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3
For a decade, the Ceph distributed file system followed the conventional wisdom of building its storage back- 4
end on top of local file systems. This is a preferred choice for most distributed file systems today, because it 5
allows them to benefit from the convenience and maturity of battle-tested code. Ceph’s experience, however, 6
shows that this comes at a high price. First, developing a zero-overhead transaction mechanism is challeng- 7
ing. Second, metadata performance at the local level can significantly affect performance at the distributed 8
level. Third, supporting emerging storage hardware is painstakingly slow. 9

Ceph addressed these issues with BlueStore, a new backend designed to run directly on raw storage devices. 10
In only two years since its inception, BlueStore outperformed previous established backends and is adopted by 11
70% of users in production. By running in user space and fully controlling the I/O stack, it has enabled space- 12
efficient metadata and data checksums, fast overwrites of erasure-coded data, inline compression, decreased 13
performance variability, and avoided a series of performance pitfalls of local file systems. Finally, it makes 14
the adoption of backward-incompatible storage hardware possible, an important trait in a changing storage 15
landscape that is learning to embrace hardware diversity. 16
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1 INTRODUCTION 26

Distributed file systems operate on a cluster of machines, each assigned one or more roles such 27
as cluster state monitor, metadata server, and storage server. Storage servers, which form the bulk 28
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of the machines in the cluster, receive I/O requests over the network and serve them from lo-29
cally attached storage devices using storage backend software. Sitting in the I/O path, the storage30
backend plays a key role in the performance of the overall system.31

Traditionally distributed file systems have used local file systems, such as ext4 or XFS, directly or32
through middleware, as the storage backend [31, 37, 40, 44, 79, 89, 98, 103, 106, 108]. This approach33
has delivered reasonable performance, precluding questions on the suitability of file systems as34
a distributed storage backend. Several reasons have contributed to the success of file systems as35
the storage backend. First, they allow delegating the hard problems of data persistence and block36
allocation to a well-tested and highly performant code. Second, they offer a familiar interface37
(POSIX) and abstractions (files, directories). Third, they enable the use of standard tools (ls, find)38
to explore disk contents.39

Ceph [103] is a widely used, open-source distributed file system that followed this convention40
for a decade. Hard lessons that the Ceph team learned using several popular file systems led them41
to question the fitness of file systems as storage backends. This is not surprising in hindsight.42
Stonebraker, after building the INGRES database for a decade, noted that “operating systems offer43
all things to all people at much higher overhead” [95]. Similarly, exokernels demonstrated that44
customizing abstractions to applications results in significantly better performance [33, 53]. In45
addition to the performance penalty, adopting increasingly diverse storage hardware is becoming46
a challenge for local file systems, which were originally designed for a single storage medium.47

The first contribution of this experience article is to outline the main reasons behind Ceph’s de-48
cision to develop BlueStore, a new storage backend deployed directly on raw storage devices. First,49
it is hard to implement efficient transactions on top of existing file systems. A significant body of50
work aims to introduce transactions into file systems [42, 67, 69, 77, 82, 85, 92, 112], but none of51
these approaches have been adopted due to their high performance overhead, limited functionality,52
interface complexity, or implementation complexity. The experience of the Ceph team shows that53
the alternative options, such as leveraging the limited internal transaction mechanism of file sys-54
tems, implementing Write-Ahead Logging in user space, or using a transactional key-value store,55
also deliver subpar performance.56

Second, the local file system’s metadata performance can significantly affect the performance57
of the distributed file system as a whole. More specifically, a key challenge that the Ceph team58
faced was enumerating directories with millions of entries fast, and the lack of ordering in the59
returned result. Both Btrfs and XFS-based backends suffered from this problem, and directory60
splitting operations meant to distribute the metadata load were found to clash with file system61
policies, crippling overall system performance.62

At the same time, the rigidity of mature file systems prevents them from adopting emerging63
storage hardware that abandon the venerable block interface. The history of production file sys-64
tems shows that on average they take a decade to mature [32, 59, 109, 110]. Once file systems65
mature, their maintainers tend to be conservative when it comes to making fundamental changes66
due to the consequences of mistakes. However, novel storage hardware aimed for data centers in-67
troduce backward-incompatible interfaces that require drastic changes. For example, to increase68
capacity, hard disk drive (HDD) vendors are moving to Shingled Magnetic Recording (SMR) tech-69
nology [41, 66, 87] that works best with a backward-incompatible zone interface [49]. Similarly,70
to eliminate the long I/O tail latency in solid state drives (SSDs) caused by the Flash Translation71
Layer (FTL) [38, 56, 114], vendors are introducing Zoned Namespace (ZNS) SSDs that eliminate the72
FTL, again, exposing the zone interface [9, 27]. Cloud storage providers [61, 78, 116] and storage73
server vendors [18, 60] are already adapting their private software stacks to use the zoned devices.74
Distributed file systems, however, are stalled by delays in the adoption of zoned devices in local75
file systems.76
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In 2015, the Ceph project started designing and implementing BlueStore, a user space stor- 77
age backend that stores data directly on raw storage devices, and metadata in a key-value store. 78
By taking full control of the I/O path, BlueStore has been able to efficiently implement full data 79
checksums, inline compression, and fast overwrites of erasure-coded data, while also improving 80
performance on common customer workloads. In 2017, after just two years of development, Blue- 81
Store became the default production storage backend in Ceph. A 2018 survey among Ceph users 82
shows that 70% use BlueStore in production with hundreds of petabytes in deployed capacity [64]. 83
As a second contribution, this article introduces the design of BlueStore, the challenges its design 84
overcomes, and opportunities for future improvements. Novelties of BlueStore include (1) storing 85
low-level file system metadata, such as extent bitmaps, in a key-value store, thereby avoiding on- 86
disk format changes and reducing implementation complexity; (2) optimizing clone operations 87
and minimizing the overhead of the resulting extent reference-counting through careful inter- 88
face design; (3) BlueFS—a user space file system that enables RocksDB to run faster on raw stor- 89
age devices; and (4) a space allocator with a fixed 35 MiB memory usage per terabyte of disk 90
space. 91

As a third contribution, to further demonstrate the advantage of clean-slate backend, this article 92
describes the first step taken toward adopting storage devices with the new zone interface in Ceph. 93
Specifically, we demonstrate how to adapt BlueFS, and thereby RocksDB, to run on high-capacity 94
SMR drives without incurring the cost of a translation layer. This enables storing metadata in 95
Ceph on zoned devices, and we leave developing techniques for storing data on zoned devices as 96
a future work. Although metadata makes up a small portion of overall writes, using a small Ceph 97
cluster we demonstrate that avoiding the translation layer overhead for metadata writes increases 98
throughput by up to 141% and significantly reduces the write latency variance. 99

In addition to the above contributions, we perform several experiments that evaluate the improve- 100
ment of design changes from Ceph’s previous production backend, FileStore, to BlueStore. We experi- 101
mentally measure the performance effect of issues such as the overhead of journaling file systems, 102
double writes to the journal, inefficient directory splitting, and update-in-place mechanisms (as 103
opposed to copy-on-write). 104

2 BACKGROUND 105

This section aims to highlight the role of distributed storage backends and the features that are 106
essential for building an efficient distributed file system (Section 2.1). We provide a brief overview 107
of Ceph’s architecture (Section 2.2) and the evolution of Ceph’s storage backend over the last 108
decade (Section 2.3), introducing terms that will be used throughout the article. 109

2.1 Essentials of Distributed Storage Backends 110

Distributed file systems aggregate storage space from multiple physical machines into a single uni- 111
fied data store that offers high-bandwidth and parallel I/O, horizontal scalability, fault tolerance, 112
and strong consistency. While distributed file systems may be designed differently and use unique 113
terms to refer to the machines managing data placement on physical media, the storage backend 114
is usually defined as the software module directly managing the storage device attached to phys- 115
ical machines. For example, Lustre’s Object Storage Servers (OSSs) store data on Object Storage 116
Targets [108] (OSTs), GlusterFS’s Nodes store data on Bricks [79], and Ceph’s Nodes store data 117
on Object Storage Devices (OSDs) [103]. In these, and other systems, the storage backend is the 118
software module that manages space on disks (OSTs, Bricks, OSDs) attached to physical machines 119
(OSSs, Nodes). 120

Widely used distributed file systems such as Lustre [108], GlusterFS [79], OrangeFS [31], 121
BeeGFS [98], XtreemFS [44], and (until recently) Ceph [103] rely on general local file systems, 122
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Fig. 1. High-level depiction of Ceph’s architecture. A single pool with 3× replication is shown. Therefore,

each placement group (PG) is replicated on three OSDs.

such as ext4 and XFS, to implement their storage backends. While different systems require dif-123
ferent features from a storage backend, two of these features, (1) efficient transactions and (2) fast124
metadata operations appear to be common; another emerging requirement is (3) support for novel,125
backward-incompatible storage hardware.126

Transaction support in the storage backend simplifies implementing strong consistency that127
many distributed file systems provide [44, 79, 103, 108]. A storage backend can seamlessly provide128
transactions if the backing file system already supports them [58, 82]. Yet, most file systems im-129
plement the POSIX standard, which lacks a transaction concept. Therefore, distributed file system130
developers typically resort to using inefficient or complex mechanisms, such as implementing a131
Write-Ahead Log (WAL) on top of a file system [79], or leveraging a file system’s internal trans-132
action mechanism [108].133

Metadata management is another recurring pain point in distributed file systems [74]. Inability134
to efficiently enumerate large directory contents or handle small files at scale in local file sys-135
tems can cripple performance for both centralized [106, 108] and distributed [79, 103] metadata136
management designs. To address this problem, distributed file system developers use metadata137
caching [79], deep directory hierarchies arranged by data hashes [103], custom databases [94], or138
patches to local file systems [12, 13, 119].139

An emerging requirement for storage backends is support for novel storage hardware that op-140
erates using backward-incompatible interfaces. For example, SMR can boost HDD capacity by141
more than 25% and hardware vendors claim that by 2023, over half of data center HDDs will use142
SMR [88]. Another example is ZNS SSDs that eliminate FTL and do not suffer from uncontrollable143
garbage collection delays [9], allowing better tail-latency control. Both of these new classes of144
hardware storage present backward-incompatible interfaces that are challenging for local, block-145
based file systems to adopt.146

2.2 Ceph Distributed Storage System Architecture147

Figure 1 shows the high-level architecture of Ceph. At the core of Ceph is the Reliable Autonomic148
Distributed Object Store (RADOS) service [105]. RADOS scales to thousands of Object Storage149
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Fig. 2. Timeline of storage backend evolution in Ceph. For each backend, the period of development, and

the period of being the default production backend is shown.

Devices (OSDs), providing self-healing, self-managing, replicated object storage with strong con- 150
sistency. Ceph’s librados library provides a transactional interface for manipulating objects and 151
object collections in RADOS. Out of the box, Ceph provides three services implemented using 152
librados: the RADOS Gateway (RGW), an object storage similar to Amazon S3 [5]; the RADOS 153
Block Device (RBD), a virtual block device similar to Amazon EBS [4]; and CephFS, a distributed 154
file system with POSIX semantics. 155

Objects in RADOS are stored in logical partitions called pools. Pools can be configured to provide 156
redundancy for the contained objects either through replication or erasure coding. Within a pool, 157
the objects are sharded among aggregation units called placement groups (PGs). Depending on 158
the replication factor, PGs are mapped to multiple OSDs using CRUSH, a pseudo-random data 159
distribution algorithm [104]. Clients also use CRUSH to determine the OSD that should contain 160
a given object, obviating the need for a centralized metadata service. PGs and CRUSH form an 161
indirection layer between clients and OSDs that allows the migration of objects between OSDs to 162
adapt to cluster or workload changes. 163

In every node of a RADOS cluster, there is a separate Ceph OSD daemon per local storage device. 164
Each OSD processes client I/O requests from librados clients and cooperates with peer OSDs 165
to replicate or erasure code updates, migrate data, or recover from failures. Data are persisted 166
to the local device via the internal ObjectStore interface, which provides abstractions for objects, 167
object collections, a set of primitives to inspect data, and transactions to update data. A transaction 168
combines an arbitrary number of primitives operating on objects and object collections into an 169
atomic operation. In principle, each OSD may make use of a different backend implementation of 170
the ObjectStore interface, although clusters tend to be uniform in practice. 171

2.3 Evolution of Ceph’s Storage Backend 172

The first implementation of the ObjectStore interface was in fact a user space file system called 173
Extent and B-Tree-based Object File System (EBOFS). In 2008, Btrfs was emerging with attrac- 174
tive features such as transactions, deduplication, checksums, and transparent compression, which 175
were lacking in EBOFS. Therefore, as shown in Figure 2, EBOFS was replaced by FileStore, an 176
ObjectStore implementation on top of Btrfs. 177
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In FileStore, an object collection is mapped to a directory and object data are stored in a file.178
Initially, object attributes were stored in POSIX extended file attributes (xattrs), but were later179
moved to LevelDB when object attributes exceeded size or count limitations of xattrs. FileStore on180
Btrfs was the production backend for several years, throughout which Btrfs remained unstable and181
suffered from severe data and metadata fragmentation. In the meantime, the ObjectStore interface182
evolved significantly, making it impractical to switch back to EBOFS. Instead, FileStore was ported183
to run on top of XFS, ext4, and later ZFS. Of these, FileStore on XFS became the de facto backend,184
because it scaled better and had faster metadata performance [39].185

While FileStore on XFS was stable, it still suffered from metadata fragmentation and did not186
exploit the full potential of the hardware. Lack of native transactions led to a user space WAL187
implementation that performed full data journaling and capped the speed of read-modify-write188
workloads, a typical Ceph workload, to the WAL’s write speed. In addition, since XFS was not a189
copy-on-write file system, clone operations used heavily by snapshots were significantly slower.190

NewStore was the first attempt at solving the metadata problems of file-system-based back-191
ends. Instead of using directories to represent object collections, NewStore stored object metadata192
in RocksDB, an ordered key-value store, while object data was kept in files. RocksDB was also used193
to implement the WAL, making read-modify-write workloads efficient due to a combined data and194
metadata log. Storing object data as files and running RocksDB on top of a journaling file sys-195
tem, however, introduced high consistency overhead. This led to the implementation of BlueStore,196
which used raw disks. The following section describes the challenges BlueStore aimed to resolve.197
A complete description of BlueStore is given in Section 4.198

3 BUILDING STORAGE BACKENDS ON LOCAL FILE SYSTEMS IS HARD199

This section describes the challenges faced by the Ceph team while trying to build a distributed200
storage backend on top of local file systems.201

3.1 Challenge 1: Efficient Transactions202

Transactions simplify application development by encapsulating a sequence of operations into a203
single atomic unit of work. Thus, a significant body of work aims to introduce transactions into204
file systems [42, 67, 69, 77, 82, 85, 92, 112]. None of these works have been adopted by production205
file systems, however, due to their high performance overhead, limited functionality, interface206
complexity, or implementation complexity.207

Hence, there are three tangible options for providing transactions in a storage backend running208
on top of a file system: (1) hooking into a file system’s internal (but limited) transaction mechanism,209
(2) implementing a WAL in user space, and (3) using a key-value database with transactions as a210
WAL. Next, we describe why each of these options results in significant performance or complexity211
overhead.212

3.1.1 Leveraging File System Internal Transactions. Many file systems implement an in-kernel213
transaction framework that enables performing compound internal operations atomically [19, 24,214
91, 99]. Since the purpose of this framework is to ensure internal file system consistency, its func-215
tionality is generally limited, and thus, unavailable to users. For example, a rollback mechanism is216
not available in file system transaction frameworks, because it is unnecessary for ensuring internal217
consistency of a file system.218

Until recently, Btrfs was making its internal transaction mechanism available to users through219
a pair of system calls that atomically applied operations between them to the file system [24]. The220
first version of FileStore that ran on Btrfs relied on these system calls, and suffered from the lack221
of a rollback mechanism. More specifically, if a Ceph OSD ecountered a fatal event in the middle of222
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a transaction, such as a software crash or a KILL signal, Btrfs would commit a partial transaction 223
and leave the storage backend in an inconsistent state. 224

Solutions attempted by the Ceph and Btrfs teams included introducing a single system call for 225
specifying the entire transaction [101] and implementing rollback through snapshots [100], both of 226
which proved costly. Btrfs authors recently deprecated transaction system calls [15]. This outcome 227
is similar to Microsoft’s attempt to leverage NTFS’s in-kernel transaction framework for providing 228
an atomic file transaction API, which was deprecated due to its high barrier to entry [55]. 229

These experiences strongly suggest that it is hard to leverage the internal transaction mechanism 230
of a file system in a storage backend implemented in user space. 231

3.1.2 Implementing the WAL in User Space. An alternative to utilizing the file system’s in-kernel 232
transaction framework was to implement a logical WAL in user space. While this approach worked, 233
it suffered from three major problems. 234

Slow Read-Modify-Write. Typical Ceph workloads perform many read-modify-write operations 235
on objects, where preparing the next transaction requires reading the effect of the previous trans- 236
action. A user space WAL implementation, however, performs three steps for every transaction. 237
First, the transaction is serialized and written to the log. Second, fsync is called to commit the 238
transaction to disk. Third, the operations specified in the transaction are applied to the file system. 239
The effect of a transaction cannot be read by upcoming transactions until the third step completes, 240
which is dependent on the second step. As a result, every read-modify-write operation incurred 241
the full latency of the WAL commit, preventing efficient pipelining. 242

Non-Idempotent Operations. In FileStore, objects are represented by files and collections are 243
mapped to directories. With this data model, replaying a logical WAL after a crash is challenging 244
due to non-idempotent operations. While the WAL is trimmed periodically, there is always a win- 245
dow of time when a committed transaction that is still in the WAL has already been applied to 246
the file system. For example, consider a transaction consisting of three operations: clone a→b; 247
update a; update c. If a crash happens after the second operation, then replaying the WAL 248
corrupts object b. As another example, consider a transaction: update b; rename b→c; rename 249
a→b; update d. If a crash happens after the third operation, then replaying the WAL corrupts 250
object a, which is now named b, and then fails, because object a does not exist anymore. 251

FileStore on Btrfs solved this problem by periodically taking persistent snapshots of the file sys- 252
tem and marking the WAL position at the time of snapshot. Then on recovery the latest snapshot 253
was restored, and the WAL was replayed from the position marked at the time of the snapshot. 254

When FileStore abandoned Btrfs in favor of XFS (Section 2.3), the lack of efficient snapshots 255
caused two problems. First, on XFS the sync system call is the only option for synchronizing file 256
system state to storage. However, in typical deployments with multiple drives per node, sync is 257
too expensive, because it synchronizes all file systems on all drives. This problem was resolved 258
by adding the syncfs system call [102] to the Linux kernel, which synchronizes only a given file 259
system. 260

The second problem was that with XFS, there is no option to restore a file system to a specific 261
state after which the WAL can be replayed without worrying about non-idempotent operations. 262
Guards (sequence numbers) were added to avoid replaying non-idempotent operations, however, 263
verifying correctness of guards for complex operations was hard due to the large problem space. 264
Tooling was written to generate random permutations of complex operation sequences, and it 265
was combined with failure injection to semi-comprehensively verify that all failure cases were 266
correctly handled. However, the FileStore code ended up fragile and hard-to-maintain. 267

Double Writes. The final problem with the WAL in FileStore is that data are written twice: first 268
to the WAL and then to the file system, halving the disk bandwidth. This is a known problem that 269
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leads most file systems to only log metadata changes, allowing data loss after a crash. It is possible270
to avoid the penalty of double writes for new data, by first writing it to disk and then logging only271
the respective metadata. However, FileStore’s approach of using the state of the file system to infer272
the namespace of objects and their states makes this method hard to use due to corner cases, such273
as partially written files. While FileStore’s approach turned out to be problematic, it was chosen274
for a technical reason: The alternative required implementing an in-memory cache for data and275
metadata to any updates waiting on the WAL, despite the kernel having a page and inode cache276
of its own.277

3.1.3 Using a Key-Value Store as the WAL. With NewStore, the metadata was stored in RocksDB,278
an ordered key-value store, while the object data were still represented as files in a file system.279
Hence, metadata operations could be performed atomically; data overwrites, however, were logged280
into RocksDB and executed later. We first describe how this design addresses the three problems281
of a logical WAL, and then show that it introduces high consistency overhead that stems from282
running atop a journaling file system.283

First, slow read-modify-write operations are avoided, because the key-value interface allows284
reading the new state of an object without waiting for the transaction to commit.285

Second, the problem of non-idempotent operation replay is avoided, because the read side of286
such operations is resolved at the time when the transaction is prepared. For example, for clone287
a→b, if object a is small, then it is copied and inserted into the transaction; if object a is large,288
then a copy-on-write mechanism is used, which changes both a and b to point to the same data289
and marks the data read-only.290

Finally, the problem of double writes is avoided for new objects, because the object namespace291
is now decoupled from the file system state. Therefore, data for a new object are first written to292
the file system and then a reference to it is atomically added to the database.293

Despite these favorable properties, the combination of RocksDB and a journaling file system294
introduces high consistency overhead, similar to the journaling of journal problem [51, 86]. Creat-295
ing an object in NewStore entails two steps: (1) writing to a file and calling fsync and (2) writing296
the object metadata to RocksDB synchronously [47], which also calls fsync. Ideally, the fsync in297
each step should issue one expensive FLUSH CACHE command [111] to disk. With a journaling file298
system, however, each fsync issues two flush commands: after writing the data and after commit-299
ting the corresponding metadata changes to the file system journal. Hence, creating an object in300
NewStore results in four expensive flush commands to disk.301

We demonstrate the overhead of journaling using a benchmark that emulates a storage backend302
creating many objects. The benchmark has a loop where each iteration first writes 0.5 MiB of data303
and then inserts a 500-byte metadata to RocksDB. We run the benchmark on two setups. The first304
setup emulates NewStore, issuing four flush operations for every object creation: Data are written305
as a file to XFS, and the metadata are inserted to stock RocksDB running on XFS. The second setup306
emulates object creation on raw disk, which issues two flush operations for every object creation:307
Data are written to the raw disk and the metadata are inserted to a modified RocksDB that runs308
on a raw disk with a preallocated pool of WAL files.309

Figure 3 shows that the object creation throughput is 80% higher on raw disk than on XFS when310
running on a HDD and 70% when running on an NVMe SSD.311

3.2 Challenge 2: Fast Metadata Operations312

Inefficiency of metadata operations in local file systems is a source of constant struggle for dis-313
tributed file systems [74, 76, 119]. One of the key metadata challenges in Ceph with the FileStore314
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Fig. 3. The overhead of running an object store workload on a journaling file system. Object creation

throughput is 80% higher on a raw HDD (4-TB Seagate ST4000NM0023) and 70% higher on a raw NVMe

SSD (400-GB Intel P3600).

backend stems from the slow directory enumeration (readdir) operations on large directories, 315
and the lack of ordering in the returned result [90]. 316

Objects in RADOS are mapped to a PG based on a hash of their name, and enumerated by 317
hash order. Enumeration is necessary for operations like scrubbing [83], recovery, or for serving 318
librados calls that list objects. For objects with long names—as is often the case with RGW— 319
FileStore works around the file name length limitation in local file systems using extended at- 320
tributes, which may require a stat call to determine the object name. FileStore follows a commonly 321
adopted solution to the slow enumeration problem: A directory hierarchy with large fan-out is cre- 322
ated, objects are distributed among directories, and then selected directories’ contents are sorted 323
after being read. 324

To sort them quickly and to limit the overhead of potential stat calls, directories are kept small 325
(a few hundred entries) by splitting them when the number of entries in them grows. This is a 326
costly process at scale, for two primary reasons. First, processing millions of inodes at once reduces 327
the effectiveness of dentry cache, resulting in many small I/Os to disk. And second, XFS places 328
subdirectories in different allocation groups [48] to ensure there is space for future directory entries 329
to be located close together [65]; therefore, as the number of objects grows, directory contents 330
spread out, and split operations take longer due to seeks. As a result, when all Ceph OSDs start 331
splitting in unison the performance suffers. This is a well-known problem that has been affecting 332
many Ceph users over the years [16, 28, 93]. 333

To demonstrate this effect, we configure a 16-node Ceph cluster (Section 7) with roughly half the 334
recommended number of PGs to increase load per PG and accelerate splitting, and insert millions 335
of 4 KiB objects with queue depth of 128 at the RADOS layer (Section 2.2). Figure 4 shows the 336
effect of the splitting on FileStore for an all-SSD cluster. While the first split is not noticeable in 337
the graph, the second split causes a precipitous drop that kills the throughput for 7 minutes on 338
an all-SSD and 120 minutes on an all-HDD cluster (not shown), during which a large and deep 339
directory hierarchy with millions of entries is scanned and even a deeper hierarchy is created. The 340
recovery takes an order of magnitude longer on an all-HDD cluster due to high cost of seeks. 341
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Fig. 4. The effect of directory splitting on throughput with FileStore backend. The workload inserts 4-KiB

objects using 128 parallel threads at the RADOS layer to a 16-node Ceph cluster (setup explained in Section 7).

Directory splitting brings down the throughput for 7 minutes on an all-SSD cluster. Once the splitting is

complete, the throughput recovers but does not return to peak, due to combination of deeper nesting of

files, increased size of the underlying file system, and an imperfect implementation of the directory hashing

code in FileStore.

3.3 Challenge 3: Support for New Storage Hardware342

The changing storage hardware landscape presents a new challenge for distributed file systems343
that depend on local file systems. To increase capacity, hard disk drive vendors are shifting to SMR344
that works best when using a backward-incompatible interface. While the vendors have produced345
drive-managed SMR (DM-SMR) drives that are backward compatible, these drives have unpre-346
dictable performance [1]. For leveraging the extra capacity and achieving predictable performance347
at the same time, host-managed SMR (HM-SMR) drives with a backward-incompatible zone inter-348
face should be used [49]. The zone interface, however, manages the disk as a sequence of 256 MiB349
regions that must be written sequentially, encouraging a log-structured, copy-on-write design [81].350
This design is in direct opposition to in-place overwrite design followed by most mature file351
systems.352

Data center SSDs are going through a similar change. OpenChannel SSDs eliminate the FTL,353
leaving the management of raw flash to the host. Lacking an official standard, several vendors354
have introduced different methods of interfacing OpenChannel SSDs, resulting in fragmented im-355
plementations [11, 22, 36]. To prevent this, major vendors have joined forces to introduce a new356
NVMe standard called Zoned Namespaces (ZNS) that defines an interface for managing SSDs with-357
out an FTL [10]. Eliminating the FTL results in many advantages, such as reducing the write am-358
plification, improving latency outliers and throughput, reducing overprovisioning by an order of359
magnitude, and cutting the cost by reducing DRAM—the highest costing component in SSD after360
the NAND flash.361

Both of these technologies—host-managed SMR drives and ZNS SSDs—are becoming increas-362
ingly important for distributed file systems, yet, both have a backward incompatible zone interface363
that requires radical changes to local file systems [9, 27]. It is not surprising that attempts to mod-364
ify production file systems, such as XFS and ext4, to work with the zone interface have so far365
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been unsuccessful [20, 73], primarily because these are overwrite file systems, whereas the zone 366
interface requires a copy-on-write approach to data management. 367

3.4 Other Challenges 368

Many public and private clouds rely on distributed storage systems like Ceph for providing storage 369
services [72]. Without the complete control of the I/O stack, it is hard for distributed file systems 370
to enforce storage latency SLOs. One cause of high-variance request latencies in file-system-based 371
storage backends is the OS page cache. To improve user experience, most OSs implement the page 372
cache using write-back policy, in which a write operation completes once the data are buffered in 373
memory and the corresponding pages are marked as dirty. On a system with little I/O activity, the 374
dirty pages are written back to disk at regular intervals, synchronizing the on-disk and in-memory 375
copies of data. On a busy system, however, the write-back behavior is governed by a complex set 376
of policies that can trigger writes at arbitrary times [8, 25, 113]. 377

Hence, while the write-back policy results in a responsive system for users with lightly loaded 378
systems, it complicates achieving predictable latency on busy storage backends. Even with a pe- 379
riodic use of fsync, FileStore has been unable to bound the amount of deferred inode metadata 380
write-back, leading to inconsistent performance. 381

Another challenge for file-system-based backends is implementing operations that work better 382
with copy-on-write support, such as snapshots. If the backing file system is copy-on-write, then 383
these operations can be implemented efficiently. However, even if the copy-on-write is supported, 384
a file system may have other drawbacks, like fragmentation in FileStore on Btrfs (Section 2.3). If 385
the backing file system is not copy-on-write, then these operations require performing expensive 386
full copies of objects, which makes snapshots and overwriting of erasure-coded data prohibitively 387
expensive in FileStore (Section 5.2). 388

4 BLUESTORE: A CLEAN-SLATE APPROACH 389

BlueStore is a storage backend designed from scratch to solve the challenges (Section 3) faced by 390
backends using local file systems. Some of the main goals of BlueStore were as follows: 391

(1) Fast metadata operations (Section 4.1) 392
(2) No consistency overhead for object writes (Section 4.1) 393
(3) Copy-on-write clone operation (Section 4.2) 394
(4) No journaling double-writes (Section 4.2) 395
(5) Optimized I/O patterns for HDD and SSD (Section 4.2) 396

BlueStore achieved all of these goals within just two years and became the default storage back- 397
end in Ceph. Two factors played a key role in why BlueStore matured so quickly compared to 398
general-purpose POSIX file systems that take a decade to mature [32, 59, 109, 110]. First, Blue- 399
Store implements a small, special-purpose interface, and not a complete POSIX I/O specification. 400
Second, BlueStore is implemented in user space, which allows it to leverage well-tested and high- 401
performance third-party libraries. Finally, BlueStore’s control of the I/O stack enables additional 402
features whose discussion we defer to Section 5. 403

The high-level architecture of BlueStore is shown in Figure 5. BlueStore runs directly on raw 404
disks. A space allocator within BlueStore determines the location of new data, which is asyn- 405
chronously written to disk using direct I/O. Internal metadata and user object metadata are stored 406
in RocksDB, which runs on BlueFS, a minimal user space file system tailored to RocksDB. The 407
BlueStore space allocator and BlueFS share the disk and periodically communicate to balance free 408
space. The remainder of this section describes metadata and data management in BlueStore. 409
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Fig. 5. The high-level architecture of BlueStore. Data are written to the raw storage device using direct

I/O. Metadata are written to RocksDB running on top of BlueFS. Although BlueFS logically is a separate

component, it is a user space library file system designed for RocksDB that compiles and links with RocksDB

and reads and writes the raw storage device.

4.1 BlueFS and RocksDB410

BlueStore achieves its first goal, fast metadata operations, by storing metadata in RocksDB. Blue-411
Store achieves its second goal of no consistency overhead with two changes. First, it writes data412
directly to raw disk, resulting in one cache flush for data write. Second, it changes RocksDB to413
reuse WAL files as a circular buffer, resulting in one cache flush for metadata write—a feature that414
was upstreamed to the mainline RocksDB.415

RocksDB itself runs on BlueFS, a minimal file system designed specifically for RocksDB that runs416
on a raw storage device. RocksDB abstracts out its requirements from the underlying file system417
in the Env interface. BlueFS is an implementation of this interface in the form of a user space,418
extent-based, and journaling file system. It implements basic system calls required by RocksDB,419
such as open, mkdir, and pwrite. A possible on-disk layout of BlueFS is shown in Figure 6. BlueFS420
maintains an inode for each file that includes the list of extents allocated to the file. The superblock421
is stored at a fixed offset and contains an inode for the journal. The journal has the only copy of all422
file system metadata, which is loaded into memory at mount time. On every metadata operation,423
such as directory creation, file creation, and extent allocation, the journal and in-memory metadata424
are updated. The journal is not stored at a fixed location; its extents are interleaved with other file425
extents. The journal is compacted and written to a new location when it reaches a preconfigured426
size, and the new location is recorded in the superblock. These design decisions work, because427
large files and periodic compactions limit the volume of metadata at any point in time.428

Metadata Organization. BlueStore keeps multiple namespaces in RocksDB, each storing a dif-429
ferent type of metadata. For example, object information is stored in the O namespace (that is,430
RocksDB keys start with O and their values represent object metadata), block allocation metadata431
are stored in the B namespace, and collection metadata are stored in the C namespace. Each collec-432
tion maps to a PG and represents a shard of a pool’s namespace. The collection name includes the433
pool identifier and a prefix shared by the collection’s object names. For example, a key-value pair434
C12.e4-6 identifies a collection in pool 12 with objects that have hash values starting with the 6435
significant bits of e4. Hence, the object O12.e532 is a member, whereas the object O12.e832 is not.436
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Fig. 6. A possible on-disk data layout of BlueFS. The metadata in BlueFS lives only in the journal. The journal

does not have a fixed location—its extents are interleaved with file data. The WAL, LOG, and SST files are

write-ahead log file, debug log file, and a sorted-string table files, respectively, generated by RocksDB.

Such organization of metadata allows a collection of millions of objects to be split into multiple 437
collections merely by changing the number of significant bits. This collection splitting operation is 438
necessary to rebalance data across OSDs when, for example, a new OSD is added to the cluster to 439
increase the aggregate capacity or an existing OSD is removed from the cluster due to a malfunc- 440
tion. With FileStore, collection splitting, which is different than directory splitting (Section 3.2), 441
was an expensive operation that was done by renaming directories. 442

4.2 Data Path and Space Allocation 443

BlueStore is a copy-on-write backend. For incoming writes larger than a minimum allocation size 444
(64 KiB for HDDs, 16 KiB for SSDs) the data are written to a newly allocated extent. Once the data 445
are persisted, the corresponding metadata are inserted to RocksDB. This allows BlueStore to pro- 446
vide an efficient clone operation. A clone operation simply increments the reference count of depen- 447
dent extents, and writes are directed to new extents. It also allows BlueStore to avoid journal double- 448
writes for object writes and partial overwrites that are larger than the minimum allocation size. 449

For writes smaller than the minimum allocation size, both data and metadata are first inserted 450
to RocksDB as promises of future I/O, and then asynchronously written to disk after the trans- 451
action commits. This deferred write mechanism has two purposes. First, it batches small writes 452
to increase efficiency, because new data writes require two I/O operations whereas an insert to 453
RocksDB requires one. Second, it optimizes I/O based on the device type; 64-KiB (or smaller) over- 454
writes of a large object on an HDD are performed asynchronously in place to avoid seeks during 455
reads, whereas in-place overwrites only happen for I/O sizes less than 16 KiB on SSDs. 456

Space Allocation. BlueStore allocates space using two modules: the FreeList manager and the 457
Allocator. The FreeList manager is responsible for a persistent representation of the parts of the 458
disk currently in use. Like all metadata in BlueStore, this free list is also stored in RocksDB. 459
The first implementation of the FreeList manager represented in-use regions as key-value pairs 460
with offset and length. The disadvantage of this approach was that the transactions had to be 461
serialized: the old key had to be deleted first before inserting a new key to avoid an inconsistent 462
free list. The second implementation is bitmap-based. Allocation and deallocation operations use 463
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RocksDB’s merge operator to flip bits corresponding to the affected blocks, eliminating the or-464
dering constraint. The merge operator in RocksDB performs a deferred atomic read-modify-write465
operation that does not change the semantics and avoids the cost of point queries [46].466

The Allocator is responsible for allocating space for the new data. It keeps a copy of the free list467
in memory and informs the FreeList manager as allocations are made. The first implementation468
of Allocator was extent-based, dividing the free extents into power-of-two-sized bins. This design469
was susceptible to fragmentation as disk usage increased. The second implementation uses a hier-470
archy of indexes layered on top of a single-bit-per-block representation to track whole regions of471
blocks. Large and small extents can be efficiently found by querying the higher and lower indexes,472
respectively. This implementation has a fixed memory usage of 35 MiB per terabyte of capacity.473

Cache. Since BlueStore is implemented in user space and accesses the disk using direct I/O, it474
cannot leverage the OS page cache. As a result, BlueStore implements its own write-through cache475
in user space, using the scan resistant 2Q algorithm [52]. The cache implementation is sharded for476
parallelism. It uses an identical sharding scheme to Ceph OSDs, which shard requests to collections477
across multiple cores. This avoids false sharing, so that the same CPU context processing a given478
client request touches the corresponding 2Q data structures.479

5 FEATURES ENABLED BY BLUESTORE480

In this section, we describe new features implemented in BlueStore. These features were previously481
lacking, because implementing them efficiently requires full control of the I/O stack.482

5.1 Space-Efficient Checksums483

Ceph scrubs metadata every day and data every week. Even with scrubbing, however, if the data are484
inconsistent across replicas, then it is hard to be sure which copy is corrupt. Therefore, checksums485
are indispensable for distributed storage systems that regularly deal with petabytes of data, where486
bit flips are almost certain to occur.487

Most local file systems do not support checksums. When they do, like Btrfs, the checksum is488
computed over 4-KiB blocks to make block overwrites possible. For 10 TiB of data, storing 32-bit489
checksums of 4-KiB blocks results in 10 GiB of checksum metadata, which makes it difficult to490
cache checksums in memory for fast verification.491

However, most of the data stored in distributed file systems is read-only and can be check-492
summed at a larger granularity. BlueStore computes a checksum for every write and verifies the493
checksum on every read. While multiple checksum algorithms are supported, crc32c is used by494
default, because it is well-optimized on both x86 and ARM architectures, and it is sufficient for495
detecting random bit errors. With full control of the I/O stack, BlueStore can choose the checksum496
block size based on the I/O hints. For example, if the hints indicate that writes are from the S3-497
compatible RGW service, then the objects are read-only and the checksum can be computed over498
128 KiB blocks, and if the hints indicate that objects are to be compressed, then a checksum can499
be computed after the compression, significantly reducing the total size of checksum metadata.500

5.2 Overwrite of Erasure-Coded Data501

Ceph has supported erasure-coded (EC) pools (Section 2.2) through the FileStore backend since502
2014. However, until BlueStore, EC pools only supported object appends and deletions—overwrites503
were slow enough to make the system unusable. As a result, the use of EC pools were limited to504
RGW; for RBD and CephFS only replicated pools were used.505

To avoid the “RAID write hole” problem [97], where crashing during a multi-step data update506
can leave the system in an inconsistent state, Ceph performs overwrites in EC pools using507
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two-phase commit. First, all OSDs that store a chunk of the EC object make a copy of the chunk 508
so that they can roll back in case of failure. After all of the OSDs receive the new content and 509
overwrite their chunks, the old copies are discarded. With FileStore on XFS, the first phase is 510
expensive, because each OSD performs a physical copy of its chunk. BlueStore, however, makes 511
overwrites practical, because its copy-on-write mechanism avoids full physical copies. 512

5.3 Transparent Compression 513

Transparent compression is crucial for scale-out distributed file systems, because 3× replication 514
increases storage costs [35, 43]. BlueStore implements transparent compression where written data 515
are automatically compressed before being stored. 516

Getting the full benefit of compression requires compressing over large 128 KiB chunks, and 517
compression works well when objects are written in their entirety. For partial overwrites of a 518
compressed object, BlueStore places the new data in a separate location and updates metadata to 519
point to it. When the compressed object gets too fragmented due to multiple overwrites, BlueStore 520
compacts the object by reading and rewriting. In practice, however, BlueStore uses hints and simple 521
heuristics to compress only those objects that are unlikely to experience many overwrites. 522

6 TOWARD SUPPORTING HM-SMR DRIVES IN BLUESTORE 523

Despite multiple attempts [20, 73], local file systems are unable to leverage the capacity benefits of 524
SMR drives due to their backward-incompatible interface, and it is unlikely that they will ever do so 525
efficiently [30, 32]. Supporting these denser drives, however, is important for scale-out distributed 526
file systems, because it lowers storage costs [62]. Unconstrained by the block-based designs of 527
local file systems, BlueStore has the freedom of exploring novel interfaces and data layouts. In this 528
section we describe the first step we took toward adopting HM-SMR drives (Section 3.3) with the 529
new zone interface. 530

Figure 5 shows that the data in BlueStore is written to raw disk, while the metadata are written 531
to RocksDB, a widely used key-value store based on the Log-Structured Merge-Tree (LSM-Tree) 532
data structure [71]. Today, the LSM-Tree is the predominant method for implementing persistent 533
key-value stores, and it is at the core of many databases and scale-out storage systems [17, 34, 57], 534
including Ceph. Since enabling LSM-Trees to run zoned drives is a more general problem with a 535
potentially large impact, we chose first to adapt RocksDB, an LSM-Tree instance, to run on zoned 536
drives. 537

6.1 RocksDB Primer 538

Every key-value inserted to RocksDB is first individually written to a Write-Ahead Log (WAL) file 539
using the pwrite system call, and then buffered in an in-memory data structure called memtable. 540
By default, RocksDB performs asynchronous inserts: pwrite returns as soon as the data are buffered 541
in the OS page cache and the actual transfer of data from the page cache to storage is done later by 542
the kernel writeback threads. Hence, a machine crash may result in loss of data for an insert that 543
was acknowledged. For applications that require the durability and consistency of transactional 544
writes RocksDB also supports synchronous inserts that do not return until data are persisted on 545
storage. 546

When the memtable reaches a preconfigured size, a new one is created. In batches, memtables 547
are merge-sorted and written to storage as a Sorted String Table (SST) file. SSTs in RocksDB are 548
organized into multiple levels, as shown in Figure 7. The aggregate size of each level Li is a multiple 549
of Li−1, starting with a fixed size at L1. At first data are written at level L0. Once the number of 550
L0 SSTs reach a threshold, the compaction process selects all of L0 SSTs, reads them into memory, 551
merge-sorts them, and writes them out as new L1 SSTs. For higher levels, compactions are triggered 552
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Fig. 7. Data organization in RocksDB. Green squares represent Sorted String Tables (SSTs). Blue squares

represent SSTs selected for two different concurrent compactions.

when the aggregate size of the level exceeds a threshold, in which case one SST from the lower level553
and multiple SSTs from a higher level are compacted, as shown in Figure 7. If memtable flushes or554
compactions cannot keep up with the rate of inserts, then RocksDB stalls inserts to avoid filling555
storage and to prevent lookups from slowing down.556

6.2 SMR Primer557

SMR increases drive capacities by partially overlapping adjacent magnetic tracks, leaving narrower558
tracks for the drive read heads to still be able to access the data, similar to roof shingles. While this559
technique does not affect purely sequential write workloads, random (over)writes are challenging560
as they would corrupt the data of adjacent tracks. To mitigate this, SMR drives are partitioned in561
zones. Within each zone (e.g., 256 MiB), tracks are shingled and acceptable operations are limited562
to sequential writes or zone erases.563

DM-SMR drives use a Shingled Translation Layer (STL) to present a block interface to the host564
instead of zones. Random writes are buffered in a persistent cache of reserved tracks, and are later565
written to their final locations by overwriting existing zones [1] during cleaning. Large sequential566
writes are directly written to their final locations [2].567

HM-SMR drives expose zones through a novel interface [49]. The first few hundred zones are568
conventional tracks that can be written randomly, while the rest are shingled, i.e., strictly sequen-569
tial. For each sequential zone the drive keeps a write pointer that starts at the beginning of the zone570
and is updated after each append. A write to a location other than the write pointer will fail, but571
the write pointer can be reset to the beginning of a zone.572

6.3 Challenges and Solutions of Running RocksDB on HM-SMR Drives573

Running RocksDB or similar LSM-Trees on HM-SMR drive leads to multiple challenges. Below we574
describe these challenges and our solutions to them.575

Garbage collection: Simply placing SST files generated by RocksDB or other LSM-Trees into576
the zones of an HM-SMR drive leads to the garbage collection problem of LFS [81], because the577
default SST sizes are much smaller than the zones of the drive. After multiple compactions zones578
will contain fragmented free space from SSTs that have been merged to a new SST. Reclaiming the579
space occupied by dead SSTs requires migrating live SSTs to another zone. Recent work proposes a580
new data format and compaction algorithm to avoid HM-SMR garbage collection for an LSM-Tree581
with 4 MiB SSTs [115].582
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Our solution to this problem is to align the SST and zone sizes. This way, cleaning can be elim- 583
inated, because at the end of compaction, the space from “dead” SSTs can be reclaimed by merely 584
resetting the zone’s write pointer. There are other compelling reasons for increasing SST size, such 585
as enabling disks to do streaming reads with fewer seeks, reducing expensive sync operations, and 586
reducing the number of open file handles. Applying this simple idea to production-grade key-value 587
stores and real HM-SMR drives, however, involves other challenge described next. 588

Reordered Writes: Like most LSM-Tree implementations, RocksDB uses buffered I/O when writ- 589
ing compacted SSTs. This improves performance significantly, because compacted SSTs can be kept 590
in the OS page cache. As a result, lookups are served from memory and files are read from mem- 591
ory during compaction, reserving the disk bandwidth for memtable flushes and thereby increasing 592
transaction throughput. 593

Using buffered I/O, however, does not guarantee write ordering that is essential for HM-SMR 594
drives. Page writeback can happen from different contexts at the same time, and the pages picked 595
up by each context will not be necessarily zone-aligned. Furthermore, there are no write-alignment 596
constraints with buffered writes, so an application may write parts of a page across different oper- 597
ations. In this case, however, the same last page cannot be overwritten to add the remaining data 598
when the sequential write stream resumes. 599

This requires the use of direct I/O with HM-SMR drives, which gives up the aforementioned 600
OS page cache advantages. To mitigate performance issues, we implement a user-space file cache 601
within BlueFS so that reads are not always served from disk during compaction. 602

Synchronous Writes to the Log: The libzbc [107] library is the de-facto way of interacting 603
with HM-SMR drives, and used in LevelDB-derived key-value stores designed for HM-SMR [63, 604
115]. As part of libzbc, the zbc_pwrite call is provided for positional writes to the device, which 605
has similar semantics to the pwrite system call. Even though pwrite is a synchronous call, since 606
it is usually used with buffered I/O, it is effectively made asynchronous, because it returns once 607
the data are copied into OS memory (Section 6.1). The zbc_pwrite call, however, waits for the 608
drive to acknowledge the write, since the HM-SMR drive can only be used with direct I/O. This 609
works well when data are buffered in memory and written in large chunks, which is the case for 610
memtable flushes and SSTs writes during compaction. Writes to the Write-Ahead Log (WAL), how- 611
ever, happen after every key-value insertion. As a result, with direct I/O every insertion must be 612
acknowledged by the disk, limiting the throughput of the key-value store to that of small synchro- 613
nous writes to drive. 614

To remedy this bottleneck we use the libaio, an in-kernel asynchronous I/O framework. This 615
approach works as long as the asynchronous I/O operations are issued in order and the right I/O 616
scheduler is used. 617

Misaligned Writes to the Log: Random and misaligned writes violate the zone interface, and 618
therefore cannot be used with HM-SMR drives (Section 6.2). In RocksDB, there are three sources 619
of such writes. First, RocksDB produces a handful of small files that receive negligible amounts 620
of non-sequential I/O. Placing those in a conventional zone solves the problem. Second, the last 621
block of SST files suffers from overwrites, which we found were due to a bug in RocksDB, which 622
we reported and has since been fixed by the RocksDB team [29]. Third, and more surprisingly, the 623
last block of the WAL tends to be overwritten if the previous append operation was not aligned, 624
making it unsuitable for placing on a sequential zone. Deployments of RocksDB typically shard key 625
space and run multiple instances where WALs are close to the data, thereby avoiding long seeks. 626
Placing the WAL in a conventional zone, however, would result in expensive seeks—especially 627
for synchronous inserts—because conventional zones are typically concentrated in one part of the 628
drive. Furthermore, this would waste conventional track space on an append-only file. 629
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We introduce a special format for the WAL that allows it to be written sequentially so that it can630
be placed on a sequential zone. We modify BlueFS to wrap every write to the WAL in a record that631
keeps the length of the write inline and always pads out the record to a 4 KiB boundary. With this632
change, the read code for the WAL is no longer a direct mapping from an extent start to offset, and633
record lengths have to be read to determine the actual content. This, however, is not a problem,634
because the WAL is only read sequentially and only during crash recovery, and the space overhead635
is negligible (less than 1% in our benchmarks), because such unaligned writes are rare.636

7 EVALUATION637

This section compares the performance of a Ceph cluster using FileStore, a backend built on a638
local file system, and BlueStore, a backend using the storage device directly. First, we compare639
the throughput of object writes to the RADOS distributed object storage (Section 7.1). Second, we640
compare the end-to-end throughput of random writes, sequential writes, and sequential reads to641
RBD, the Ceph virtual block device built on RADOS (Section 7.2). Third, we compare the through-642
put of random writes to an RBD device allocated on an erasure-coded pool (Section 7.3). Finally,643
we demonstrate some early results from our ongoing work of adapting BlueStore to work with644
HM-SMR hard drives.645

We run all experiments, except HM-SMR experiments, on a 16-node Ceph cluster connected646
with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE switch; for HM-SMR experiments we use a 3-647
node Ceph cluster due to limited HM-SMR samples. Each node has a 16-core Intel E5-2698Bv3 Xeon648
2-GHz CPU, 64-GiB RAM, 400GB Intel P3600 NVMe SSD, 4TB 7200RPM Seagate ST4000NM0023649
HDD, and a Mellanox MCX314A-BCCT 40-GbE NIC. All nodes run Linux kernel 4.15 on Ubuntu650
18.04, and the Luminous release (v12.2.11) of Ceph. We use the default Ceph configuration param-651
eters and for each experiment we set up Ceph to use only HDDs or SSDs.652

7.1 Bare RADOS Benchmarks653

We start by comparing the performance of object writes to RADOS when using the FileStore and654
BlueStore backends. We focus on write performance improvements, because most BlueStore opti-655
mizations affect writes.656

Figure 8 shows the throughput for different object sizes written with a queue depth of 128. At657
the steady state, the throughput on BlueStore is 50–100% greater than FileStore. The throughput658
improvement on BlueStore stems from avoiding double writes (Section 3.1.2) and consistency over-659
head (Section 3.1.3).660

Figure 9 shows the 95th and above percentile latencies of object writes to RADOS. BlueStore661
has an order of magnitude lower tail latency than FileStore. In addition, with BlueStore the tail662
latency increases with the object size, as expected, whereas with FileStore even small-sized object663
writes may have high tail latency, stemming from the lack of control over writes (Section 3.4).664

The read performance on BlueStore (not shown) is similar or better than on FileStore for I/O sizes665
larger than 128 KiB; for smaller I/O sizes FileStore is better because of the kernel read-ahead [6].666
BlueStore does not implement read-ahead on purpose. It is expected that the applications imple-667
mented on top of RADOS will perform their own read-ahead.668

BlueStore eliminates the directory splitting effect of FileStore by storing metadata in an ordered669
key-value store. To demonstrate this, we repeat the experiment that showed the splitting problem670
in FileStore (Section 3.2) on an identically configured Ceph cluster using a BlueStore backend.671
Figure 10 shows that the throughput on BlueStore does not suffer the precipitous drop, and in672
the steady state it is 2× higher than FileStore throughput on SSD (and 3× higher than FileStore673
throughput on HDD—not shown). Still, the throughput on BlueStore drops significantly before674
reaching a steady state due to RocksDB compaction whose cost grows with the object corpus.675
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Fig. 8. Throughput of steady-state object writes to RADOS on a 16-node all-HDD cluster with different

sizes using 128 threads. Compared to FileStore, the throughput is 50–100% greater on BlueStore and has a

significantly lower variance.

7.2 RADOS Block Device Benchmarks 676

Next, we compare the performance of RADOS Block Device (RBD), a virtual block device service 677
implemented on top of RADOS, when using the BlueStore and FileStore backends. RBD is imple- 678
mented as a kernel module that exports a block device to the user, which can be formatted and 679
mounted like a regular block device. Data written to the device are striped into 4-MiB RADOS 680
objects and written in parallel to multiple OSDs over the network. 681

For RBD benchmarks we create a 1-TB virtual block device, format it with XFS, and mount it 682
on the client. We use fio [7] to perform sequential and random I/O with queue depth of 256 and 683
I/O sizes ranging from 4 KiB to 4 MiB. For each test, we write about 30 GiB of data. Before starting 684
every experiment, we drop the OS page cache for FileStore, and we restart OSDs for BlueStore to 685
eliminate caching effects in read experiments. We first run all the experiments on a Ceph cluster 686
installed with FileStore backend. We then tear down the cluster, reinstall it with BlueStore backend, 687
and repeat all the experiments. 688

Figure 11 shows the results for sequential writes, random writes, and sequential reads. For I/O 689
sizes larger than 512 KiB, sequential and random write throughput is on average 1.7× and 2× higher 690
with BlueStore, respectively, again mainly due to avoiding double-writes. BlueStore also displays a 691
significantly lower throughput variance, because it can deterministically push data to disk. In File- 692
Store, however, arbitrarily triggered writeback (Section 3.4) conflicts with the foreground writes 693
to the WAL and introduces long request latencies. 694

For medium I/O sizes (128–512 KiB) the throughput difference decreases for sequential writes, 695
because XFS masks out part of the cost of double writes in FileStore. With medium I/O sizes the 696
writes to WAL do not fully utilize the disk. This leaves enough bandwidth for another write stream 697
to go through and not have a large impact on the foreground writes to WAL. After writing the data 698
synchronously to the WAL, FileStore then asynchronously writes it to the file system. XFS buffers 699
these asynchronous writes and turns them into one large sequential write before issuing to disk. 700
XFS cannot do the same for random writes, which is why the high throughput difference continues 701
even for medium-sized random writes. 702

ACM Transactions on Storage, Vol. 16, No. 2, Article 9. Publication date: April 2020.



TOS1602-09 ACMJATS Trim: 6.75 X 10 in April 22, 2020 18:12

9:20 A. Aghayev et al.

Fig. 9. The 95th and above percentile latencies of object writes to RADOS on a 16-node all-HDD cluster with

different sizes using 128 threads. BlueStore (top graph) has an order of magnitude lower tail latency than

FileStore (bottom graph).

Finally, for I/O sizes smaller than 64 KiB (not shown) the throughput of BlueStore is 20% higher703
than that of FileStore. For these I/O sizes BlueStore performs deferred writes by inserting data704
to RocksDB first, and then asynchronously overwriting the object data to avoid fragmentation705
(Section 4.2).706
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Fig. 10. Throughput of 4-KiB RADOS object writes with queue depth of 128 on a 16-node all-SSD cluster. At

steady state, BlueStore is 2× faster than FileStore on SSD. BlueStore does not suffer from directory splitting;

however, its throughput is gradually brought down by the RocksDB compaction overhead.

Fig. 11. Sequential write, random write, and sequential read throughput with different I/O sizes and queue

depth of 256 on a 1 TB Ceph virtual block device (RBD) allocated on a 16-node all-HDD cluster. Results for

an all-SSD cluster were similar but not shown for brevity.

The throughput of read operations in BlueStore is similar or slightly better than that of File- 707
Store for I/O sizes larger than 32 KiB. For smaller I/O sizes, as the lower graph in Figure 11 shows, 708
FileStore throughput is better because of the kernel readahead. While RBD does implement a reada- 709
head, it is not as well tuned as the kernel readahead. 710

7.3 Overwriting Erasure-coded Data 711

One of the features enabled by BlueStore is the efficient overwrite of EC data. We have measured 712
the throughput of random overwrites for both BlueStore and FileStore. Our benchmark creates 713
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Fig. 12. IOPS observed from a client performing random 4-KiB writes with queue depth of 256 to a Ceph

virtual block device (RBD). The device is allocated on a 16-node all-HDD cluster.

1 TB RBD using one client. The client mounts the block device and performs 5 GiB of random714
4-KiB writes with queue depth of 256. Since the RBD is striped in 4-MiB RADOS objects, every715
write results in an object overwrite. We repeat the experiment on a virtual block device allocated716
on a replicated pool, on an EC pool with parameters k = 4 andm = 2 (EC4-2), and k = 5 andm = 1717
(EC5-1).718

Figure 12 compares the throughput of replicated and EC pools when using BlueStore and File-719
Store backends. BlueStore EC pools achieve 6× more IOPS on EC4-2, and 8× more IOPS on EC5-1720
than FileStore. This is due to BlueStore avoiding full physical copies during the first phase of the721
two-phase commit required for overwriting EC objects (Section 5.2). As a result, it is practical to722
use EC pools with applications that require data overwrite, such as RBD and CephFS, with the723
BlueStore backend.724

7.4 Storing Metadata on HM-SMR Hard Drives725

In this section, we first demonstrate the performance of standalone RocksDB running on an HM-726
SMR hard drive. We then demonstrate the performance of Ceph configured to store metadata on727
a RocksDB instance running on an HM-SMR drive.728

Standalone RocksDB on HM-SMR Drive Evaluation: We establish two baselines for the stan-729
dalone RocksDB experiments. The first is RocksDB running on an XFS-formatted regular hard730
drive, which uses Conventional Magnetic Recording (CMR). This is the baseline we want to achieve731
with RocksDB on an HM-SMR drive, a similar mechanical device with a more restricted interface732
but higher capacity. The second baseline is RocksDB running on an XFS-formatted DM-SMR drive.733
This is a baseline we want to beat given that it is the only viable option for running RocksDB on a734
high-capacity SMR drive, but has suboptimal performance due to garbage collection. We use 3-TB735
Hitachi HUA72303 as a CMR drive, 10-TB Seagate ST8000AS0022 as a DM-SMR drive, and 14-TB736
HGST HSH721414AL as an HM-SMR drive.737

For all of the experiments described in this section, we use the fillrandom benchmark of738
db_bench tool that comes with RocksDB. We perform an asynchronous insertion of 150 million key739
and value pairs of size 20 bytes and 400 bytes, respectively. During the benchmark run, RocksDB740
writes 200 GiB of data through memtable flushing, compaction, and WAL inserts, and reads 100 GiB741
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Fig. 13. Benchmark runtimes of the CMR and DM-SMR baselines and RocksDB on HM-SMR iterations.

The benchmark performs 150 million asynchronous inserts of key-value pairs of size 20 bytes and 400 bytes,

respectively.

of data due to compaction. The size of the database is 59 GiB uncompressed and 31 GiB compressed. 742
To emulate a realistic environment where the amount of data in the OS page cache is a small 743
fraction of the data stored on a high-capacity drive, we limit the operating system memory to 744
6 GiB, which leaves slightly more than 2 GiB of RAM for the page cache after the memory used 745
by the OS and the benchmark application, resulting in 1:15 ratio of cached to on disk data. 746

We perform an extensive tuning of our baselines, focusing on two RocksDB parameters that have 747
the highest impact on performance: compaction_readahead_size and write_buffer_size. We 748
omit the detailed analysis of our performance tuning [3] and suffice by saying that tuning improved 749
the performance of CMR and DM-SMR baselines by 34% and 63%, respectively. 750

We implement our solutions to the previously described challenges (Section 6) in multiple iter- 751
ations. Figure 13 shows the time it takes to complete the benchmark for our DM-SMR drive and 752
CMR drive baselines, as well as the different iterations of our implementation on the HM-SMR 753
drive. 754

For our first iteration, we modify the BlueFS extent allocator to dedicate complete zones to large 755
sequentially written files, such as SSTs, WALs, and the BlueFS journal, and to store small files with 756
non-sequential I/O in conventional zones. We also modify BlueFS to use libzbc with direct I/O 757
for all I/O operations. The middle bar in Figure 13, identified by “HM-SMR (sync)”, shows that this 758
iteration is 18% and 39% slower than, the DM-SMR and CMR baselines, respectively. Our detailed 759
analysis of RocksDB performance [3] reveals that in the absence of the OS page cache, synchronous 760
zbc_pwrite calls to the WAL file become the bottleneck. 761

In our second iteration, we switch to using the asynchronous libaio framework for all data 762
reads and writes, and continue using libzbc for zone reset commands. The completion time of 763
the benchmark for this iteration is indicated by the “HM-SMR (async)” bar in Figure 13. As we 764
can see, using asynchronous I/O we surpass the runtime of the DM-SMR baseline and match the 765
runtime of the CMR baseline. 766

In our third and final iteration, we incorporate a user-space file-cache that caches SSTs produced 767
as a result of compaction. This prevents all of the compaction reads from hitting the disk, leav- 768
ing more disk bandwidth for memtable flushes, which determines the insertion throughput. The 769
rightmost bar in Figure 13 shows the runtime of our final iteration. It is 20% faster than the iter- 770
ation without the cache and, 22% faster than the CMR baseline, and 38% faster than the DM-SMR 771
baseline. While the advantage over the DM-SMR baseline is completely due to avoiding garbage 772
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Fig. 14. The write throughput of a small Ceph cluster with metadata being stored on CMR, DM-SMR, and

HM-SMR drives. The throughput in the DM-SMR case is 141%, 38%, and 22% lower for 256-KiB, 2-MiB, and

32-MiB object writes and has a larger variance than the CMR and the HM-SMR cases.

collection overhead, the advantage over CMR baseline stems mostly from the high sequential write773
throughput of the high-capacity HM-SMR drive.774

Ceph with RocksDB Running on HM-SMR Drive Evaluation: To evaluate the performance775
of BlueStore with RocksDB running on an HM-SMR drive, we setup a three-node Ceph cluster776
and configure BlueStore to store data and metadata on separate drives. We run three experiments777
where we always store data on a CMR drive and alternate storing metadata on a CMR drive, on778
a DM-SMR drive, and on an HM-SMR drive. For CMR and DM-SMR cases we use stock BlueStore779
code that runs RocksDB on a raw block device, and for the HM-SMR case we run RocksDB on the780
modified BlueFS with aforementioned optimizations. In each experiment we write small (256-KiB),781
medium (2-MiB), and large (32-MiB) objects to the object store from a single client using 64 threads.782

Figure 14 shows that when the metadata are stored on DM-SMR drive, the throughput is 141%,783
38%, and 22% lower for small, medium, and large objects, respectively, from when it is stored on784
HM-SMR drive, and it has a large variance. When metadata are stored on CMR and HM-SMR785
drives, however, the throughput is similar and has lower variance.786

The speedup of RocksDB on HM-SMR drive that we observed before does not directly translate787
to Figure 14, because most of the I/O is directed at the CMR drive, which stores object data. While788
the metadata traffic is not large enough to demonstrate the advantage of the HM-SMR drive, we789
have enabled Ceph to successfully store metadata on HM-SMR drive with zero overhead, making790
it one step away from fully leveraging the high bandwidth and capacity advantage of SMR. We are791
currently developing techniques for storing object data in HM-SMR drives as well.792

8 CHALLENGES OF BUILDING EFFICIENT STORAGE BACKENDS793
ON RAW STORAGE794

This section describes some of the challenges that the Ceph team faced when building a storage795
backend on raw storage devices from scratch.796

8.1 Cache Sizing and Writeback797

The OS fully utilizes the machine memory by dynamically growing or shrinking the size of the798
page cache based on the application’s memory usage. It writes back the dirty pages to disk in the799
background trying not to adversely affect foreground I/O, so that memory can be quickly reused800
when applications ask for it.801
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A storage backend based on a local file system automatically inherits the benefits of the OS page 802
cache. A storage backend that bypasses the local file system, however, has to implement a similar 803
mechanism from scratch (Section 4.2). In BlueStore, for example, the cache size is a fixed config- 804
uration parameter that requires manual tuning. Building an efficient user space cache with the 805
dynamic resizing functionality of the OS page cache is an open problem shared by other projects, 806
like PostgreSQL [26] and RocksDB [45]. With the arrival of fast NVMe SSDs, such a cache needs 807
to be efficient enough that it does not incur overhead for write-intensive workloads—a deficiency 808
that current page cache suffers from [21]. 809

8.2 Key-value Store Efficiency 810

The experience of the Ceph team demonstrates that moving all of the metadata to an ordered key- 811
value store, like RocksDB, significantly improves the efficiency of metadata operations. However, 812
the Ceph team has also found that embedding RocksDB in BlueStore is problematic in multiple 813
ways: (1) RocksDB’s compaction and high write amplification have been the primary performance 814
limiters when using NVMe SSDs in OSDs; (2) since RockDB is treated as a black box, data are 815
serialized and copied in and out of it, consuming CPU time; and (3) RocksDB has its own threading 816
model, which limits the ability to do custom sharding. These and other problems with RocksDB 817
and similar key-value stores keeps the Ceph team researching better solutions. 818

8.3 CPU and Memory Efficiency 819

Modern compilers align and pad basic datatypes in memory so that CPU can fetch data efficiently, 820
thereby increasing performance. For applications with complex structs, the default layout can 821
waste a significant amount of memory [23, 68]. Many applications are rightly not concerned with 822
this problem, because they allocate short-lived data structures. A storage backend that bypasses 823
the OS page cache, however, runs continously and controls almost all of a machine’s memory. 824
Therefore, the Ceph team spent a lot of time packing structures stored in RocksDB to reduce the 825
total metadata size and also compaction overhead. The main tricks used were delta and variable- 826
integer encoding. 827

Another observation with BlueStore is that on high-end NVMe SSDs the workloads are becom- 828
ing increasingly CPU-bound. For its next-generation backend, the Ceph community is exploring 829
techniques that reduce CPU consumption, such as minimizing data serialization-deserialization, 830
and using the SeaStar framework [84] with shared-nothing model that avoids context switches 831
due to locking. 832

9 RELATED WORK 833

The primary motivator for BlueStore is the lack of transactions and unscalable metadata operations 834
in local file systems. In this section we compare BlueStore to previous research that aims to address 835
these problems. 836

Transaction Support. Previous works have generally followed three approaches when introduc- 837
ing transactional interface to file system users. 838

The first approach is to leverage the in-kernel transaction mechanism present in the file sys- 839
tems. Examples of this are Btrfs’ export of transaction system calls to userspace [24], Transactional 840
NTFS [54], Valor [92], and TxFS [42]. The drawbacks of this approach are the complexity and in- 841
completeness of the interface, and a significant implementation complexity. For example, Btrfs and 842
NTFS both recently deprecated their transaction interface [15, 55] citing difficulty guaranteeing 843
correct or safe usage, which corroborates FileStore’s experience (Section 3.1.1). Valor [92], while 844
not tied to a specific file system, also has a nuanced interface that requires correct use of a combo 845
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of seven system calls, and a complex in-kernel implementation. TxFS is a recent work that in-846
troduces a simple interface built on ext4’s journaling layer; however, its implementation requires847
non-trivial amount of change to the Linux kernel. BlueStore, informed by FileStore’s experience,848
avoids using file systems’ in-kernel transaction infrastructure.849

The second approach builds a user space file system atop a database, utilizing existing transac-850
tional semantics. For example, Amino [112] relies on Berkeley DB [70] as the backing store, and851
Inversion [69] stores files in a POSTGRES database [96]. While these file systems provide seamless852
transactional operations, they generally suffer from high performance overhead, because they ac-853
crue the overhead of the layers below. BlueStore similarly leverages a transactional database, but854
incurs zero overhead, because it eliminates the local file system and runs the database on a raw disk.855

The third approach provides transactions as a first-class abstraction in the OS and implements all856
services, including the file system, using transactions. QuickSilver [82] is an example of such sys-857
tem that uses built-in transactions for implementing a storage backend for a distributed file system.858
Similarly, TxOS [77] adds transactions to the Linux kernel and converts ext3 into a transactional859
file system. This approach, however, is too heavyweight for achieving file system transactions, and860
such a kernel is tricky to maintain [42].861

Metadata Optimizations. A large body of work has produced a plethora of approaches to meta-862
data optimizations in local file systems. BetrFS [50] introduces Bϵ -Tree as an indexing structure for863
efficient large scans. DualFS [75], hFS [117], and ext4-lazy [2] abandon traditional FFS [65] cylin-864
der group design and aggregate all metadata in one place to achieve significantly faster metadata865
operations. TableFS [80] and DeltaFS [118] store metadata in LevelDB running atop a file system866
and achieve orders of magnitude faster metadata operations than local file systems.867

While BlueStore also stores metadata in RocksDB—a LevelDB derivative—to achieve similar868
speedup, it differs from the above in two important ways: (1) in BlueStore, RocksDB runs atop a raw869
disk incurring zero overhead, and (2) BlueStore keeps all metadata, including the internal metadata,870
in RocksDB as key-value pairs. Storing internal metadata as variable-sized key-value pairs, as871
opposed to fixed-sized records on disk, scales more easily. For example, the Lustre distributed file872
system that uses an ext4-derivate called LDISKFS for the storage backend, has changed on-disk873
format twice in a short period to accommodate for increasing disk sizes [12, 13].874

10 CONCLUSION875

Distributed file system developers conventionally adopt local file systems as their storage backend.876
They then try to fit the general-purpose file system abstractions to their needs, incurring signif-877
icant accidental complexity [14]. At the core of this convention lies the belief that developing a878
storage backend from scratch is an arduous process, akin to developing a new file system that879
takes a decade to mature.880

Our article, relying on the Ceph team’s experience, shows this belief to be inaccurate. Further-881
more, we find that developing a special-purpose, user space storage backend from scratch (1) re-882
claims the significant performance left on the table when building a backend on a general-purpose883
file system, (2) makes it possible to adopt novel, backward incompatible storage hardware, and884
(3) enables new features by gaining complete control of the I/O stack. We hope that this experience885
article will initiate discussions among storage practitioners and researchers on fresh approaches886
to designing distributed file systems and their storage backends.887
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