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1 INTRODUCTION
A common feature of computer systems is that block granularity
changes at different levels of the storage hierarchy. This paper
presents the first study of how granularity change affects caching.
We define the Block-Granularity-Aware (BGA) Caching Model, prove
new adversarial competitive bounds for the problem, and develop
an online BGA caching policy with a better competitive ratio than
traditional cache policies in this setting.
Why does block granularity change? Given that a large and
fast memory does not exist, real systems make use of a hierarchy
ranging from small, fast memories to larger and slower storage
devices [14]. Each level of the storage hierarchy organizes its data in
blocks to simplify management and reduce overheads. For example,
SRAM caches typically consist of 64 B “lines”, DRAM of 2-4 KB
“rows”, and flash/disk of 4 KB “pages”.1

Most caches today ignore granularity change and only load data
of their own granularity. But this misses an opportunity to load
some or all of the larger-granularity block at minimal cost (see
Figure 1), as the lower level has already fetched the entire block.
Motivated by this observation, we ask: What caching opportunities
and challenges are introduced by granularity change?
What does prior caching work say about block granularity?
The original caching problem is well studied and understood. Be-
lady [4] and Mattson [19] separately devised optimal solutions
for caching with unit-size, unit-cost items. Sleator and Tarjan [27]
provided both lower and upper bounds for the cost ratio when
1In fact, there can be different granularities for reads and writes, e.g., “erase blocks” in
flash can be many MBs. We focus on reads in this work.
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Figure 1: In the BGACaching Problem, caches can choosewhat subset
of the larger-granularity block from the level below them to load.

comparing the performance of online caches, which must make de-
cisions as requests arrive, against offline caches, which are allowed
to view the entire trace when making decisions. Fiat et al. [13]
extended this work to randomized algorithms and showed ways of
approximating online policies using other online policies.

Other variants of caching have been considered, and considerable
work has been done on complexity and algorithms for these vari-
ants [1, 3, 6, 9, 11, 32]. Caching with variable-size items [5, 10, 33]
appears to be similar to BGA Caching, since one could think of
different subsets of a block as differently sized items. The critical
difference is that, unlike in variable-size caching, items in a block
can be accessed, cached, and evicted individually. In BGA Caching,
choosing which items to load is an additional dimension with sig-
nificant impact on performance. To our knowledge, there is no prior
theoretical work that accounts for granularity change.

The systems community uses several approaches to handle gran-
ularity change. There is work on scheduling memory controllers at
granularity boundaries [12, 22, 23, 35–37], address mapping tech-
niques [18, 29, 31, 34], row-buffer management [21, 24, 28, 30], and
item-to-block allocation [2, 7, 8, 25]. The most relevant of these
works are DRAM caches that account for granularity change by
taking some or all of the larger-granularity block into the smaller-
granularity cache on loads [16, 17, 26]. We provide the first theo-
retical framework to better understand and guide these designs.
Contributions.We investigate the effects of granularity change on
caching. Our results include: (i) We develop a model for caching at
a granularity boundary, called the Block-Granularity-Aware (BGA)
Caching Problem; (ii) We show that the Offline BGA Caching Prob-
lem is NP-Complete; (iii) We provide a lower bound on the compet-
itive ratio of deterministic replacement policies in BGA Caching;
(iv) We design and analyze Item-Block Layered Partitioning, a prac-
tical BGA caching policy, and we prove an upper bound that is much
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tighter than any policy that considers only a single granularity. For
a more in-depth discussion of our results, see [20].

2 THE MODEL
The Block-Granularity-Aware Caching Model consists of a single
level of memory (cache) that receives a series of requests, referred
to as accesses, to data items. If the item is in the cache, then the
request is served and the cache is not charged. If the item is not in
the cache, then the cache must load the item from the subsequent
level of memory or storage. If this load causes the amount of data
in cache to exceed the cache size 𝑘 , then items must be evicted from
the cache to remedy the situation.

Whatmakes the Block-Granularity-Aware CachingModel unique
is that the universe of items is partitioned into blocks of up to 𝐵

items. When the cache loads data from storage, it can load any
subset of the block for unit cost; i.e., items after the first are “free”
(𝐵=3 in Figure 1). When each item is in a different block, this model
exactly matches the traditional caching model.

The blocks represent the larger data granularity used by the
subsequent level of the memory hierarchy. In such systems, there
is typically a small memory buffer used to handle data as it is being
read or written. The cost of moving data from bulk storage into
this buffer is typically large relative to the cost of operating on the
buffer itself. Hence, once items are brought into the buffer, they can
be accessed at low cost, motivating our model [14, 15].

Definition 2.1. In the Block-Granularity-Aware Caching Problem,
we are given (i) a cache of size 𝑘 , (ii) an (online or offline) trace 𝜎 of
requests to items, and (iii) a partitioning of the items into disjoint
blocks (sets) such that no partition contains more than 𝐵 items.
Starting with an empty cache, the goal is to minimize the number
of times that an item is not present in the cache when requested in
𝜎 . When a requested item is not in cache, any subset of that item’s
block can be loaded, so long as the subset contains the item.

Locality vs. traditional caching models. In traditional caching
models, all hits come from temporal locality, i.e., when an item
remains in cache between subsequent accesses. In BGA Caching,
hits can also come from spatial locality, i.e., when an item 𝐼 is in
cache due to an earlier access to a different item in the same block.
(Any hits to item 𝐼 beyond the first are due to temporal locality,
since 𝐼 would have been brought in cache anyway.)
Baseline policies. We consider two baseline cache designs. An
Item Cache loads only the requested item from a block; i.e., it is a
traditional cache. By contrast, a Block Cache loads all the items in
a requested block and also evicts them together; i.e., it increases
the cache’s granularity to operate on blocks instead of items. Item
Caches perform well on temporal locality and poorly on spatial
locality, whereas Block Caches are the opposite.

3 COMPLEXITY ANALYSIS
We show that the Block-Granularity-Aware Caching Problem is
NP-Complete using a reduction from variable-size caching.

Theorem 3.1. The Offline BGA Caching Problem is NP-Complete.

We are able to simulate variable-size items using multiple items
from the same block accessed consecutively. By repeating these ac-
cess sequences, we force the optimal solution to load all used items

Point Sleator-Tarjan Bound BGA Lower Bound BGA Upper Bound

Constant Augmentation 𝑘 = 2ℎ ⇒ 2× 𝑘 ≈ 2ℎ ⇒ 𝐵 × 𝑘 ≈ 2ℎ ⇒ 2𝐵 ×
Ratio = Augmentation 𝑘 = 2ℎ ⇒ 2× 𝑘 ≈

√
𝐵ℎ ⇒

√
𝐵 × 𝑘 ≈

√
2𝐵ℎ ⇒

√
2𝐵 ×

Constant Ratio 𝑘 = 2ℎ ⇒ 2× 𝑘 ≈ 𝐵ℎ ⇒ 2× 𝑘 ≈ 𝐵ℎ ⇒ 3×
Table 1: Salient bounds for online cache size 𝑘 and optimal cache
size ℎ, shown as: Augmentation ⇒ Competitive Ratio. Compared
to traditional caching, the spatial locality in BGA Caching adds a
penalty ofΘ(𝐵)× to the product of competitive ratio× augmentation.

Figure 2: Comparing bounds in the BGA Caching Problem. The 𝑥-
axis is the optimal cache size ℎ, and the 𝑦-axis is the competitive
ratio. Online cache size 𝑘 = 1.28𝑀 and block size 𝐵 = 64.

in the block. The optimal solution to the generated instance can
easily be translated into an optimal solution to the input instance.

4 COMPETITIVE LOWER BOUND
Theorem 4.1. The competitive ratio of any deterministic policy

is at least (𝑘 + (𝐵 − 1) (ℎ − 1))/(𝑘 − ℎ + 1) where 𝑘 is the size of the
online cache and ℎ ≤ 𝑘 − 𝐵 + 1 is the size of the optimal cache.

For large caches with large blocks (𝑘 > ℎ ≫ 𝐵 ≫ 1), the
lower bound is roughly (𝑘 + 𝐵ℎ)/(𝑘 − ℎ). As seen in Figure 2,
this bound is much greater than the Sleator-Tarjan [27] bound,
meaning that the gap between online and offline policies is larger
in BGA Caching than in traditional caching. The difference from
the traditional bound is the 𝐵ℎ/(𝑘 − ℎ) term. The gap starts at a
multiplicative factor of nearly 𝐵× when 𝑘 ≈ ℎ (since the 𝐵ℎ term
dominates), and tapers off, hitting 2× when 𝑘 ≈ 𝐵ℎ. Table 1 gives
three salient points of comparison for the Sleator-Tarjan bound, our
lower bound, and our upper bound: constant factor augmentation,
the point where the augmentation meets the competitive ratio, and
constant competitive ratio. These results show that, compared to
traditional caching, the introduction of spatial locality increases
the gap between online and offline policies by 𝐵×, which can be
spread between the competitive ratio and the augmentation factor.

An additional insight that we gain from our lower bound (see [20]
for more details) is that in order to maximize performance, policies
should load the entire block to take advantage of spatial locality,
but evict items individually to take advantage of temporal locality
by favoring those that have been accessed over those that have not.

5 COMPETITIVE UPPER BOUND
5.1 Policy Description
Our policy, Item-Block Layered Partitioning (IBLP), divides the
available space into two different layers of cache. The first layer
serves each access to the cache by loading only the items that are
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accessed. The second layer only serves accesses that miss in the
first layer, but loads and evicts at the granularity of entire blocks at
a time. We refer to these layers as the item layer and block layer,
respectively, and define their sizes as 𝑖 and 𝑏. Both layers perform
evictions using the Least-Recently Used (LRU) replacement policy.

5.2 The Upper Bound
Theorem 5.1. The competitive ratio of IBLP is upper bounded by:{ (𝑏+𝐵 (2𝑖−1))2

8𝐵 (𝐵+𝑏) (𝑖−ℎ) 𝑖 ≤ 2𝐵𝑏−𝑏+2𝐵2+𝐵
2𝐵

2𝐵𝑖−𝐵𝑏+𝑏−𝐵2−𝐵
2𝑖−2ℎ 𝑖 > 2𝐵𝑏−𝑏+2𝐵2+𝐵

2𝐵

where 𝑖 ≥ ℎ is the size of the item layer, 𝑏 is the size of the block layer,
and ℎ is the size of the optimal cache.

We use this bound to partition the cache space between layers.
Known optimal size.When the size of the optimal cache is known,
the optimal layer sizes can be directly computed. When 𝑘 ≥ (3𝐵ℎ −
ℎ − 𝐵2 − 𝐵)/(𝐵 − 1), this results in:

Ratio =
(𝑘 + 𝐵 − 1) (𝑘 − ℎ + 𝐵(2ℎ − 1))

(𝑘 − ℎ + 𝐵)2

𝑖 =
𝑘2 + 4𝐵ℎ𝑘 − ℎ𝑘 + 4𝐵2ℎ − 3𝐵ℎ − 𝐵2

2𝐵𝑘 + 𝑘 + 2𝐵ℎ − ℎ + 2𝐵2 − 3𝐵
For smaller 𝑘 values, setting 𝑖 = 𝑘 (i.e., operating as an Item Cache)
provides the minimum competitive ratio of:

2𝐵𝑘 − 𝐵2 − 𝐵

2(𝑘 − ℎ)
This transition occurs at the point where the competitive ratio due
to temporal locality exceeds the maximum competitive ratio that
can be achieved due to spatial locality (𝐵×). In other words, for small
𝑘 values (relative to ℎ), temporal locality dominates performance.

Again considering large caches with large blocks (𝑘 > ℎ ≫ 𝐵 ≫
1), we see that the ratio is roughly 𝑘 (𝑘+2𝐵ℎ)

(𝑘−ℎ)2 if 𝑘 ≥ 3ℎ and 𝐵𝑘
𝑘−ℎ if

𝑘 < 3ℎ.
Figure 2 shows how this upper bound compares to the lower

bound, as well as single-granularity caches of the same size running
LRU. IBLP outperforms the small-granularity Item Cache for 𝑘 ≈ 3ℎ
and larger, and it outperforms the large-granularity Block Cache for
𝑘 ≈ 4𝐵ℎ and smaller. In addition, IBLP performs close to optimal for
all values of 𝑘 , whereas the performance of the baselines degrades
severely outside of their ideal performance conditions.

Table 1 shows how this bound compares to traditional caching
and our lower bound. Our upper bound has roughly the same
penalty to augmentation and competitive ratio as our lower bound,
differing by at most a multiplicative factor of 3×.
Unknown optimal size. The optimal layer sizes in IBLP depend
on the size of the optimal cache ℎ being compared against. For any
fixed layer sizes, the competitive ratio will be optimal at only one
value of ℎ, but show significant degradation for larger ℎ and limited
improvement for smaller ℎ.

This dependency is unique amongst known caching problems.
Unlike other caching problems, the competitive ratios due to tempo-
ral locality and spatial locality are different functions of the optimal
cache size. As a result, the relative performance of traces changes
depending on optimal cache size, which results in different values

of ℎ having different worst-case traces. This suggests that a full un-
derstanding of the BGA Caching Problem requires analysis beyond
competitive ratios.
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