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Abstract

Caching is crucial for accelerating data access, employed
as a ubiquitous design in modern systems at many parts of
computer systems. With increasing core count, and shrink-
ing latency gap between cache and modern storage devices,
hit-path scalability becomes increasingly critical. However,
existing production in-memory caches often use list-based
management with promotion on each cache hit, which re-
quires extensive locking and poses a significant overhead for
scaling beyond a few cores. Moreover, existing techniques for
improving scalability either (1) only focus on the indexing
structure and do not improve cache management scalability,
or (2) sacrifice efficiency or miss-path scalability.

Inspired by highly skewed data popularity and short-term
hotspot stability in cache workloads, we propose FROZEN-
Hor, a generic approach to improve the scalability of list-
based caches. FRozENHOT partitions the cache space into
two parts: a frozen cache and a dynamic cache. The frozen
cache serves requests for hot objects with minimal latency by
eliminating promotion and locking, while the latter leverages
the existing cache design to achieve workload adaptivity. We
built FRozENHOT as a library that can be easily integrated
into existing systems. We demonstrate its performance by
enabling FRozeNHoOT in two production systems: HHVM and
RocksDB using under 100 lines of code. Evaluated using pro-
duction traces from MSR and Twitter, FrozENHOT improves
the throughput of three baseline cache algorithms by up to
551%. Compared to stock RocksDB, FrRozeNHoT-enhanced
RocksDB shows a higher throughput on all YCSB workloads
with up to 90% increase, as well as reduced tail latency.
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1 Introduction

Caching is one of the key techniques for accelerating
data access and is deployed widely in systems across lev-
els [51, 67, 72-74]. For I/O operations, its benefits stem from
closing the significant performance gap between main mem-
ory and block storage devices, both in latency (up to 1000x)
and bandwidth, by keeping the copies of hot items within
and serving them from main memory [11, 19]. In addition,
with today’s trend toward resource disaggregation, large data
centers begin to adopt a layer of cache servers [30, 59, 61, 68],
assisted by common caching engines such as CacheLib [29]
and Segcache [76], allowing diverse applications to bene-
fit from the high throughput and stable latency offered by
highly optimized memory caching.
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As a transparent system optimization, the cache is known
for its “live” adaptability achieved by dynamically admitting,
promoting/aging, and evicting data items, collectively called
cache management. However, cache management brings
severe scalability issues and non-negligible hit latency for
modern web applications.

Memory caches are further stressed as high hit ratios, and
highly concurrent workloads are increasingly common in
production systems [22, 46, 75]. Modern processors offer
higher hardware parallelism, with over 100 cores per server
and more to come in next-generation CPUs [14, 78]. More-
over, the deployment of fast storage devices further amplifies
the impact of this software overhead.

Figure 1 shows the average hit latency of the Meta HHVM
LRU cache [11] under a Zipfian workload (6 = 0.99), bro-
ken down into time spent on data read (4KB objects), cache
lookup, and cache management. As the thread count increas-
ing, the original HHVM implementation (O) on the left shows
fast-growing latency. At 80 threads, due to lock contention,
one cache hit takes more than 2 pus, 7.6X higher than at a
single thread, over 70% of which comes from cache manage-
ment. At this point, reading data from DRAM only accounts
for 6% of the latency. On the right side of the figure, we in-
cluded the read latency of the Optane P5800 SSD used in our
testbed, at around 5us. With such cache contention, cache
hits have lost their edge from in-memory data accesses to
approach I/O speed. Accompanying such latency increase
is the per-core throughput drop: we observe around an 80%
decrease at 40 cores compared to a single core (Fig. 1).

Such cache-induced management creates inadvertent dark
spins on even the most cache-friendly user access traffic: (1)
originally independent user accesses to distinct data objects
now experience heavy contention to shared cache data struc-
tures, and (2) originally read-heavy or even read-only user
accesses now become write-intensive due to cache metadata
updates. As a result, cache hits must undergo synchroniza-
tion, forcing systems to spend much more time on cache
management than on data access itself.

To achieve linear scalability, we present a new cache de-
sign, FRozeNHoT, which uses a new periodically rebuilt
frozen cache to help reduce the management cost of the
conventional dynamic live-updated cache. The FRozENHoT
design is based on the key observation that in a short pe-
riod of time, the hottest items are relatively stable, as found
in related studies [7, 10, 25, 32, 62]. We argue that the con-
tinuous management performed by conventional caches is
often wasteful. Take the LRU cache as an example. When
workloads possess strong temporal locality, many cycles are
spent on rearranging items within the first half of the LRU
list; when workloads have poor locality (such as scans), even
more efforts are spent on replacement, without necessarily
improving caching effectiveness (hit ratio).

FrozenNHor virtually partitions the cache into two parts.
The “frozen” part (FC) is expected to host the hottest items
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and serve them at extremely low latency as it removes cache
management and related lock contention. The rest is man-
aged as a conventional cache with dynamic insertion and
eviction. Instead of being continuously updated, the FC is
periodically reconstructed to adapt to workload changes.
FrozeNHoOT uses a lightweight background FC-controller
to adaptively choose the frozen cache size based on access
pattern, concurrency level, and cache size.

With its partially static design, FRozENHOT reduces un-
necessary management work and improves cache perfor-
mance in multiple ways. First, unlike the common optimiza-
tion to improve cache hit rate through cache algorithm de-
signs [39, 41, 65], FRozeNHoT instead completely eliminates
the use of locks on the hottest items by pinning them in the
frozen cache without cache management for a sizable time
interval, whose duration is automatically and dynamically
configured. Accessing hot objects during these frozen times
does not need locking, paying only lookup overhead on top
of direct DRAM accesses. Second, such a frozen cache allows
the adoption of more efficient data structures, such as fast,
lock-free hash tables for quick and scalable indexing. These
options are often beyond the reach of conventional caches
accommodating replacement and resizing. Finally, for work-
loads with popular access patterns that are hostile to LRU/-
FIFO (such as circular scans), FRozENHOT could significantly
improve the hit ratio by giving up dynamic management and
instead holding on to a subset of data items.

The FrRozeNHOT design is general and can be employed
in many existing caches with minor code modifications.
In this paper, we focus our discussion on the popular
linked-list-based design (e.g., LRU, FIFO, 2Q [43], ARC [57],
TinyLFU [36], etc.). We implemented a FRozeNHoT library
and demonstrated its ease of use by enabling it in the HHVM
LRU cache [11] and the RocksDB block cache [19], with
under 100 lines of code change. Our design and evaluation
illustrate FrRozeNHoT’s working with LRU, LFU, and FIFO.

Using production traces from Microsoft and Twitter, as
well as synthetic Zipfian workloads, we show that on HHVM
LRU cache, FRozENHOT can improve throughput up to 551%.
End-to-end evaluation using RocksDB shows that FROZEN-
HoTt can improve its throughput by up to 90% and reduce tail
latency by up to 46%. To the best of our knowledge, FROZEN-
Hor is the first caching scheme fundamentally satisfactory
in both hit ratio and hit scalability.

2 Background and Motivation
2.1 In-memory Caching

As a critical building block for speeding up data access, in-
memory caches are widely deployed to support today’s on-
line applications [29, 55, 75].

List-based management. We examined the designs of
many widely used in-memory caches [4, 11, 15, 16, 29] and
found that list-based management adopted dominantly in
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Figure 2. General architecture of list-based caches

today’s cache algorithm implementations. These include not
only recency-based systems (such as ARC [57], LIRS [41],
SLRU [45], and CACHEUS [65]), but also recent frequency-
based approaches like TinyLFU [36] and LeCaR [69]. There-
fore, this paper focuses on list-based cache implementations.

Fig. 2 shows the common design of prevailing list-based
cache implementations today, with two main data structures:
(1) an indexing structure (typically a hash table or B-tree)
that facilitates fast data lookup and (2) a list structure that
keeps track of the hotness of items accessed and facilitates
cache evictions. Data access involves first looking up the
index and obtaining a pointer to the requested data upon
hits. This is followed by updating the list by promoting the
fetched object, e.g., moving its list element to the head with
LRU, or to the frequency-based location with LFU. When
inserting an object upon a cache miss, both the indexing
and list structures are updated. As a consequence, even with
today’s read-dominant application workloads, the cache in-
ternal operations all require updates protected by extensive
locking, which hinders system scalability.

2.2 Trends in Modern Hardware

Modern storage systems have undergone a rapid transfor-
mation with a shrinking latency gap between storage hier-
archies. At the top, large in-memory caches are routinely
used, with potential expansion to larger, cheaper, and slightly
slower persistent memory (PMEM) [13], such as Twitter’s
recent exploration [22]. At the bottom, backend storage of-
ten adopts faster NVMe SSDs [3, 31, 47]. Compared to the
scenarios caches were designed to serve several decades ago,
the much-reduced latency gap between the memory cache
and storage layers implies that the cache management over-
head becomes increasingly visible and could significantly
erode the performance profit of caching.

In addition, running a cache on multiple cores in paral-
lel requires synchronization on the indexing structure and
list-based management: each request, hit or miss, needs to
lock both the indexing structure and the list. This synchro-
nization can significantly increase the latency of a cache
hit, lowering the overall cache throughput consequently. We
call this problem hit-path scalability, which occurs when
the cache hit ratio and workload concurrency are high, and
further exacerbated by fast storage backend. As we have
seen in Fig. 1, scaling to 80 cores brings a 7.56X hit latency
increase as compared with single-core execution, resulting
in a significant per-core throughput reduction.
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2.3 Existing Solutions to Improve Scalability

Lock-free data structure. Optimistic concurrency control
over lock-free data structures has been shown to increase sys-
tem throughput for read-dominated workloads [32, 38, 52].
However, it can only improve the scalability of the indexing
structure, while we observe that list management is the main
bottleneck for scaling in-memory caches. Therefore, existing
lock-free data structures and techniques such as RCU [24, 56]
cannot remove this major scalability hazard.

Trading efficiency for scalability. To reduce cache man-
agement overhead, several approaches exist to trade cache
efficiency for scalability. For example, CLOCK [34, 38, 66]
delays promotion until eviction time, HHVM relaxes LRU
promotions using try_lock instead of lock, Cachelib [29]
reduces promotion frequency, and Redis [18] uses sampling
to evict an object that is approximately the least recently
used. To achieve better scalability, these algorithms often
sacrifice hit ratios, and sometimes bring other side effects.
For instance, sampling objects to compare/evict in Redis [18]
improves hit-path scalability. Meanwhile, it hurts miss-path
scalability as one thread’s sampled objects may be evicted
by other threads, leading to many retries. Similarly, several
recent cache eviction algorithms adopting sampling in pro-
motion (e.g., LHD [27] and LRB [67]) also suffer from this
problem and have poor scalability.

Sharding and fine-grained locking. A common prac-
tice for better scalability is to partition the key space into
shards, as adopted in production systems such as the HHVM
LRU cache and RocksDB block cache used as baselines in this
work [11, 16, 19]. Each shard maintains its own ordered cache
list and indexing structure, mitigating global contention by
per-shard locking. Sharding is orthogonal to and comple-
ments the two approaches described above. However, their
combination still does not solve the list-management scala-
bility problem, partially due to the obvious load imbalance
side effect of sharding [28, 38, 40, 50, 53, 58]. Similarly to
sharding, indexing structures also often adopt fine-grained
locking to improve scalability [15], which, again, cannot help
with list-based management.

2.4 Opportunities

Our approach is inspired by the following two observations.

First, many target workloads of in-memory caching today
do possess strong locality brought by highly skewed popular-
ity, where a small number of objects are accessed much more
frequently than others, a natural behavior existing across ap-
plications from social networks to online shopping and web
browsing. Companies like Twitter, Facebook, and Alibaba
have confirmed that their cache workloads follow the Zipfian
distribution with significant skew [25, 29, 32, 75]. Meanwhile,
while these access hotspots gradually shift as time goes on,
they remain fairly stable within short time periods [42, 49].
For example, recommendation systems often reuse cached
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Figure 3. Overview of FrRozENHOT. A lookup first goes to
FC-hash (FC); if it is a cache miss, then look up in DC-hash
(DC). Insertions and evictions occur only in DC.

results within a certain time window, periodically refreshing
by incorporating new activities and content [76]. Timeline
content display, pervasive in applications such as social net-
works, news feeds, and messages/emails, smoothly transi-
tions user attention and traffic to newer content, while older
objects get naturally aged when moved away from the front
page. This combination of strong locality (high hit ratios) and
short-term hotspot stability leads us to take a more radical
approach targeting removing cache management altogether
for the majority of the average-case accesses (i.e., cache hits).

Second, cache workloads (especially when caching stor-
age blocks) could often exhibit scan or repeated scan access
patterns [65, 69], which sometimes causes cache thrashing
when the scan size is larger than the cache size and the cache
uses a recency-based eviction algorithm such as LRU. Instead
of improving hit ratio by trying to intelligently predict which
content to keep in the cache when the workload contains a
non-trivial amount of scans, our approach, in this case, may
also decide to freeze a large fraction of the cache, signifi-
cantly lowering the management cost during a period where
shuffling cache contents leads to marginal profits.

3 FrozenNHort Design
3.1 FrozeNHoTt Overview

FrozeNHoT works as a user-level library enhancing new or
existing in-memory caches. FRozENHoOT builds on top of a
base cache and has three components: a frozen cache (FC), a
dynamic cache (DC), and a FC-controller. The FC is designed
to achieve high throughput and linear thread scalability by
freezing hot objects and eliminating locking. The DC runs
with the original cache management mechanism, supple-
menting the FC. FC-controller is the brain of FRozeNHoT
that decides how to build FC to provide optimal throughput.

Note that although FrRozenHor divides the cache into
FC and DC, it does not physically partition the cache space.
Instead, it builds a separate “overlay” metadata structure
(FC-hash) to identify objects in FC. Periodically, these two
caches are merged for FrRozeNHOT to learn about the current
accesses, before they are split again to form the next FC, again
through rebuilding the FC-hash. The data objects cached, on
the other hand, are stored together and do not need to be
migrated. The linked list is split between the two, with the FC
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Figure 4. The three phases of FRozENHoOT

segment not accessed and the DC segment used as usual with
original cache management. Figure 3 depicts FRozeENHOT’s
overall architecture and access workflow. Below we give
more details on its components and operations.

Frozen cache (FC). FrozeNHoT adds FC-hash, a fast, lock-
free hash table that indexes to the FC-cached objects, allow-
ing it to bypass the DC in their accesses. The FC-hash is
periodically constructed to keep up with the current work-
ing set. Once set up, it remains immutable until the next
reconstruction. The latency benefits of FC come from two
sources. First, its read-only use removes the need for lock-
ing and hence avoids lock contention. This also reduces the
number of required operations per request, trimming many
bookkeeping tasks. Second, its read-only nature enables the
adoption of fast, immutable hash table implementation for
the FC-hash.

Dynamic cache (DC). Working as the “base cache”, the
DC has conventional management performing replacement
based on a selected cache algorithm such as LRU and LFU.
An FC miss results in a lookup in the DC, where a DC hit
promotes the object within the DC according to the evic-
tion algorithm. A DC miss requires fetching data from the
backend and inserting into DC.

FrozeNHoT operations. To serve a request, FRozENHOT
first checks the FC. If the requested key is found (FC hit), the
requested data is read and returned to the user. Otherwise,
FrozenHort looks up the DC, hoping for a DC hit. Both FC
hits and DC hits are served from the cache; however, the lock-
free, management-free FC hits are much faster. A cache miss
happens when the key is not found in either cache, forcing
the data to be fetched from the backend and inserted into
the DC. Note that while the FC is static with its immutable
metadata (cache replacement only occurring on the DC side),
its cached data are not read-only.

FC-controller. The core of FRozENHOT is the FC-controller
(Fig. 4), which makes decisions on phases: (1) a learning phase
for learning about the application accesses and configuring
key FRozENHOT internal parameters, (2) a construction phase
for rebuilding the FC, and (3) a (typically much longer) frozen
phase for fast and scalable cache service on top of the split
FC and DC. When a FrRozeNHoT-enabled cache is started, it
only has a single “base cache”, operating as the DC. At the
end of the frozen phase, the FC and DC are merged into a
single cache (again operating in the DC mode), from which
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we reconstruct the next FC. Fig. 4 illustrates this process and
more details are given in §3.2.

FrozeNHoT performance. The mean access latency with
FrozeNHOT can be roughly estimated using Equation 1,
where H represents hit ratio and L represents latency. Be-
cause a DC cache hit occurs only upon an FC miss, its latency
Lpc consists of the FC lookup and DC lookup. Similarly, Ly,ss
includes both caches’ lookup, in addition to the backend read,
cache insertion, and eviction latency.

L =Lpc - Hrc + Lpc - Hpe + Lmiss - (1 = Hre — Hpe) (1)

Due to its lock-free, immutable design, FC hits are very
cheap, with Lp¢ at a fraction of Lpc. With an effective FC
that intercepts the majority of cache hits with workloads
possessing good temporal locality, such fast FC hits occupy
the bulk of data accesses (reasonably high Hrc) and become
the significant contributor to FRozENHOT’s performance
advantage.

Less obviously, FRozeNHoOT also improves the DC hit per-
formance: with many requests served by the FC, the DC-side
lock contention is alleviated, resulting in lower Lpc.

FrozeNHOT’s side effect is limited to the overall hit ratio
(Hrc + Hpc) degradation: with the FC being static, it may
not respond closely to changing working sets, resulting in a
higher miss ratio. However, it adapts the relative FC size to
the workload, and our experiments show that the overall hit
ratio degradation is quite minor (< 1% in most cases).

Finally, one unexpected source of FRozeNHoT’s perfor-
mance gain is with scan-heavy workloads [65], which are
unfriendly to mainstream cache algorithms. Here, FROZEN-
Hor can often be found freezing the entire cache when it
realizes dynamic caching is not profitable. By doing this,
it actually improves the hit ratio Hpc (by avoiding cache
thrashing under cyclic scans) and simultaneously lowers the
hit latency Lrc (by giving up the futile cache management
altogether). Figure 11 will give related results.

3.2 Frozen Cache Learning and Construction

We now describe the strategies and mechanisms involved in
periodic FC reconstruction, to answer the questions below:

1. How many and which objects should be frozen? (§3.2.1)
2. How to efficiently construct and deconstruct FC? (§3.2.2)
3. How often should the FC be reconstructed? (§3.2.3)
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3.2.1 Learning Frozen Ratio. Freezing too few objects
brings little benefits, while freezing too many could cause
the hit ratio to drop significantly, increasing the overall ac-
cess latency. Similarly, freezing for longer allows an FC to
serve more requests after paying the reconstruction cost
but comes with the risk of working under a deteriorated hit
ratio. Therefore, the FC-controller learns these parameters
from the workload through low-cost, online profiling and
performs workload-aware auto-tuning to optimize overall
cache service throughput.

To configure the FC size, FRozENHOT defines FC_ratio as
the ratio of FC size to FC + DC size. Unlike traditional cache
sizes, here FC_ratio not only affects the cache hit ratio but
directly impacts the hit latency, as revealed in our discussion
following Equation 1. The left side of Fig. 5 illustrates the
behavior of two hit ratio curves: one for FC and the other for
the global cache (FC + DC). As we increase the FC_ratio,
the FC hit ratio increases while the global one is likely to
decline slowly due to the cache becoming more static. The
sweet point (marked by the star) yielding overall optimal
throughput, corresponding to the lowest mean access latency,
often sits somewhere in the middle.

In a learning phase, FRozENHOT builds these curves us-
ing an efficient marker-based approach through the merged
cache’s normal operation as follows. We borrow the idea
from zExpander [71], where a dummy element (marker) is
inserted into the LRU list to monitor the time it takes to
refresh the entire cache, i.e., the time for this marker to be
moved from the front to the end of the list. Here we use it
mainly for a different purpose, to identify the desired loca-
tion to split the LRU or LFU list. It inserts a marker at the
head of the merged frozen list and doubly-linked list, and
waits for the marker to traverse the list, as shown on the
right side of Fig. 5. With the left end being the “most valuable”
(such as the MRU and MFU end), the left side to the marker is
viewed as FC, while the right as DC, allowing their separate
hit accounting. Upon a DC hit, the object is promoted to the
head of the list (in FC), and the marker moves down the list
by one position. Meanwhile, cache insertions and evictions
(caused by cache misses) are only allowed in the DC section,
with newly admitted items inserted to the right of the marker.

During the marker’s traversal, we count the number of
objects promoted to the head of the doubly-linked list to
estimate the current location of the marker. Although the
workload may change during this process, we find such a
simple learning scheme overall effective for a period longer
than the marker’s traversal. We also track caching statistics
such as hit ratios and hit latency for the two (virtual) caches,
as well as the overall miss latency. These data items are
then fed into Equation 1 to plot the curves demonstrated
in Figure 5, which then aid us in identifying the optimal
FC_ratio. The FC-controller explores the space between 0%
and 100% frozen with a step size of 2% (see our Appendix in
Section 8 for a detailed description of the process). To reduce
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profiling overhead, we adopt a sampling frequency of 1%
(one data point for every 100 cache accesses), which is found
sufficient in our experiments.

As the marker moves monotonically to the right while
the merged cache serves requests, along the way we col-
lect profiling data at selected FC_ratio stops, producing
approximate FC and global hit ratio curves. Note that as
such profiling allows the growing “FC segment” to operate
without promotion, the learning phases themselves often
outperform the baseline mode (by 19% on average).

3.2.2 Background (Re-)Construction. Once the desired
FC size has been learned, FRozENHOT constructs the FC by
first building the FC-hash, followed by splitting the cache
list into two sub-lists: frozen list and doubly-linked list.

Fig. 6 gives an LRU-based example of the FC construction
phase. We leveraged the insight that list-based cache manage-
ment provides a convenient “top-k”-style interface to identify
and separate FC objects quickly. For example, if FRozENHoT
selects a target FC_ratio of 20%, it freezes the left-most 20%
of items of the merged list (in this case, the 20% most re-
cently used objects). This is done by traversing the list and
adding objects to the FC-hash till the target FC size is reached.
To improve throughput, such construction is performed in
the background. Meanwhile, since FRozENHoOT does not re-
move FC objects from the DC-hash, they are indexed by
both hash tables, allowing the DC to serve all requests be-
fore the FC-hash is fully constructed. Deletion is handled
by disabling the key in the FC-hash (enabled as an atomic
operation) and marking it “deleted” in the doubly-linked list.
Note that cache insertion and eviction take place in DC only,
independent of the FC reconstruction.

Once the FC-hash is constructed, FrRozeNHoT splits the
cache list into a frozen list and a doubly-linked list in O(1)
time complexity by pointer updates. During this short con-
struction phase, promotion is temporarily disabled, and new
objects are inserted at the head of the list (before splitting).
Hence for LRU, splitting the frozen list requires cutting at
two locations, as shown in Fig. 6. Among the three segments
produced, the middle one is the frozen list, marked by a
recorded FC head pointer. The list segment before the FC
head and the segment after the FC_ratio-based traversing
stop are then concatenated to form the doubly-linked list.
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Note that this would not happen with LFU, where inserts
happen at the list tail, so a single list cut is sufficient.

After the list split, FC-hash concludes the construction

phase and enters the frozen phase, during which the FC re-
mains static and can be accessed without cache-management
locks while the DC undergoes the standard list-based cache
management. The split lists guarantee that FC-cached objects
will not be evicted during the frozen phase.
Preparations for reconstruction. Upon the termination
of a frozen phase, FRozENHOT performs a two-step prepa-
ration: merging the FC and DC, and re-initializing learning.
The former starts with first concatenating their lists recreat-
ing a unified cache list. FRozENHOT then frees the FC hash
table in the background. Because FC-cached objects are not
evicted during the frozen phase and the FC-hash is a subset
of the DC-hash, there is no need to copy/merge the hash ta-
bles. The latter requires FRozENHOT to wait for the merged
cache to warm up under the base algorithm (i.e. without FH).
Here we determine the duration of such wait again with a
marker-based approach, similar to that used in FC_ratio
learning (Section 3.2.1). We insert a dummy object to the
list head and trigger the learning phase upon its eviction,
when the entire cache’s content has been updated. Note that
the learning phase is optional between two frozen phases,
omitted if FRozENHoOT finds the learned FC_ratio in the
previous episode works well (see results in Figure 13).

3.2.3 Adaptive Frozen Length. FrozeNHoT builds its FC
essentially by taking a snapshot of the items in the base cache
that are considered most valuable by the baseline caching
algorithm. However, this subset changes over time [29], of-
ten leading to the degradation of both the FC and the global
hit ratios. It is also possible that access patterns may sud-
denly change, making a large fraction of FC content obsolete.
Therefore, FRozENHOT needs to adaptively decide the expi-
ration time of the current FC during the frozen phase. To
this end, we adopt three approaches, as described below.
Performance monitoring. During the frozen phase,
FrozeENHOT continuously monitors metrics like average
request latency and throughput. It terminates the frozen
phase when performance deteriorates beyond baseline per-
formance (obtained during the learning phase). In our pro-
totype implementation, the FC-controller uses a simple
window-based approach to monitor the average request la-
tency as the criterion and exits the current frozen phase when
the observed average drops below a configurable threshold
which is based on the baseline. When FRozeNHOT terminates
the current frozen phase due to performance degradation,
it enters another learning phase where it re-learns the best
FC_ratio, followed by a construction phase.

Periodic refresh. As a safety measure, FRozENHOT also
adopts a user-configurable FC lifetime limit, as a factor of the
previous construct phase length (such as 20x). This forces
FrozeNHOT to rebuild its FC periodically to protect it against
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being trapped by an unusually low baseline performance that
happened to be captured during the previous learning phase.
However, with such forced periodic refresh, the learned
FC_ratio is still valid, unlike in the case of performance-
based reconstruction (triggered by the aforementioned mon-
itoring), so FRozENHOT skips learning and directly enters
construction. In other words, in this case, it rebuilds the FC
without searching for the best FC_ratio. During the con-
struction, however, it does monitor the baseline performance
as a reference for performance monitoring in the next frozen
phase.

Regression to baseline. Under challenging workloads such
as those with highly dynamic behaviors, FRozENHOT re-
serves safety measures to return to the baseline cache man-
agement (no FC). When it finds itself unable to beat the
baseline performance during a learning phase, it starts a
“waiting interval” for the cache to run in its baseline mode
before it tests the water again. The waiting interval grows
exponentially with consecutive unsuccessful trials.

3.3 FrozenHor for All

FrozeNHor is designed to support all list-based cache man-
agement algorithms. The core idea of FRoZENHOT remains
the same: freezing a subset of the most popular objects so that
most cache hits can be served without locking. This strategy
is based on the common “top-k” property mentioned earlier
of list-based cache management, regardless of the underly-
ing list-sorting metrics. Aside from the list split maneuver
discussed earlier, the difference between major algorithms is
mainly reflected in how we classify whether a cache hit is
an FC or DC hit when serving from a merged cache for our
low-cost online profiling during the learning phase.
Recency-based algorithms Our previous discussion
showed a recency-based example, and the majority of our
performance evaluation is with such implementation, as this
is the dominant strategy adopted by current systems, found
in many cache eviction algorithm designs such as FIFO, LRU,
ARC [57], SLRU [45], LRU-K [63], TinyLFU [36], 2Q [43].
With these algorithms, we again utilize the marker, which
naturally moves from the head to the tail.

More specifically, each DC list item is augmented with
a timestamp recording its insertion/promotion time during
the learning phase. With the marker logically partitioning
the FC and DC segments, for each data hit, we could easily
judge which segment it hits by comparing its timestamp
with the marker’s. If it is newer, we count this as an FC hit,
otherwise, a DC hit. Only in the latter case the marker shifts
one step toward the tail. This way, we easily collect profiling
data points for the FC/global hit ratio curves with a growing
FC_ratio, without repeated list traversal.
Frequency-based algorithms Another major class of
cache management algorithms adopted in systems today
is frequency-based, with LFU variants such as window
LFU [44], LeCaR [69], and CACHEUS [65]. The design of
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FrozeNHoT for list-based LFU [54] is mostly the same as
with LRU, except that the marker approach cannot be used
here. If we insert a dummy marker, unlike with LRU, it will
not naturally traverse the list but will likely stay at the tail
and get evicted quickly. On the other hand, the LFU list
needs to be strictly sorted by frequency, which allows us to
traverse the list with a pointer and use the frequency value
at its position as the frequency threshold for classifying FC
and DC hits (accessing an item with the same or higher fre-
quency counted as an FC hit). By keeping track of the pointer
movement, again, we can easily profile the hit ratio curves at
different FC_ratio, all during the merged cache’s baseline
operation.

Another difference is with the FC-DC merge at the end of
a frozen phase. Unlike LRU, where we simply concatenate
the two lists, here we need to ensure the merged list is sorted
in frequency, while the FC list skips frequency maintenance
when frozen. For better performance, FRozENHOT performs
a simple approximation by joining the lists first, then adding
in the background a “frequency boost” equal to the DC list
head frequency value at the time of the list merge.

Note that FRozENHOT’s design is not specific to the metric
used for list sorting. When the frequency is replaced by a
custom-defined priority rating (such as GD [77], GDSF [81],
and GD-wheel [48]), the same handling applies, and FROZEN-
HorT can be easily enabled.

4 FrozenHot Deployment

We now discuss the interfaces FRozENHOT exposes to the
cache developers, followed by case studies of enabling it in
two production cache systems with minor code changes.

4.1 FrozenHor Library

FrozeNHoT augments existing cache design by adding addi-
tional metadata to “annotate” the frozen cache. Meanwhile,
the dynamic cache reuses the cache design and implementa-
tion in the baseline system. We built FRozeNHoT as a light-
weight user-level library in under 1000 lines of C++ code.
The implementation consists of two major components, the
FC-controller (to run as a daemon thread) that adaptively
learns the FC_ratio and monitors FC performance for re-
construction, and a lock-free hash table as the FC-hash.
FrozeNHoT targets low-cost online decision-making with
low overhead. First, as mentioned earlier, it does not re-
quire additional profiling, but piggybacks its online pro-
filing on the routine operations of the merged cache, us-
ing coarse-granularity sampling and high-level accounting.
Second, FrRozENHOT adopts existing state-of-the-art high-
performance design and implementations. For example, it
chooses CLHT [8], to implement the immutable FC-hash. As
to space overhead, the major additional data structure is the
FC-hash itself, plus very limited additional metadata such as
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1 void ConcurrentLRUCache() {

3 FH = new fhcache(m_head, m_tail, m_map,
m_listMutex,
null); //FrozenHot cache initialization

5}

¢ Obj= find(Obj« key) {//changes in find

7 if(FH.on) {

8 v = FH.FC_search(key);

9 if('v){ //not FC found

10 v = m_map.search(key); //DC search

11 if(v){

12 if(!FH.constructing) //skip if FC
constructing

13 ... //DC LRU update

15 }

o

o

15 void insert(Obj key, Obj« value) {//changes in insert
19 if(FH.allfrozen)

20 return; //skip the DC LRU update

2}
Figure 7. Adding FrRozeNHoT to HHVM LRU Cache, with
lines in bold highlighting FRozENHOT related changes

the timestamp for LRU list elements. With 4KB-sized objects,
for example, its space overhead will be no more than 0.6%.

4.2 Enabling FRozENHoOT in Production Systems

The FrozeNHoOT library can be easily integrated into exist-
ing caches that use list-based management, covering the
vast majority of production in-memory caches. To our best
knowledge, the only exception is Redis [18], which we in-
cluded in our performance evaluation. In this section, we
report our experience in supporting FrRozeNHoT in HHVM
and RocksDB. Such adaptation requires under 100 lines of
code change for either system.

HHVM [11] is an open-source virtual machine designed
for executing programs written in Hack [1], with a built-
in cache implementation to speed up data access. The
HHVM cache uses a relaxed LRU for eviction and adopts
the Intel TBB (Threading Building Blocks) library for high-
performance concurrent hash table implementations [64].
The relaxed LRU uses list-based management as described in
§2.1, as well as a mutex-based synchronization to coordinate
concurrent accesses such as insertion, eviction, and promo-
tion. To reduce lock contention, HHVM uses best-effort lock-
ing and promotion: instead of acquiring a conventional lock
for object promotion on each request, it uses try_lock: if a
thread cannot obtain the lock, it will not promote the object.
In the extreme case, HHVM LRU cache becomes FIFO.
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Figure 7 outlines the changes made to the HHVM cache at
three locations. First, during initialization, cache developers
inform FrRozENHOT about the major cache data structures
and start the FH-daemon, which runs the FC-controller after
initialization. This is done by creating the fhcache object
(line 3), passing the LRU list head, list tail, and the hash table
(m_map), as well as optional locks associated with them. Here
no lock is passed for the hash table, as the TBB-based m_map
comes with lock protection. The LRU list and hash table
passed from the base cache implementation will be used as
the FrozenHort DC list and DC-hash.

Second, cache developers need to add FC lookup to the find
function, as shown in line 7-16. When the flag FH. on is set,
indicating the status of being within a frozen phase, cache
accesses need to first check the FC Hot-Hash, bypassing the
DC if it is a hit (line 7-9). Additionally, a conditional check
is needed to temporarily bypass LRU promotion if there is
ongoing background FC construction, since we do not know
which list (FC or DC) the element belongs to. (line 12-13).

Finally, in the cache insertion function, developers need to
add a check that if FRozeNHoT decides to freeze the entire
cache (indicated by the FH.allfrozen flag), the insertion is
skipped upon DC miss (line 19-21).

RocksDB, a leading KV store deployed in many produc-
tion systems [5, 21], uses a DRAM-based block cache [20].
Enabling it to use FRozENHOT requires quite similar modifi-
cations as described above for HHVM. A major difference is
due to RocksDB’s log-structured feature: cache invalidation
could be generated by compaction, where an explicit Erase ()
function is used for this purpose. Thus, we have a correspond-
ing adaptation for this interface. Like with HHVM, the FC
checks for deleted objects during the frozen phases.

5 Evaluation
5.1 Experimental Setup

Hardware configuration. Our tests use two dual-socket
servers with Intel Xeon (R) Platinum 8360Y 36-core proces-
sors (running Ubuntu 18.04.1) and 8380 40-core processors
(running CentOS 8.5). Both have 256GB DRAM and almost
identical per-core processing capacity. The former is used
for experiments with traces while the latter, with a 1.5TB
Optane P5800X SSD for storage, is used for RocksDB runs.
To avoid NUMA impacts, our evaluations only use a single
socket with hyperthreading enabled.

Baseline and system configurations. We used multi-
ple cache implementations as baselines: the classic LRU
(“LRU”), list-based LFU [54] (“LFU”), the optimized LRU used
in HHVM that adopts try_lock to ease lock contention
(“Relaxed-LRU”), FIFO (“FIFO”), and the optimized LRU used
in Redis [17] (“Sampling”), which uses sampling to choose
candidates for eviction. We built FrozeENHoT-enabled algo-
rithms as described in §4 and call them “LRU-FH”, “LFU-FH”,
and “FIFO-FH”, respectively.
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In microbenchmarks, to isolate File-System block caching
related performance behavior, we emulated disk accesses for
cache misses, adopting a 5us latency based on our profiling
results on the Intel Optane P5800X raw device. We used up
to 72 client threads to generate workloads.

We also evaluated FRozENHoT-enabled RocksDB for an

end-to-end system performance study on a production LRU
cache. We used four 1GB MemTables, following recent stud-
ies [31, 80] in adopting larger MemTables than the default
setting for better baseline performance. Because RocksDB
performs actual disk accesses, this end-to-end evaluation
result demonstrates the user-perceived performance gain
in a real-world deployment. We used up to 64 threads for
RocksDB due to its having background threads for internal
operations such as compaction and flush.
Workloads and datasets. We evaluated FRozeENHoT with a
variety of workloads. To start with, we used two collections
of traces with contrasting characteristics. The first includes
seven Twitter traces [2, 75], namely cluster 17, 18, 24, 29,
44, 45, and 52. These traces possess mild hotspot migration
and are used in recent cache studies [55, 76]. The second
consists of all twelve MSR Cambridge traces [23, 60] that
have over 5M 1/Os, which have been noted to possess a hybrid
access behavior, with Zipfian-like accesses mixed with large
scans [27]. Unless otherwise noted, the FC lifetime factor is
set at 20X by default. In addition, for sensitivity studies we
used synthetic workloads with the Zipfian parameter 6 = 0.99,
representative of workloads from e-Commerce websites [32]
and social networks [75].

For RocksDB, we ran the popular YCSB benchmarks [33],
using a 100 GB database with 1 KB KV items. We measured
performance after a cache warm-up phase, with FRozENHoT
operating on its base cache (DC).

5.2 Overall Performance: Trace-driven evaluation

We first report the overall performance of FRozENHoT with
the three popular caching algorithms (FIFO, LRU, and LFU)
over the aforementioned 7 Twitter and 12 MSR traces. Cache
size settings are workload-dependent. With Twitter traces,
we adjust the cache sizes to re-produce the overall LRU hit
ratio (without FRozeNHoOT) as reported from production
settings [6] (see Table 1). With MSR traces, we set the cache
sizes at 10% of the dataset size, to provide low-locality test
cases contrasting with the Twitter set. These per-trace cache
size settings are fixed for all experiments. The FC lifetime
factor is set at 20x (focused study in Figure 14).

Due to space limitations, Figures 8a and 8b summarize
the throughput improvement brought by the FH implemen-
tation over the baseline algorithm, for all algorithm-trace
combinations, under growing concurrency levels.

With no concurrency (1 thread), in most cases, FH works
similarly to baselines. Interestingly, however, certain traces
(e.g., Twitter-52) also observe performance acceleration on
LRU and LFU, with faster cache hits and nearly no miss
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Table 1. Cache size settings in this work.

Cache

Twitter . # Object . Hit
Size i Proportion .
Trace . (million) Ratio
(million)

Cluster17 1 6.1 16.4% 99%
Cluster18 30 454 66.1% 99%
Cluster24 2.4 114 21.0% 99%
Cluster29 2 11.9 16.7% 78%
Cluster44 40 57.7 69.3% 99%
Cluster45 88 243.2 36.2% 63%
Cluster52 0.9 239.2 0.4% 99%

ratio degradation. With increasing concurrency, FH’s im-
provement steadily grows for both trace collections. At 72
threads, the FH versions offer a throughput improvement
of up to 79%-551% over their respective baselines across
workloads. Understandably, the Twitter collection sees more
enhancement due to its much higher hit ratio (average at
90% as opposed to 37% with MSR). Still, even the much less
cache-friendly MSR traces receive an average throughput
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Figure 10. This clustered, stacked bar graph shows the portiton of the runtime of different FC ratios when running different
traces with the LRU and FIFO algorithms under two concurrency levels. The left and right bars in each cluster/pair represent
settings with 20 and 72 threads, respectively. The observation period operates under the base algorithm (hence with an FC
ratio of 0) is colored gray to distinguish it from a FRozENHOT decision not to freeze.

boost of 36% with such high concurrency. The Twitter traces,
meanwhile, have an average improvement of 118%.

Next, we zoom into the per-algorithm results in Figures 8c
and 8d, here at two concurrency levels (20- and 72-thread
runs).! Regardless of the workload or concurrency level,
overall LFU benefits the most from FH, while FIFO the least.
This is intuitive considering the hit-path overhead of the
three algorithms, with LFU at the top and FIFO at the bottom
(see details in Fig. 12). The high-maintenance LFU is hence
more workload-sensitive, bringing a much larger span of FH-
induced improvement for Twitter. However, all algorithm-
workload combinations benefit from FH, again with larger
gain under higher concurrency. Absolute performance across
algorithms will be discussed in Figure 14.

Also, we note from Figure 8 that in the worst case, FROZEN-
Hort generates little negative impact on cache performance.
The few workloads that see a slight slowdown are from traces
yielding very low hit ratios (the worst being MSR proj_2, at
6%) and running at low concurrency, where FH decides to
have a very small or no FC after a few dis-encouraging trials.

Figure 9 has the same structure as 8c/8d, but a different
metric showing FH’s working with different algorithms. We
show the overall FC hit share, defined as “FC hits divided by
total cache hits”.

Though not included in these results, we did evaluate sampling-based LRU
(the aforementioned “Sampling”) here, and found it inferior to FIFO-FH (also
trading hit ratio for lighter management). On all Twitter+MSR traces tested,
FIFO-FH outperforms “Sampling” by 36% (20-thread) and 69% (72-thread)
on average. Figure 13 and Figure 16 give more results involving “Sampling”.

FIFO (%)

A MSR proj_1

@ Twitter |o A
n
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Figure 11. Relative change to hit ratio brought by FH. The
green triangles and red dots show data points of MSR traces,
and Twitter traces, respectively.

As expected, both workloads show FC carrying more
hits as concurrency increases. The inter-algorithm dif-
ference, meanwhile, confirms the positive correlation be-
tween the effective FC size and the cache management cost
(LFU>LRU>FIFO). The large span of FC hit share (especially
in Twitter cases like LRU-FH at 20-thread and FIFO-FH at
72-thread) shows that FH faces a wider range of workload-
and algorithm-dependent choices, where the FC controller
is smart enough to configure the FC size adaptively.

To zoom in on different FC_ratio options, Figure 10 fur-
ther presents the distribution of FC_ratio selections. We
observe that FC-controller tends to favor higher FC_ratio
values under conditions of high contention, as evidenced
by the comparison between LRU (10a) and FIFO (10b), as
well as the comparison between the 20-thread (left) and 72-
thread (right) runs of each algorithm-trace combination. The
left-most several Twitter traces do consume longer learning
periods due to their more dynamic nature, yet still often pro-
duce a fully frozen cache and receive performance benefits
from it, as seen from Figure 8 and results below.
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Finally, Figure 11 shows the relative hit ratio change
brought by FH for LRU (x-axis) and FIFO (y-axis), for the 19
traces tested. For better display, we omit five traces where
the change is under 2% for both algorithms. One sees that the
majority of the remaining 14 data points receive from FH a
hit ratio boost despite being partially static. As discussed in
§3.1, this is due to thrashing reduction for scan-rich work-
loads, which for web_2 brings a 300% hit ratio growth (from
3.5% to 15%). For a trace with moderate locality (Twitter 45),
FH improves its FIFO hit ratio from 59% to 70%, and LRU
from 61% to 80%.

Among the traces seeing lower hit ratios, prn_1 and src1_1
stand out. They present an interesting case where FH helps
in a surprising manner: with such cache-unfriendly traces
(base hit ratio under 44% and 25%, respectively), FH decides
to freeze the whole cache, so it basically optimizes the miss
latency instead, by removing cache management. Therefore,
these two traces receive an overall LRU/FIFO throughput
improvement of 1%/10% and 15%/10%, respectively. Note that
this benefit also applies to low-locality traces that receives a
hit ratio boost, such as web_2 discussed above.

5.3 Sources of Optimization

FrozeNHoOT’s performance gain mainly comes from two
major optimizations for FC hits: (1) removing management
(especially lock operations) and (2) using a fast, read-only
hash table (FC-hash). To assess their relative impact, we
implement an intermediate version, “FH-TBB”, with the first
optimization only (frozen cache, but using the baseline TBB
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hash table implementation for both FC and DC). Figure 12
plots the average hit latency of the baseline, FH-TBB, and
full FH, for each algorithm. For the two FH variants, we give
the FC hit share on top of the bars again.

These results reveal that the largest gain comes from re-
moving the list-based management for LRU and LFU, espe-
cially at higher concurrency. At 72 threads, FH-TBB brings
a 39% hit latency cut for LRU and a dramatic 75% for the
more costly LFU. As expected, FIFO, on the other hand, sees
no improvement at all with FH-TBB (which decides to turn
off FC, producing a 0% FC hit share). This is due to its very
low management cost, as no promotion is needed for hits.
Its improvement, therefore, comes purely from adopting a
faster read-only hash table, which leads FIFO-FH to adopt
FC sizes that take a 20% share in the 20-thread case, and 83%
in the 72-thread (where FH cuts the hit latency by half).

This shows that even the “simple and cheap” FIFO algo-
rithm could benefit significantly from FH, as shown in the
hit latency cut, in high-concurrency scenarios. Meanwhile,
the much larger magnitude of optimization FH brought to
the smarter yet more costly LRU and LFU enable them to
become competitive again. For example, with 72 threads,
LRU-FH sees a similar hit latency as FIFO-FH, while produc-
ing a slightly higher hit ratio, allowing it to deliver an overall
throughput 20% higher (more analysis on the heightened
throughput sensitivity to hit ratio with FH to be given next).

5.4 FrozenHot Dynamics

We further zoom into the three phases of the above sampled
execution (Twitter cluster17 with 72 threads). Figure 13 por-
trays the changes in the global hit ratio (top figure, starting
from 95%, annotated with FC_ratio numbers) and through-
put (bottom figure). We add “Relaxed-LRU” and “Sampling”
as references, aligned to LRU-FH’s request progress along
the x axis, though they do not have the phases.

For this particular case, FH chooses to freeze the entire
cache, perceiving that reducing hit latency outweighs par-
tially losing adaptivity. Note that reconstruction activities
were triggered either by the frozen period’s expiration or
observed performance degradation over a given threshold.
Here we only had the first case, so learning was not activated
except for the first FH episode.

As expected, while the other two solutions bring quite
stable and consistent hit ratios (with the “Relaxed-LRU”
and “Sampling” overlapping well), LRU-FH sees a gentle
yet steady decline in hit ratio, especially within the 1st, 2nd,
and 3rd frozen episodes. One may perceive such decay as
quite minor, from 99% to 96%, but from the throughput re-
sults, such a decline brings a sizable performance drop. The
reason behind this is that with the frozen cache, the gap be-
tween a hit (most likely an FC hit) and a miss becomes much
more dramatic than experienced by the baseline solutions,
confirming the necessity of periodic FC reconstruction with
real workloads possessing hotspot migration.
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Figure 15. LRU vs. FIFO, before and after enabling FH

5.5 Sensitivity Analysis

One important FH internal parameter is the FC lifetime,
after which an FC reconstruction is forced even without
observed performance degradation. Figure 14 shows FH’s
sensitivity to it by varying the FC lifetime factor (100x, 20X,
and 10X, giving growing FC refresh frequency) in 72-thread
runs. The last bar (“No-FH”) is included as a reference, with
FrozeENHoOT turned off. In addition to Twitter cluster17, here
we add cluster45, which possess a much weaker locality.

With its mild hotspot migration, cluster17 performs best
with infrequent FC rebuilding (100x). Cluster45, in contrast,
has faster hotspot migration and benefits from more frequent
FC refresh, with lifetime factors 10X and 20X winning for
FIFO-FH and LRU-FH, respectively. Interestingly, cluster45
demonstrates LFU-FH’s potential in production usage, where
it outperforms the other algorithms by delivering higher hit
ratios (85% vs. FIFO-FH’s 70% and LRU-FH’s 80%), when its
heavy management overhead is alleviated by FH.

These results also confirm that FRozENHOT can keep its FC
frozen for much longer than the construction phases. While
not surprisingly, FC lifetime setting is workload-dependent,
this study shows that a fixed, moderate setting (like 20x)
works fairly well across the board and yields significant gains
against the “No-FH” baseline. Though workload-adaptive FC
lifetime selection is left for future work, below we extend
our study to examine the three popular caching algorithms’
relative strength with FH’s best lifetime limit setting.

Figure 15 summarizes FH’s impact on the FIFO-LRU face-
off, measured by calculating the share of trace workloads
each policy “wins”, among the Twitter and MSR traces tested.
The left side gives baseline results. While LRU excels in hit
ratio (claiming all Twitter and half MSR traces), FIFO shines
in overall performance (winning all Twitter and nearly 80%
of MSR traces). This echoes an earlier study [37], which
finds FIFO competitive by its simplicity. On the right side,
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Figure 16. Sensitivity analysis with Zipf 0.99 at 72 threads.

Cache size is the fraction of dataset size.

we show how FH changes the game, with the best FC life-
time settings (100%, 20X, or 10x) found in the previous set
of tests. Interestingly, with FH, LRU loses in the hit ratio
fight in Twitter traces (less adaptivity), but gains in MSR
(less churning). However, for both trace sets, by trimming
cache management overhead, LRU-FH emerges as the over-
all winner, beating FIFO-FH in throughput with 68% of the
traces.

Finally, we conduct a set of tests on cache size sensitivity
with a synthetic Zipfian 0.99 workload. In Figure 16a, we
adjust the cache size relative to the total data footprint. The
results demonstrate FRozeENHoOT s advantage in sustaining its
effective utilization of additional cache size, even achieving
a faster throughput growth when the cache size grows from
60% to 80% (corresponding to hit ratio from 99% to nearly
100%), as the LRU-FH hit latency is a very small fraction of
the miss latency. The baseline systems, on the other hand,
suffer from their success as the gain from the higher hit
ratio is lost in severe lock contention. Note that the sampling
approach helps little here, as its hash table (protected by
read-write locks) is also costly with high hit intensity.

Figure 16b studies the impact of varying latency of the
underlying storage layer on different solutions. As expected,
FrozeNHoT is able to take advantage of lowering device la-
tency (moving to the left along the x axis), as it is designed to
handle the increasing hit intensity (brought by faster misses),
as well as to tolerate a higher miss ratio with storage devices
becoming faster. The best baseline approach (“Sampling”),
meanwhile, is able to achieve the throughput that FROZEN-
Hor delivers with a device latency of 35us, on an ultra-fast
device with latency at 5us.

5.6 RocksDB End-to-end Performance

We report RocksDB results running YCSB benchmarks in Fig-
ure 17. We used a 100GB database, with 30GB memory cache
size. Performance measurement starts after cache warm-up,
with each test issuing 20M requests. Here we report its over-
all performance, where the end-to-end request processing
contains much more tasks beyond caching. Still, FrRozeNHoTt
can generate a considerable throughput improvement and
reduce tail latency for all workloads.
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Figure 17. Overall YCSB performance (Zipfian 0.99), with
improvement or reduction ratio annotated at the top

The read-only YCSB-C sees the most gain from FROZEN-
Hort (throughput improvement of 88%), as it benefits the
most from the in-memory cache and could enjoy FH’s low
hit latency. For three other workloads with 5% writes, YCSB-
B, D, and E, FH brings smaller improvement, 3%, 7%, and 37%
respectively, due to its enhancement of read hits. In particu-
lar, it is able to handle well the scan-heavy operations in E.
In addition, the better baseline performance with B and D
comes from MemTable hits brought by the 5% writes.

Two write-heavy workloads here, YCSB-A, and YCSB-F
contain 50% reads and 50% writes, update, and read-modify-
write respectively. Both workloads see lower baseline per-
formance, while FRozeNHoT is able to bring around 10%
throughput enhancement by speeding up reads.

Figure 17b gives the P99 latency. The results show that
FH is able to bring tail latency reduction across the board,
in addition to lower average latency (corresponding to the
higher throughput), mainly due to reduced lock contention.

6 Other Related Work

Maximizing hit rate. A large body of recent cache man-
agement designs focus on optimizing the cache hit ra-
tio [39, 41, 65, 71]. zExpander compresses cold blocks to
cache more items in memory [71]. HashCache [26] uses less
memory without losing performance, allowing it to share
resource with other tenants. Segcache addresses cache ineffi-
ciencies caused by large per-object metadata and clumsy item
expiration [76] via object metadata sharing and bulk expira-
tion and eviction. Similarly, MemC3 [38] improves memory
efficiency by reducing per-object metadata using CLOCK
and a compact hash table. Most recently, CACHEUS [65]
and its ancestors have applied machine-learning techniques
to identify suitable cache replacement policies for various
workloads. HARC[39] is a hierarchical adaptive cache re-
placement policy that takes into account the dirty, clean,
recency and frequency of cached memory pages. The idea
of FrRozeNHOT is orthogonal to this set of works.

Reducing cache management overhead. MemC3 [38]
additionally adopts optimistic locking with the limitation
of supporting multiple readers but a single writer. Some re-
cent approaches suggest using simpler replacement policies
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than LRU, such as CLOCK and FIFO, to trade cache hit ratio
for lower management cost [37, 38]. Segcache [76] adopts a
“macro-management strategy” to replace per-request book-
keeping with batched operations on segments to reduce
locking overhead. Furthermore, sharding has been widely
used in production [11, 16, 19], for example, RocksDB uses 16
shards, which improves scalability but does not reduce man-
agement overhead. Though these optimizations trim down
the lock contention to some extent, the reduction still cannot
meet the ever-evolving hardware advancements with denser
CPU cores and faster disk drives. Unlike these proposals,
FrozeNHoT stands from a different point of view to propose
a new cache management scheme that chooses not to pay
unnecessary management cost for hot objects.
Optimizations for fast devices. The arrival of fast storage
media invalidates the assumptions on which conventional
cache designs are based and thus inspires new innovations.
For instance, NHC [70] maximizes bandwidth usage of both
the caching device and the capacity devices by dynamically
moving excess load to the capacity layer. FrozENHOT focuses
on improving the performance of the cache layer, which is
complementary to NHC. Eytan et al. conducted a study on
comparing the performance of LRU and FIFO cache replace-
ment policies in the new cloud environments where the
storage can be very fast, and shared the similar sentiment
that the cache hit ratio no longer dominates the results when
the performance gap between the cache and backend storage
gets smaller [37]. Compared to these works, FRozENHOT is
a general approach for improving the hit-path scalability
of a list-based cache. As the memory/storage hierarchy be-
comes more complex, some recent approaches explored data
placement across hierarchy [35, 79, 82, 83]. However, they
often have a higher management cost and lower throughput.
Therefore, we focus on caching and improving its manage-
ment cost under high concurrency.

7 Conclusion

In this work, we reflect on the common practice of retain-
ing valuable data using constant cache management. We
argue that with today’s fast I/O devices and highly concur-
rent execution environments, the cost of such continuous
maintenance is likely to offset the gain. As an alternative,
we propose a new FRozeNHOT scheme that quickly “learns”
the popular items from a base cache, then “freezes” them for
an extended period of time. Our results show that by mak-
ing the most cache accesses management-free, FRozENHoT
significantly improves the throughput and scalability for a
variety of workloads.
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8 Appendix

Below we give the pseudocode of the major functions in-
volved in our dynamic frozen ratio learning.

Function Profiling():
FH.marker.timestamp = GetTimeStamp();
FH.Profiling = true; // Set a flag to notify worker threads
InsertNodeAtFirst(FH.marker); // Insert a dummy marker
// Note that FC_ratio ranges from 0 to 1, and Ratiolnterval
controls # of iterations
foreach FC_ratio in range(0, 1, Ratiolnterval):
FH.ProfilingWait = true; // Wait marker move to next
specific position
WaitMarker.wait(); // Asynchronous wait worker
threads to notify
// Store collected data point for later comparison
FC_hit_ratio, DC_hit_ratio = GetProfilingStatistics();
ProfilingStore.Append(FC_hit_ratio, DC_hit_ratio,
FC_ratio);
FH.Profiling = false;
ResetProfilingStatistics();
DelinkNodeFromList(FH.marker); // Clean marker
// Use collected statistics to decide a proper FC ratio
OptimalRatio = SelectOptimalRatio(ProfilingStore);

return OptimalRatio;

Figure 18. Function for constructing the hit ratio curves
shown in Figure 5, after the FC-DC merge

Function GetProfilingStatistics():
fc_hit, dc_hit, total_miss = FH.FC_hit, FH.DC_hit, FH.
Total_miss;
FC_hit_ratio = fc_hit / (fc_hit + dc_hit + total_miss);
DC_hit_ratio = dc_hit / (fc_hit + dc_hit + total_miss);
// Reset statistics before next loop
FH.FC_hit, FH.DC_hit, FH.Total_miss = 0, 0, 0;

return FC_hit_ratio, DC_hit_ratio;

Figure 19. Function for hit ratio statistics collection/calcula-
tion to be used in the above profiling

Z. Qiu et al.

Function SelectOptimalRatio():
// Avg latency as metric
Minimum_Avg = Profiled_No_FH_latency; // Initialize
lower bound
OptimalRatio = 0;
foreach ProfiledData in ProfilingStore:
Avg_latency = FC_hit_ratio » FC_latency
+ DC_hit_ratio » DC_latency
+ (1-FC_hit_ratio-DC_hit_ratio) « Miss_latency
if (Avg_latency < Minimum_Avg):
Minimum_Avg = Avg_latency
OptimalRatio = FC_ratio
// Compare with 100% Frozen (DC_hit_ratio is 0%)
Avg_latency = FC_hit_ratio « FC_latency
+ (1-FC_hit_ratio) » Miss_latency
if (Avg_latency < Minimum_Avg):
Minimum_Avg, OptimalRatio = Avg_latency, 100%

return OptimalRatio;

Figure 20. Function to select the optimal frozen ratio at the
end of the profiling phase
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A Artifact Appendix
A.1 Abstract

This appendix contains instructions to reproduce key results
in the paper, from dependencies to evaluation workflow.

A.2 Description & Requirements

A.2.1 How to access. The source code of FRozENHOT and
the experiment related sripts can be found at Github pub-
lic repository https://github.com/USTCqzy/FrozenHot. This
repository is index by https://zenodo.org/record/7733671.

A.2.2 Hardware dependencies. No less than 32 CPU
cores per socket, no less than around 100 GiB memory per
numa node. To better reporduce the experiment results, we
suggest using similar hardware as we used (Intel Xeon (R)
Platinum 8360Y 36-core processors and 256GB DRAM).

A.2.3 Software dependencies. This artifact now only
supports operating systems using the Linux kernel.

A.2.4 Benchmarks. MSR Cambridge Traces [60] and
Twitter Traces [2].

EuroSys ’23, May 8-12, 2023, Rome, Italy

A.3 Set-up

The artifact’s building needs some tools (git, cmake, libtbb-
dev, and numactl), and to reproduce the experiment result,
some python packages are required (matplotlib, pandas, and
NumPy).

You can find more detailed building instructions in
README.md in the GitHub repository https://github.com
/USTCqzy/FrozenHot.

A.4 Evaluation workflow
A.4.1 Major Claims.

¢ (C1): FrRozeNHoOT achieves throughput improvement
for all algorithm-workload combinations. This is
proven by the experiment (E1) described in Section
5.2, whose results are reported in Figure 8.

e (C2): FC-controller is smart enough to configure the FC

size adaptively. This is proven by the experiment (E2)
described in Section 5.2, whose results are reported in

Figure 9.

e (C3): By trimming cache management overhead, LRU-
FH emerges as the overall winner, beating FIFO-FH
in throughput. This is proven by the experiment (E3)
described in Section 5.4, whose results are reported in
Figure 14.

A.4.2 Experiments. Experiment (E1): [Throughput im-
provement for all algorithm-workload combinations] [100
compute-hour]

Experiment (E2): [FC hit share with FH versions of algo-
rithms] [12 compute-hour]

Experiment (E3): [LRU vs. FIFO, before and after enabling
FH] [75 compute-hour]

[Preparation and Execution] For all experiments, run
python scripts named by ‘run’ under the ‘evaluation’ folder.

[Results] For all experiments, run python scripts named
by ‘handle’ and then scripts named by ‘plot’ under the ‘eval-
uation’ folder.

You can find more detailed instructions for the experiment
in the GitHub repository.


https://github.com/USTCqzy/FrozenHot
https://zenodo.org/record/7733671
https://github.com/USTCqzy/FrozenHot
https://github.com/USTCqzy/FrozenHot
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