This understanding of a file system is analogous
to the understanding of application protocols used by a NIDS [Paxson 1998],
but with fewer varieties and structural changes over time.

As a concrete example with which to experiment, we have augmented a disk
emulator with a storage IDS that supports online, rule-based detection of suspi-
cious modifications. This Intrusion Detection on Disk (IDD) prototype supports
the detection of two main types of suspicious activities. First, it can detect
unexpected changes to important system files and binaries, using a rule-set
similar to Tripwire’s. Second, it can detect patterns of changes like nonappend
modification (e.g., of system log files) and reversing of inode times. An admin-
istrative interface supplies the detection rules, which are checked during the
processing of each block request. When a detection rule triggers, the IDD sends

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 3

the administrator an alert containing the full pathname of the modified file and
the violated rule(s). Experiments show that the runtime overheads of such in-
trusion detection is minimal. Further analysis indicates that little memory
capacity is needed for reasonable rule sets (e.g., only 1.62MB for a realistic
example containing 13995 rules).

The remainder of this article is organized as follows. Section 2 introduces
storage-based intrusion detection. Section 3 evaluates the potential of storage-
based intrusion detection by examining real intrusion tools. Section 4 discusses
storage IDS design issues. Section 5 describes a prototype storage IDS embed-
ded in a disk emulator. Section 6 uses this prototype to evaluate the costs of
storage-based intrusion detection. Section 7 discusses related work. Section 8
summarizes this article’s contributions.

2. STORAGE-BASED INTRUSION DETECTION

Storage-based intrusion detection augments storage devices to examine the re-
quests they service for suspicious client behavior. Although the computer sys-
tem state that a storage device sees is incomplete, two features combine to
make it a well-positioned platform for enhancing intrusion detection efforts.
First, since storage devices are independent of host OSes, they can continue
to look for intrusions after the initial compromise, whereas a host-based IDS
can be disabled by the intruder. Second, since most computer systems rely
heavily on persistent storage for their operation, many intruder actions will
cause storage activity that can be captured and analyzed. This section expands
on these two features and identifies limitations of storage-based intrusion
detection.

2.1 Threat Model and Assumptions

Storage IDSs focus on the threat of an attacker who has compromised a host
system in a managed computing environment. By “compromised,” we mean
that the attacker subverted the host’s software system, gaining the ability to
run arbitrary software on the host with OS-level privileges. The compromise
might have been achieved via technical means (e.g., exploiting buggy software
or a loose policy) or nontechnical means (e.g., social engineering or bribery).
Once the compromise occurs, most administrators wish to detect the intrusion
as quickly as possible and terminate it. Intruders, on the other hand, often
wish to hide their presence and retain access to the machine.

Unfortunately, once an intruder compromises a machine, intrusion detection
with conventional schemes becomes much less effective. Host-based IDSs can
be rendered ineffective by intruder software that disables them or feeds them
misinformation, as many such tools do. Network IDSs can continue to look
for suspicious behavior, but are much less likely to find an already successful
intruder; most NIDSs look for attacks and intrusion attempts rather than for
system usage by an existing intruder [Ganger et al. 2003]. A storage IDS can
help by offering a vantage point on a system component that is often manipu-
lated in suspicious ways after the intruder compromises the system.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 4 · A. G. Pennington et al.

A key characteristic of the described threat model is that the attacker has
software control over the host, but does not have physical access to its hard-
ware. We are not specifically trying to address insider attacks, in which the
intruder would also have physical access to the hardware and its storage com-
ponents. Also, for the storage IDS to be effective, we assume that neither the
storage device nor the admin console are compromised.

2.2 Compromise Independence

A storage IDS will continue watching for suspicious activity even when clients’
OSes are compromised. It capitalizes on the fact that storage devices (whether
file servers, disk array controllers, or even IDE disks) run different software
on separate hardware, as illustrated in Figure 1. This fact enables server-
embedded security functionality that cannot be disabled by any software run-
ning on client systems (including the OS kernel). Further, storage devices often
have fewer network interfaces (e.g., RPC+SNMP+HTTP or just SCSI) and no
local users. Thus, compromising a storage server should be more difficult than
compromising a client system. Of course, such servers have a limited view of
system activity, so they cannot distinguish legitimate users from clever impos-
tors. But, from behind the physical storage interface, a storage IDS can spot
many common intruder actions and alert administrators.

Administrators must be able to communicate with the storage IDS, both to
configure it and to receive alerts. This administrative channel must also be
compromise-independent of client systems, meaning that no user (including
“root”) and no software (including the OS kernel) on a client system can have
administrative privileges for the storage IDS. Section 4 discusses deployment
options for the administrative console, including physical consoles and crypto-
graphic channels from a dedicated administrative system.

All of the warning signs discussed in this article could also be spotted
from within an HIDS, but host-based IDSs do not enjoy the compromise
independence of storage IDSs. A host-based IDS is vulnerable to being
disabled or bypassed by intruders that compromise the OS kernel. Another
interesting place for a storage IDS is the virtual disk module of a virtual ma-
chine monitor [Sugerman et al. 2001]; such deployment would enjoy compro-
mise independence from the OSes running in its virtual machines [Chen and
Noble 2001].

2.3 Warning Signs for Storage IDSs

Successful intruders often modify stored data. For instance, they may over-
write system utilities to hide their presence, install Trojan horse daemons to
allow for reentry, add users, modify startup scripts to reinstall kernel modifica-
tions upon reboot, remove evidence from the audit log, or store illicit materials.
These modifications are visible to the storage system when they are made per-
sistent. This section describes four categories of warning signs that a storage
IDS can monitor: data and attribute modifications, update patterns, content
integrity, and suspicious content.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 5

Fig. 1. The compromise independence of a storage IDS. The storage interface provides a physical
boundary behind which a storage server can observe the requests it is asked to service. Note that
this same picture works for block protocols, such as SCSI or IDE/ATA, and distributed file system
protocols, such as NFS or CIFS. Also note that storage IDSs do not replace existing IDSs, but do
offer an additional vantage point from which to detect intrusions.

2.3.1 Data/Attribute Modification. In managed computing environments,
the simplest (and perhaps most effective) category of warning signs consists
of data or metadata changes to files that administrators expect to remain un-
changed except during explicit upgrades. Examples of such files include sys-
tem executables and scripts, configuration files, and system header files and

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 6 · A. G. Pennington et al.

libraries. Given the importance of such files and the infrequency of updates to
them, any modification is a potential sign of intrusion. A storage IDS can de-
tect all such modifications on-the-fly, before the storage device processes each
request, and issue an alert immediately.

In current systems, modification detection is sometimes provided by a check-
summing utility (e.g., Tripwire [Kim and Spafford 1994]) that periodically com-
pares the current storage state against a reference database stored elsewhere.
Storage-based intrusion detection improves on this current approach in three
ways: (1) it allows immediate detection of changes to watched files; (2) it can
notice short-term changes, made and then undone, which would not be noticed
by a checksumming utility if the changes occurred between two periodic checks;
and (3) for local storage, it avoids trusting the host OS to perform the checks,
which many rootkits disable or bypass.

2.3.2 Update Patterns. A second category of warning signs consists of sus-
picious access patterns, particularly updates. There are several concrete exam-
ples for which storage IDSs can usefully in watch. The clearest is client system
audit logs; these audit logs are critical to both intrusion detection [Denning
1987] and diagnosis [Schneier and Kelsey 1999], leading many intruders to
scrub evidence from them as a precaution. Any such manipulation will be ob-
vious to a storage IDS that understands the well-defined update pattern of the
specific audit log. For instance, audit log files are usually append-only, and they
may be periodically “rotated.” Such rotation consists of renaming the current
log file to an alternate name (e.g., logfile to logfile.0) and creating a new
“current” log file. Any deviation in the update pattern of the current log file or
any modification of a previous log file is suspicious.

Another suspicious update pattern is timestamp reversal. Specifically, the
data modification and attribute change times commonly kept for each file
can be quite useful for postintrusion diagnosis of which files were manipu-
lated [Farmer 2000]. By manipulating the times stored in inodes (e.g., setting
them back to their original values), an intruder can inhibit such diagnosis. Of
course, care must be taken with IDS rules, since some programs (e.g., tar) le-
gitimately set these times to old values. One possibility would be to only set off
an alert when the modification time is set back long after a file’s creation. This
would exclude tar-style activity but would catch an intruder trying to obfus-
cate a modified file. Of course, the intruder could now delete the file, create a
new one, set the date back, and hide from the storage IDS; a more complex rule
could catch this, but such hide-and-seek escalation is the nature of intrusion
detection.

Detection of storage Denial-of-Service (DoS) attacks also falls into the cate-
gory of suspicious access patterns. For example, an attacker can disable spe-
cific services or entire systems by allocating all or most of the free space. A
similar effect can be achieved by allocating inodes or other metadata struc-
tures. A storage IDS can watch for such exhaustion, which may be deliberate,
accidental, or coincidental (e.g., a user just downloaded 1 TB of multimedia
files). When the system reaches predetermined thresholds of unallocated re-
sources and allocation rate, warning the administrator is appropriate even in
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 7

nonintrusion situations; attention is likely to be necessary soon. A storage IDS
could similarly warn the administrator when storage activity exceeds a thresh-
old for too long, which may be a DoS attack or just an indication that the server
needs to be upgraded.

Although specific rules can spot expected intruder actions, more general
rules may allow larger classes of suspicious activity to be noticed. For exam-
ple, some attribute modifications, like enabling “set UID” bits or reducing the
permissions needed for access, may indicate foul play. Additionally, many
applications access storage in a regular manner. As two examples: word
processors often use temporary and backup files in specific ways, and UNIX
password management involves a pair of interrelated files (/etc/passwd and
/etc/shadow). The corresponding access patterns seen at the storage device
will be a reflection of the application’s requests. This presents an opportunity
for anomaly detection based on how a given file is normally accessed. This
could be done in a manner similar to learning common patterns of system
calls [Forrest et al. 1996] or starting with rules regarding the expected behavior
of individual applications [Ko et al. 1997]. Deviation from the expected pattern
could indicate an intruder attempting to subvert the normal method of access-
ing a given file. Of course, the downside is an increase (likely substantial) in
the number of false alarms. Our focus to date has been on explicit detection
rules, but anomaly detection within storage access patterns is an interesting
topic for future research.

2.3.3 Content Integrity. A third category of warning signs consists of
changes that violate internal consistency rules of specific files. This category
builds on the previous examples by understanding the application-specific se-
mantics of particularly important stored data. Of course, to verify content in-
tegrity, the device must understand the format of a file. Further, while simple
formats may be verified in the context of the write operation, file formats may
be arbitrarily complex and verification may require access to additional data
blocks (other than those currently being written). This creates a performance
versus security trade-off made by deciding which files to verify and how often
to verify them. In practice, there are likely to be few critical files for which
content integrity verification is utilized.

As a concrete example, consider a UNIX system password file (/etc/passwd),
which consists of a set of well-defined records. Records are delimited by a line-
break, and each record consists of seven colon-separated fields. Further, each
of the fields has a specific meaning, some of which are expected to conform to
rules of practice. For example, the seventh field specifies the “shell” program to
be launched when a user logs in, and (in Linux) the file /etc/shells lists the
legal options. During the “Capture the Flag” information warfare game at the
2002 DEFCON conference [Lemos 2002], one tactic used was to change the root
shell on compromised systems to /sbin/halt; once a targeted system’s admin-
istrator noted the intrusion and attempted to become root on the machine (the
common initial reaction), considerable downtime and administrative effort was
needed to restore the system to operation. A storage IDS can monitor changes
to /etc/passwd and verify that they conform to a set of basic integrity rules:

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 8 · A. G. Pennington et al.

7-field records, nonempty password field, legal default shell, legal home direc-
tory, nonoverlapping user IDs, etc. The attack described before, among others,
could be caught immediately.

2.3.4 Suspicious Content. A fourth category of warning signs is the appear-
ance of suspicious content. The most obvious suspicious content is a known
virus or rootkit, detectable via its signature. Several high-end storage servers
(e.g., from EMC [Strom 2008] and Network Appliance [Sureshkumar 2009])
now offer support for internal virus scanning. By executing the scans within
the storage server, viruses cannot disable the scanners even after infecting
clients.

Two other examples of suspicious content are large numbers of “hidden” files
or empty files. Hidden files have names that are not displayed by normal direc-
tory listing interfaces [Denning 1999, p. 217], and their use may indicate that
an intruder is using the system as a storage repository, perhaps for illicit or
pirated content. A large number of empty files or directories may indicate an
attempt to exploit a race condition [Bishop and Dilger 1996; Purczynski 2002]
by inducing a time-consuming directory listing, search, or removal.

2.4 Limitations, Costs, and Weaknesses

Although storage-based intrusion detection contributes to security efforts, of
course it is not a silver bullet.

Like any IDS, a storage IDS will produce some false positives. With very spe-
cific rules, such as “watch these 100 files for any modification,” false positives
should be infrequent; they will occur only when there are legitimate changes to
a watched file, which should be easily verified if updates involve a careful pro-
cedure. The issue of false alarms grows progressively more problematic as the
rules get less exact (e.g., the time reversal or resource exhaustion examples).
The far end of the spectrum from specific rules is general anomaly detection.

Also like any IDS, a storage IDS will fail to spot some intrusions. Funda-
mentally, a storage IDS cannot notice intrusions whose actions do not cause
odd storage behavior. For example, three of the eighteen intrusion tools exam-
ined in the next section manipulate the OS but change no stored files. Also,
an intruder may manipulate storage in unwatched ways. Using network-based
and host-based IDSs together with a storage IDS can increase the odds of spot-
ting various forms of intrusion.

Intrusion detection, as an aspect of information warfare, is by nature a game
of escalation. As soon as the defender takes away an avenue of attack, the
attacker starts looking for the next. Since storage-based intrusion detection
easily sees several common intruder activities, crafty intruders will change
tactics. For example, an intruder can make any number of changes to the
host’s memory, so long as these modifications do not propagate to storage. A
reboot, however, will reset the system and remove the intrusion, which argues
for proactive restart [Castro and Liskov 2000; Huang et al. 1996; Vaidyanathan
et al. 2002]. To counter this, attackers must have their changes reestablished
automatically after a reboot, such as by manipulating the various boot-time
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 9

Table I. Visible Actions of Several Intruder Toolkits
Name Description Syscall Log Hidden Watched Total

redir. scrub dirs files alerts
Ramen Linux worm X 2 3
1ion Linux worm 10 10
FK 0.4 Linux LKM rootkit X 1 1

and trojan ssh
Taskigt Linux LKM rootkit 1 1
SK 1.3a Linux kernel rootkit X -

via /dev/kmem

Darkside FreeBSD LKM rootkit X -
0.2.3
Knark 0.59 Linux LKM rootkit X X 1 2
Adore Linux LKM rootkit X -
lrk5 User level rootkit X X 20 22

from source
Sun rootkit SunOS rootkit with 1 1

trojan rlogin
FreeBSD User level X X 15 17
Rootkit 2 FreeBSD rootkit
t0rn Linux user level rootkit X X 20 22
Advanced Linux user level rootkit X 10 11
Rootkit
ASMD Rootkit w/SUID X 1 2

binary trojan
Dica Linux user level rootkit X X 9 11
Flea Linux user level rootkit X X 20 22
Ohara Rootkit w/PAM trojan X X 4 6
TK 6.66 Linux user level rootkit X X 10 12

For each of the tools, the table shows which of the following actions are performed: redirecting
system calls, scrubbing the system log files, and creating hidden directories. It also shows how
many of the files watched by our rule set are modified by a given tool. The final column shows
the total number of storage IDS alerts that would be generated by that intruder tool.

(e.g., rc.local in UNIX-like systems) or periodic (e.g., cron in UNIX-like sys-
tems) programs. Doing so exposes them to the storage IDS, creating a tradi-
tional intrusion detection game of cat and mouse.

As a practical consideration, storage IDSs embedded within individual com-
ponents of decentralized storage systems are unlikely to be effective. For exam-
ple, a disk array controller is a fine place for storage-based intrusion detection,
but individual disks behind software striping are not. Each of the disks has
only part of the file system’s state, making it difficult to check nontrivial rules
without adding new interdevice communication paths.

Finally, storage-based intrusion detection is not free. Checking rules comes
with some cost in processing and memory resources, and more rules require
more resources. In configuring a storage IDS, one must balance detection ef-
forts with performance costs for the particular operating environment.

3. CASE STUDIES

This section explores how well a storage IDS might fare in the face of actual
compromises. To do so, we examined eighteen intrusion tools (Table I) designed

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 10 · A. G. Pennington et al.

to be run on compromised systems. All were downloaded from public Web sites,
most of them from Packet Storm [Packetstorm 2009]. While not all of the tested
intrusion tools would have successfully compromised our testbed system, we
still looked at how well their activity would have been detected.

Most of the actions taken by these tools fall into two categories. Actions
in the first category involve hiding evidence of the intrusion and the rootkit’s
activity. Actions in the second category provide mechanisms for reentry into
a system. Twelve of the tools operate by running various binaries on the host
system and overwriting existing binaries to broaden their control. The other
six insert code into the operating system kernel.

For the analysis in this section, we focus on a subset of the rules supported
by our prototype storage-based IDS described in Section 5. Specifically, we in-
clude the file/directory modification (Tripwire-like) rules, the append-only log-
file rule, and the hidden filename rules. We do not consider any “suspicious
content” rules, which may or may not catch a rootkit depending on whether its
particular signature is known.1 In these eighteen toolkits, we did not find any
instances of resource exhaustion attacks or of reverting inode times.

3.1 Detection Results

Of the eighteen toolkits tested, storage IDS rules would immediately detect fif-
teen based on their storage modifications. Most would trigger numerous alerts,
highlighting their presence. The other three make no changes to persistent
storage. Thus, they are removed if the system reboots; all three modify the ker-
nel, but would have to be combined with system file changes to be reinserted
upon reboot.

Nonappend changes to the system audit log. Seven of the eighteen toolkits
scrub evidence of system compromise from the audit log. All of them do so by
selectively overwriting entries related to their intrusion into the system, rather
than by truncating the logfile entirely. All cause alerts to be generated in our
prototype.

System file modification. Fifteen of the eighteen toolkits modify a number
of watched system files (ranging from 1 to 20). Each such modification gener-
ates an alert. Although three of the rootkits replace the files with binaries that
match the size and CRC checksum of the previous files, they do not foil crypto-
graphically strong hashes. Thus, Tripwire-like systems would be able to catch
them as well, though the evasion mechanism described in Section 3.2 defeats
Tripwire.

Many of the files modified are common utilities for system administration,
found in /bin, /sbin, and /usr/bin on a UNIX machine. They are modified to
hide the presence and activity of the intruder. Common changes include modi-
fying ps to not show an intruder’s processes, ls to not show an intruder’s files,
and netstat to not show an intruder’s open network ports and connections.
Similar modifications are often made to grep, find, du, and pstree.

1An interesting note is that rootkit developers reuse code: four of the rootkits use one audit log
scrubbing program (sauber) and another three use a second (zap2).

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 11

The other common reason for modifying system binaries is to create back-
doors for system reentry. Most commonly, the target is telnetd or sshd, al-
though one rootkit added a backdoored PAM module [Samar and Schemers III
1995] as well. Methods for using the backdoor vary and do not impact our
analysis.

Hidden file or directory names. Twelve of the rootkits make a hard-coded
effort to hide their nonexecutable and working files (i.e., the files that are not
replacing existing files). Ten of the kits use directories starting in a “.” to hide
from default ls listings. Three of these generate alerts by trying to make a
hidden directory look like the reserved “.” or “..” directories by appending one
or more spaces (“.” or “..”). This also makes the path harder to type if a system
administrator does not know the number of spaces.

3.2 Kernel-Inserted Evasion Techniques

Six of the eighteen toolkits modified the running operating system kernel. Five
of these six “kernel rootkits” include Loadable Kernel Modules (LKMs), and the
other inserts itself directly into kernel memory by use of the /dev/kmem inter-
face. Most of the kernel modifications allow intruders to hide as well as reenter
the system, similarly to the file modifications described earlier. Especially in-
teresting for this analysis is the use of exec() redirection by four of the kernel
rootkits. With such redirection, the exec() system call uses a replacement ver-
sion of a targeted program, while other system calls return information about
or data from the original. As a result, any tool relying on the accuracy of system
calls to check file integrity, such as Tripwire, will be fooled.

All of these rootkits are detected using our storage IDS rules; they all put
their replacement programs in the originals’ directories (which are watched),
and four of the six actually move the original file to a new name and store their
replacement file with the original name (which also triggers an alert). However,
future rootkits could be modified to be less obvious to a storage IDS. Specifically,
the original files could be left untouched and replacement files could be stored
someplace not watched by the storage IDS, such as a random user directory;
neither would generate an alert. With this approach, file modification can be
completely hidden from a storage IDS unless the rootkit wants to reinstall the
kernel modification after a reboot. To accomplish this, some original files would
need to be changed, which forces intruders to make an interesting choice: hide
from the storage IDS or persist beyond the next reboot.

3.3 Anecdotal Experience

During this research, one of the authors was asked to analyze a system that
had been recently compromised. Several modifications similar to those made
by the preceding rootkits were found on the system. Root’s .bash profile was
modified to run the zap2 log scrubber, so that as soon as root logged into the
system to investigate the intrusion, the related logs would be scrubbed. Sev-
eral binaries were modified (ps, top, netstat, pstree, sshd, and telnetd). The
binaries were set up to hide the existence of an IRC bot, running out of the
“hidden” directory ‘/dev/.. /’. This experience helps validate our choice of

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 12 · A. G. Pennington et al.

“rootkits” for study, as they appear to be representative of at least one real-
world intrusion. This intrusion would have triggered at least 8 storage IDS
rules.

4. DESIGN OF A STORAGE IDS

To be useful in practice, a storage IDS must simultaneously achieve several
goals. It must support a useful set of detection rules, while also being easy for
human administrators to understand and configure. It must be efficient, mini-
mizing both added delay and added resource requirements; some user commu-
nities still accept security measures only when they are free. Additionally, it
should be invisible to users at least until an intrusion detection rule is matched.

This section describes four aspects of storage IDS design: specifying detec-
tion rules, administering a storage IDS securely, checking detection rules, and
responding to suspicious activity.

4.1 Specifying Detection Rules

Specifying rules for an IDS is a tedious, error-prone activity. The tools an ad-
ministrator uses to write and manipulate these rules should be as simple and
straightforward as possible. Each category of suspicious activity presented ear-
lier will likely need a unique format for rule specification.

The rule format used by Tripwire seems to work well for specifying rules
concerned with data and attribute modification. This format allows an admin-
istrator to specify the pathname of a file and a list of properties that should be
monitored for that file. The set of watchable properties are codified, and they
include most file attributes. This rule language works well, because it allows
the administrator to manipulate a well-understood representation (pathnames
and files), and the list of attributes that can be watched is small and well-
defined.

The methods used by virus scanners work well for configuring an IDS to look
for suspicious content. Rules can be specified as signatures that are compared
against files’ contents. Similarly, filename expression grammars (like those
provided in scripting languages) could be used to describe suspicious filenames.

4.2 Secure Administration

The security administrator must have a secure interface to the storage IDS.
This interface is needed for the administrator to configure detection rules and
to receive alerts. The interface must prevent client systems from forging or
blocking administrative requests, since this could allow a crafty intruder to
sneak around the IDS by disarming it. At a minimum, it must be tamper-
evident. Otherwise, intruders could stop rule updates or prevent alerts from
reaching the administrator. To maintain compromise independence, it must be
the case that obtaining “superuser” or even kernel privileges on a client system
is insufficient to gain administrative access to the storage device.

Two promising architectures exist for such administration: one based on
physical access and one based on cryptography. For environments where the
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 13

Fig. 2. Tunneling administrative commands through client systems. For storage devices attached
directly to client systems, a cryptographic tunnel can allow the administrator to securely manage a
storage IDS. This tunnel uses the untrusted client OS to transport administrative commands and
alerts.

administrator has physical access to the device, a local administration terminal
that allows the administrator to set detection rules and receive the correspond-
ing alert messages satisfies the preceding goals.

In environments where physical access to the device is not practical, cryp-
tography can be used to secure communications. In this scenario, the storage
device acts as an endpoint for a cryptographic channel to the administrative
system. The device must maintain keys and perform the necessary cryp-
tographic functions to detect modified messages, lost messages, and blocked
channels. Architectures for such trust models in storage systems exist [Gobioff
1999]. This type of infrastructure is already common for administration of
other network-attached security components, such as firewalls or network in-
trusion detection systems. For direct-attached storage devices, cryptographic
channels can be used to tunnel administrative requests and alerts through the
OS of the host system, as illustrated in Figure 2. Such tunneling simply treats
the host OS as an untrusted network component. An attacker may be able to
disrupt communication passing through the host OS but this will be visible to
both an administrator and the storage device.

For small numbers of dedicated servers in a machine room, either ap-
proach is feasible. For large numbers of storage devices or components operat-
ing in physically distributed environments, cryptography is the only practical
solution.

4.3 Checking the Detection Rules

Checking detection rules during individual storage accesses can be nontrivial,
because rules generally apply to full pathnames rather than inode or block

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 14 · A. G. Pennington et al.

numbers. Additional complications arise when rules can watch for files that do
not yet exist.

For simple operations that act on individual files (e.g., READ and WRITE),
rule verification is localized. The device need only check that the rules per-
taining to that specific file are not violated. For operations that affect the file
system’s namespace, verification is more complicated. For example, a rename
of a directory may impact a large number of individual files, any of which could
have IDS rules that must be checked. Renaming a directory requires exam-
ining all files and directories that are children of the one being renamed. In
addition to rules on affected files, rules pertaining to files that do not currently
exist must be checked when operations change the namespace. For example,
the administrator may want to watch for the existence of a file named /a/b/c
even if the directory named /a does not yet exist. However, a single file system
operation (e.g., mv /z /a) could cause the watched file to suddenly exist, given
the appropriate structure for z’s directory tree.

4.4 Responding to Rule Violations

Since a detected “intruder action” may actually be legitimate user activity (i.e.,
a false alarm), our default response is simply to send an alert to the administra-
tive system or the designated alert log file. The alert message should contain
such information as the file(s) involved, the time of the event, the action being
performed, the action’s attributes (e.g., the data written into the file), and the
client’s identity. Note that, if the rules are set properly, most false positives
should be caused by legitimate updates (e.g., upgrades) from an administra-
tor. With the right information in alerts, an administrative system that also
coordinates legitimate upgrades could correlate the generated alert (which can
include the new content) with the in-progress upgrade; if this were done, it
could prevent the false alarm from reaching the human administrator while
simultaneously verifying that the upgrade went through to persistent storage
correctly.

There are more active responses that a storage IDS could trigger upon
detecting suspicious activity. When choosing a response policy, of course, the
administrator must weigh the benefits of an active response against the incon-
venience and potential damage caused by false alarms.

One reasonable active response is to slow down the suspected intruder’s stor-
age accesses. For example, a storage device could wait until the alert is ac-
knowledged before completing the suspicious request. It could also artificially
increase request latencies for a client or user that is suspected of foul play.
Doing so would provide increased time for a more thorough response, and,
while it will cause some annoyance in false alarm situations, it is unlikely to
cause damage. The device could even deny a request entirely if it violates one
of the rules, although this response to a false alarm could cause damage and/or
application failure. For some rules, like append-only audit logs, such access
control may be desirable.

Liu et al. proposed a more radical response to detected intrusions: isolating
intruders, via versioning, at the file system level [Liu et al. 2000]. To do so,
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 15

the file system forks the version trees to sandbox suspicious users until the
administrator verifies the legitimacy of their actions. Unfortunately, such fork-
ing is likely to interfere with system operation, unless the intrusion detection
mechanism yields no false alarms. Specifically, since suspected users modify
different versions of files from regular users, the system faces a difficult reinte-
gration [Kumar and Satyanarayanan 1995; Terry et al. 1995] problem, should
the updates be judged legitimate. Still, it is interesting to consider embedding
this approach, together with a storage IDS, into storage systems for particu-
larly sensitive environments.

A less intrusive storage-embedded response is to start versioning all data
and auditing all storage requests when an intrusion is detected. Doing so pro-
vides the administrator with significant information for postintrusion diagno-
sis and recovery. Of course, some intrusion-related information will likely be
lost unless the intrusion is detected immediately, which is why Strunk et al.
[2000] argue for always doing these things (just in case). Still, IDS-triggered
employment of this functionality may be a useful trade-off point.

5. PROTOTYPE IMPLEMENTATION

This section describes the architecture and implementation of a prototype disk-
based IDS called IDD (Intrusion Detection on Disk).

5.1 Architecture

IDD takes the form of a PC acting as a Fibre Channel SCSI disk [Griffin 2004],
enhanced with storage-based intrusion detection. From the perspective of the
host computer’s software and hardware, IDD looks and behaves like an actual
disk. Figure 3 shows the high-level interaction between a workstation or server
computer (“Host”) and IDD components. Most of the IDD components are lo-
cated in the host’s locally attached “disk” (shown as the “Disk Emulator” for our
prototype system). A component not shown, the remote administrator’s console,
receives all alerts and would likely also serve as a central point of control for
other intrusion detection systems running at other hosts.

There are two primary IDS functions in IDD. The first function, storage traf-
fic monitoring, is implemented by the Policy Monitor. It maps administrative
policies into violating interface actions, monitors all ordinary storage traffic for
real-time violations, and generates alerts. The Policy Monitor uses the IDD
Block Cache to reduce the cost of checking rules that require examination of
existing disk blocks. The second function, administrative communication, is
implemented by the Administrative Bridge process (which runs in the host
being watched) and the Request Demultiplexer. The Administrative Bridge
process forwards commands from the administrator to IDD and conveys alerts
from IDD to the administrator. The Request Demultiplexer identifies incom-
ing SCSI requests that contain administrative data (rather than normal disk
requests) and handles the transmission of alerts.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 16 · A. G. Pennington et al.

Fig. 3. Disk-based IDS prototype architecture. This figure shows the communications flow be-
tween a host computer and the locally attached IDD. The shaded boxes are key components that
support disk-based IDS operation. Ordinary storage traffic is initiated by application processes,
passes across the SCSI bus, is checked by the policy monitor, and is finally serviced by the disk.
Administrative traffic is initiated by the administrator, passes across a TCP/IP network, is received
by the bridge process on the host computer, passes across the SCSI bus, and is finally serviced by
the policy monitor. The sample alert displayed on the administrator’s console originated in the
policy monitor.

5.2 Storage Traffic Monitoring

The policy monitor bridges the semantic gap between the administrator’s pol-
icy statements and individual SCSI READ and WRITE requests, checking each
request from the host computer before it is delivered to IDD’s real disk for
service. Administrative policies are specified in terms of files, so IDD must un-
derstand the on-disk file system structures. Such understanding is not difficult
to embed, given access to the OS’s definitions (e.g., in header files), and the
structures change very infrequently for existing file systems [Pennington et al.
2003].

IDD currently understands the Second Extended (ext2) file system used
by Linux-based host computers [Card et al. 1994]; to support this, we hard-
coded the structure of on-disk metadata into the policy manager. For ext2,
this includes the ext2 superblock, inode, indirect block, and directory entry
structures. Such file system-specific detail, either hard-coded or module-based,
is feasible under an economic model of cooperation between host OS vendors
and disk manufacturers. During initial configuration, the administrator would
specify the file system used by the host computer. It may also be possible to
use grey-box techniques [Sivathanu et al 2003] determine the file system being
used or even to deduce a file system’s structures.

When administrative policy is specified, IDD receives a list of files whose
contents should be watched in particular ways (e.g., for any change, for reads,
or for nonappend updates). For each watched file, IDD traverses the on-disk
directory structure to determine which metadata and data blocks are associ-
ated with the file. These blocks are labeled “watched blocks” and are added
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 17

to a table of watched blocks. Each such block is then associated with a num-
ber of access check functions that evaluate whether a block access violates a
given rule.

The mapping from file-system-level policy to potential block access violations
must be thorough. Consider the example rule Warn me if the file /bin/netstat
in partition 2 changes. For ext2, the mapping expands to individual access
check functions associated with: (1) the second entry in the disk’s partition
table, (2) certain fields in the ext2 superblock, (3) fields in the root inode, (4)
any indirect blocks—including doubly- and triply-indirect—for the root inode’s
directory entries, (5) the inode number associated with bin in the root directory,
(6) fields in the bin inode, (7) block pointers for bin’s directory entries, (8) the
inode number for netstat, (9) fields in the netstat inode, (10) indirect blocks
for netstat, and (11) each of the data blocks for netstat.

5.2.1 The Watched Block Table (WBT). The Watched Block Table (WBT) is
the IDD’s primary data structure. Each WBT entry contains a monitored block
number (LBN) and a list of the associated Access Check Functions (ACF) for
the block along with associated parameters. IDD’s WBT is indexed by LBN via
a B*-tree of contiguous block extents.

When a new storage request arrives from the host computer, IDD checks
whether any of the request’s blocks appear in the WBT. In the common case, no
matches are found. This means there are no possible policy violations caused by
the request, so no further IDS-related processing is required. (The other case is
discussed in Section 5.2.2.) It is imperative that this WBT lookup be efficient,
as it must be performed in the critical path for every request. The WBT lookup
could be overlapped with disk positioning time, but it cannot safely proceed in
parallel with the media transfer for writes. Not only might the write generate
an alert or even be blocked, but IDD may need to fetch the old version of the
LBN for comparison purposes.

To reduce the memory footprint used by the IDS functionality, portions of
the WBT can be demand paged. The list of monitored block numbers should al-
ways remain in-core, but the remaining information (the access check function
pointer and alert-time explanation) is only accessed after a monitored block is
accessed. IDD keeps enough data in-core to positively determine that a given
update affects a watched file without paging in any additional data other than
the old data in question.

5.2.2 Access Check Functions (ACFs). If one or more of the blocks accessed
by a request appear in the WBT, IDD must perform extra processing to deter-
mine whether the request actually causes a rule violation. This is necessary
because multiple file system objects can appear in a single block (e.g., direc-
tory entries), only some of which may set off rules when updated. IDD exe-
cutes ACFs in two steps. First, it determines whether specifically watched byte
ranges within the blocks have changed by comparing the new contents with the
old, which it may need to fetch from the media. If watched bytes change, the
ACF is invoked.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 18 · A. G. Pennington et al.

Checking whether a write request violates rules may require that stored
data be read from the disk by the ACF. We call these IOs “interposed reads.”
IDD uses a simple LRU block cache to reduce the number of extra IOs caused
by interposed reads. Note that this cache is designed to quickly execute ACFs
on block updates that will ultimately not generate an alert, rather than satisfy
host I/O requirements.

As examples from our ext2-based implementation, the ACF for a data block
with the “any change” policy would simply compare the contents of the
block on disk with the new block being written. The ACF for a directory en-
try block with the “any change” policy would check the old directory block and
new directory block to determine if a particular filename-to-inode-number map-
ping changed (e.g., mv file1 file2 when file2 is watched). The ACF for an
inode block with the “nonappend updates” policy would compare the old and
new inode contents to ensure that the access time field and the file size field
only increased. Complicating the logic for this rule, the last valid block pointer
in the inode is allowed to change, but only portions of the last block of a file
beyond the current file size can change.

5.3 Alert Generation and Administrative Communication

The administrative communications channel is implemented jointly by the
bridge process and the request demultiplexer. The administrator sends its
traffic directly to the bridge process over a TCP/IP-based network connection.
The bridge process immediately repackages that traffic in the form of specially
marked SCSI requests and sends those across the SCSI bus. When IDD re-
ceives these marked requests, they are identified and intercepted by the re-
quest demultiplexer. The administrative console encrypts its traffic, creating
a secure channel with the administrator’s computer and the request demulti-
plexer as endpoints.

The bridge process assists with communication in both directions. For a
message from the administrator to the IDD (e.g., sending new rules) the bridge
creates a single SCSI WRITE request containing the entire message. The re-
quest is marked as containing administrative data by setting an unused flag
in the SCSI command descriptor block. The request is then sent over the bus
using the Linux SCSI Generic passthrough driver interface.

To poll for messages from IDD to the administrator (e.g., alerts), the bridge
creates either one or two SCSI READ requests. The first request is always
of fixed size (we used 8KB) and is used to determine the number of bytes of
message data waiting in IDD to be fetched: The first 32 bits received from
IDD indicate the integer number of pending bytes. The remaining space in the
first request is filled with waiting message data. If there is more data wait-
ing than fits in the first request, a second READ request immediately follows.
This second request is of appropriate size to fetch all the remaining message
data. These READ requests are marked as “administrative” by the same un-
used SCSI flag as described before. Once the bridge process has fetched all
the waiting data, it forwards the data to the administrative console over the
network.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 19

The administrative communication channel must be reliable in the face of
message duplication or omission due to network problems or malicious attack.
Our implementation uses per-message sequence and acknowledgement num-
bers to ensure that such errors are detected. The IDD administrative process
initiates one pair of messages (sending one and expecting a response) per sec-
ond by default. In order to reduce administrator-perceived lag, this frequency
is temporarily increased whenever recent messages contained policies or alerts.

6. PROTOTYPE EVALUATION

This section examines the performance and memory overheads incurred by
IDD, our prototype disk-based IDS. We find that these overheads are not un-
reasonable for inclusion in workstation disks.

6.1 Experimental Setup

In our setup, both the host computer and its locally attached disk emulator are
2 GHz Pentium 4-based computers with 512MB RAM. The disk emulator runs
FreeBSD 5.2 and makes use of FreeBSD’s target-mode SCSI support in order to
capture SCSI requests initiated by the host computer. The host computer runs
Red Hat Linux 8.0. The host and emulator are connected point-to-point using
QLogic QLA2100 Fibre Channel adapters. The backing store for the emulator
is an 72 GB Seagate ST373405LC disk connected to an Adaptec 29160 Ultra160
SCSI controller. In an effort to exercise the worst-case storage performance, the
file system stored on the disk emulator was mounted synchronously by the host
computer and caching was turned off inside the backing store disk.

We do not argue that embedded disk processors will have a 2 GHz clock fre-
quency; this is perhaps an order of magnitude larger than one might expect.
However, an actual disk-based IDS would be manually tuned to the charac-
teristics of the platform it runs on (e.g., the disk’s SCSI ASICs would obviate
much of the IDS communication and interposition overheads) and would there-
fore run more efficiently than IDD, perhaps by as much as an order of magni-
tude. To compensate for this uncertainty, we report processing overheads both
in elapsed time and in processor cycle counts. The latter provides a reasonably
portable estimate of the amount of CPU work performed by IDD.

To approximate the conditions of a production file system deployed in a real
environment, we created a disk image of a freshly installed Red Hat Linux
8.0 desktop system. This image is loaded into the emulator at the start of
each experiment, after which the emulated disk is mounted synchronously in
a root-level directory on the host computer. For each experiment with IDD
“fully enabled,” we set the administrative policy to match the default Tripwire
rule-set for Red Hat Linux [Tripwire 2002].

Our experiments use a microbenchmark and two macrobenchmarks. Our
alert-generating microbenchmark cycles 1000 times over a single file opera-
tion on each of 1000 files (out of 1,000,000 spread over 1,000 directories), all
of which will generate alerts when IDD is enabled. We use Linux kernel build
and PostMark as nonalert-generating macrobenchmarks. Linux kernel build is
an example of a disk-intensive workload that creates, operates on, and deletes

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 20 · A. G. Pennington et al.

many temporary files. The benchmark unpacks a bzip2 compressed tarball
of the Linux 2.6.9 kernel, and then builds a kernel image using the kernel’s
default configuration. It can be considered a successor to the Andrew Bench-
mark [Howard et al. 1988]. PostMark was designed to exercise the file system
as would a server for the small files associated with electronic mail, netnews,
or Web-based services [Katcher 1997]. Each macrobenchmark result repre-
sents the average of 10 runs of the test program on a warm system, where
the system was warmed by loading the rules into IDD and running the test
program once.

6.2 Base Resource Requirements

Expanding out the default Tripwire rule set for Red Hat Linux on our freshly
installed disk image results in rules being set on 13995 files that IDD records in
17627 extents. This rule coverage represents watching 15% of the total number
of files in the base (no user files) system.

For our IDD prototype, the fully enabled rule set results in a baseline mem-
ory footprint of 1.62MB. This includes 36KB for the IDD executable image size
and 1.57MB for internal structures that track rules and the lists of watched
blocks. This works out to approximately 120B per file watched. In addition
to this footprint, IDD can have a cache to temporarily hold rule structures in
memory as well as recently checked blocks on disk.

When the rule-set is first loaded, IDD makes an initial pass through the
quiescent file system to initialize the lists of watched blocks and other struc-
tures. In our implementation, this time is dominated by the number of disk
I/Os required to load the relevant inode and directory structures and to save
a copy of the rule data structure to disk. By caching certain frequently used
blocks (such as the superblock, root inode, and root directory blocks, as well as
recently touched inodes and directory entries), this takes a total of 529 seconds,
or about 37ms per rule. This initialization isn’t necessary every time the disk
is powered up; once the rule-set is loaded, IDD’s internal state can be saved
to disk media and restored quickly when restarted. It may be desirable for a
deployed disk-based IDS to periodically repeat this process in the background,
just to verify the consistency of its internal state.

6.3 Common-Case Performance

As discussed in Section 5.2.1, WBT lookup must be efficient, since it is per-
formed in the critical path of every request. We examine the impact of the
common-case WBT lookup both in the aggregate using the macrobenchmarks
and at the individual request level using the microbenchmark.

The macrobenchmark results are shown in Figure 4. Linux kernel build gen-
erates 241,718 disk requests in 1590 seconds, and PostMark generates 364310
requests in 1440 seconds. These graphs show both that the overhead of the
IDS infrastructure itself can be small (as shown by case (b), 0.01–0.1% for our
implementation) and that the WBT lookup time is insignificant (case (c), 0.02–
1.3%) relative to the disk request times. Our microbenchmark results, shown
in Table II, show that the overhead for a WBT lookup is 1–4 µs. These results
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 21

Fig. 4. Application benchmarks. These graphs show the impact of the initial WBT check on ap-
plication performance. The “without IDD” bars represet using our IDD disk simulator with all IDS
functionality bypassed; the remaining experiments were run with the IDS engaged and watch-
ing different amounts of data. None of the benchmark’s disk accesses commits policy violations,
but IDD must ensure this for the IDD no rules and IDD Tripwire rules cases. The data indicate
virtually no scaling of the overhead as a function of the amount of watched data.

show that it is indeed possible to do the requisite common-case IDS processing
with no discernible effect on application performance.

6.4 Updates to Watched Blocks

If one or more of the blocks of a request appear in the WBT, IDD must perform
extra work to determine if the request actually causes a rule violation. Unlike
the common-case analysis given earlier, it is not paramount that these checks
have no performance impact on the host’s request stream; since an update to
a watched block may indicate an intruder action, it is imperative for the disk
to determine whether the associated rules have been violated. We examine the
impact of watched block checking using the alert-generating microbenchmark.
The results are shown in Table II.

This analysis assumes that the entire WBT is kept in-core but that no data
blocks are cached by the IDD block cache. Depending on the system state,
the actual results could be worse or better. If the WBT were fully paged to
disk, the request time would increase by approximately 30% as an additional
interposed request would occur to page in the appropriate entry in the WBT.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 22 · A. G. Pennington et al.

Table II. Alert-Generating Microbenchmark
Cache Hit Cache Miss

Experiment data inode same-block data inode same-block
WBT Lookup (ms) 0.00321 0.00172 0.00151 0.00310 0.00343 0.00407

(0.000332) (0.000211) (0.000227) (0.000461) (0.000424) (0.000548)
clock cycles 6396 3428 3002 6190 6840 8120
Read Old Data 0.244 0.121 0.176 5.33 5.28 5.24

(0.0105) (0.0141) (0.0266) (1.51) (1.47) (1.48)
Page rule data 0.111 0.104 n/a 10.2 10.2 n/a

(0.00407) (0.00342) (1.39) (1.39)
ACF check 0.0625 0.00653 n/a 0.0365 0.0101 n/a

(0.00670) (0.00266) (0.00188) (0.00738)
clock cycles 125000 13000 72800 20100
Final Write 5.86 5.77 5.85 3.83 6.72 3.86

(1.42) (1.56) (1.47) (1.43) (1.37) (0.0621)
Total 6.11 5.89 6.02 19.4 22.2 9.11

This table decomposes the service time of write requests in our alert-generating microbenchmark. Mean
times are in milliseconds with standard deviation given in parentheses. “data” overwrites a single data
block. “inode” changes an inode parameter (mtime). “same-block” changes an inode not being watched in
the same inode block as another inode which is watched. The “cache hit” and “cache miss” cases represent
whether all interposed blocks were already cached in the IDD Block Cache.

Conversely, if all the relevant data blocks were cached (requiring 512KB for
this experiment), the interposed requests would be unnecessary, reducing the
overhead for updates to watched blocks to 6–9%.

For some updates that generate an alert, it may be necessary to modify the
internal IDD structures to reflect the update. For example, given the rule Warn
me if anything changes in the directory /sbin, if the file /sbin/newfile is cre-
ated, it is perhaps appropriate to both generate an alert and start watching
the new file for subsequent changes. This can either be done by reconstructing
the exact change caused by the alert (which may require additional interposed
reads), or by reinvoking the full initialization process.

These results show that the overhead involved with determining whether
to generate alerts during updates to watched blocks is not unreasonable, espe-
cially if it is assumed that such updates occur infrequently. In the following
two subsections, we analyze desktop traces from a university laboratory envi-
ronment to give some insight into the validity of this assumption.

6.4.1 Frequency of Alert-Generating Updates. To understand the frequency
of overheads beyond the common-case performance, we examined 11 months
worth of local file system traces from managed desktop machines in a mid-sized
research group. The traces included 820,145,133 file operations, of which 1.8%
translated into modifications to the disk. Using these traces, we quantify the
frequency of two cases: actual rule violations and nonrule-violating updates
to watched blocks (specifically, incidental updates to shared inode blocks or
directory blocks).

We examine the traces for violations of the Tripwire’s default rule set for
Red Hat Linux. This expanded out to rules watching 29,308 files, which in
turn translates to approximately 225,000 blocks being watched. In the traces,
5350 operations (0.0007% of the total) impacted files with rules set on them.
All but 10 of these were the result of nightly updates to configuration files such
as /etc/passwd and regular updates to system binaries. If the IDD is made
aware of expected updates (perhaps by receiving the expected change first over
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 23

the administrative channel) the IDD could convert its response from a false
positive to a helpful confirmation. As there were no known intrusions on any of
the traced systems, the remaining 10 alerts appear to be file changes by users.

6.4.2 Frequency of Nonalert-Generating Updates. The first class of
nonrule-violating updates that require ACF execution is shared inode blocks.
In the case of the ext2 file system [Card et al. 1994], 32 inodes are stored in each
inode block. Our prototype notices any changes to an inode block containing a
watched inode, so it must also determine if any such modification impacts an
inode being watched. If any inode in a given block is watched, an update to one
of the 31 remaining inodes will incur some additional overhead. To quantify
this effect, we looked at the number of changes to inodes that were in the same
block as a watched inode. For this analysis, the local file systems of 15 comput-
ers were used as examples of which inodes share blocks with watched files. In
our traces, 1.9% of writes resulted in changes to inode blocks. Of these, 8.1%
update inode blocks that are being watched (with a standard deviation of 2.9%
over the 15 machines), for a total of 0.15% of writes requiring ACF execution.
Most of the inode block overlap resulted from these machines’ /etc/passwd be-
ing regenerated nightly. This caused its inode to be in close proximity with
many short-lived files in /tmp. On the one machine that had its own partition
for /tmp, we found that only 0.013% of modifications caused writes to watched
inode blocks. Using the values from Table II and the hit frequency over the
15 machines, we compute that the extra work would result in a 0.01–0.04%
overhead (depending on the IDD cache hit rate).

Similarly, the IDD needs to watch directories between a watched file and the
root directory to make sure that relevant entries do not change. We looked at
the number of changes to unmatched entries in watched directories that the
IDD would have to process given our traces. Using the same traces, we found
that 0.22% of modifications to the file system result in directory changes that
an ACF would need to process in order to verify that no rule was violated.
Based on the Table II measurements, these ACF invocations would result in a
0.02–0.06% performance impact, depending on IDD cache hit rate.

7. ADDITIONAL RELATED WORK

Much related work has been discussed within the flow of the article. For em-
phasis, we note that there have been many intrusion detection systems focused
on host OS activity and network communication. Axelsson [1998] surveyed and
laid out classifications for many of these IDS types. Also, the most closely re-
lated tool, Tripwire [Kim and Spafford 1994], was used as an initial template
for our prototype’s file modification detection rule set.

Our work is part of a line of research exploiting physical [Ganger and Nagle
2001; Zhang et al. 2002] and virtual [Chen and Noble 2001; Payne et al.
2007] protection boundaries to detect intrusions into system software. Notably,
Garfinkel and Rosenblum [2003] explore the utility of an IDS embedded in a
Virtual Machine Monitor (VMM), which can inspect machine state while being

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 24 · A. G. Pennington et al.

compromise-independent of most host software. Storage-based intrusion de-
tection rules could be embedded in a VMM’s storage module, rather than in a
physical storage device, to identify suspicious storage activity.

After our initial explorations of the field of storage-based intrusion detec-
tion [Pennington et al. 2003; Griffin 2004], other researchers pursued comple-
mentary projects that advanced the field and demonstrated the versatility of
active monitoring behind the storage interface.

Banikazemi et al. at IBM Research explored the commercial viability of
storage-based intrusion detection [Banikazemi et al. 2005]. First, they ex-
tended our IDD concept beyond a single disk and into a managed storage area
network, demonstrating a concrete realization of a real-time block-based stor-
age device inside a commercially viable storage platform. Second, they ob-
served the utility of using delayed execution an IDS rule-set over file system
snapshots as an efficient complement to real-time IDS activity.

Paul et al. at the University of Virginia explored the architectural issues
that will be faced in stand-alone semantically smart disk systems [Paul 2008;
Paul et al. 2005]. They identified observable disk-level behaviors that are char-
acteristic of malware and explored disk detection algorithms tuned to operate
in the limited-resource embedded computational environments that will likely
be characteristic of programmable storage devices.

Butler et al. at the Pennsylvania State University introduced the idea of
using a removable administrative token to perform safe programming and
administration of a storage-based IDS [Butler et al. 2008]. They identified
an elegant empirical alternative to selecting which blocks should be treated
as immutable by the IDS rule-set: with some exceptions, all blocks writ-
ten to storage whenever the administrative token is present are considered
immutable.

The results from these three independent projects collectively underscore
our claims of the feasibility and efficacy of locating independent security moni-
toring and response utilities behind the storage interface.

Somewhere between block-based storage and file-based storage lies the
emerging concept of object-based storage [Gibson et al. 1998; Weber 2004].
Storage-based intrusion detection is easier for storage objects than for blocks,
since files often map directly to one or more objects. One such system has been
demonstrated by Zhang and Wang [2006] who created a storage-based IDS run-
ning on an early object-based storage implementation.

Perhaps the most closely related work is the original proposal for self-
securing storage [Strunk et al. 2000], which argued for storage-embedded sup-
port for intrusion survival. Self-securing storage retains every version of all
data and a log of all requests for a period of time called the detection win-
dow. For intrusions detected within this window, security administrators have
a wealth of information for postintrusion diagnosis and recovery.

Such versioning and auditing complements storage-based intrusion detec-
tion in several additional ways. First, when creating rules about storage activ-
ity for use in detection, administrators can use the latest audit log and version
history to test new rules for false alarms. Second, the audit log could simplify
implementation of rules looking for patterns of requests. Third, administrators

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 25

can use the history to investigate alerts of suspicious behavior (i.e., to check for
supporting evidence within the history). Fourth, since the history is retained,
a storage IDS can delay checks until the device is idle, allowing the device to
avoid performance penalties for expensive checks by accepting a potentially
longer detection latency.

8. CONCLUSIONS

A storage IDS watches system activity from a new viewpoint which immedi-
ately exposes some common intruder actions. Running on separate hardware,
this functionality remains in place even when client OSes or user accounts are
compromised. Our prototype storage IDS demonstrates both feasibility and
efficiency of adding IDS capabilities to a workstation disk. Analysis of real
intrusion tools indicates that most would be immediately detected by a stor-
age IDS. After adjusting for storage IDS presence, intrusion tools will have to
choose between exposing themselves to detection or being removed whenever
the system reboots.

ACKNOWLEDGMENTS

We thank the members and companies of the PDL Consortium (including APC,
Data Domain, EMC, EqualLogic, Facebook, Google, HP, HGST, Hitachi, IBM,
Intel, LSI, Microsoft, NEC, NetApp, Oracle, Panasas, Seagate, Sun, Symantec,
VMware) for their interest, insights, feedback, and support.

REFERENCES

AXELSSON, S. 1998. Research in intrusion-detection systems: A survey. Tech. rep. 98–17, Depart-
ment of Computer Engineering, Chalmers University of Technology.

BANIKAZEMI, M., POFF, D., AND ABALI, B. 2005. Storage-based intrusion detection for storage
area networks (SANs). In Proceedings of the IEEE Symposium on Mass Storage Systems. IEEE
Computer Society, 118–127.

BISHOP, M. AND DILGER, M. 1996. Checking for race conditions in file accesses. Comput. Syst. 9,
2, 131–152.

BUTLER, K. R. B., MCLAUGHLIN, S., AND MCDANIEL, P. D. 2008. Rootkit-resistant disks.
In Proceedings of the Conference on Computer and Communications Security (CCS’08). ACM,
403–416.

CARD, R., TS’O, T., AND TWEEDIE, S. 1994. Design and implementation of the second extended
file system. In Proceedings of the 1st Dutch International Symposium on Linux.

CASTRO, M. AND LISKOV, B. 2000. Proactive recovery in a byzantine-fault-tolerant system. In
Proceedings of the Symposium on Operating Systems Design and Implementation. USENIX
Association, 273–287.

CHEN, P. M. AND NOBLE, B. D. 2001. When virtual is better than real. In Proceedings of the
Conference on Hot Topics in Operating Systems. IEEE Computer Society, 133–138.

CHESWICK, B. AND BELLOVIN, S. 1994. Firewalls and Internet Security: Repelling the Wily
Hacker. Addison-Wesley, Reading, MA.

DENNING, D. 1987. An intrusion-detection model. IEEE Trans. Softw. Engin. SE-13, 2, 222–232.
DENNING, D. E. 1999. Information Warfare and Security. Addison-Wesley, Reading, MA.
FARMER, D. 2000. What are MACtimes? Dr. Dobb’s J. 25, 10, 68–74.
FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND LONGSTAFF, T. A. 1996. A sense of self

for UNIX processes. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE,
120–128.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

30: 26 · A. G. Pennington et al.

GANGER, G. R. AND NAGLE, D. F. 2001. Better security via smarter devices. In Proceedings of the
Conference on Hot Topics in Operating Systems. IEEE, 100–105.

GANGER, G. R., ECONOMOU, G., AND BIELSKI, S. M. 2003. Finding and containing enemies
within the walls with self-securing network interfaces. Tech. rep. CMU-CS-03-109, Carnegie
Mellon University.

GARFINKEL, T. AND ROSENBLUM, M. 2003. A virtual machine introspection based architecture
for intrusion detection. In Proceedings of the Annual Network and Distributed System Security
Symposium (NDSS’03). The Internet Society.

GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUTLER, J., CHANG, F. W., GOBIOFF, H., HARDIN, C.,
RIEDEL, E., ROCHBERG, D., AND ZELENKA, J. 1998. A cost-effective, high-bandwidth storage
architecture. SIGPLAN Not. 33, 11, 92–103.

GOBIOFF, H. 1999. Security for a high performance commodity storage subsystem. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University.

GRIFFIN, J. L. 2004. Timing-accurate storage emulation: Evaluating hypothetical storage compo-
nents in real computers. Ph.D. thesis, Carnegie Mellon University.

HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN, M.,
SIDEBOTHAM, R. N., AND WEST, M. J. 1988. Scale and performance in a distributed file system.
ACM Trans. Comput. Syst. 6, 1, 51–81.

HUANG, Y. N., KINTALA, C. M. R., BERNSTEIN, L., AND WANG, Y. M. 1996. Components for
software fault-tolerance and rejuvenation. AT&T Bell Lab. Tech. J. 75, 2, 29–37.

KATCHER, J. 1997. Postmark: A new file system benchmark. Tech. rep. TR3022, Network
Appliance.

KIM, G. H. AND SPAFFORD, E. H. 1994. The design and implementation of Tripwire: A file system
integrity checker. In Proceedings of the Conference on Computer and Communications Security
(CCS’94). ACM, 18–29.

KO, C., RUSCHITZKA, M., AND LEVITT, K. 1997. Execution monitoring of security-critical pro-
grams in distributed systems: A specification-based approach. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, 175–187.

KUMAR, P. AND SATYANARAYANAN, M. 1995. Flexible and safe resolution of file conflicts. In
Proceedings of the USENIX Annual Technical Conference. USENIX Association, 95–106.

LEMOS, R. 2002. Putting fun back into hacking. http://zdnet.com/100-1105-948404.html.
LIU, P., JAJODIA, S., AND MCCOLLUM, C. D. 2000. Intrusion confinement by isolation in infor-

mation systems. In Proceedings of the IFIP Working Conference on Database Security. IFIP, 3–18.
LUNT, T. F. AND JAGANNATHAN, R. 1988. A prototype real-time intrusion-detection expert system.

In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 59–66.
NFR 2002. Nfr security. http://www.nfr.net/.
PACKETSTORM 2009. Packet storm security. http://www.packetstormsecurity.org/.
PAUL, N., GURUMURTHI, S., AND EVANS, D. 2005. Towards disk-level malware detection. In

Proceedings of the CoBaSSA – Workshop on Code Based Software Security Assessments.
PAUL, N. R. 2008. Disk-level behavioral malware detection. Ph.D. thesis, University of

Virginia.
PAXSON, V. 1998. Bro: A system for detecting network intruders in real-time. In Proceedings of the

USENIX Security Symposium. USENIX Association, 31–51.
PAYNE, B. D., DE A. CARBONE, M. D. P., AND LEE, W. 2007. Secure and flexible monitoring of

virtual machines. In Proceedings of the Computer Security Applications Conference (ACSAC’07).
IEEE, 385–397.

PENNINGTON, A. G., STRUNK, J. D., GRIFFIN, J. L., SOULES, C. A.N., GOODSON, G. R., AND

GANGER, G. R. 2003. Storage-based intrusion detection: Watching storage activity for suspicious
behavior. In Proceedings of the USENIX Security Symposium.

PORRAS, P. A. AND NEUMANN, P. G. 1997. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In Proceedings of the National Information Systems Security
Conference. 353–365.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

Storage-Based Intrusion Detection · 30: 27

PURCZYNSKI, W. 2002. Gnu fileutils – Recursive directory removal race condition.
http://www.mail-archive.com/bug-fileutils@gnu.org/msg01537.html.

SAMAR, V. AND SCHEMERS III, R. J. 1995. Unified login with pluggable authentication modules
(PAM). Tech. rep., Open Software Foundation RFC 86.0, Open Software Foundation.

SCAMBRAY, J., MCCLURE, S., AND KURTZ, G. 2001. Hacking Exposed: Network Security Secrets
and Solutions. Osborne/McGraw-Hill.

SCHNEIER, B. AND KELSEY, J. 1999. Secure audit logs to support computer forensics. ACM Trans.
Inf. Syst. Secur. 2, 2, 159–176.

SIVATHANU, M., PRABHAKARAN, V., POPOVICI, F. I., DENEHY, T. E., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. 2003. Semantically smart disk systems. In Proceedings of the
Conference on File and Storage Technologies. USENIX Association, 73–88.

STROM, R. 2008. Emc Celerra family technical review.
http://www.emc.com/pdf/partnersalliances/einfo/McAfee netshield.pdf.

STRUNK, J. D., GOODSON, G. R., SCHEINHOLTZ, M. L., SOULES, C. A. N., AND GANGER, G. R.
2000. Self-securing storage: Protecting data in compromised systems. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation. USENIX Association, 165–180.

SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. 2001. Virtualizing I/O devices on vmware
workstation’s hosted virtual machine monitor. In Proceedings of the USENIX Annual Technical
Conference. USENIX Association, 1–14.

SURESHKUMAR, N. 2009. Antivirus scanning best practices guide. Tech. rep., Network Appliance
Inc. http://media.netapp.com/documents/tr-3107.pdf

TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPREITZER, M. J., AND HAUSER,
C. H. 1995. Managing update conflicts in Bayou, a weakly connected replicated storage system.
Oper. Syst. Rev. 29, 5.

TRIPWIRE. 2002. Tripwire open souce 2.3.1.
http://ftp4.sf.net/sourceforge/tripwire/tripwire-2.3.1-2.tar.gz.

VAIDYANATHAN, K., HARPER, R. E., HUNTER, S. W., AND TRIVEDI, K. S. 2002. Analysis and
implementation of software rejuvenation in cluster systems. Perform. Eval. Rev. 29, 1, 62–71.

WEBER, R. O. 2004. Scsi object-based storage device commands (osd).
ftp://ftp.t10.org/t10/drafts/osd/osd-r10.pdf.

ZHANG, X., VAN DOORN, L., JAEGER, T., PEREZ, R., AND SAILER, R. 2002. Secure coprocessor-
based intrusion detection. In Proceedings of the ACM SIGOPS European Workshop. ACM.

ZHANG, Y. AND WANG, D. 2006. Research on object-storage-based intrusion detection. In Pro-
ceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS’06).
IEEE Computer Society, 68–78.

Received April 2008; revised July 2009; accepted August 2009

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 30, Pub. date: December 2010.

