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Abstract—Distributed storage systems must store large amounts
of data over long periods of time. To avoid data loss due to device
failures, an [n, k] erasure code is used to encode k data symbols
into a codeword of n symbols that are stored across different
devices. However, device failure rates change throughout the life of
the data, and tuning n and k according to these changes has been
shown to save significant storage space. Code conversion is the
process of converting multiple codewords of an initial [nI , kI ] code
into codewords of a final [nF , kF ] code that decode to the same
set of data symbols. In this paper, we study conversion bandwidth,
defined as the total amount of data transferred between nodes
during conversion. In particular, we consider the case where the
initial and final codes are MDS and a single initial codeword is
split into several final codewords (kI = λF kF for integer λF ≥ 2),
called the split regime. We derive lower bounds on the conversion
bandwidth in the split regime and propose constructions that
significantly reduce conversion bandwidth and are optimal for
certain parameters.

An extended version of this paper is available at [1].

I. INTRODUCTION

Distributed storage systems use erasure codes to store large
amounts of data reliably and without excessive storage over-
head [2]–[5]. An [n, k] erasure code encodes k symbols of
data into a codeword with n symbols, which are then stored
in different storage devices. If the code is maximum-distance-
separable (MDS), then the full data can be decoded even after
n− k concurrent device failures.

Data in distributed storage systems is usually stored over
long periods of time. Kadekodi et al. [6] showed that the failure
rate of devices can significantly change over this time and that
tuning the parameters n and k to adjust to these changes results
in significant savings in storage space. In most cases, this tuning
requires changing n and k simultaneously due to practical
system constraints [6]. Other reasons to change n and k include
adapting to changes in data popularity or space availability.
Whenever n and k are changed, all the data that is already
encoded must be modified to conform to the newly chosen
parameters. The default approach to performing this change
is to read all the data (decoding if necessary), re-encode with
the new n and k, and write back to the storage devices. This
results in very high consumption of cluster resources [6], such
as network bandwidth, IO, and CPU, which can overwhelm
the cluster for periods of several days.

The code conversion problem, introduced in [7], provides
a theoretical framework to study the problem of efficiently
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Fig. 1: Example of code conversion from code [nI , kI ] to code
[nF , kF ]. Each color denotes a different codeword. Conversion
bandwidth is defined as the total amount of data read or written
during conversion, i.e. (γR + γW ).

changing the code parameters for already encoded data. Code
conversion is the process of changing multiple (already en-
coded) codewords of an initial code of parameters [nI , kI ]
to multiple codewords of a final code of parameters [nF , kF ]
(Fig. 1). Let rI := nI −kI and rF := nF −kF . The main goal
of the study of code conversion [7]–[9] is to design the initial
and final codes, as well as a conversion procedure, which can
convert encoded data more efficiently than the default approach,
for given parameters (nI , kI ;nF , kF ). Codes designed for this
purpose are referred to as convertible codes. The initial work on
convertible codes [7], [8] addressed this challenge by focusing
on the access cost of conversion, defined as the number of code
symbols that are either read or written during conversion. In [7],
[8], the authors showed that access cost can be significantly
reduced compared to the default approach.

In [9], the authors introduced convertible codes optimized for
another important metric: network bandwidth. Here, the cost
of conversion is measured in terms of conversion bandwidth,
defined as the total amount of data transferred between nodes
during conversion, which is divided into read conversion band-
width (γR) and write conversion bandwidth (γW ). The work [9]
focused exclusively on a parameter regime known as the merge
regime, which consists of conversions that merge multiple
codewords together (i.e. kF = λIkI for integer λI ≥ 2), and
showed that conversion bandwidth can be significantly reduced
compared to both the default approach and the codes that
optimize the access cost of conversions.

In this paper, we study optimizing the conversion bandwidth
for another important regime called the split regime, wherein
a single initial codeword is split into final codewords, i.e.
kI = λF kF for some integer λF ≥ 2. In particular, we derive
lower bounds on the conversion bandwidth of codes in the split
regime, and we propose constructions that match those bounds.
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Fig. 2: Read-conversion-bandwidth relative to the default approach (split regime). In each plot, the value of the parameters λF

and the ratio rI/kI are fixed, and the value of the ratio rF /rI ranges in (0, (λF rI/kI)−1]. By choosing this parametrization,
the plotted curves are independent of the value of kF . For illustration, markers are added on the points that can be achieved by
the construction of §IV when kF takes the given example value.

The split regime is important because it plays a key role in the
conversions with arbitrary parameters (nI , kI ;nF , kF ) [8].

We first focus on lower bounding conversion bandwidth
in the split regime. To do this, we model conversion using
an information flow graph with edges of variable capacities.
Using this model, we derive a lower bound on conversion
bandwidth for convertible codes in the split regime satisfying
some technical conditions (Theorem 4). This bound shows that
savings are not possible when nF ≥ 2kF but leaves room for
significant savings otherwise. However, we show that this bound
is not tight. For this reason, we introduce a conjecture (Conjec-
ture 5) about the relationship between the amount of data that
needs to be downloaded from different types of code symbols.
Assuming this conjecture is true, we derive an additional lower
bound (Theorem 7). Finally, we present constructions which
achieve the combination of both lower bounds (Theorem 8).
When rI ≤ rF , these constructions achieve the lower bound of
Theorem 4, i.e. the optimal conversion bandwidth. Otherwise,
these constructions achieve the lower bound of Theorem 7, i.e.
the optimal conversion bandwidth if Conjecture 5 is true.

The proposed constructions can perform conversion with
significantly less conversion bandwidth compared to the default
approach. Moreover, these constructions also require less con-
version bandwidth than existing convertible codes optimized for
access cost [8]. Table I and Fig. 2 compare the read conversion
bandwidth of the different approaches (we omit write conver-
sion bandwidth because it is the same for all three approaches).

We start by summarizing the relevant background and related
work in §II. Then, we model conversion in the split regime and
derive lower bounds for conversion bandwidth in §III. Finally,
we present a construction matching those lower bounds in §IV.

II. BACKGROUND AND RELATED WORK

A. Vector codes

Let Fq be the finite field of size q and let [n, k, α] denote
a vector code C over Fq , where C ⊆ Fαn

q is defined as an Fq-
linear subspace with dimension αk. We assume C has a given
basis, which forms the generator matrix G ∈ Fαk×αn

q of a
code. We denote the encoding function of C as C(m) := mG
for message m ∈ Fαk

q . If G = [I | P], (where I is the identity
matrix) the code is said to be systematic. Let [n] := {1, . . . , n}.
The coordinates of codeword c ∈ C are called subsymbols,

TABLE I: Comparison of the read conversion bandwidth (read
BW) of different approaches for split conversion.

Approach Read BW (rI < rF ) Read BW (rI ≥ rF )

Default λF kFα λF kFα
Access opt. [8] λF kFα [(λF − 1)kF + rF ]α

This paper λF kFα− rI
(

kF

rF
− 1

)
λF rFα

(λF−1)kF+rI

(λF−1)rF+rI

and ci = (cα(i−1)+1, cα(i−1)+2, . . . , cαi) is defined as the i-th
symbol of c (i ∈ [n]). The code C is said to be maximum-
distance-separable (MDS) iff for all m ∈ Fαk

q , m can be
decoded from any k symbols of c = C(m). Codes with α = 1
are called scalar. The notation p[i] is used to denote the i-th
coordinate of vector p.

B. Piggybacking framework for constructing vector codes
The Piggybacking framework [10], [11] is a framework for

constructing an [n, k, α] vector code by using α instances of
an [n, k] scalar code as a base code, and then adding piggy-
backs to certain subsymbols of the code. The piggybacks are
arbitrary functions of data from one instance added to another
instance, chosen so as to grant some additional property to the
code. Typically, the piggyback added to instance i is only a
function of the data encoded by instances 1, . . . , i − 1. This
property ensures that the code can be decoded by sequentially
decoding instances 1, . . . , α in order, using the data from the
decoded instances to subtract the piggybacks. We will employ
piggybacking to design bandwidth efficient convertible codes.
Note that if the base code is MDS, then the constructed vector
code with piggybacks is also MDS.

C. Convertible codes
Convertible codes [7] are erasure codes designed to enable

encoded data to undergo efficient conversion. The objective
of conversion is to convert codewords of an initial [nI , kI , α]
code CI into codewords of a final [nF , kF , α] code CF such
that the initial and final codewords decode to exactly the same
set of data symbols. Assume, for now, (nI , kI ;nF , kF ) are
given, and α is arbitrary. In this paper, we focus on the case
where both CI and CF are MDS, and in the so-called split
regime, where kI = λF kF for some integer λF ≥ 2. This
corresponds to conversions where a single initial codeword of
CI is split into λF final codewords of CF . Let rI := (nI −kI)

2022 IEEE International Symposium on Information Theory (ISIT)

3263Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 11,2022 at 23:35:27 UTC from IEEE Xplore.  Restrictions apply. 



and rF := (nF − kF ). Let m := (mi ∈ Fq)
αkI

i=1 be the data
to be encoded, and let mi := (m(i−1)kFα+j)

αkF

j=1 be the data
associated with final codeword i ∈ [kF ]. A split conversion
from initial code CI to final CF is a procedure that takes CI(m)
as input and outputs {CF (mi) | i ∈ [λF ]}. Our objective is to
design the codes (CI , CF ) and an efficient conversion procedure
for the given parameters (nI , kI = λF kF ;nF , kF ).

During conversion, there are three types of symbols: 1) un-
changed symbols, which are the initial symbols that are retained
in one of the final codewords (this does not require conversion
bandwidth because the symbol does not move); 2) retired
symbols, which are the remaining initial symbols that are not
unchanged; and 3) new symbols, which are the remaining final
symbols that are not unchanged. During conversion information
is downloaded from unchanged and retired symbols, and then
used to construct the new symbols.

Convertible codes that have the maximum number of un-
changed symbols are called stable. Intuitively, more unchanged
symbols imply fewer new symbols, which requires reading and
writing less data when creating the new symbols. Therefore,
to simplify our analysis we focus only on stable convertible
codes: with kF unchanged symbols per final codeword [8].

D. Other related work

Several works have studied problems that can be regarded
as special cases of code conversion: [12], [13] studied the
bandwidth required by the addition of extra parities to an MDS
code (kI = kF and nI < nF ); [14] describes two pairs of non-
MDS codes that can be converted back and forth; [15] studies a
problem in distributed matrix multiplication where parameters
are changed via local re-encoding. Another related problem is
the scaling problem [16]–[28], which consists of converting
each codeword of an [n, k, α] code, into a codeword of an
[n + s, k + s, kα/(k + s)] code for given integer s. In other
words, the amount of data in each codeword is kept constant,
but the data is distributed across a different number of devices.

III. CONVERSION BANDWIDTH OF THE SPLIT REGIME

In this section we analyze the conversion bandwidth required
by MDS convertible codes in the split regime, i.e., the case
where kI = λF kF for some integer λF ≥ 2.

In order to obtain a lower bound on the conversion bandwidth,
we model split conversion as an information flow problem.
In this model, we represent the flow of information during
conversion as a DAG with edges with variable capacity that
represent the transfer of data between nodes. Our objective
is to set the capacity of edges in a way that minimizes the
conversion bandwidth, while ensuring that the flow conditions
necessary for conversion are met.

One challenge is that, as we will show, the bound we obtain
through information flow is not achievable in general.1 This
bound is not achievable in general because retired symbols con-
tain data that is associated with more than one final codeword.

1Split conversion corresponds to a multi-source multicast problem. In
this case (unlike the single-source case) the information flow bound is not
necessarily tight with respect to coding [29].

U1
UλF

U1 UλF

R1

N1 NλF

s

t1 tλF

t

c

α

β2β1

α
α

α α

Fig. 3: Information flow graph of split conversion. For clarity,
each unchanged symbol is drawn twice, in order to show the
initial configuration of the system in the top row of nodes, and
the final configuration in the bottom row of nodes. The edges
with a red mark depict a graph cut.

Thus, in order to make use of these symbols during conversion,
we must also download enough data from unchanged symbols
to remove the “interference” from other final codewords. To
this end, we introduce a conjecture and derive from it a lower
bound which, as we show in §IV, is achievable.

A. Information flow

We model the conversion process using the graph (see Fig. 3)
composed by the following nodes:

• source s, representing the whole data m ∈ FαkI

q ;
• the set Ui for i ∈ [λF ], representing the unchanged symbols

of final codeword i;
• the set R representing retired symbols;
• the set Ni for i ∈ [λF ], representing the new symbols of

final codeword i;
• data collectors ti for i ∈ [λF ] that represent the decoders

for each final codeword;
• a central node c that computes the new symbols;
• a sink t collecting the data for all final codewords (i.e. m).

Let (u, v, x) denote and edge from node u to node v with
capacity x ≥ 0. Nodes are connected by the following edges:

• {(s, x, α) | x ∈
⋃

i Ui ∪R}, representing the data stored in
the initial symbols;

• {(x,c, β1) | x ∈
⋃

i Ui} representing the data downloaded
from unchanged symbols;

• {(x,c, β2) | x ∈ R}, representing the data downloaded from
retired symbols;

• {(c, x, α) | x ∈
⋃

i Ni}, representing the data written to the
new symbols;

• {(x, ti, α) | x ∈ Vi} for Vj ⊆
⋃

i(Ui ∪Ni) such that |Vj | =
kF for j ∈ [λF ], representing decoding of final codeword i;

• {(ti, t, αkF ) | i ∈ [λF ]}, representing the collection of all
the decoded data.

In this paper, we focus on stable codes (see §II-C). Therefore,
we have that |Ui| = kF , |R| = rI , and |Ni| = rF (i ∈ [λF ]).
The total conversion bandwidth γ will be given by the total
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size of the information communicated between nodes during
conversion, which corresponds to the following equation:

γ := γR + γW ,

where γR := λF kFβ1 + rIβ2 and γW := λF rFα.
(1)

We refer to γR as the read conversion bandwidth and to γW as
the write conversion bandwidth. Our objective is to set (β1, β2)
to minimize γ while ensuring an information flow of size αkI

(the size of the data m) is feasible. Since γW is constant with
respect to (β1, β2), our analysis will focus on γR.

Note that our model assumes a uniform amount of data
downloaded from unchanged symbols and retired symbols.
This is without loss of generality, since any stable convertible
code with non-uniform downloads, can be made uniform by
repeating the code a sufficient number of times and rotating
the assignment of symbols to nodes with each repetition.

Our first lemma expresses the constraint which arises from
considering the cut shown in Fig. 3.

Lemma 1: For all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code:

λF min{rF , kF }α ≤ λF min{rF , kF }β1 + rIβ2. (2)

Proof: For each j ∈ [λF ], consider a sink tj that connects
to all symbols in a final codeword but a set Sj ⊆ Uj of size
min{kF , rF }. Consider the cut defined by {s}∪

⋃λF

j=1 Sj ∪R.
This cut yields (2) after simplification.
Using (1), we can show that when rF ≥ kF , no savings in
conversion bandwidth are possible over the default approach.

Corollary 2: When rF ≥ kF , we have γR ≥ λF kFα.
In other words, the default approach has optimal conversion
bandwidth when rF ≥ kF . For this reason, we will only focus
on the case rF < kF .

To obtain a lower bound on γ, we will minimize it subject
to (2) with β1 and β2 as variables.

Lemma 3: Assume rF < kF . Then, the value of γ is
minimized subject to (2) when:

β1 = max

{
1− rI

λF rF
, 0

}
α, β2 = min

{
1,

λF rF

rI

}
α.

Proof sketch: Note that β2 offers the better “bang for the
buck” for satisfying (2), because each unit of β2 contributes
rI costing rI , while each unit of β1 contributes λF rF costing
λF kF . Thus, it is intuitively better to increase β2 first as much
as possible and necessary. Then, we set β1 to satisfy (2).
By replacing into (1), we obtain the following lower bound.

Theorem 4: For all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code:

γR ≥

{
λFkFα− rIαmax

{
kF

rF
− 1, 0

}
if rI ≤ λFrF ,

λF min{rF , kF }α otherwise.

This bound shows that there is potential for conversion band-
width savings when kF > rF , because the bound is strictly
lower than the default approach (λF kFα) in this region. Unfor-
tunately, this bound is not always achievable, as we see next.

For example, suppose we have have a stable convertible code
with kF > rF , rI = λF rF and that we set β1 = 0 and β2 = α.
This assignment satisfies Theorem 4 (and it leads to a feasible
flow in Fig. 3). However, as shown by previous work on access
cost of conversion [8], it is not possible to perform conversion
in this case by accessing fewer than (λF −1)kF +rF symbols.
Furthermore, it can be shown that any assignment that makes
β1 > 0 necessarily leads to a higher conversion bandwidth
than the lower bound of Theorem 4. The fundamental problem
in this case is that to create new symbols for a particular
final codeword we need to remove the interference from all
other final codewords. This is not possible if the conversion
procedure does not access a sufficient number of symbols.

For this reason, we introduce the following conjecture, which
lower bounds the amount of data that needs to be downloaded
from unchanged symbols based on the above intuition.

Conjecture 5: In the information flow model presented
in this section, for all stable MDS (nI , kI = λF kF ;nF , kF )
convertible code we must have:

λFβ1 ≥ (λF − 1)β2. (3)

We incorporate this constraint into the minimization of γ and
obtain a different solution, which limits the amount of data
downloaded from retired symbols when rI > rF .

Lemma 6: Assume rF < kF . Then, the minimum value
of γ subject to (2) and (3) is achieved by Lemma 3 when
rI < rF , and otherwise by:

β1 =
(λF − 1)rFα

(λF − 1)rF + rI
, β2 =

λF rFα

(λF − 1)rF + rI
.

Proof sketch: By (3), we set β2 = min
{
α, λF

λF−1
β1

}
.

We then set β1 in order to satisfy (2). When rI < rF , (3) is
not tight, and we thus obtain the same values that Lemma 3.
Otherwise, we obtain the stated values of β1 and β2.
By replacing back into (1), we obtain the following lower
bound based on Conjecture 5.

Theorem 7: If Conjecture 5 holds, then for all (nI , kI =
λF kF ;nF , kF ) convertible code with rI ≥ rF and rF ≤ kF :

γR ≥ λF rFα
(λF − 1)kF + rI

(λF − 1)rF + rI
.

As we shall see in §IV, the proposed constructions achieve the
combination of the lower bounds of Theorems 4 and 7. Thus,
we finish this section by comparing the conversion bandwidth
of our approach with that of the default approach and existing
convertible codes optimized for access cost [8]. Since in all
approaches the write conversion bandwidth is equal (λF rFα),
we focus on the read conversion bandwidth. Table I includes
the expressions for the read conversion bandwidth of different
approaches. Figure 2 plots the lower bounds on read conversion
bandwidth relative to the default approach for some example
parameters. These results show that our approach can achieve
significant savings in conversion bandwidth with respect to the
default approach and access-optimal convertible codes.
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IV. EXPLICIT CONSTRUCTIONS

In this section, we present constructions for convertible codes
in the split regime that optimize for conversion bandwidth. The
constructions employ the Piggybacking framework [11].

Theorem 8: The constructions presented in this section
achieve the optimal conversion bandwidth when rI ≤ rF .
Furthermore, they achieve the optimal conversion bandwidth
when rI > rF if Conjecture 5 is true.
These construction require less conversion bandwidth than the
default approach and the access optimal approach (regardless
of Conjecture 5) as long as rF < kF (Corollary 2). Due to
space constraints, we only describe the construction for the
case rI ≥ rF . The construction for the case rI < rF is similar.

1) Base code: We utilize an [nI , kI ] systematic code with
a Vandermonde matrix with evaluation points (ξ1, . . . , ξrI ) as
the parity matrix. A code of this form is guaranteed to be MDS
when choosing ξt (t ∈ [rI ]) and field size as specified by the
general construction in [7]. Nonetheless, in practice it is often
possible to search for ξt that generate an MDS code over a given
finite field. Let ht := (h

(t)
1 , . . . , h

(t)

kI )
T = (1, ξt, . . . , ξ

kI−1
t )T

be parity encoding vector t ∈ [rI ] of the base code. In
our construction, we use the property that (h(t)

1 , . . . , h
(t)

kF ) =

ξ
−(i−1)kF

t (h
(t)

(i−1)kF+1
, . . . , h

(t)

ikF ) for all t ∈ [rI ] and i ∈ [λF ].
2) Piggybacking construction: We now describe the con-

struction (assuming rF < kF ). Recall that during conversion,
we download β1 from each unchanged symbol, and β2 from
each retired symbol, which are set as discussed in §III. If we set
the set the size of each symbol as α := ((λF −1)rF +rI), then
β1 := (λF − 1)rF and β2 := λF rF . For simplicity, we divide
α into blocks: for a given ℓ ∈ [α] we define (ℓ1, ℓ2) as follows.

(ℓ1, ℓ2) :=

{(⌈
ℓ
rF

⌉
, (ℓ− 1 mod rF ) + 1

)
if ℓ ≤ λF rF ,

(λF + 1, ℓ− λF rF ) otherwise.

To describe the encoding vectors of our code, we decompose
each encoding vector of the base code into λF vectors of
length kF , corresponding to the data associated with each
final codeword. Then, we represent each of these vector in the
αkI -dimensional space corresponding to the whole data m
(by filling the additional dimensions with zeros). Specifically,
we define p

(i)
t,ℓ ∈ FαkI

q as the column vector such that mp
(i)
t,ℓ

corresponds to the encoding of the data under the base code for
parity t ∈ [rI ], final codeword i ∈ [λF ], and instance ℓ ∈ [α].
We achieve this by setting p

(i)
t,ℓ [(i− 1)kFα+ (j − 1)α+ ℓ] :=

ht[(i− 1)kF + j] for j ∈ [kF ] and 0 everywhere else.
We specify how to construct qI

t,ℓ ∈ FαkI

q , which is the
encoding vector for instance ℓ ∈ [α] of parity t ∈ [rI ] of the
initial codeword, and q

F (i)
t,ℓ ∈ FαkI

q which is the encoding
vector for instance ℓ ∈ [α] of parity t ∈ [rF ] of final codeword
i ∈ [λF ]. The construction is designed so that the final
codewords are all encoded under the same final code. Figure 4
shows a diagram for this construction. The construction has
three important elements:
1) Permutation: In the initial code, the first λF blocks of the

data symbols associated with final codeword i are circularly
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Fig. 4: Diagram of convertible code construction in the split
regime when rI > rF and λF = 3.

shifted to the right i− 1 times (denoted with letters A-C).
This reordering is logical (no data is moved) and used for
describing the code only.

2) Projection: For parities 1 through rF (P blocks), we use the
base code without modification to encode each data column.
During conversion, we download blocks {2, . . . , λF } from
each data symbol (blocks B and C) and subtract their
interference from the corresponding parity symbols to obtain
the first block of each final codeword (P) blocks).

3) Piggybacks: For parities (rF +1) through rI (Q blocks), we
use the base code and add piggybacks to block ℓ1 ∈ [λF ]
that contain the subsymbols of block (λF + 1) of final
codeword ℓ1 (transposed). During conversion, we recover
the piggybacks by using the downloaded data (blocks B
and C). Note that the piggybacks will still have extra data
remaining from the unaccessed block (A). However, the
final code can still be sequentially decoded (the same way
that codes in the piggyback framework are decoded).

The remaining parity subsymbols are generated from the ac-
cessed data blocks (B and C). Finally, parity symbol t ∈ [rF ]

in final codeword i ∈ [λF ] is scaled by ξ
−(i−1)kF

t to ensure
that all final codewords are encoded by the same final code (as
described in §IV-1). Let

−→
ℓ (i) := ((ℓ1 − i mod λF )kF + ℓ2)

be the instance index after permutation. Then, the encoding
vectors for the initial and final codes are defined as:

qI
t,ℓ :=


∑λF

i=1 p
(i)

t,
−→
ℓ(i)

if t ≤ rF, ℓ1 ≤ λF,∑λF

i=1 p
(i)

t,
−→
ℓ(i)

+ p
(ℓ1)

ℓ2,(λF−1)rF+t
if t > rF, ℓ1 ≤ λF,∑λF

i=1 p
(i)
t,ℓ otherwise.

q
F (i)
t,ℓ :=

{
ξ
−(i−1)kF

t p
(i)
t,ℓ if ℓ1 ≤ λF ,

ξ
−(i−1)kF

t (p
(i)
t,ℓ + p

(i)

rF+ℓ2,t
) otherwise.

piggyback

scaling factor extra data

This construction achieves the bound of Theorem 7. Fur-
thermore, the constructed code is MDS because it uses the
piggyback framework and the base code is MDS.
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