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Abstract
Elastic storage systems can be expanded or contracted

to meet current demand, allowing servers to be turned
off or used for other tasks. However, the usefulness of an
elastic distributed storage system is limited by its agility:
how quickly it can increase or decrease its number of
servers. Due to the large amount of data they must mi-
grate during elastic resizing, state-of-the-art designs usu-
ally have to make painful tradeoffs among performance,
elasticity and agility.

This paper describes an elastic storage system, called
SpringFS, that can quickly change its number of active
servers, while retaining elasticity and performance goals.
SpringFS uses a novel technique, termed bounded write
offloading, that restricts the set of servers where writes
to overloaded servers are redirected. This technique,
combined with the read offloading and passive migration
policies used in SpringFS, minimizes the work needed
before deactivation or activation of servers. Analysis of
real-world traces from Hadoop deployments at Facebook
and various Cloudera customers and experiments with
the SpringFS prototype confirm SpringFS’s agility, show
that it reduces the amount of data migrated for elastic re-
sizing by up to two orders of magnitude, and show that
it cuts the percentage of active servers required by 67–
82%, outdoing state-of-the-art designs by 6–120%.

1 Introduction

Distributed storage can and should be elastic, just like
other aspects of cloud computing. When storage is pro-
vided via single-purpose storage devices or servers, sep-
arated from compute activities, elasticity is useful for
reducing energy usage, allowing temporarily unneeded
storage components to be powered down. However, for
storage provided via multi-purpose servers (e.g. when
a server operates as both a storage node in a distributed
filesystem and a compute node), such elasticity is even
more valuable— providing cloud infrastructures with the
freedom to use such servers for other purposes, as ten-
ant demands and priorities dictate. This freedom may
be particularly important for increasingly prevalent data-
intensive computing activities (e.g., data analytics).

Data-intensive computing over big data sets is quickly
becoming important in most domains and will be a ma-
jor consumer of future cloud computing resources [7,
4, 3, 2]. Many of the frameworks for such comput-
ing (e.g., Hadoop [1] and Google’s MapReduce [10])
achieve efficiency by distributing and storing the data on
the same servers used for processing it. Usually, the data
is replicated and spread evenly (via randomness) across
the servers, and the entire set of servers is assumed to
always be part of the data analytics cluster. Little-to-no
support is provided for elastic sizing1 of the portion of
the cluster that hosts storage—only nodes that host no
storage can be removed without significant effort, mean-
ing that the storage service size can only grow.

Some recent distributed storage designs (e.g.,
Sierra [18], Rabbit [5]) provide for elastic sizing, origi-
nally targeted for energy savings, by distributing replicas
among servers such that subsets of them can be powered
down when the workload is low without affecting data
availability; any server with the primary replica of data
will remain active. These systems are designed mainly
for performance or elasticity (how small the system size
can shrink to) goals, while overlooking the importance
of agility (how quickly the system can resize its footprint
in response to workload variations), which we find has a
significant impact on the machine-hour savings (and so
the operating cost savings) one can potentially achieve.
As a result, state-of-the-art elastic storage systems
must make painful tradeoffs among these goals, unable
to fulfill them at the same time. For example, Sierra
balances load across all active servers and thus provides
good performance. However, this even data layout limits
elasticity— at least one third of the servers must always
be active (assuming 3-way replication), wasting machine
hours that could be used for other purposes when the
workload is very low. Further, rebalancing the data
layout when turning servers back on induces significant
migration overhead, impairing system agility.

1We use “elastic sizing” to refer to dynamic online resizing, down
from the full set of servers and back up, such as to adapt to workload
variations. The ability to add new servers, as an infrequent adminis-
trative action, is common but does not itself make a storage service
“elastic” in this context; likewise with the ability to survive failures of
individual storage servers.
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In contrast, Rabbit can shrink its active footprint to
a much smaller size (≈10% of the cluster size), but its
reliance on Everest-style write offloading [16] induces
significant cleanup overhead when shrinking the active
server set, resulting in poor agility.

This paper describes a new elastic distributed stor-
age system, called SpringFS, that provides the elastic-
ity of Rabbit and the peak write bandwidth character-
istic of Sierra, while maximizing agility at each point
along a continuum between their respective best cases.
The key idea is to employ a small set of servers to store
all primary replicas nominally, but (when needed) of-
fload writes that would go to overloaded servers to only
the minimum set of servers that can satisfy the write
throughput requirement (instead of all active servers).
This technique, termed bounded write offloading, ef-
fectively restricts the distribution of primary replicas
during offloading and enables SpringFS to adapt dy-
namically to workload variations while meeting perfor-
mance targets with a minimum loss of agility—most of
the servers can be extracted without needing any pre-
removal cleanup. SpringFS further improves agility by
minimizing the cleanup work involved in resizing with
two more techniques: read offloading offloads reads
from write-heavy servers to reduce the amount of write
offloading needed to achieve the system’s performance
targets; passive migration delays migration work by a
certain time threshold during server re-integration to re-
duce the overall amount of data migrated. With these
techniques, SpringFS achieves agile elasticity while pro-
viding performance comparable to a non-elastic storage
system.

Our experiments demonstrate that the SpringFS de-
sign enables significant reductions in both the fraction
of servers that need to be active and the amount of mi-
gration work required. Indeed, its design for where and
when to offload writes enables SpringFS to resize elas-
tically without performing any data migration at all in
most cases. Analysis of traces from six real Hadoop de-
ployments at Facebook and various Cloudera customers
show the oft-noted workload variation and the potential
of SpringFS to exploit it—SpringFS reduces the amount
of data migrated for elastic resizing by up to two orders
of magnitude, and cuts the percentage of active servers
required by 67–82%, outdoing state-of-the-art designs
like Sierra and Rabbit by 6–120%.

This paper makes three main contributions: First, to
the best of our knowledge, it is the first to show the im-
portance of agility in elastic distributed storage, high-
lighting the need to resize quickly (at times) rather than
just hourly as in previous designs. Second, SpringFS
introduces a novel write offloading policy that bounds
the set of servers to which writes to over-loaded pri-
mary servers are redirected. Bounded write offloading,

together with read offloading and passive migration sig-
nificantly improve the system’s agility by reducing the
cleanup work during elastic resizing. These techniques
apply generally to elastic storage with an uneven data
layout. Third, we demonstrate the significant machine-
hour savings that can be achieved with elastic resizing,
using six real-world HDFS traces, and the effectiveness
of SpringFS’s policies at achieving a “close-to-ideal”
machine-hour usage.

The remainder of this paper is organized as follows.
Section 2 describes elastic distributed storage generally,
the importance of agility in such storage, and the limita-
tions of the state-of-the-art data layout designs in fulfill-
ing elasticity, agility and performance goals at the same
time. Section 3 describes the key techniques in SpringFS
design and how they can increase agility of elasticity.
Section 4 overviews the SpringFS implementation. Sec-
tion 5 evaluates the SpringFS design.

2 Background and Motivation

This section motivates our work. First, it describes the
related work on elastic distributed storage, which pro-
vides different mechanisms and data layouts to allow
servers to be extracted while maintaining data availabil-
ity. Second, it demonstrates the significant impact of
agility on aggregate machine-hour usage of elastic stor-
age. Third, it describes the limitations of state-of-the-art
elastic storage systems and how SpringFS fills the signif-
icant gap between agility and performance.

2.1 Related Work
Most distributed storage is not elastic. For example, the
cluster-based storage systems commonly used in support
of cloud and data-intensive computing environments,
such as the Google File System(GFS) [11] or the Hadoop
Distributed Filesystem [1], use data layouts that are not
amenable to elasticity. The Hadoop Distributed File Sys-
tem (HDFS), for example, uses a replication and data-
layout policy wherein the first replica is placed on a node
in the same rack as the writing node (preferably the writ-
ing node, if it contributes to DFS storage), the second
and third on random nodes in a randomly chosen dif-
ferent rack than the writing node. In addition to load
balancing, this data layout provides excellent availabil-
ity properties—if the node with the primary replica fails,
the other replicas maintain data availability; if an entire
rack fails (e.g., through the failure of a communication
link), data availability is maintained via the replica(s) in
another rack. But, such a data layout prevents elastic-
ity by requiring that almost all nodes be active—no more
than one node per rack can be turned off without a high
likelihood of making some data unavailable.
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Recent research [5, 13, 18, 19, 17] has provided new
data layouts and mechanisms for enabling elasticity in
distributed storage. Most notable are Rabbit [5] and
Sierra [18]. Both organize replicas such that one copy
of data is always on a specific subset of servers, termed
primaries, so as to allow the remainder of the nodes to
be powered down without affecting availability, when
the workload is low. With workload increase, they can
be turned back on. The same designs and data distri-
bution schemes would allow for servers to be used for
other functions, rather than turned off, such as for higher-
priority (or higher paying) tenants’ activities. Writes in-
tended for servers that are inactive2 are instead written
to other active servers—an action called write availabil-
ity offloading—and then later reorganized (when servers
become active) to conform to the desired data layout.

Rabbit and Sierra build on a number of techniques
from previous systems, such as write availability offload-
ing and power gears. Narayanan, Donnelly, and Row-
stron [15] described the use of write availability offload-
ing for power management in enterprise storage work-
loads. The approach was used to redirect traffic from oth-
erwise idle disks to increase periods of idleness, allowing
the disks to be spun down to save power. PARAID [20]
introduced a geared scheme to allow individual disks in
a RAID array to be turned off, allowing the power used
by the array to be proportional to its throughput.

Everest [16] is a distributed storage design that used
write performance offloading3, rather than to avoid turn-
ing on powered-down servers, in the context of enter-
prise storage. In Everest, disks are grouped into distinct
volumes, and each write is directed to a particular vol-
ume. When a volume becomes overloaded, writes can be
temporarily redirected to other volumes that have spare
bandwidth, leaving the overloaded volume to only han-
dle reads. Rabbit applies this same approach, when nec-
essary, to address overload of the primaries.

SpringFS borrows the ideas of write availability and
performance offloading from prior elastic storage sys-
tems. We expand on previous work by developing new
offloading and migration schemes that effectively elim-
inate the painful tradeoff between agility and write per-
formance in state-of-the-art elastic storage designs.

2We generally refer to a server as inactive when it is either pow-
ered down or reused for other purposes. Conversely, we call a server
active when it is powered on and servicing requests as part of a elastic
distributed storage system.

3Write performance offloading differs from write availability of-
floading in that it offloads writes from overloaded active servers to
other (relatively idle) active servers for better load balancing. The
Everest-style and bounded write offloading schemes are both types of
write performance offloading.

2.2 Agility is important

By “agility”, we mean how quickly one can change the
number of servers effectively contributing to a service.
For most non-storage services, such changes can often
be completed quickly, as the amount of state involved
is small. For distributed storage, however, the state in-
volved may be substantial. A storage server can service
reads only for data that it stores, which affects the speed
of both removing and re-integrating a server. Removing
a server requires first ensuring that all data is available on
other servers, and re-integrating a server involves replac-
ing data overwritten (or discarded) while it was inactive.

The time required for such migrations has a direct im-
pact on the machine-hours consumed by elastic storage
systems. Systems with better agility are able to more ef-
fectively exploit the potential of workload variation by
more closely tracking workload changes. Previous elas-
tic storage systems rely on very infrequent changes (e.g.,
hourly resizing in Sierra [18]), but we find that over half
of the potential savings is lost with such an approach due
to the burstiness of real workloads.

0 50 100 150 200 250
Minutes

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f a
ct

iv
e 

se
rv

er
s 1-minute resizing interval

1-hour resizing interval

Figure 1: Workload variation in the Facebook trace.
The shaded region represents the potential reduction in
machine-hour usage with a 1-minute resizing interval.

As one concrete example, Figure 1 shows the num-
ber of active servers needed, as a function of time in the
trace, to provide the required throughput in a randomly
chosen 4-hour period from the Facebook trace described
in Section 5. The dashed and solid curves bounding the
shaded region represent the minimum number of active
servers needed if using 1-hour and 1-minute resizing in-
tervals, respectively. For each such period, the number
of active servers corresponds to the number needed to
provide the peak throughput in that period, as is done
in Sierra to avoid significant latency increases. The area
under each curve represents the machine time used for
that resizing interval, and the shaded region represents
the increased server usage (more than double) for the 1-
hour interval. We observe similar burstiness and conse-
quences of it across all of the traces.
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2.3 Bridging Agility and Performance
Previous elastic storage systems overlook the importance
of agility, focusing on performance and elasticity. This
section describes the data layouts of state-of-the-art elas-
tic storage systems, specifically Sierra and Rabbit, and
how their layouts represent two specific points in the
tradeoff space among elasticity, agility and performance.
Doing so highlights the need for a more flexible elastic
storage design that fills the void between them, providing
greater agility and matching the best of each.

We focus on elastic storage systems that ensure data
availability at all times. When servers are extracted from
the system, at least one copy of all data must remain ac-
tive to serve read requests. To do so, state-of-the-art elas-
tic storage designs exploit data replicas (originally for
fault tolerance) to ensure that all blocks are available at
any power setting. For example, with 3-way replication4,
Sierra stores the first replica of every block (termed pri-
mary replica) in one third of servers, and writes the other
2 replicas to the other two thirds of servers. This data lay-
out allows Sierra to achieve full peak performance due to
balanced load across all active servers, but it limits the
elasticity of the system by not allowing the system foot-
print to go below one third of the cluster size. We show
in section 5.2 that such limitation can have a significant
impact on the machine-hour savings that Sierra can po-
tentially achieve, especially during periods of low work-
load.

Rabbit, on the other hand, is able to reduce its system
footprint to a much smaller size (≈10% of the cluster
size). It does so by storing the replicas according to an
equal-work data layout, so that it achieves power pro-
portionality for read requests. That is, read performance
scales linearly with the number of active servers: if 50%
of the servers are active, the read performance of Rabbit
should be at least 50% of its maximum read performance.
The equal-work data layout ensures that, with any num-
ber of active servers, each server is able to perform an
equal share of the read workload. In a system storing B
blocks, with p primary servers and x active servers, each
active server must store at least B/x blocks so that reads
can be distributed equally, with the exception of the pri-
mary servers. Since a copy of all blocks must be stored
on the p primary servers, they each store B/p blocks.
This ensures (probabilistically) that when a large quan-
tity of data is read, no server must read more than the
others and become a bottleneck. This data layout allows
Rabbit to keep the number of primary servers (p=N/e2)
very small (e is Euler’s constant). The small number of

4We assume 3-way replication for all data blocks throughout this
paper, which remains the default policy for HDFS. The data layout
designs apply to other replication levels as well. Different approaches
than Sierra, Rabbit and SpringFS are needed when erasure codes are
used for fault tolerance instead of replication.
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Figure 2: Primary data distribution for Rabbit without
offloading (grey) and Rabbit with offloading (light grey).
With offloading, primary replicas are spread across all
active servers during writes, incurring significant cleanup
overhead when the system shrinks its size.

primary servers provides great agility—Rabbit is able to
shrink its system size down to p without any cleanup
work—but it can create bottlenecks for writes. Since
the primary servers must store the primary replicas for
all blocks, the maximum write throughput of Rabbit is
limited by the maximum aggregate write throughout of
the p primary servers, even when all servers are active.
In contrast, Sierra is able to achieve the same maximum
write throughput as that of HDFS, that is, the aggregate
write throughput of N/3 servers (recall: N servers write
3 replicas for every data block).

Rabbit borrows write offloading from the Everest sys-
tem [16] to solve this problem. When primary servers
become the write performance bottleneck, Rabbit simply
offloads writes that would go to heavily loaded servers
across all active servers. While such write offloading
allows Rabbit to achieve good peak write performance
comparable to non-modified HDFS due to balanced load,
it significantly impairs system agility by spreading pri-
mary replicas across all active servers, as depicted in
Figure 2. Consequently, before Rabbit shrinks the sys-
tem size, cleanup work is required to migrate some pri-
mary replicas to the remaining active servers so that at
least one complete copy of data is still available after the
resizing action. As a result, the improved performance
from Everest-style write offloading comes at a high cost
in system agility.

Figure 3 illustrates the very different design points
represented by Sierra and Rabbit, in terms of the trade-
offs among agility, elasticity and peak write perfor-
mance. Read performance is the same for all of these
systems, given the same number of active servers. The
number of servers that store primary replicas indicates
the minimal system footprint one can shrink to without
any cleanup work. As described above, state-of-the art
elastic storage systems such as Sierra and Rabbit suf-
fer from the painful tradeoff between agility and perfor-
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Figure 3: Elastic storage system comparison in terms of
agility and performance. N is the total size of the clus-
ter. p is the number of primary servers in the equal-work
data layout. Servers with at least some primary repli-
cas cannot be deactivated without first moving those pri-
mary replicas. SpringFS provides a continuum between
Sierra’s and Rabbit’s (when no offload) single points
in this tradeoff space. When Rabbit requires offload,
SpringFS is superior at all points. Note that the y-axis
is discontinuous.

mance due to the use of a rigid data layout. SpringFS
provides a more flexible design that provides the best-
case elasticity of Rabbit, the best-case write performance
of Sierra, and much better agility than either. To achieve
the range of options shown, SpringFS uses an explicit
bound on the offload set, where writes of primary repli-
cas to overloaded servers are offloaded to only the mini-
mum set of servers (instead of all active servers) that can
satisfy the current write throughput requirement. This
additional degree of freedom allows SpringFS to adapt
dynamically to workload changes, providing the desired
performance while maintaining system agility.

3 SpringFS Design and Policies

This section describes SpringFS’s data layout, as well as
the bounded write offloading and read offloading policies
that minimize the cleanup work needed before deactiva-
tion of servers. It also describes the passive migration
policy used during a server’s re-integration to address
data that was written during the server’s absence.

3.1 Data Layout and Offloading Policies

Data layout. Regardless of write performance, the
equal-work data layout proposed in Rabbit enables the
smallest number of primary servers and thus provides
the best elasticity in state-of-the-art designs.5 SpringFS
retains such elasticity using a variant of the equal-work
data layout, but addresses the agility issue incurred by
Everest-style offloading when write performance bottle-
necks arise. The key idea is to bound the distribution
of primary replicas to a minimal set of servers (instead
of offloading them to all active servers), given a tar-
get maximum write performance, so that the cleanup
work during server extraction can be minimized. This
bounded write offloading technique introduces a param-
eter called the offload set: the set of servers to which
primary replicas are offloaded (and as a consequence re-
ceive the most write requests). The offload set provides
an adjustable tradeoff between maximum write perfor-
mance and cleanup work. With a small offload set, few
writes will be offloaded, and little cleanup work will be
subsequently required, but the maximum write perfor-
mance will be limited. Conversely, a larger offload set
will offload more writes, enabling higher maximum write
performance at the cost of more cleanup work to be done
later. Figure 4 shows the SpringFS data layout and its
relationship with the state-of-the-art elastic data layout
designs. We denote the size of the offload set as m, the
number of primary servers in the equal-work layout as p,
and the total size of the cluster as N. When m equals p,
SpringFS behaves like Rabbit and writes all data accord-
ing to the equal-work layout (no offload); when m equals
N/3, SpringFS behaves like Sierra and load balances all
writes (maximum performance). As illustrated in Fig-
ure 3, the use of the tunable offload set allows SpringFS
to achieve both end points and points in between.

Choosing the offload set. The offload set is not a rigid
setting, but determined on the fly to adapt to workload
changes. Essentially, it is chosen according to the tar-
get maximum write performance identified for each re-
sizing interval. Because servers in the offload set write
one complete copy of the primary replicas, the size of
the offload set is simply the maximum write throughput
in the workload divided by the write throughput a single
server can provide. Section 5.2 gives a more detailed de-
scription of how SpringFS chooses the offload set (and
the number of active servers) given the target workload
performance.

Read offloading. One way to reduce the amount of
cleanup work is to simply reduce the amount of write
offloading that needs to be done to achieve the system’s

5Theoretically, no other data layout can achieve a smaller number
of primary servers while maintaining power-proportionality for read
performance.
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performance targets. When applications simultaneously
read and write data, SpringFS can coordinate the read
and write requests so that reads are preferentially sent
to higher numbered servers that naturally handle fewer
write requests. We call this technique read offloading.

Despite its simplicity, read offloading allows SpringFS
to increase write throughput without changing the offload
set by taking read work away from the low numbered
servers (which are the bottleneck for writes). When a
read occurs, instead of randomly picking one among
the servers storing the replicas, SpringFS chooses the
server that has received the least number of total re-
quests recently. (The one exception is when the client
requesting the read has a local copy of the data. In this
case, SpringFS reads the replica directly from that server
to exploit machine locality.) As a result, lower num-
bered servers receive more writes while higher numbered
servers handle more reads. Such read/write distribution
balances the overall load across all the active servers
while reducing the need for write offloading.

Replica placement. When a block write occurs,
SpringFS chooses target servers for the 3 replicas in the
following steps: The primary replica is load balanced
across (and thus bounded in) the m servers in the cur-
rent offload set. (The one exception is when the client
requesting the write is in the offload set. In this case,
SpringFS writes the primary copy to that server, in-
stead of the server with the least load in the offload set,
to exploit machine locality.) For non-primary replicas,
SpringFS first determines their target servers according
to the equal-work layout. For example, the target server
for the secondary replica would be a server numbered
between p+ 1 and ep, and that for the tertiary replica
would be a server numbered between ep + 1 and e2 p,
both following the probability distribution as indicated
by the equal-work layout (lower numbered servers have
higher probability to write the non-primary replicas). If
the target server number is higher than m, the replica is
written to that server. However, if the target server num-
ber is between p+ 1 and m (a subset of the offload set),
the replica is instead redirected and load balanced across
servers outside the offload set, as shown in the shaded re-
gions in Figure 4. Such redirection of non-primary repli-
cas reduces the write requests going to the servers in the
offload set and ensures that these servers store only the
primary replicas.

Fault tolerance and multi-volume support. The use
of an uneven data layout creates new problems for fault
tolerance and capacity utilization. For example, when a
primary server fails, the system may need to re-integrate
some non-primary servers to restore the primary repli-
cas onto a new server. SpringFS includes the data lay-
out refinements from Rabbit that minimize the number
of additional servers that must be re-activated if such fail-
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Figure 4: SpringFS data layout and its relationship with
previous designs. The offload set allows SpringFS to
achieve a dynamic tradeoff between the maximum write
performance and the cleanup work needed before ex-
tracting servers. In SpringFS, all primary replicas are
stored in the m servers of the offload set. The shaded re-
gions indicate writes of non-primary replicas that would
have gone to the offload set (in SpringFS) are instead
redirected and load balanced outside the set.

ure happens. Writes that would have gone to the failed
primary server are instead redirected to other servers in
the offload set to preserve system agility. Like Rabbit,
SpringFS also accommodates multi-volume data layouts
in which independent volumes use distinct servers as pri-
maries in order to allow small values of p without limit-
ing storage capacity utilization to 3p/N.

3.2 Passive Migration for Re-integration

When SpringFS tries to write a replica according to its
target data layout but the chosen server happens to be
inactive, it must still maintain the specified replication
factor for the block. To do this, another host must be
selected to receive the write. Availability offloading is
used to redirect writes that would have gone to inactive
servers (which are unavailable to receive requests) to the
active servers. As illustrated in Figure 5, SpringFS load
balances availability offloaded writes together with the
other writes to the system. This results in the availability
offloaded writes going to the less-loaded active servers
rather than adding to existing write bottlenecks on other
servers.

Because of availability offloading, re-integrating a
previously deactivated server is more than simply restart-
ing its software. While the server can begin servicing its
share of the write workload immediately, it can only ser-
vice reads for blocks that it stores. Thus, filling it accord-
ing to its place in the target equal-work layout is part of
full re-integration.

When a server is reintegrated to address a workload
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Figure 5: Availability offloading. When SpringFS works
in the power saving mode, some servers (n+1 to N) are
deactivated. The shaded regions show that writes that
would have gone to these inactive servers are offloaded
to higher numbered active servers for load balancing.

increase, the system needs to make sure that the active
servers will be able to satisfy the read performance re-
quirement. One option is to aggressively restore the
equal work data layout before reintegrated servers begin
servicing reads. We call this approach aggressive mi-
gration. Before anticipated workload increases, the mi-
gration agent would activate the right number of servers
and migrate some data to the newly activated servers so
that they store enough data to contribute their full share
of read performance. The migration time is determined
by the number of blocks that need to be migrated, the
number of servers that are newly activated, and the I/O
throughput of a single server. With aggressive migration,
cleanup work is never delayed. Whenever a resizing ac-
tion takes place, the property of the equal-work layout is
obeyed—server x stores no less than B

x blocks.
SpringFS takes an alternate approach called passive

migration, based on the observation that cleanup work
when re-integrating a server is not as important as when
deactivating a server (for which it preserves data avail-
ability), and that the total amount of cleanup work can
be reduced by delaying some fraction of migration work
while performance goals are still maintained (which
makes this approach better than aggressive migration).
Instead of aggressively fixing the data layout (by ac-
tivating the target number of servers in advance for a
longer period of time), SpringFS temporarily activates
more servers than would minimally be needed to satisfy
the read throughput requirement and utilizes the extra
bandwidth for migration work and to address the reduced
number of blocks initially on each reactivated server. The
number of extra servers that need to be activated is de-
termined in two steps. First, an initial number is cho-
sen to ensure that the number of valid data blocks still
stored on the activated servers is more than the fraction
of read workload they need to satisfy, so that the perfor-

mance requirement is satisfied. Second, the number may
be increased so that the extra servers provide enough I/O
bandwidth to finish a fraction (1/T , where T is the mi-
gration threshold as described below) of migration work.
To avoid migration work building up indefinitely, the mi-
gration agent sets a time threshold so that whenever a
migration action takes place, it is guaranteed to finish
within T minutes. With T > 1 (the default resizing inter-
val), SpringFS delays part of the migration work while
satisfying throughput requirement. Because higher num-
bered servers receive more writes than their equal-work
share, due to write offloading, some delayed migration
work can be replaced by future writes, which reduces the
overall amount of data migration. If T is too large, how-
ever, the cleanup work can build up so quickly that even
activating all the servers cannot satisfy the throughput
requirement. In practice, we find a migration threshold
T = 10 to be a good choice and use this setting for the
trace analysis in Section 5. Exploring automatic setting
of T is an interesting future work.

4 Implementation

SpringFS is implemented as a modified instance of
the Hadoop Distributed File System (HDFS), version
0.19.16. We build on a Scriptable Hadoop interface that
we built into Hadoop to allow experimenters to imple-
ment policies in external programs that are called by
the modified Hadoop. This enables rapid prototyping
of new policies for data placement, read load balancing,
task scheduling, and re-balancing. It also enables us to
emulate both Rabbit and SpringFS in the same system,
for better comparison. SpringFS mainly consists of four
components: data placement agent, load balancer, resiz-
ing agent and migration agent, all implemented as python
programs called by the Scriptable Hadoop interface.

Data placement agent. The data placement agent
determines where to place blocks according to the
SpringFS data layout. Ordinarily, when a HDFS client
wishes to write a block, it contacts the HDFS NameNode
and asks where the block should be placed. The
NameNode returns a list of pseudo-randomly chosen
DataNodes to the client, and the client writes the data
directly to these DataNodes. The data placement agent
starts together with the NameNode, and communicates
with the NameNode using a simple text-based protocol
over stdin and stdout. To obtain a placement deci-
sion for the R replicas of a block, the NameNode writes
the name of the client machine as well as a list of candi-

60.19.1 was the latest Hadoop version when our work started. We
have done a set of experiments to verify that HDFS performance dif-
fers little, on our experimental setup, between version 0.19.1 and the
latest stable version (1.2.1). We believe our results and findings are not
significantly affected by still using this older version of HDFS.
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date DataNodes to the placement agent’s stdin. The
placement agent can then filter and reorder the candi-
dates, returning a prioritized list of targets for the write
operation. The NameNode then instructs the client to
write to the first R candidates returned.

Load balancer. The load balancer implements the
read offloading policy and preferentially sends reads to
higher numbered servers that handle fewer write requests
whenever possible. It keeps an estimate of the load on
each server by counting the number of requests sent to
each server recently. Every time SpringFS assigns a
block to a server, it increments a counter for the server.
To ensure that recent activity has precedence, these coun-
ters are periodically decayed by 0.95 every 5 seconds.
While this does not give the exact load on each server,
we find its estimates good enough (within 3% off opti-
mal) for load balancing among relatively homogeneous
servers.

Resizing agent. The resizing agent changes
SpringFS’s footprint by setting an activity state for each
DataNode. On every read and write, the data placement
agent and load balancer will check these states and re-
move all “INACTIVE” DataNodes from the candidate
list. Only “ACTIVE” DataNodes are able to service reads
or writes. By setting the activity state for DataNodes,
we allow the resources (e.g., CPU and network) of “IN-
ACTIVE” nodes to be used for other activities with no
interference from SpringFS activities. We also modified
the HDFS mechanisms for detecting and repairing under-
replication to assume that “INACTIVE” nodes are not
failed, so as to avoid undesired re-replication.

Migration agent. The migration agent crawls the en-
tire HDFS block distribution (once) when the NameNode
starts, and it keeps this information up-to-date by modi-
fying HDFS to provide an interface to get and change the
current data layout. It exports two metadata tables from
the NameNode, mapping file names to block lists and
blocks to DataNode lists, and loads them into a SQLite
database. Any changes to the metadata (e.g., creating a
file, creating or migrating a block) are then reflected in
the database on the fly. When data migration is sched-
uled, the SpringFS migration agent executes a series of
SQL queries to detect layout problems, such as blocks
with no primary replica or hosts storing too little data. It
then constructs a list of migration actions to repair these
problems. After constructing the full list of actions, the
migration agent executes them in the background. To al-
low block-level migration, we modified the HDFS client
utility to have a “relocate” operation that copies a block
to a new server. The migration agent uses GNU Parallel
to execute many relocates simultaneously.

5 Evaluation

This section evaluates SpringFS and its offloading poli-
cies. Measurements of the SpringFS implementation
show that it provide performance comparable to unmod-
ified HDFS, that its policies improve agility by reduc-
ing the cleanup required, and that it can agilely adapt
its number of active servers to provide required perfor-
mance levels. In addition, analysis of six traces from real
Hadoop deployments shows that SpringFS’s agility en-
ables significantly reduced commitment of active servers
for the highly dynamic demands commonly seen in prac-
tice.

5.1 SpringFS prototype experiments

Experimental setup: Our experiments were run on a
cluster of 31 machines. The modified Hadoop software is
run within KVM virtual machines, for software manage-
ment purposes, but each VM gets its entire machine and
is configured to use all 8 CPU cores, all 8 GB RAM, and
100 GB of local hard disk space. One machine was con-
figured as the Hadoop master, hosting both the NameN-
ode and the JobTracker. The other 30 machines were
configured as slaves, each serving as an HDFS DataN-
ode and a Hadoop TaskTracker. Unless otherwise noted,
SpringFS was configured for 3-way replication (R = 3)
and 4 primary servers (p = 4).

To simulate periods of high I/O activity, and effec-
tively evaluate SpringFS under different mixes of I/O
operations, we used a modified version of the standard
Hadoop TestDFSIO storage system benchmark called
TestDFSIO2. Our modifications allow for each node to
generate a mix of block-size (128 MB) reads and writes,
distributed randomly across the block ID space, with a
user-specified write ratio.

Except where otherwise noted, we specify a file size
of 2GB per node in our experiments, such that the single
Hadoop map task per node reads or writes 16 blocks. The
total time taken to transfer all blocks is aggregated and
used to determine a global throughput. In some cases, we
break down the throughput results into the average aggre-
gate throughput of just the block reads or just the block
writes. This enables comparison of SpringFS’s perfor-
mance to the unmodified HDFS setup with the same re-
sources. Our experiments are focused primarily on the
relative performance changes as agility-specific param-
eters and policies are modified. Because the original
Hadoop implementation is unable to deliver the full per-
formance of the underlying hardware, our system can
only be compared reasonably with it and not the capa-
bility of the raw storage devices.

Effect of offloading policies: Our evaluation fo-
cuses on how SpringFS’s offloading policies affect per-
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Figure 6: Performance comparison of Rabbit with no of-
fload, original HDFS, and SpringFS with varied offload
set.

formance and agility. We also measure the cleanup work
created by offloading and demonstrate that SpringFS’s
number of active servers can be adapted agilely to
changes in workload intensity, allowing machines to be
extracted and used for other activities.

Figure 6 presents the peak sustained I/O bandwidth
measured for HDFS, Rabbit and SpringFS at different of-
fload settings. (Rabbit and SpringFS are identical when
no offloading is used.) In this experiment, the write ra-
tio is varied to demonstrate different mixes of read and
write requests. SpringFS, Rabbit and HDFS achieve sim-
ilar performance for a read-only workload, because in all
cases there is a good distribution of blocks and replicas
across the cluster over which to balance the load. The
read performance of SpringFS slightly outperforms the
original HDFS due to its explicit load tracking for bal-
ancing.

When no offloading is needed, both Rabbit and
SpringFS are highly elastic and able to shrink 87% (26
non-primary servers out of 30) with no cleanup work.
However, as the write workload increases, the equal-
work layout’s requirement that one replica be written
to the primary set creates a bottleneck and eventually
a slowdown of around 50% relative to HDFS for a
maximum-speed write-only workload. SpringFS pro-
vides the flexibility to tradeoff some amount of agility for
better write throughput under periods of high write load.
As the write ratio increases, the effect of SpringFS’s of-
floading policies becomes more visible. Using only a
small number of offload servers, SpringFS significantly
reduces the amount of data written to the primary servers
and, as a result, significantly improves performance over
Rabbit. For example, increasing the offload set from four
(i.e., just the four primaries) to eight doubles maximum
throughput for the write-only workload, while remain-
ing agile—the cluster is still able to shrink 74% with no
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Figure 7: Cleanup work (in blocks) needed to reduce
active server count from 30 to X, for different offload
settings. The “(offload=6)”, “(offload=8)” and “(of-
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write offloading. The “(offload=30)” line corresponds to
Rabbit using Everest-style write offloading. Deactivat-
ing only non-offload servers requires no block migration.
The amount of cleanup work is linear in the number of
target active servers.

cleanup work.
Figure 7 shows the number of blocks that need to

be relocated to preserve data availability when reducing
the number of active servers. As desired, SpringFS’s
data placements are highly amenable to fast extrac-
tion of servers. Shrinking the number of nodes to a
count exceeding the cardinality of the offload set re-
quires no clean-up work. Decreasing the count into the
write offload set is also possible, but comes at some
cost. As expected, for a specified target, the cleanup
work grows with an increase in the offload target set.
SpringFS with no offload reduces to the based equal-
work layout, which needs no cleanup work when ex-
tracting servers but suffers from write performance bot-
tlenecks. The most interesting comparison is Rabbit’s
full offload (offload=30) against SpringFS’s full offload
(offload=10). Both provide the cluster’s full aggregate
write bandwidth, but SpringFS’s offloading scheme does
it with much greater agility—66% of the cluster could
still be extracted with no cleanup work and more with
small amounts of cleanup. We also measured actual
cleanup times, finding (not surprisingly) that they cor-
relate strongly with the number of blocks that must be
moved.

SpringFS’s read offloading policy is simple and re-
duces the cleanup work resulting from write offloading.
To ensure that its simplicity does not result in lost oppor-
tunity, we compare it to the optimal, oracular schedul-
ing policy with claircognizance of the HDFS layout. We
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use an Integer Linear Programming (ILP) model that
minimizes the number of reads sent to primary servers
from which primary replica writes are offloaded. The
SpringFS read offloading policy, despite its simple re-
alization, compares favorably and falls within 3% from
optimal on average.

Agile resizing in SpringFS: Figure 8 illustrates
SpringFS’s ability to resize quickly and deliver required
performance levels. It uses a sequence of three bench-
marks to create phases of workload intensity and mea-
sures performance for two cases: “SpringFS (no resiz-
ing)” where the full cluster stays active throughout the
experiment and “SpringFS (resizing)” where the system
size is changed with workload intensity. As expected,
the performance is essentially the same for the two cases,
with a small delay observed when SpringFS re-integrates
servers for the third phase. But, the number of machine
hours used is very different, as SpringFS extracts ma-
chines during the middle phase.

This experiment uses a smaller setup, with only 7
DataNodes, 2 primaries, 3 in the offload set, and 2-
way replication. The workload consists of 3 consecu-
tive benchmarks. The first benchmark is a TestDFSIO2
benchmark that writes 7 files, each 2GB in size for a total
of 14GB written. The second benchmark is one SWIM
job [9] randomly picked from a series of SWIM jobs syn-
thesized from a Facebook trace which reads 4.2GB and
writes 8.4GB of data. The third benchmark is also a
TestDFSIO2 benchmark, but with a write ratio of 20%.
The TestDFSIO2 benchmarks are I/O intensive, whereas
the SWIM job consumes only a small amount of the full
I/O throughput. For the resizing case, 4 servers are ex-
tracted after the first write-only TestDFSIO2 benchmark
finishes (shrinking the active set to 3), and those servers
are reintegrated when the second TestDFSIO2 job starts.
In this experiment, the resizing points are manually set
when phase switch happens. Automatic resizing can
be done based on previous work on workload predic-
tion [6, 12, 14].

The results in Figure 8 are an average of 10 runs
for both cases, shown with a moving average of 3 sec-
onds. The I/O throughput is calculated by summing read

throughput and write throughput multiplied by the repli-
cation factor. Decreasing the number of active SpringFS
servers from 7 to 3 does not have an impact on its per-
formance, since no cleanup work is needed. As ex-
pected, resizing the cluster from 3 nodes to 7 imposes
a small performance overhead due to background block
migration, but the number of blocks to be migrated is
very small—about 200 blocks are written to SpringFS
with only 3 active servers, but only 4 blocks need to be
migrated to restore the equal-work layout. SpringFS’s
offloading policies keep the cleanup work small, for
both directions. As a result, SpringFS extracts and re-
integrates servers very quickly.

5.2 Policy analysis with real-world traces

This subsection evaluates SpringFS in terms of machine-
hour usage with real-world traces from six industry
Hadoop deployments and compares it against three other
storage systems: Rabbit, Sierra, and the default HDFS.
We evaluate each system’s layout policies with each
trace, calculate the amount of cleanup work and the esti-
mated cleaning time for each resizing action, and sum-
marize the aggregated machine-hour usage consumed
by each system for each trace. The results show that
SpringFS significantly reduces machine-hour usage even
compared to the state-of-the-art elastic storage systems,
especially for write-intensive workloads.

Trace overview: We use traces from six real Hadoop
deployments representing a broad range of business
activities, one from Facebook and five from different
Cloudera customers. The six traces are described and
analyzed in detail by Chen et al. [8]. Table 1 summa-
rizes key statistics of the traces. The Facebook trace
(FB) comes from Hadoop DataNode logs, each record
containing timestamp, operation type (HDFS READ or
HDFS WRITE), and the number of bytes processed.
From this information, we calculate the aggregate HDFS
read/write throughput as well as the total throughput,
which is the sum of read and write throughput multi-
plied by the replication factor (3 for all the traces). The
five Cloudera customer traces (CC-a through CC-e, us-
ing the terminology from [8]) all come from Hadoop job
history logs, which contain per-job records of job dura-
tion, HDFS input/output size, etc. Assuming the amount
of HDFS data read or written for each job is distributed
evenly within the job duration, we also obtain the aggre-
gated HDFS throughput at any given point of time, which
is then used as input to the analysis program.

Trace analysis and results: To simplify calcula-
tion, we make several assumptions. First, the maximum
measured total throughput in the traces corresponds to
the maximum aggregate performance across all the ma-
chines in the cluster. Second, the maximum throughput
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Table 1: Trace summary. CC is “Cloudera Customer”
and FB is “Facebook”. HDFS bytes processed is the sum
of HDFS bytes read and HDFS bytes written.

Trace Machines Date Length Bytes
processed

CC-a <100 2011 1 month 69TB
CC-b 300 2011 9 days 473TB
CC-c 700 2011 1 month 13PB
CC-d 400-500 2011 2.8 months 5PB
CC-e 100 2011 9 days 446TB
FB 3000 2010 10 days 10.5PB

a single machine can deliver, not differentiating reads
and writes, is derived from the maximum measured to-
tal throughput divided by the number of machines in the
cluster. In order to calculate the machine hour usage for
each storage system, the analysis program needs to de-
termine the number of active servers needed at any given
point of time. It does this in the following steps: First, it
determines the number of active servers needed in the
imaginary “ideal” case, where no cleanup work is re-
quired at all, by dividing the total HDFS throughput by
the maximum throughput a single machine can deliver.
Second, it iterates through the number of active servers
as a function of time. For each decrease in the active
set of servers, it checks for any cleanup work that must
be done by analyzing the data layout at that point. If
any cleanup is required, it delays resizing until the work
is done or the performance requirement demands an in-
crease of the active set, to allow additional bandwidth
for necessary cleanup work. For increases in the active
set of servers, it turns on some extra servers to satisfy
the read throughput and uses the extra bandwidth to do a
fraction of migration work, using the passive migration
policy (for all the systems) with the migration threshold
set to be T=10.

Figures 9 and 10 show the number of active servers
needed, as a function of time, for the 6 traces. Each
graph has 4 lines, corresponding to the “ideal” storage
system, SpringFS, Rabbit and Sierra, respectively. We
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Figure 10: Traces: CC-a, CC-b, CC-c, CC-d, and CC-e

do not show the line for the Default HDFS, but since it is
not elastic, its curve would be a horizontal line with the
number of active servers always being the full cluster size
(the highest value on the Y axis). While the original trace
durations range from 9 days to 2.8 months, we only show
a 4-hour-period for each trace for clarity. We start trace
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replaying more than 3 days before the 4-hour period, to
make sure it represents the situation when systems are in
a steady state and includes the effect of delaying migra-
tion work.

As expected, SpringFS exhibits better agility than
Rabbit, especially when shrinking the size of the clus-
ter, since it needs no cleanup work until resizing down to
the offload set. Such agility difference between SpringFS
and Rabbit is shown in Figure 9 at various points of
time (e.g., at minute 110, 140, and 160). The gap be-
tween the two lines indicates the number of machine
hours saved due to the agility-aware read and bounded
write policies used in SpringFS. SpringFS also achieves
lower machine-hour usage than Sierra, as confirmed in
all the analysis graphs. While a Sierra cluster can shrink
down to 1/3 of its total size without any cleanup work,
it is not able to further decrease the cluster size. In con-
trast, SpringFS can shrink the cluster size down to ap-
proximately 10% of the original footprint. When I/O ac-
tivity is low, the difference in minimal system footprint
can have a significant impact on the machine-hour us-
age (e.g., as illustrated in Figure 10(b), Figure 10(c) and
Figure 10(e)). In addition, when expanding cluster size,
Sierra incurs more cleaning overhead than SpringFS, be-
cause deactivated servers need to migrate more data to
restore its even data layout. These results are summa-
rized in Figure 11, which shows the extra number of
machine hours used by each storage system, compared
and normalized to the ideal system. In these traces,
SpringFS outperforms the other systems by 6% to 120%.
For the traces with a relatively high write ratio, such
as the FB, CC-d and CC-e traces, SpringFS is able to
achieve a “close-to-ideal” (within 5%) machine-hour us-
age. SpringFS is less close to ideal for the other three
traces because they frequently need even less than the
13% primary servers that SpringFS cannot deactivate.

Figure 12 summarizes the total amount of data mi-
grated by Rabbit, Sierra and SpringFS while running
each trace. With bounded write offloading and read of-
floading, SpringFS is able to reduce the amount of data
migration by a factor of 9–208, as compared to Rabbit.
SpringFS migrates significantly less data than Sierra as
well, because data migrated to restore the equal-work
data layout is much less than that to restore an even data
layout.

All of the trace analysis above assumes passive mi-
gration during server reintegration for all three systems
compared, since it is useful to all of them. To evaluate the
advantage of passive migration, specifically, we repeated
the same trace analysis using the aggressive migration
policy. The results show that passive migration reduces
the amount of data migrated, relative to aggressive mi-
gration, by 1.5–7× (across the six traces) for SpringFS,
1.2–5.6× for Sierra, and 1.2–3× for Rabbit. The bene-
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Figure 12: Total data migrated for Rabbit, Sierra and
SpringFS, normalized to results for Rabbit.

fit for Sierra and SpringFS is more significant, because
their data migration occurs primarily during server re-
integration.

6 Conclusion

SpringFS is a new elastic storage system that fills the
space between state-of-the-art designs in the tradeoff
among agility, elasticity, and performance. SpringFS’s
data layout and offloading/migration policies adapt to
workload demands and minimize the data redistribution
cleanup work needed for elastic resizing, greatly increas-
ing agility relative to the best previous elastic storage de-
signs. As a result, SpringFS can satisfy the time-varying
performance demands of real environments with many
fewer machine hours. Such agility provides an impor-
tant building block for resource-efficient data-intensive
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computing (a.k.a. Big Data) in multi-purpose clouds with
competing demands for server resources.

There are several directions for interesting future
work. For example, the SpringFS data layout assumes
that servers are approximately homogeneous, like HDFS
does, but some real-world deployments end up with het-
erogeneous servers (in terms of I/O throughput and ca-
pacity) as servers are added and replaced over time. The
data layout could be refined to exploit such heterogene-
ity, such as by using more powerful servers as primaries.
Second, SpringFS’s design assumes a relatively even
popularity of data within a given dataset, as exists for
Hadoop jobs processing that dataset, so it will be inter-
esting to explore what aspects change when addressing
the unbalanced access patterns (e.g., Zipf distribution)
common in servers hosting large numbers of relatively
independent files.
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