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ABSTRACT
Storage services in data centers continuously make decisions, such as for cache admission, prefetching, and block
allocation. These decisions are typically driven by heuristics based on statistical properties like temporal locality
or common file sizes. The quality of decisions can be improved through application-level information such as
the database operation a request belongs to. While such features can be exploited through application hints (e.g.,
explicit prefetches), this process requires manual work and is thus only viable for the most tuned workloads.

In this work, we show how to leverage application-level information automatically, by building on distributed
traces that are already available in warehouse-scale computers. As these traces are used for diagnostics and
accounting, they contain information about requests, including those to storage services. However, this information
is mostly unstructured (e.g., arbitrary text) and thus difficult to use. We demonstrate how to do so automatically
using machine learning, by applying ideas from natural language processing.

We show that different storage-related decisions can be learned from distributed traces, using models ranging from
simple clustering techniques to neural networks. Instead of designing specific models for different storage-related
tasks, we show that the same models can be used as building blocks for different tasks. Our models improve
prediction accuracy by 11-33% over non-ML baselines, which translates to significantly improving the hit rate of
a caching task, as well as improvements to an SSD/HDD tiering task, on production data center storage traces.

1 INTRODUCTION

Modern data centers contain a myriad of different storage
systems and services, from distributed file systems (Howard
et al., 1988; Ghemawat et al., 2003; Weil et al., 2006;
Shvachko et al., 2010), to in-memory caching services (Fitz-
patrick, 2004) and databases (Stonebraker & Kemnitz, 1991;
Corbett et al., 2013). These services typically operate be-
hind an RPC abstraction and are accessed by workloads that
are composed of interconnected services communicating
through RPCs (Gan et al., 2019a).

Storage services continuously make decisions that aim to
optimize metrics such as cache hit rate or disk footprint. To
make these decisions, the systems need to make predictions
about future workload and system behavior. For example,
caches admit objects based on their likelihood of future
access (Beckmann & Sanchez, 2017; Jaleel et al., 2010),
and block allocators reduce fragmentation by colocating
allocations of comparable lifetime (Kim et al., 2018).
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Traditionally, storage systems rely on heuristics for these de-
cisions, such as LRU replacement policies or best-fit alloca-
tion. These heuristics exploit statistical workload properties
like temporal or spatial locality, but are unable to leverage
application-level signals, such as whether or not a request be-
longs to a temporary file. While systems can communicate
hints to the storage system (e.g., using prefetch commands
or non-temporal stores), manually assigning these hints is
brittle, work-intensive and incurs technical debt. As such,
they are most commonly used in highly tuned workloads.
To apply such optimizations to the long tail of data center
workloads (Kanev et al., 2016), we need to automate them.

We observe that in many cases, high-level information is
already available in the system, as part of distributed tracing
frameworks (Sigelman et al., 2010; Barham et al., 2003)
and resource managers (Park et al., 2018; Cortez et al.,
2017) that are widely deployed in data centers. Distributed
traces, job names, permission names, etc. are generated
automatically as part of the system’s regular operation and
encapsulate human-defined structure and information.

In this work, we are looking at a specific instance of this
approach using a deployed production distributed tracing
framework, Census (OpenCensus, 2020). Census provides
a tagging API that applications use to generate arbitrary
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Figure 1. Distributed tracing tags contain unstructured application
information that can be leveraged to make storage predictions.

key-value pair strings (Census Tags) that are automatically
propagated with outgoing requests. These tags can be used
to understand complex workload interactions, and for re-
source accounting. A side effect is that incoming requests
now come with rich context that encodes the path taken to
the storage system, which the system can leverage.

However, this data does not always have an explicit schema
or directly encode the information required by the storage
system. For instance, consider a hypothetical example of
databases with two different configurations A and B, which
are listed in a configuration string attached to each storage
request (Figure 1). A has a garbage collection interval of
5 minutes while B has 5 hours. A caching service could
leverage this information by only caching requests from
the service with configuration A. However, this information
is not readily available: The service needs to know that it
needs to check the configuration string for the presence of
A or B in a particular location, and which requests to drop.

Instead of explicitly encoding these rules, we learn them
from historical trace data. We present several techniques,
ranging from lookup tables to neural networks that lever-
age recent progress in natural language processing. A key
challenge is that models become stale over time and do not
transfer to new settings (e.g., a new storage system or clus-
ter). The reason is that the model jointly has to learn 1) how
to extract information from distributed traces and 2) how
this information translates to predictions in a storage system.
If the storage system changes, both need to be relearned
from scratch. We therefore introduce a model that can be
used in a multi-task learning setting, where a model can be
used as a building block in different task-specific models.

We make the following contributions: 1) We demonstrate
the connection between distributed tracing and storage-layer
prediction tasks (Section 2) and show that strong predic-
tive performance relies on leveraging the latent structure
of unstructured distributed traces (Section 3). 2) We show
that several important (and traditionally separate) storage
tasks - such as cache admission/eviction, file lifetime, and
file size prediction - can be learned by the same models
from application-level features. 3) We present models of
increasing complexity (Section 4) that represent different
deployment strategies, and analyze their trade-offs. 4) We
show that our models are robust to workload distribution
shifts and improve prediction accuracy by 11-33% over non-
ML baselines, for a range of storage tasks, improving both
a caching and an SSD/HDD tiering task substantially in
simulations based on production traces (Section 6).

2 BACKGROUND & RELATED WORK

Data Center Storage Systems. We use a broad defini-
tion of what constitutes a storage system. We consider any
service within a warehouse-scale computer that holds data,
either on persistent storage (e.g., databases, distributed file
systems) or in-memory (e.g., key-value stores). Such ser-
vices exist at different levels of the storage stack: managing
physical storage (e.g., storage daemons in Ceph (Weil et al.,
2006) or D file servers (Serenyi, 2017)), running at the file
system level (e.g., HDFS (Shvachko et al., 2010)) or storing
structured data (e.g., Bigtable (Chang et al., 2008)). One
storage system may call into another. We assume that re-
quests to the service are received as RPCs with attached
metadata, such as the request originator, user or job names,
priorities, or other information.

Prediction in Storage Systems. Storage systems employ
various forms of prediction based on locally observable
statistics. These predictions are often implicitly encoded in
the heuristics that these systems use to make decisions. For
example, LRU caches make admission decisions by implic-
itly predicting diminishing access probability as the time
since previous access increases, while FIFO-TTL caches
evict objects assuming a uniform TTL.

While such policies can model a broad range of workload
patterns, they have limitations. First, a single heuristic may
have difficulties modeling a mixture of workloads with dif-
ferent access properties, which it is more likely to encounter
in warehouse-scale computers where storage services re-
ceive a diverse mix of requests resulting from complex
interactions between systems. Second, they are limited
by their inability to distinguish between requests based on
application-level information. For example, while tradi-
tional caching approaches can distinguish between read and
write requests, they do not typically distinguish based on
what application-level operation the request corresponds to.

Application-Level Information in Systems. Using high-
level features in storage systems is not a new idea. However,
most mechanisms require that the application developer
explicitly provides hints. A less explored alternative is to
extract such high-level information from the application
itself. Recent work has demonstrated a similar approach
for cluster scheduling (Park et al., 2018), by predicting a
job’s runtime from features such as user, program name,
etc. While cluster schedulers have a host of such features
available at the time of scheduling a job, exploiting such
information in storage systems is more challenging, since
the predictive features are not readily available. For example,
a storage request may be the result of a user contacting a
front-end server, which calls into a database service, which
runs a query and in turn calls into a disk server. Features
may have been accumulated anywhere along this path.
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The same challenges that make it difficult to reason about
storage requests make it difficult to monitor, measure and
debug distributed systems in general. For this reason, data
centers have long employed distributed tracing frameworks
(Sigelman et al., 2010; Barham et al., 2003), which track the
context of requests between systems. Distributed traces thus
present an opportunity to leverage application-level features
for predicting workload behavior. Unfortunately, the data
gathered by these systems can be difficult to exploit, due to
its high dimensionality and unstructured nature.

ML for Data Center Systems. The promise of ML for
storage-related tasks is its ability to learn useful representa-
tions from large amounts of unstructured data. For example,
Gan et al. (2019b) showed that it is possible to use traces
to predict QoS violations before they occur. Different tech-
niques have been proposed. For example, cheap clustering
techniques (Park et al., 2018; Cortez et al., 2017) and collab-
orative filtering (Delimitrou & Kozyrakis, 2014) have been
shown to work well for cluster scheduling while the afore-
mentioned work on distributed traces relies on LSTM neural
networks (Hochreiter & Schmidhuber, 1997). It is important
to distinguish between ML for predictions/forecasting and
ML for decision making. Prior work on applying ML to
storage systems has sought to optimize the latter, such as
learning caching policies (Kirilin et al., 2019; Song et al.,
2020; Liu et al., 2020); these works improve upon heuristics
while using conventional features. In contrast, we use ML to
enable the use of more complex, application-level features.

Connection to Multi-Task Learning. Storage systems in
data centers feature a wide range of settings. For example,
caches within different systems behave differently, which
means that their predictions differ as well. Decisions can
also differ across database instances, or based on the hard-
ware they run on. As a result, prediction in storage systems
does not require training a single model but a myriad of
them. Some systems even need to make multiple decisions
simultaneously (e.g., lifetime and file size on file creation).
This indicates that it is beneficial to share models between
tasks, an approach known as multi-task learning (MTL).

There has been a large amount of work on MTL. Many
advances in areas such as natural language processing and
computer vision have come from using large amounts of
data to learn general models that transfer better to new tasks.
Among NLP’s recent successes are the learning of general
Transformer models (Vaswani et al., 2017), such as GPT-2
(Radford et al., 2019) and BERT (Devlin et al., 2018).

Usually, MTL datasets do not have a complete set of labels
for each task, but are often multiple datasets (with possibly
disjoint task labels) that share a common input feature space.
As such, MTL is a natural fit for learning multiple storage
tasks from shared distributed traces.
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Figure 2. Census tags are free-form key-value pairs that are added
by services and propagated with subsequent requests.

3 WORKLOAD ANALYSIS WITH CENSUS

In this section, we describe how the information contained
in distributed traces relates to prediction tasks in storage
systems, and analyze their statistical properties.

3.1 Distributed Traces and OpenCensus

Data center applications are composed of services that com-
municate via message passing (Gan et al., 2019a). Ser-
vices often have multiple clients using them (e.g., different
services accessing a database) and rely on multiple differ-
ent downstream services (e.g., the database service might
connect to storage servers and an authentication service).
This makes analysis and resource accounting challenging:
Should a request to a database be attributed to the database
or one of the upstream services using it?

Census (OpenCensus, 2020) is a distributed tracing library
that provides insights into such systems. It tags requests as
they travel through the system (Figure 2). Census allows
services to set key-value pairs (Census Tags) that are auto-
matically propagated and allow a service to determine the
context of each request that it receives (e.g., for resource ac-
counting). These tags are set through an API by the service
developers themselves, while being oblivious to tags added
by downstream services. One of the insights of our work
is that this same information represents powerful features
for reasoning about the distributed system: Existing tags al-
ready capture properties of the workload that a programmer
deemed important, and programmers could select new tags
based on what they believe would be predictive features.

Some examples of Census tags are shown in Table 1 (obfus-
cated but based on real values). While this captures some
common cases, this list is not exhaustive. Some Census
Tags have low cardinality (they either take on a small num-
ber of values or their main information is in their presence),
while others (such as transaction IDs, jobs or table names)
have very large cardinality (sometimes in the tens of thou-
sands). A human could sometimes manually write a regular
expression to extract information (e.g., “XXXTable” might
be split by “.” and “-” characters and the first entry refers to
a user group), but as Census tags are maintained by services
themselves, there is no guarantee that they are not going to
change. For storage services to make assumptions on any
particular structure of these tags is inherently brittle.
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Key Example Values Cardinality Description
XXXCall COMPACT(MINOR) | COMPACT(MAJOR) | BACKUP Low Request is from a particular DB operation
XXXCacheHit hit | miss Low Whether a request was cached
XXX_action EditQuery | GetIds | UpdateConfig Medium A particular operation from a service
user_id * XXX-pipeline-services-low | XXX-jobs | local_XXX High A particular user group (free form)
JobId * datacenterABC.client-job-5124.v521aef * High A particular job name (free form)
XXXTable XXX-storage.XXX-local-XXX.XXX.XXX.4523.index High Name of a table a query applies to
XXXTxnTag AsyncService-Schedule-XXX | DELETE-LABEL | EDIT-XXX High Free form description of an operation

Table 1. Examples of Census tag features found in production distributed traces (adapted* and/or obfuscated).

We also noticed that the same tag does not always follow
the same schema. For example, the “XXXTxnTag” shows a
mix of different schemas depending on which service set the
tag. Other tags feature a mix of capitalized/non-capitalized
values, different characters to delineate different parts of the
string, etc. This high degree of variance makes it difficult to
manually extract information from these tags consistently.

3.2 Prediction Tasks

We now present prediction problems in storage systems that
can benefit from high-level information.

File access interarrival time for caching. Predicting the
time of the next access to an entry allows a cache to decide
whether to admit it (Beckmann & Sanchez, 2017; Jaleel
et al., 2010), and which block to evict (e.g., a block with a
later time). We focus on caching fixed 128KB blocks in a
production distributed file system, which is either accessed
directly or used as a backing store for other storage systems,
such as databases. We ignore repeated accesses under 5
seconds, to account for local buffer caches.

File lifetime until deletion. File lifetime predictions are
used in different contexts (Kim et al., 2018). They are used
to select storage tiers (e.g., for transient files) and can be
used to reduce fragmentation. For example, some storage
technologies have large erase units (e.g., SMR, NAND flash)
and some storage systems are append-only (Chang et al.,
2008; Ousterhout et al., 2015). Placing data with similar
lifetimes into the same blocks minimizes wasted bytes, write
amplification, and compaction.

Final file size. Knowing the final size of a file at the time it
is allocated can improve allocation decisions. For example,
it can help disk allocators pick the best block size.

Read/write ratio. Predicting the ratio of read vs. write
operations is helpful for placing data. Read-only files may
be candidates for additional replication while write-only
files may be best stored in a log structure. This prediction
can also help pick a storage medium (Section 6.4).

This list is not exhaustive. Other tasks that are not explored
in this paper include 1) Resource demand forecasting when
deploying a new mix of workloads (e.g., when bringing up
a new cluster of machines), by recording a small number of

samples characterizing the mix of workloads and then using
a model to extrapolate the overall usage, and 2) Predicting
workload interference (e.g., because both are I/O heavy).

3.3 Analyzing Census Tag Predictiveness

After introducing the prediction tasks, we now demonstrate
that Census tags are predictive of some of these tasks.

Dataset. We analyze Colossus (Serenyi, 2017) file system
traces sampled from 5 different clusters at Google. The
data is longitudinally sampled at a per-file granularity. Our
traces contain over a trillion samples per cluster and we are
analyzing traces from a period of three years. The clusters
contain different proportions of various workload types. All
our requests are sampled at the disk servers backing the
distributed file system and contain file metadata as well as
Census Tags associated with each request. Note that these
disk servers back other storage services, such as databases.

Features. Broadly, the features provided through Census
Tags fall into four categories: 1) Census tags that indicate
a particular category of request (e.g., a DB operation), 2)
numerical information (e.g., an offset), 3) medium and high
cardinality labels that can contain unstructured data (e.g.,
project IDs, table names, etc.) and 4) high cardinality labels
that may or may not be predictive (e.g., timestamps or trans-
action numbers). We are interested in the predictiveness of
these features. Note that there is information about requests
that these features do not capture. For example, we only
consider one request at a time.

We can phrase our prediction problems as follows: Given
a set of Census Tags and their associated values X =
{x1, x2,… , xn} where xi is the ith (unordered) key-value
string pair, predict a label Y (e.g., interarrival time, lifetime,
etc.). We refer to X as a Census Tag Collection (CTC).

Entropy Analysis. To measure the predictive ability of
Census Tags, we look at the distribution of values for each
of the tasks we aim to predict (e.g., interarrival times) and
compare this distribution to the same distribution condi-
tioned on different values of particular Census Tags. Figure
3a shows an example where we conditioned the distribution
of interarrival times on a particular Census tag “XXXKey”,
which describes what type of operation a request belongs to.
We show distributions for four arbitrary values of this tag.
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(a) Overall and per-tag value in-
terarrival time CDFs.

Task Entropy Cond.
Interarrival Time 4.748 3.474
File Lifetime 7.303 6.575
Final File Size 3.228 2.538
R/W Fraction 1.874 1.476

(b) Per-task entropy, overall and
avg. conditioned across all tags.

Figure 3. Conditioning the distribution on Census tags significantly
reduces entropy, indicating that they are predictive.

There is a visible difference between the distributions de-
pending on the specific value, and the average distribution
(the dotted line) captures neither of them. A way to measure
this effect more formally is by computing the information
entropy of the overall distribution (shown in Figure 3b) and
compare it to the conditional entropy (the weighted aver-
age over the entropies when conditioning on Census tag
values). The difference between the two is known as the mu-
tual information (or information gain), which measures the
predictiveness of Census Tag collections for the distribution.

Transferability of Census Tags. In order to use Census
tags in predictions, we need to show that the information
they provide transfers – i.e., values recorded in one setting
can be used to predict values in a different setting. We are
interested in two particular types of transferability:

1. Across time: We want to be able to use past traces to
make predictions months or years in the future.

2. Across clusters: We want to use traces recorded in
one cluster to make predictions in other clusters.

For predictions to be transferable, traces must either share
features or have a similar latent structure (e.g., there exists
a similar relationship between the keys and values even if
they are named differently). To analyze transferability, we
conducted a study comparing the keys and values found in
two different clusters and between traces 9 months apart
(Figure 4a). We find that 1) only a small fraction of requests
have a CTC that occurs exactly in the original trace, but 2)
most requests have at least one key-value pair that was seen
in the original trace. This is true both across time and across
clusters, and indicates that an approach that only records
CTCs in a lookup table will degrade over time and is of lim-
ited use across clusters. Meanwhile, it shows that complex
approaches can potentially extract more information.

High-Cardinality Tags. One example of tags that do not
transfer directly are high-cardinality keys capturing infor-
mation that changes over time or between clusters. For
example, new accounts or database tables are added over
time and different clusters host different workloads. Tags
that directly include these identifiers as values will there-
fore differ. This is visualized in Figure 4b which plots the
number of times each CTC is observed in a 1.4B entry trace.

(a) How many CTCs match
across time and clusters.

(b) How often each CTC appears
in the data set (one cluster).

Figure 4. Transferability (a) and cardinality (b) of Census tags.

18% of CTCs are observed only once and 2/3 of CTCs are
observed at most 30 times, pointing to high-cardinality keys.

However, many of these tags can still contain information.
For example, a username may be composed of a partic-
ular system identifier and a prefix (e.g., “sys_test54” vs.
“sys_production” ) and table names often have hierarchical
identifiers (e.g., a format such as “type.subtype.timestamp”).
Only using exactly matching strings would therefore lose
important information. We need to extract information from
within these strings, which resembles natural language pro-
cessing tasks. Such techniques enable proper information
sharing between known values as well as generalization
to new values that have not been seen before. Of course,
there are also high-cardinality keys that carry little infor-
mation – e.g., unseen UIDs. This has similarities to ML
applied to code (Karampatsis & Sutton; Shrivastava et al.,
2020), where tokens are often highly specific to the context
in which they appear.

3.4 Distribution-based Storage Predictions

Intuitively, we would expect a predictor for the storage pre-
diction tasks from Section 3.2 to predict one value for Y
(e.g., the expected lifetime of a file) given a CTC X. How-
ever, there is inherent uncertainty in these predictions: 1)
features do not always capture all details in the system that
determine the file’s lifetime, and 2) effects outside the con-
trol of the system, such as user inputs, affect the predictions.
For many predictions, there is not a single value that we
could predict that is correct most of the time. Similar to
the work by Park et al. (2018) on cluster scheduling, we
therefore predict a probability distribution of values. This
distribution can then be consumed by the storage system
directly, similar to EVA (Beckmann & Sanchez, 2017): For
example, a cache could evict a cache entry with a high vari-
ance in its distribution of interarrival times in favor of an
entry with low interarrival time at low variance.

To perform distribution-based predictions, data within the
traces needs to be pre-aggregated. Specifically, we need to
take all entries in the trace with the same X and compute
the distributions for each of the labels Y that we want to
predict (interarrival times, lifetimes, etc.). To do so, we can
collect a histogram of these labels for each CTC. We note a
large skew: Some CTCs appear many orders of magnitude
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more often than others, and 18% of entries show up only
once (Figure 4b). This can be explained by two effects: 1)
Some systems account for a much larger fraction of requests
than others, and 2) The lower the cardinality of Census tags
set by a system, the lower the number of different CTCs
associated with this system.

Fitting Lognormal Distributions. One approach to use
the histograms for input features is to use them in a lookup
table, which covers low-cardinality cases. However, as we
have seen, some Census Tags have high cardinality and we
therefore need to predict them using models that have the
ability to generalize to previously unseen values. For these
tags, we therefore need to represent the output distribution
in a way that we can train a model against.

Gaussians (or mixtures of Gaussians) are often used to
model this type of output distribution. For example, they are
used for lifetime prediction in survival analysis (Fernandez
et al., 2016). In particular, we consider lognormal distri-
butions and show that they are a suitable fit for our data.
They are a popular choice for modeling reliability durations
(Mullen, 1998). In contrast to other similar distributions
(such as Weibull and log-logistic), the parameters that max-
imize the lognormal likelihood can be estimated in closed
form. Figure 5 shows examples of fitting lognormals to the
pre-aggregated distributions for several CTCs. To measure
how well the fitted distributions match the real data, we
use the Kolmogorv-Smirnov (KS) distance, which measures
the maximum deviation between CDFs. The overall KS
distance of fitting lognormals to our data is 0.09-0.56.

3.5 Case Study: Database Caching Predictor

We demonstrate the insights from this section using a
database system as an example. One Census tag associated
with this system indicates the high-level operation associ-
ated with it (Figure 3a). This information can be used to
make decisions about admission and eviction. For example,
consider values A, C and D of this particular Census tag.
While the average (dotted) CDF of interarrival times for
requests increases slowly (note the log scale), indicating
that the interarrival time is difficult to predict, requests with
values A/C/D are more predictable: The vertical jump in C
shows that 3/4 of requests with this tag have an interarrival
time of 15 minutes, indicating it has a periodicity of 15
minutes. Meanwhile, we see that 2/3 of requests for A take
less than 1 minute before they are accessed again, and for D
the same is true for a 5 minutes interval.

We can exploit this information in a caching policy that does
not evict these requests for the first 1, 5 and 15 minutes after
their last access. Afterwards, we treat them the same as
other requests. We can also do something similar for values
such as B where the distribution shows that interarrival times

Figure 5. Fitting lognormal distributions to CTC CDFs.

are much longer than for other requests. For example, we
could avoid admitting these entries to the cache at all, or
prioritize them for eviction.

4 MACHINE LEARNING FOR CENSUS TAGS

We now demonstrate a set of learning techniques to achieve
transferability across clusters and over time. We assume that
all models are compiled and directly linked into the storage
server, running either on the CPU, or on an accelerator such
as a GPU or TPU. When a request is received by a storage
system, its CTC is represented as an unordered set of string
key-value pairs. The prediction problem is formally defined
as follows: Given a CTC X, predict the parameters of its
lognormal distribution for a given task, Y = (�Y , �Y ).

4.1 Lookup Table Model

The simplest prediction approach is a lookup table (Figure
6a) where a canonical encoding of the CTC is used to index
a static table that maps CTCs to Y . The table is “trained” by
collecting the target distribution histograms from a training
set, pre-aggregating them, and computing the mean and stan-
dard deviation of a lognormal distribution that fits the data.
CTCs are encoded by assigning each unique key and value
in the training set an ID and looking them up at inference
time. Keys in the CTC are sorted alphanumerically, ensuring
that the same CTC always results in the same encoding.

CTCs not found in the table can be handled by substituting
the overall distribution of the training set. As shown in
Section 3.3, the entropy of this set is much larger than the
entropy conditioned on a particular CTC (and is therefore
not very predictive), but represents the best we can do. Note
that the lookup table can become very large, and it is often
necessary to remove rare CTC entries. There are different
ways to implement such a lookup table. For example, it
could be implemented as a hashtable or represented by a
decision tree (Safavian & Landgrebe, 1991), which is an
equivalent but potentially more compact representation.

4.2 K-Nearest Neighbor Model

Improving upon how the lookup table handles unseen CTCs,
the k-nearest neighbor approach (Figure 6b) makes predic-
tions for these entries by combining predictions from CTCs
that are close/similar. We implement an approximate k-NN
method that uses as its distance metric the number of differ-
ing Census Tags between two CTCs. We encode CTCs as
a sparse binary vector where each entry denotes whether a
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(c) Embedding-based Transformer
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(d) Hierarchical Raw Strings Transformer

Figure 6. The different models (blue is training).

particular Census Tag key-value pair is present. Distance
can thus be cheaply computed as the squared L2 distance
between sparse binary vectors (which can reach a dimen-
sionality of millions). This approach allows us to make use
of existing approximate nearest neighbor libraries that are
highly optimized for sparse vectors. We choose K=50 in our
experiments, since binary vectors may have many neighbors
of equal distance. For instance, a CTC that has a different
value for one Census Tag may get matched against a number
of CTCs that have distance 2. To compute the predictions,
we aggregate the chosen nearest neighbors. The mean �Y is
simply the weighted average over the means of the individ-
ual neighbors. The standard deviation �Y is computed by
summing two components: (1) the weighted average over
the variance of each neighbor, and (2) the weighted squared
distance between the individual means and the overall mean.

This approach resembles strategies that have been used in
cluster scheduling (Park et al., 2018; Cortez et al., 2017).
In contrast to a lookup table, it has more generalization
ability, but it is still unable to extract information from high-
cardinality Census tags. Imagine a tag where values are of
format <query-type>.<timestamp>. Here, “query
type” captures information that we want to extract. Since
“timestamp” will take on a different value for every request,

each entry will result in a different CTC. This, in turn, means
that 1) the lookup table grows very large and 2) each entry
only has a single data point associated with it. Instead of
a histogram of values, the “distribution” associated with
this CTC is therefore a single point mass with � = 0. This
makes it impossible for the model to generalize, since the
nearest neighbor approach has no way of knowing that the
different values are identical except for the timestamp.

4.3 Neural Network Model

Handling these high-cardinality cases necessitates a model
that can parse the strings that constitute the key-value pair.
While a nearest neighbor approach can learn simple connec-
tions between predictions and Census tags (e.g., “if tag A
has value B, the file is short-lived”), it cannot learn more
complex and non-linear interactions (e.g., "if tag A has an
even number as value, then the file size is small"). To push
the limits of learning these more complex connections, we
use a neural network-based approach. Note that in practice,
this neural network would not run at every prediction but
be used as a fall-back for lookup table entries where no
example can be found (and therefore runs rarely).

A simple approach would be to encode keys and values
as IDs (similar to the lookup table), feed them into a
feed-forward network, and train against the Y from pre-
aggregation. However, this approach still has no capability
to generalize to unseen values nor high-cardinality keys that
only have a single data point associated with them. We
address these problems by combining two approaches:

1. We build on recent advances in natural language pro-
cessing to train networks operating on raw strings.
Specifically, we use a Transformer (Vaswani et al.,
2017) model that uses an attention mechanism to con-
sume a sequence of inputs (e.g., character strings com-
prising each Census tag) and maps them to an embed-
ding (i.e., a learned encoding).

2. To handle CTCs with a single point, we do not train
against (Y�, Y�) directly, but use Mixture Density Net-
works (Bishop, 1994) to let the model fit a Gaussian.

The neural network architecture is based on typical models
used in NLP to process character and word tokens. We
present two versions: 1) an embedding-based version that
resembles the approach above of feeding token-encoded key-
value pairs directly into the model, and 2) an approach that
parses raw strings of key-value pairs. The model architec-
ture is similar in both cases and relies on learning embedding
representations (Mikolov et al., 2013), learned mappings
from a high-dimensional input to a latent representation in
some other – usually lower-dimensional – space.

Embedding-Based Transformer Model. For this ver-
sion (Figure 6c), we start from a CTC X = {x1, x2,… , xn}
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where xi is the ith (unordered) key-value string pair –
encoded as one-hot encoded vectors based on their IDs
– and pass each xi through a single embedding layer
� ∶ ℕ → ℝm to create a set of embedding vectors
V = {�(x1), �(x2),… , �(xn)}. V is then passed into the
Transformer encoder M ∶ ℝn×m → ℝn×m and its out-
put is averaged to produce the shared output embedding
S =

∑n
i=1M(Y )i where S ∈ ℝm. Finally, this output

embedding is passed through an additional 2-layer fully
connected network to yield the outputs Y = (�Y , �Y ). The
last layer producing � uses an ELU activation (specified by
Mixture Density Networks).

Hierarchical Raw Strings. This version (Figure 6d) oper-
ates directly on raw strings, where each character is encoded
as a one-hot vector of dimensionality 128 (127 characters
and one special character to separate key and value). Each
key-value pair xi is encoded as a sequence of such one-
hot vectors (xi ∈ ℝki×128), and the characters are passed
through an embedding layer, yielding an �(xi) ∈ ℝki×m,
where ki is the length of the i-th key-value pair. Each �(xi)
is then passed through a Transformer encoder – all these
encoders’ weights are shared (i.e., this encoder learns how
to parse an individual key-value pair). The outputs of these
encoders are then passed into another encoder, which now
aggregates across the different key-value pairs (i.e., it learns
connections between them). As before, the output is then
averaged and passed through two fully-connected layers.

Mixture Density Networks. Because the goal is to pre-
dict the distribution associated with each CTC, we must
choose a loss function that allows the model to appropri-
ately learn the optimal parameters. Consider if we used
squared distance to learn the mean and standard deviation
of a log-normal distribution. While squared error may be
appropriate for learning the mean, it is not for the standard
deviation. For instance, squared error is symmetric, and
underestimating the standard deviation by 0.1 has a much
larger effect on error than overestimating by 0.1. Addition-
ally, a model trained with squared error will not learn the
correct standard deviation from an overpartitioned dataset
(e.g., if all CTCs had � = 0, the model would learn � = 0).

Mixture Density Networks (Bishop, 1994) were designed
to address this problem. Instead of fitting (�Y , �Y ) directly
to the label, the predicted (�, �) are used to compute the
likelihood that the label y came from this distribution:

loss = − log

(

1
√

2��
× exp

[

−
(y − �)2

2�2

]

)

Note that now instead of training against a distribution Y , we
need to train against a specific label y from this distribution.
We therefore sample y from Y at every training step. In
high-cardinality cases where � = 0, all of these samples
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Figure 7. Using the Transformer in multi-task learning.

will be the same, while in cases where we have enough data
points, the samples match the distribution.

Multi-Task Learning. While the Transformer model is
shown for a single task, the front-end (encoder) part of the
model could be reused in a multi-task setup (Figure 7). The
fully connected layers at the end of the network can be
replaced by different layers for each task. The Transformer
could then be jointly trained on multiple storage tasks.

5 IMPLEMENTATION DETAILS

We prototyped and evaluated our models in a simulation
setup driven by production traces. We pre-process these
traces using large-scale data processing pipelines (Chambers
et al., 2010) and run them through our models.

Lookup Table. The lookup table performance is calcu-
lated using our data processing pipelines. We aggregate
across CTCs, perform predictions for each CTC and then
weight by numbers of requests that belong to each CTC.

K-Nearest Neighbors. We build on the ScaNN nearest-
neighbor framework that uses an inverted index method
for high-performance k-nearest neighbor search (Guo et al.,
2020). We use this framework to conduct an offline approx-
imate nearest neighbors search with K=50. Most of this
pipeline is shared with the lookup table calculation.

Transformer. We implement our Transformer models in
TensorFlow (Abadi et al., 2016) and run both training and
evaluation on TPUs (Jouppi et al., 2017), using the Ten-
sor2Tensor library (Vaswani et al., 2018). We use the
following hyperparameters: {num_hidden units=64,
num_hidden_layers=2, num_heads=4} and a si-
nusoid positional embedding. We train using a weighted
sampling scheme to ensure that CTCs occur approximately
as often as they would in the actual trace.

6 EVALUATION

We evaluate our models on traces. We start with microbench-
marks based on synthetic traces that demonstrate the ability
of our models to generalize to unseen CTCs. We then eval-
uate our models on production traces from Google data
centers. Finally, we show a simulation study that applies
our models to two end-to-end storage problems, cache ad-
mission and SSD/HDD tiering.
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Tags Len. P/D Samples Table K-NN Transformer
Separate 2 / 5 1,000 8.00 0.001 0.008
Separate 2 / 5 10,000 8.00 0.000 0.015
Separate 10 / 20 1,000 8.00 0.000 0.047
Separate 10 / 20 10,000 8.00 0.000 0.005
Combined 2 / 5 1,000 8.00 8.000 0.034
Combined 2 / 5 10,000 8.00 8.000 0.003
Combined 10 / 20 1,000 8.00 8.000 0.017
Combined 10 / 20 10,000 8.00 8.000 0.006

Table 2. Mean squared error (MSE) on a synthetic microbench-
mark that combines an information-carrying (P)refix with a
(D)istractor of a certain length, in the same or separate tags.

6.1 Microbenchmarks

To demonstrate the ability of our models to learn informa-
tion in high-cardinality and free-form Census tag strings,
we construct a synthetic data set for the interarrival time
task. We create 5 overlapping Gaussian clusters with means
� = {1, 3, 5, 7, 9} and � = 1. Requests from the same clus-
ter are assigned a shared prefix and a randomly generated
distractor string (in real Census tags, this might be a times-
tamp or UID). The goal is for the model to learn to ignore
the distractor string and to predict the parameters of each
cluster based on the observed shared prefix. We experiment
with two different setups: 1) the prefix and distractor are
in separate Census tags, and 2) the prefix and distractor
are combined in the same Census tag. For the former, the
model has to learn to ignore one particular Census tag, for
the latter, it has to extract part of a string.

We compute the MSE to indicate how close the predicted
log-normal parameters (�, �) were to the ground truth. An
error of 0 indicates that we perfectly recovered the distri-
bution, while an error of 8 (= (2 × 22 + 2 × 42 + 0)∕5)
corresponds to always predicting the average of all means.
We also vary the number of samples per cluster between
1,000 and 10,000 to study how many samples are needed to
learn these parameters. The lookup table is unable to learn
either case, since it can only handle exactly matching CTCs
(Table 2). K-Nearest Neighbor (with K=∞) can correctly
predict the separate cases, but fails on the combined cases
since it cannot look into individual strings. Finally, the neu-
ral network successfully learns all cases. We find that 10K
samples per class were sufficient to learn a predictor that
stably achieves an error close to 0 and does not overfit. This
data shows how our models are able to learn successively
more information, representative of the actual traces.

6.2 Prediction Latency

A key question for deployment is the models’ latency. In
practice, the lookup table will be used to cover the vast
majority of cases and the more expensive models only run
when a CTC is not in the table (the result is added for the
next time the CTC is encountered). This gives the best
of both worlds – resilience to drift over time and across
clusters, and high performance. Evaluating on file creation

requests, we found that after one month, only 0.3% of re-
quests had CTCs that were never seen before. We measured
our lookup table at 0.5 �s per request and the largest Trans-
former model at 99 ms (entirely untuned; we believe there
is headroom to reduce this significantly). The average la-
tency with the Transformer is therefore 310 �s, which is fast
enough to run at relatively rare operations like file creation
(e.g., the SSD/HDD tiering case). For more frequent opera-
tions (e.g., block reads/writes), we would use the cheaper
models, whose latency can be hidden behind disk access.

6.3 Production Traces

We now evaluate our models on real production traces. Our
evaluation consists of two main components: evaluating
model generalization error, and demonstrating end-to-end
improvements in simulation.

As discussed in Section 3.3, we would like models to gen-
eralize 1) across long time horizons, and 2) across clusters.
We train models on a 3-month trace and evaluate their gener-
alization on a 3-month trace from the same cluster 9 months
later, and a 3-month trace from the same time period on a
different cluster. We find that models perform well within
the same cluster and less (though acceptably) well across
clusters. We measure both the weighted and unweighted
error, and show that simple models are sufficient to learn the
head of the distribution while more complex models are bet-
ter at modeling the long tail. We also find that while there is
some drift in each CTC’s intrinsic statistics, generalization
error across time is largely due to unseen CTCs, indicating
that a model can be stable over time. More details about the
results and error metrics can be found in the Appendix.

6.4 End-to-End Improvements

We now show two case studies to demonstrate how the CDF
predictions can be used to improve storage systems. While
our simulations use production traces and are inspired by
realistic systems, they are not exact representations of any
real Google workload. Additional evaluation of variation
within some of these results is provided in the Appendix.

Cache Admission and Eviction. We implement a cache
simulator driven by a consecutive time period of 40M read
requests from our production traces. These are longitudinal
traces to a distributed file system; while our simulation does
not model any specific cache in our production system, this
is equivalent to an in-memory cache in front of a group of
servers that are handling the (small) slice of files represented
by our traces. Such caches can have a wide range of hit
rates (Albrecht et al., 2013), depending on the workload mix
and upstream caches. As such, these results are representa-
tive for improvements one might see in production systems.
The approach is similar to prior work on probability-based
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Figure 8. Using predictions in caching.

Figure 9. Using predictions in SSD/HDD tiering.

replacement policies such as EVA (Beckmann & Sanchez,
2017) or reuse interval prediction (Jaleel et al., 2010). The
main difference is that we can predict these reuse intervals
more precisely using application-level features.

We consider a cache that operates at a 128KB fixed block
size granularity and use an LRU admission policy as the
baseline; LRU is competitive for our distributed file system
caching setup, similar to what is reported by Albrecht et al.
(2013). Our learning-based policy works as follows: At
every access, we use our model to predict (�Y , �Y ) of the
lognormal distribution associated with this request. We store
these parameters in the block’s metadata, together with the
timestamp of the last access to the block. We now define the
utility of a block as the probability that the next access to
the block is within the next Δt = 1,000s (Δt is configurable).
This value can be computed in closed-form (Figure 8a):

Utility(t, �, �) =
CDF(t + Δt|�, �) − CDF(t|�, �)

1 − CDF(t|�, �)

We logically arrange the blocks into a priority queue sorted
by increasing utility. When we insert a block into the cache,
we compute its utility and add it to the priority queue. If we
need to evict a block, we pick the entry at the front of the
queue (after comparing it to the utility of the new block).
We therefore ensure that we always evict the block with the
lowest utility/probability of access. Note that this utility
changes over time. Recomputing all utilities and sorting the
priority queue at every access would be prohibitive – we
therefore only do so periodically (e.g., every 10K requests).
An alternative is to continuously update small numbers of
entries and spread this work out across time. Figure 8b
shows that the model improves the hit rate over LRU by as
much as from 17% to 30%.

SSD/HDD Tiering: We perform a simple simulation study
to demonstrate how predictions can be used to improve
SSD/HDD tiering. We assume a setup similar to Janus
(Albrecht et al., 2013) where an HDD tier is supplemented

with an SSD tier to reduce HDD disk I/O utilization (since
spinning disks are limited by disk seeks, fewer accesses for
hot and short-lived data means that fewer disks are required).
Our baseline is a policy that places all files onto SSD initially
and moves them to HDD if they are still alive after a specific
TTL that we vary from 10s to 2.8 hours. We use 24 hours
of the same traces as in the previous example and compute
the average amount of live SSD and HDD memory, as well
as HDD reads and (batched) writes as a proxy for the cost.

We use our model to predict the lifetime of newly placed
files (Figure 9). We only place a file onto SSD if the pre-
dicted � + n × � is smaller than the TTL (we vary n = 0, 1).
After the file has been on SSD for longer than � + m × �
(m = 1, 2), we move it to the HDD. This reduces write I/O at
the same SSD size (e.g., by ≈20% for an SSD:HDD ratio of
1:20) or saves SSD bytes (by up to 6×), but did not improve
reads. We also used the model to predict read/write ratio
(Section 3.2) and prefer placing read-heavy files on SSD.
This keeps the write savings while also improving reads.

7 FUTURE WORK

Systems Improvements. The caching and storage tiering
approach has applications across the entire stack, such as
selecting local vs. remote storage, or DRAM caching. Other
prediction tasks in storage systems that can benefit from
high-level information include read-write ratio, resource
demand forecasting, and antagonistic workload prediction.
Our approach could also be applied to settings other than
storage systems (e.g., databases), and to other (non-Census)
meta-data, such as job names.

Modeling Improvements. Our approach could benefit
from a method for breaking up Census Tags into meaningful
sub-tokens. In addition to the bottom-up compression-based
approaches used in NLP such as Byte Pair Encoding (BPE,
Gage (1994)) or WordPiece (Wu et al., 2016), we may also
want to identify known important tokens ahead of time, e.g.
“temp” or “batch”. This would improve our model’s abil-
ity to generalize to unseen Census Tags and new clusters.
On the distribution fitting side, log-normal distributions are
not ideal in all scenarios. For instance, distributions that
are bounded or multi-modal are respectively better handled
using a Beta distribution or Mixture-of-Gaussians.

8 CONCLUSION

Our results demonstrate that information in distributed
traces can be used to make predictions in data center storage
services. We demonstrated three models – a lookup ta-
ble, k-NN and neural-network based approach – that, when
combined, extract increasing amounts of information from
Census tags and significantly improve storage systems.
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APPENDIX

A PREDICTION ERROR EVALUATION

Kolmogorov-Smirnov Distance. Since our models pre-
dict distributions rather than specific values, we use KS dis-
tance (the maximum deviation between CDFs of each CTC)
to compare their accuracy. In other words, KS distance is
determined by the point at which one distribution maximally
lags behind another in terms of cumulative probability mass,
and can be viewed as a way of measuring worst-case error.
In our traces, we encounter several CTCs much more often
than others. We thus report both weighted and unweighted
error, due to two real-world considerations: 1) error should
be lower on more common workloads for which we have
more data and whose optimization has a larger overall effect,
2) optimizing for the common cases can be done statically
whereas the strength of a model should lie in its ability to
generalize well to new (and less common) examples.

In-depth error analysis on production traces. As men-
tioned in Section 3.3, we need models to generalize 1) across
long time horizons, and 2) across clusters. We evaluate
generalization by training our models on a 3-month trace
and evaluating on a 3-month trace from the same cluster
9 months later, and a 3-month trace from the same time
period on a different cluster. Table 3 reports both weighted
and unweighted error: The former indicates the overall ac-
curacy, but hides the long tail of workloads. For example,
if 90% of requests have the same CTC and this CTC can
be predicted by a lookup table, this will dominate the re-
sults. Meanwhile, the unweighted error tells us about the
accuracy of the model on the long tail of CTCs. We would
like both errors to be low – in practice, common CTCs will

be handled by a lookup table, while more complex models
handle the long tail. Our data supports this: As the model
complexity increases, the error decreases. For reference, we
also report the "oracular" error of directly fitting the log-
normal distributions to the data used for evaluation. Note
that this does not minimize KS distance, which measures
the maximum divergence of each CDF, not the average.

Evaluating drift over time. To better understand the rel-
ative contributions of temporal drift in the statistics v.s. un-
seen CTCs to the overall error, we separately compute the
KS distance of CTCs that have been seen in the training
set, as well as their proportion (Figure 11). In all cases, we
observe that known CTCs exhibit some increase in test error
compared to the training error. However, unseen CTCs still
remain the predominant source of error, comprising a larger
portion of all CTCs and generally incurring higher test error;
this is shown by the fact that the known CTC test error is
much lower than the overall error shown in Table 3.

We conclude that infrequent periodic retraining is necessary,
but doing so 1-2 times per year (or less) might be sufficient,
and training may start from a previous snapshot that has
already learned existing Census tags.

B END-TO-END RESULT STABILITY

To ensure that results are consistent between different runs
of the end-to-end experiments, we evaluate our caching
model on different time slices. We do so by offsetting the
start of the test period to fall into different parts of a 24-
hour period, to account for variations throughout the day
(Figure 10). The end-to-end evaluation results are largely
consistent with each other and Figure 8b.
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Weighted by #requests with same CTC Unweighted (every observed CTC counts once)
Across Time Across Clusters Across Time Across Clusters

Model IT FS LT IT FS LT IT FS LT IT FS LT
Oracular Predictor 0.09 0.41 0.13 0.14 0.51 0.19 0.28 0.53 0.35 0.34 0.56 0.33
Lookup Table 0.33 0.45 0.33 0.50 0.54 0.42 0.58 0.69 0.68 0.70 0.67 0.75
Nearest Neighbor 0.27 0.47 0.30 0.53 0.53 0.37 0.62 0.66 0.56 0.71 0.66 0.71
Embedding Transformer 0.29 0.39 0.27 0.47 0.49 0.39 0.64 0.62 0.58 0.68 0.64 0.73
Raw String Transformer 0.26 0.38 0.22 0.45 0.47 0.35 0.60 0.63 0.58 0.67 0.63 0.66

Table 3. Generalization KS Distance (IT=Interarrival Times, FS=File Size, LT=Lifetime).

(a) First time interval (b) Second time interval (c) Third time interval

Figure 10. Additional evaluation of the caching end-to-end experiment. We show that the results are stable across multiple data points by
looking at three time intervals spanning the three different parts of a 24-hour cycle. While the precise hit rates vary slightly between these
different time intervals, the improvements of the learned strategy over the baseline remain similar.

(a) Interrarrival times. (b) Final file size. (c) File lifetime.

Figure 11. The unweighted error (in KS distance) of known CTCs over time as well as their proportion of all observed CTCs. The
statistical properties for the same CTC are relatively stable over time but the number of matching CTCs drops quickly, demonstrating
limitations of the lookup table approach.


