
FIFO Queues are All You Need for Cache Eviction

Juncheng Yang∗, Yazhuo Zhang§, Ziyue Qiu∗, Yao Yue†, K. V. Rashmi∗
∗Carnegie Mellon University §Emory University †Pelikan Foundation

Abstract

As a cache eviction algorithm, FIFO has a lot of attractive 
properties, such as simplicity, speed, scalability, and flash-
friendliness. The most prominent criticism of FIFO is its low 
efficiency (high miss ratio).
In this work, we demonstrate a simple, scalable FIFO-

based algorithm with three static queues (S3-FIFO). Evalu-
ated on 6594 cache traces from 14 datasets, we show that S3-
FIFO has lower miss ratios than state-of-the-art algorithms 
across traces. Moreover, S3-FIFO’s efficiency is robust — it 
has the lowest mean miss ratio on 10 of the 14 datasets. FIFO 
queues enable S3-FIFO to achieve good scalability with 6× 
higher throughput compared to optimized LRU at 16 threads.

Our insight is that most objects in skewed workloads will 
only be accessed once in a short window, so it is critical to 
evict them early (also called quick demotion). The key of 
S3-FIFO is a small FIFO queue that filters out most objects 
from entering the main cache, which provides a guaranteed 
demotion speed and high demotion precision.

CCS Concepts: • Information systems → Information 
storage systems; • Computer systems organization;
ACM Reference Format:

Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, K. V. Rashmi. 
2023. FIFO Queues are All You Need for Cache Eviction. In ACM 
SIGOPS 29th Symposium on Operating Systems Principles (SOSP ’23), 
October 23–26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 
20 pages. https://doi.org/10.1145/3600006.3613147

1 Introduction

Software caches, such as Memcached [102] and Linux page 
cache [10], are widely deployed today to speed up data access 
and avoid repeated computation. A cache should be (1) 
efficient: it should provide a low miss ratio allowing most 
requests to be fulfilled by the cache with short latencies;
(2) performant: serving data from the cache should perform
minimal operations with a high throughput; and (3) scalable: 
the number of cache hits it can serve per second grows with

This work is licensed under a Creative Commons Attribution International 
4.0 License.
SOSP ’23, October 23–26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613147

the number of CPU cores. The heart of a cache is the eviction
algorithm, which dictates a cache’s efficiency, throughput,
and scalability.

Many works have looked into the design of efficient evic-
tion algorithms [18, 35, 51, 74, 77, 79, 100, 110, 124, 166, 169].
Because LRU is believed to be more efficient than FIFO, these
advanced algorithms are often LRU-based, using different
techniques and metrics on top of one or more LRU queues.
However, LRU suffers from two problems: (1) it requires
two pointers per object, which is a significant storage over-
head for workloads consisting of small objects; and (2) it is
not scalable because each cache hit requires promoting the
requested object to the head of the queue guarded by locking.
With the shrinking latency between the cache and the

backend, and the rapid growth of CPU cores per socket,
the cache’s throughput and scalability become critical. An
increasing number of works have studied this in the past
few years [57, 60, 115, 143, 154, 158]. The solution is often
to trade efficiency for throughput and scalability by using
simple FIFO-queue-based eviction algorithms. For example,
MemC3 [57], Tricache [60] use CLOCK, and Segcache [158]
uses FIFO-merge. Compared to LRU, FIFO is simpler and
more scalable, with the drawback of it being less efficient.
This work explores the opportunity of building a sim-

ple, scalable, yet efficient eviction algorithm with only FIFO
queues. Object popularity in the cache workloads is of-
ten skewed and follows Power-law (e.g., Zipf) distribu-
tion [15, 29, 30, 157]. Our insight is that for any Zipf request
sequence, the fraction of objects appearing once (called one-
hit wonders) is much higher in a sub-sequence than in the
full trace. Because a cache of size 𝐶 only observes a short
sequence of 𝐶 objects before evictions, most objects will be
one-hit wonders (no request after insertion) when evicted,
even though they may have more requests throughout the
full trace. We confirm this observation on 6594 production
traces. The median one-hit-wonder ratio of all traces, when
considering the entire trace, is 26%. However, when focusing
on sequences that comprise 10% of the unique objects in each
trace, the median one-hit-wonder ratio skyrockets to 72%.
We leverage this workload property and design S3-FIFO,

a simple, scalable eviction algorithm with three static (fixed-
size) FIFO queues. S3-FIFO uses a small probationary FIFO
queue to filter out one-hit wonders from entering the main
FIFO queue so that cache space can be used for more valu-
able objects (called early eviction or quick demotion [155]).
Objects evicted from the small FIFO queue either enter the

130

https://doi.org/10.1145/3600006.3613147
https://doi.org/10.1145/3600006.3613147
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613147&domain=pdf&date_stamp=2023-10-23


main or ghost FIFO queue, depending on whether it has been
accessed. The main FIFO queue reinserts some popular ob-
jects during evictions. Many previous works have explored
similar ideas to quickly demote some objects [54, 79, 100],
especially for scan and streaming workload patterns and in
hierarchical caches. However, to the best of our knowledge,
this is the first work demonstrating the importance of quick
demotion for cache workloads even when there are no scan
and streaming patterns. Moreover, this work designs the
first FIFO-queue-only algorithm that is more efficient than
state-of-the-art algorithms.

S3-FIFO is not only simple but also efficient. We compare
S3-FIFOwith 12 eviction algorithms on a large data collection
of 6594 production traces from 14 sources. The traces over-
all contain 856 billion requests collected between 2007 and
2023, and cover block, key-value, and object caches. While
advanced algorithms may excel at a few particular work-
loads, our evaluation shows that S3-FIFO achieves better
efficiency (lower miss ratios) across traces at all percentiles
than state-of-the-art algorithms. Moreover, S3-FIFO’s effi-
ciency is robust. Using a cache size of 10% of objects in the
trace, S3-FIFO is the most efficient algorithm on 10 out of
the 14 datasets and among the top three most efficient al-
gorithms on 13 datasets. As a comparison, the next best
algorithm (LIRS [77]) obtains the highest efficiency on only
2 datasets.
S3-FIFO is also more scalable because FIFO queues en-

able lock-free implementations. We implemented a proto-
type in Cachelib and show that S3-FIFO achieves more than
6× higher throughput than the highly-optimized LRU im-
plementation on 16 cores. Compared to advanced eviction
algorithms such as 2Q and TinyLFU, the throughput gap is
further enlarged.
The fact that filtering objects with a small FIFO queue

enables better than state-of-the-art efficiency has an impli-
cation for flash cache deployments. If the small FIFO queue
is in DRAM and the main FIFO queue is on flash, then most
objects evicted from DRAM do not need to be written to the
flash. This reduces both flash writes and miss ratio. We com-
pare this FIFO filter with a probabilistic filter and a machine-
learning-model-based filter from Flashield [55]. The FIFO
filter has the lowest miss ratio and the least flash writes eval-
uated on two open-source CDN traces. Moreover, in contrast
to the ML model that requires a large DRAM cache (10% of
total cache size) to track object access information for mak-
ing good decisions, the small FIFO filter excels even when
the DRAM cache is only 0.1% of the total cache size.

This work makes the following contributions.
• We show that for cache workloads with skewed popularity,
most objects are one-hit wonders at eviction. Therefore,
quick demotion is critical for cache efficiency.
• Leveraging this observation, we designed and imple-
mented S3-FIFO, the first FIFO-queue-only eviction al-
gorithm with better than state-of-the-art efficiency.

• We evaluated S3-FIFO and compared with 12 state-of-the-
art eviction algorithms on 6594 traces and show that S3-
FIFO is more efficient, and its efficiency is also more robust.
• Our prototype in Cachelib shows that FIFO queues enable
S3-FIFO to be scalable with 6× higher throughput than an
optimized LRU implementation.

2 Background

Software caches are ubiquitously deployed today, e.g., inside
end-user devices [81, 92], at the edge of the Internet [16, 19,
25, 32, 58, 59, 103, 109, 122, 128, 150, 151, 156], and across
system stacks in a data center [52, 56, 60, 97, 108, 111, 116,
118, 125, 144, 160, 161]. While the data stored in different
types of caches have different names, e.g., block, page, object,
and asset, we use the term “objects” for ease of discussion.

2.1 Metrics of a cache

The heart of a cache is the eviction algorithm, which decides
the objects to store in the limited space.
Efficiency. A more efficient (sometimes called more “effec-
tive”) eviction algorithm retains more useful objects in the
cache and provides a lower miss ratio, which measures the
fraction of requests that must be fetched from the backend.
While request miss ratio is the most common efficiency met-
ric, some cache deployments aiming to reduce bandwidth
usage, e.g., proxy caches, also evaluate byte miss ratio: the
fraction of bytes that need to be fetched from the origin.
Throughput. A cache’s throughput measures the number
of requests it can serve per second (QPS). Having higher
throughput reduces the number of CPU cores required to
serve a workload.
Scalability.Modern CPUs have a large number of cores. For
example, AMD EPYC 9654P has 192 cores [13]. A cache’s
scalability measures how its throughput increases with the
number of CPU cores. Ideally, a cache’s throughput would
scale linearly with the number of CPU cores. However, in
many eviction algorithms, read operations necessitate meta-
data updates under locking. Therefore, they cannot fully
harness the computation power of modern CPUs.
Flash writes. While DRAM is the most commonly used
storage medium for caching, many systems today also use
flash for its higher density, lower price, and lower power
consumption. Flash lifetime becomes a critical metric when
using flash for caching because flash only supports a limited
number of writes [12, 27, 98, 129]. Moreover, small random
writes on flash cause device-level write amplification, which
not only reduces the flash lifetime but also increases read and
write tail latency [63, 64, 88, 152]. To achieve a more man-
ageable flash lifetime, most production flash cache systems,
e.g., Apache Trafficserver [14], Memcached Extstore [101],
Cachelib large object cache [24], and Google Colossus flash
cache [159], use FIFO or FIFO-reinsertion. Besides the flash
eviction algorithm, many systems also employ admission

131



algorithms, e.g., bloom filter or machine-learning-based al-
gorithms, to select “good” data to write to flash [36, 55].
Simplicity and generality. A cache eviction algorithm’s
complexity and generality are two additional factors that
play a critical role in its adoption. While complexity is often
inversely correlated with throughput and scalability, a simple
design can offer benefits beyond just improved performance
metrics, such as fewer bugs and reduced maintenance over-
head. Linux Kernel developers stated that “Predicting which
pages will be accessed in the near future is a tricky task. The
kernel not only often gets it wrong, but it also wastes a lot
of CPU time to make the incorrect choice” [9]. Generality
is crucial for similar reasons. If the same data structure and
eviction algorithm can be used for different types of caches,
it can help reduce the development and maintenance over-
heads. A similar argument can also be found in previous
work from Meta [24].

2.2 Prevalence of LRU-based cache

Cache workloads exhibit temporal locality: recently ac-
cessed data are more likely to be re-accessed. Therefore,
Least-Recently-Used (LRU) is more efficient than FIFO and
is widely used in DRAM caches [24, 28, 102, 133]. More-
over, advanced eviction algorithms designed to improve effi-
ciency are mostly built upon LRU. For example, ARC [100],
SLRU [80], 2Q [79], EELRU [124], LIRS [77], TinyLFU [54],
LeCaR [132], and CACHEUS [119] all use one or more LRU
queues to order objects.

Albeit efficient, LRU and LRU-based algorithms have three
problems. First, LRU is often implemented using a doubly-
linked list, requiring two pointers per object, which becomes
a large overhead when the object is small. As a result, Twit-
ter and Meta have designed specialized compact caches for
workloads having small objects [24, 48, 158].

Second, LRU promotes objects to the head of the queue
(called promotion) upon each cache hit, which performs at
least six randommemory accesses protected by a lock, signif-
icantly limiting the cache’s scalability [60, 112]. For example,
the RocksDB developers “confess” that the LRU caches in
RocksDB are the scalability bottleneck [50]. Therefore, a new
cache using CLOCK [45] eviction has been implemented to
address this problem in 2022 [117].

Third, LRU is not flash-friendly. The object eviction order
in LRU is different from the insertion order, which leads to
random writes on flash, and reduces flash lifetime.

3 Motivation

While the last few decades of eviction algorithm study are
centered around LRU, we believe modern eviction algorithms
should be designed with FIFO queues instead of LRU queues.
FIFO can be implemented using a ring buffer without per-
object pointer metadata, and it does not promote an object
upon each cache hit, thus removing the scalability bottleneck.

Figure 1. A shorter sequence has a higher one-hit-wonder ratio.

However, FIFO falls behind LRU and state-of-the-art eviction
algorithms in efficiency.
What does FIFO need? The primary limitation of FIFO
is its inability to retain frequently accessed objects, so the
most straightforward improvement is to insert these objects
back. FIFO-Reinsertion 1 is an algorithm that keeps track of
object access and reinserts accessed objects during eviction.
Compared to LRU, FIFO-Reinsertion incurs a lower overhead
on a cache hit, requiring no operation or just an atomic
set for the first request to an object. However, reinsertion
alone is insufficient, and FIFO-Reinsertion still lags behind
state-of-the-art eviction algorithms on efficiency (§5.2).

Our insight is that a cache experiences more one-hit wonders

(objects having no access after insertion) than what common

full trace analyses suggested [96, 141], highlighting the impor-

tance of swiftly removing most new objects. Specifically, we
observe a median one-hit-wonder ratio of 26% across 6594
production traces. However, for a random request sequence
containing 10% of unique objects in the trace, 72% of the
objects have only one request in the sequence.

3.1 More one-hit wonders than expected

The term “one-hit-wonder ratio” measures the fraction of
objects that are requested only once in a trace. It is commonly
used in content delivery networks (CDNs) due to large one-
hit-wonder ratios [19, 96].

Although the one-hit-wonder ratio varies between differ-
ent types of cache workloads, we find that shorter request
sequences (consisting of fewer unique objects) often have
higher one-hit-wonder ratios. In the subsequent analysis, we
measure sequence length using the number of unique objects.

Fig. 1 illustrates this observation using a toy example. The
request sequence comprises seventeen requests for five ob-
jects, out of which one object (E) is accessed once. Thus, the
one-hit-wonder ratio for the sequence is 20%. Considering a
shorter sequence from the 1𝑠𝑡 to the 7𝑡ℎ request, two (C, D)
of the four unique objects are requested only once, which
leads to a one-hit-wonder ratio of 50%. Similarly, the one-hit-
wonder ratio of a shorter sequence from the 1𝑠𝑡 to 4𝑡ℎ request
is 67%. More formally, we make the following observation.

Observation. Assume that the object popularity of a request

sequence follows the Zipf distribution with the least popular

1FIFO-Reinsertion, Second chance, and CLOCK are different implementa-
tions of the same algorithm.

132



0.00 0.25 0.50 0.75 1.00
Fraction of total objects

0.0

0.2

0.4

0.6

0.8

1.0
On

e-
hi

t-w
on

de
r r

at
io Zipf-0.6

Zipf-0.8
Zipf-1
Zipf-1.2

(a) Zipf trace, linear-scale

10−5 10−3 10−1
Fraction of total objects

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

hi
t-w

on
de

r r
at

io

Zipf-0.6
Zipf-0.8
Zipf-1
Zipf-1.2

(b) Zipf trace, log-scale

0.00 0.25 0.50 0.75 1.00
Fraction of objects in the trace

0.00

0.25

0.50

0.75

1.00

On
e-

hi
t-w

on
de

r r
at

io Twitter MSR

(c) Production traces, linear-scale

10−3 10−2 10−1 100
Fraction of objects in the trace

0.00

0.25

0.50

0.75

1.00

On
e-

hi
t-w

on
de

r r
at

io Twitter MSR

(d) Production traces, log-scale

Figure 2. Left two: the one-hit-wonder ratio decreases with sequence length (as a fraction of the unique objects in the full sequence) for
synthetic Zipf traces. Different curves show different skewness 𝛼 . We plot both linear and log-scale X-axis for ease of reading. Right two:
production traces show similar observations. Note that the X-axis shows the fraction of objects in the trace, much smaller than the number
of possible objects in the backend. Therefore, the production curves capture the left region of the Zipf curves.

object having one request, and there are𝑀 unique objects in

total. Then the one-hit-wonder ratio of the complete sequence

is
1
𝑀
. For any sub-sequence ending with a one-hit wonder, if

the sub-sequence contains 𝐶 unique objects, the expected one-

hit-wonder ratio F (𝑥 = 𝐶) monotonically decreases with the

sequence length 𝑥 measured in the number of objects.

The intuition is that most objects are unpopular (rank
higher than 𝐶 + 1 in Zipf distribution for a cache of size 𝐶)
and have an expected number of requests between 0 and 1.
If they show up in the sub-sequence, it is very likely that
they will not get another request within the sub-sequence.
This setting can be viewed as a variant of the coupon-

collector problem where we have𝑀 unique coupons in total,
and the probability of collecting coupon 𝑖 follows the Zipf dis-
tribution. We would like to know the number of coupons we
have collected only once when we have 𝐶 unique coupons.
We use Monte Carlo simulations to find how F (𝑥)

changes with the sequence length 𝑥 (measured in the number
of objects). We first generate Zipf request traces of different
skewness 𝛼 under independent reference model [38], then
take random sub-sequences and measure the one-hit-wonder
ratios. We repeat 100 times and report the mean. The results
are plotted in Fig. 2a and Fig. 2b.We show both linear and log-
scale X axes for clarity. The one-hit-wonder ratio decreases
with increasing sequence length. Between different curves,
more skewed workloads exhibit lower one-hit-wonder ratios
at the same sequence length because unpopular objects have
a lower probability of appearing in more skewed workloads.
We have also performed the same measurement on pro-

duction traces. Fig. 2c and Fig. 2d show a block trace (MSR
hm_0) and a web trace from Twitter (cluster 52). The curves
look different from the Zipf curves at first glance. This is
because the production traces are not long enough to capture
all objects in the backend systems, and it is not possible to
know the total number of objects that can be requested. As
a result, the X-axis shows the fraction of objects in the trace.
Therefore, the production curves only capture the left region
of the synthetic curves, and we observe that they match the
synthetic curves. For example, when comparing Fig. 2a and

0.001 0.01 0.02 0.05 0.1 0.2 0.5 1.0
Fraction of objects in the trace

0.00

0.25

0.50

0.75

1.00

On
e-

hi
t-w

on
de

r r
at

io

Figure 3. The one-hit-wonder ratio across 6594 traces (Table 1).
The whiskers show P10 and P90, and the triangle shows the mean.

Fig. 2c, we see curves in both figures have steep drops at the
beginning before slowing down. Moreover, the Twitter trace
is known to be more skewed [157], and it shows a larger
drop than the MSR trace, which matches the observation
on the Zipf traces. Compared to the one-hit-wonder ratio of
the full trace at 13% (Twitter) and 38% (MSR), a random sub-
sequence containing 10% objects shows a one-hit-wonder
ratio of 26% on the Twitter trace and 75% on the MSR trace.
The increase is more significant when the sequence length
is further reduced.

We further evaluated 6594 production traces (more details
in Table 1). Fig. 3 shows the one-hit-wonder ratios of all
traces at different sequence lengths. Compared to the full
traces with a median one-hit-wonder ratio of 26%, sequences
containing 50% of the objects in the trace show a median
one-hit-wonder ratio of 38%. Moreover, sequences with 10%
and 1% of the objects exhibit one-hit-wonder ratios of 72%
and 78%, respectively.
Because the cache size is always much smaller than the

trace footprint (the number of objects in the trace), evictions
start after encountering a short sequence of requests. This
observation suggests that if the cache size is set as 10% or
1% of the trace footprint, approximately 72% and 78% of the
objects would not be reused before eviction.
We further corroborate the observation with cache sim-

ulations. Fig. 4 shows the distribution of object frequency
at eviction. Our trace analysis (Fig. 2d) shows that the Twit-
ter trace has a 26% one-hit-wonder ratio for sequences of

133



0.001 0.01 0.1 0.5
Cache size (fraction of objects in the trace)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 e

vi
ct

ed
 o

bj
ec

ts Freq 1 Freq 2 Freq 2+

(a) Twitter trace, LRU

0.001 0.01 0.1 0.5
Cache size (fraction of objects in the trace)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 e

vi
ct

ed
 o

bj
ec

ts Freq 1 Freq 2 Freq 2+

(b) Twitter trace, Belady

0.001 0.01 0.1 0.5
Cache size (fraction of objects in the trace)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 e

vi
ct

ed
 o

bj
ec

ts Freq 1 Freq 2 Freq 2+

(c) MSR trace, LRU

0.001 0.01 0.1 0.5
Cache size (fraction of objects in the trace)

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n 
of

 e
vi

ct
ed

 o
bj

ec
ts Freq 1 Freq 2 Freq 2+

(d)MSR trace, Belady

Figure 4. The frequency of objects at eviction.

10% trace length. The simulation shows a similar result: 26%
and 24% of the objects evicted by LRU and Belady are not
requested after insertion at a cache size of 10% of the trace
footprint. Similarly, the MSR trace exhibits a higher one-
hit-wonder ratio of 75% for sequences of 10% trace length
(Fig. 2d), and Fig. 4 shows that 82% and 68% of the objects
evicted by LRU and Belady have no reuse. This suggests that
these one-hit wonders are often good eviction candidates, and

one may not need highly sophisticated eviction algorithms.

3.2 The need for quick demotion

Based on the observation, a cache should filter out these one-
hit wonders because they occupy space without providing
benefits. It is a common practice to employ Bloom Filters to
reject one-hit wonders from entering the cache in CDNs [96,
141]. However, a Bloom Filter rejects objects too fast with
a lack of precision since it rejects all objects that have not
been seen before. It causes the second requests to all objects
to be cache misses, which often leads to mediocre efficiency
(§5.2).

Filtering out one-hit wonders bears some resemblance
to designing scan-resistant cache eviction algorithms, as
objects requested during a scan are often one-hit won-
ders. Researchers have developed a variety of algorithms
for storage workloads that can avoid cache pollution and
thrashing caused by scanning requests, e.g., ARC [100],
LRU-K [110], 2Q [79], EELRU [124], LIRS [77], LeCaR [132],
CACHEUS [119], and LHD [21]. However, existing algo-
rithms cannot guarantee the minimum and maximum time
one-hit wonders stay in the cache before being removed. We
find these algorithms sometimes evict too fast or too slowly,
and their complexities make it difficult to reason about the
behavior (§6.1).

Figure 5. An illustration of S3-FIFO.

This raises the question: can we simply use a small proba-
tionary FIFO queue to guarantee that one-hit wonders are
removed after a fixed number of objects are inserted?

4 Design and implementation

As mentioned in §2.1, a cache eviction algorithm needs to
be simple and scalable besides being efficient. This section
presents S3-FIFO, a simple and scalable eviction algorithm
that consists of only static FIFO queues.
We start by defining the LRU queue and FIFO queue. An

LRU queue updates object ordering during cache hits by
promoting the requested object to the head of the queue. A
FIFO queue does not update ordering during cache hits, and
objects are evicted in the insertion order. However, evicted
objects may be reinserted into the queue to preserve hot
objects. As mentioned in §2.2, most eviction algorithms are
built with LRU queue, and only a few algorithms, e.g., FIFO-
Reinsertion, use FIFO queue because conventional wisdom
suggests LRU queue can provide a lower miss ratio.

4.1 S3-FIFO design

S3-FIFO uses three FIFO queues: a small FIFO queue (S),
a main FIFO queue (M), and a ghost FIFO queue (G). We
chooseS to use 10% of the cache space based on experiments
with 10 traces and find that 10% generalizes well.M then
uses 90% of the cache space. The ghost queue G stores the
same number of ghost entries (no data) asM.
Cache read. S3-FIFO uses two bits per object to track ob-
ject access status [155] similar to a capped counter with
frequency up to 3. Cache hits in S3-FIFO atomically incre-
ment the counter by one. Note that most requests for popular
objects require no update.
Cache write. New objects are inserted into S if not in G.
Otherwise, it is inserted intoM. When S is full, the object
at the tail is either moved toM if it is accessed more than
once or G if not. And its access bits are cleared during the
move. When G is full, it evicts objects in FIFO order.M uses
an algorithm similar to FIFO-Reinsertion but tracks access
information using two bits. Objects that have been accessed
at least once are reinserted with one bit set to 0 (similar to
decreasing frequency by 1). We illustrate the algorithm in
Fig. 5 and the pseudo-code in Algo. 1.

134



Algorithm 1 S3-FIFO algorithm
Input: The requested object 𝑥 , small FIFO queue S, main FIFO queueM,

ghost FIFO queue G
1: function read(𝑥 )
2: if 𝑥 in 𝑆 or 𝑥 in𝑀 then ⊲ Cache Hit
3: 𝑥 .freq← min(𝑥 .freq + 1, 3) ⊲ Frequency is capped to 3
4: else ⊲ Cache Miss
5: insert(𝑥 )
6: 𝑥 .freq← 0

7: function insert(𝑥 )
8: while cache is full do
9: evict()
10: if 𝑥 in G then

11: insert 𝑥 to head ofM
12: else

13: insert 𝑥 to head of S

14: function evict
15: if S.size ≥ 0.1 · cache size then
16: evictS()
17: else

18: evictM()

19: function evictS
20: evicted← false
21: while not evicted and S.size > 0 do
22: 𝑡 ← tail of S
23: if 𝑡 .freq > 1 then
24: insert 𝑡 toM
25: if M is full then
26: evictM()
27: else

28: insert 𝑡 to G
29: evicted← true
30: remove 𝑡 from S

31: function evictM
32: evicted← false
33: while not evicted andM.size > 0 do
34: 𝑡 ← tail ofM
35: if 𝑡 .freq > 0 then
36: Insert 𝑡 to head ofM
37: 𝑡 .freq← 𝑡 .freq-1
38: else

39: remove 𝑡 fromM
40: evicted← true

Handling different access patterns. One important pat-
tern we identified in §3.1 is the large one-hit-wonder ratio a
cache experiences due to the limited cache space. The small
FIFO queueS can quickly evict these one-hit wonders so they
do not occupy the cache for a long time. This allows S3-FIFO
to save the precious cache space for more valuable objects.
Besides one-hit wonders caused by unpopular objects in
skewed cache workloads, many block cache workloads have
scan and loop access patterns. Like one-hit wonders, blocks
accessed during scans are quickly removed to avoid cache
pollution and thrashing. However, blocks not part of a scan

but mixed in the scan are also moved to G in this process.
Nevertheless, when these “good” blocks are requested again
in the near future, they will be inserted intoM and stay for
a longer time.

4.2 Implementation

The FIFO queues can be implemented either using linked
lists or ring buffers. Linked-list-based implementation can
be added to existing LRU-based caches more easily. How-
ever, it has three drawbacks. First, it uses two pointers per
object. On workloads with tiny objects [99, 158], this poses
a huge storage overhead. Second, traversing through the
queue requires random memory accesses. Third, eviction
and insertion in linked-list-based implementation require
expensive atomic operations: compare-and-set, which re-
duces the scalability.
In contrast, a ring-buffer-based implementation has less

overhead and is more scalable but may not be compatible
with existing LRU-based caching systems. When using a ring
buffer to implement S3-FIFO, the ring buffer maintains the
FIFO order, with each slot storing the object or a pointer.
Eviction requires bumping the tail pointer in the ring buffer.
Although more scalable with lower storage overhead, a ring-
buffer-based implementation wastes space when the work-
load contains many deletion operations because the space
of deleted objects cannot be reused until eviction.

Although S3-FIFO has three logical FIFO queues, it can also
be implemented with one or two FIFO queue(s). Because ob-
jects evicted from S may enterM, they can be implemented
using one queue with a pointer at the 10% mark. However,
combining S andM reduces scalability because removing
objects from the middle of the queue requires locking.
The ghost FIFO queue G can be implemented as part of

the indexing structure. For example, we can store object
fingerprint and insertion time of ghost entries in a bucket-
based hash table [33, 37, 93, 158]. The fingerprint is a 4-
byte hash of the object ID. The insertion time is a virtual
timestamp, counting the number of objects inserted into G
thus far. Let 𝑆G denote the size of the ghost queue. If the
current time is 𝑁 (i.e., there were 𝑁 insertions into G), then
all the entries whose timestamp is lower than 𝑁 − 𝑆G are no
longer in G. A ghost entry is removed from the hash table
when the object is requested or during hash collision —when
the slot is needed to store another entry.

4.3 Overhead analysis

Computation. S3-FIFO performs an atomic write upon the
first and second request to an object without locking. There is
no operation after the second request. Because most requests
are for popular objects (more than two requests), S3-FIFO
thus performs negligible metadata updates on cache hits.
Cachemiss requires evicting an object fromS orM. Evicting
from S requires inserting the tail object intoM or G. And
evicting fromM may involve reinserting the tail object back

135



Table 1. Datasets used in this work, the ones with no citation are proprietary datasets. For old datasets, we exclude traces with less than 1
million requests. The trace length used in measuring the one-hit-wonder ratio is measured in the fraction of objects in the trace.

Trace Approx Cache time span # Traces # Request Request # Object Object One-hit-wonder ratio
collections time type (days) (million) (TB) (million) (TB) full trace 10% 1%

MSR [104, 105] 2007 Block 7 13 410 10 74 3 0.56 0.74 0.86
FIU [83] 2008-11 Block 9-28 9 514 1.7 20 0.057 0.28 0.91 0.91
Cloudphysics [136] 2015 Block 7 106 2,114 82 492 22 0.40 0.71 0.80
CDN 1 2018 Object 7 219 3,728 3640 298 258 0.42 0.58 0.70
Tencent Photo [167, 168] 2018 Object 8 2 5,650 141 1,038 24 0.55 0.66 0.74
WikiMedia CDN [140] 2019 Object 7 3 2,863 200 56 13 0.46 0.60 0.80
Systor [84, 85] 2017 Block 26 6 3,694 88 421 15 0.37 0.80 0.94
Tencent CBS [163, 164] 2020 Block 8 4030 33,690 1091 551 66 0.25 0.73 0.77
Alibaba [2, 89, 139] 2020 Block 30 652 19,676 664 1702 117 0.36 0.68 0.81
Twitter [157] 2020 KV 7 54 195,441 106 10,650 6 0.19 0.32 0.42
Social Network 1 2020 KV 7 219 549,784 392 42,898 9 0.17 0.28 0.37
CDN 2 2021 Object 7 1273 37,460 4,925 2,652 1,581 0.49 0.58 0.64
Meta KV [11] 2022 KV 1 5 1,644 958 82 76 0.51 0.53 0.61
Meta CDN [11] 2023 Object 7 3 231 8,800 76 1,563 0.61 0.76 0.81

toM. However, if an object is not accessed, it requires no
reinsertion. Therefore, the number of reinsertions is much
smaller than the cache hits in practice. Moreover, removing
the tail object and inserting an object to the head of a queue
can be implemented lock-free using atomic operations.
Storage. The ghost queue G stores the same number of
objects (without data) as the main queue. Assuming themean
object size is 4 KB, and an object id uses 4 bytes, then G uses
0.09% of the cache size. Each cached object uses two bits to
track access, consuming less than 0.01% of the cache size.
Moreover, the two bits can often be piggybacked on unused
bits in object metadata. If the FIFO queues are implemented
using ring buffers, S3-FIFO can remove the two LRU pointers,
saving 16 bytes per object or 0.4% of the cache size.

5 Evaluation

In this section, we evaluate S3-FIFO to answer the following
questions.
• How does S3-FIFO’s efficiency compare with the state-of-
the-art eviction algorithms?
• Is S3-FIFO more scalable compared to state-of-the-art?
• Can lessons learned from S3-FIFO help flash cache design?

5.1 Evaluation setup

Traces. We evaluated S3-FIFO using a large collection of
6594 production traces from 14 datasets, including 11 open-
source and 3 proprietary datasets. These traces span from
2007 to 2023 and cover key-value, block, and object CDN
caches. In total, the datasets contain 856 billion requests to
61 billion objects, 21,088 TB traffic for total 3,753 TB of data.
Because many large-scale distributed caching systems are
multi-tenanted and the traces represent workloads served by
more than one server, we split four datasets (CDN 1, CDN
2, Tencent CBS, and Alibaba) with tenant information into
per-tenant traces for an in-depth study of the workloads.
More details of the datasets can be found in Table 1.

Simulator.We implemented S3-FIFO and the state-of-the-
art eviction algorithms (described in §5.2) in libCacheSim [6].
We referenced and verified the results with multiple open-
source simulator implementations [1, 3–5, 7, 8]. For all state-
of-the-art algorithms, we used the parameters described in
the original papers. LibCacheSim is designed and tuned for
high-throughput cache simulations and can process up to 20
million requests on a single CPU core.
We have also implemented a distributed fault-tolerant

computation platform that allows us to run thousands of
simulations in parallel. The platform’s design does not affect
simulation accuracy and is out of the scope of this work. We
describe it in a separate blog post 2.
This distributed computation platform and the Cloudlab

testbed [53] enable us to evaluate different algorithms and
cache sizes on our large datasets (Table 1). The simulation
processed the datasets in close to 100 passes using different
algorithms, cache sizes, and parameters. We estimated that
over 80,000 billion requests were processed using a million
CPU-core hours.

Unless otherwise mentioned, we ignore object size in the
simulator because most production systems use slab storage
for memory management, for which evictions are performed
within the same slab class (objects of similar sizes). How-
ever, we remark that supporting object size is non-trivial for
systems that do not use slab-based memory management.
Moreover, we do not consider the metadata size in different
algorithms, although S3-FIFO often requires fewer metadata
than other algorithms. We evaluated the algorithms at multi-
ple different cache sizes, and we present one large size using
10% of the trace footprint (number of objects in the trace)
and one small size at 0.1% of the trace footprint. At 0.1% trace
footprint, the cache size may be too small for some traces,
so we ignore a trace if the cache size is smaller than 1000

2https://blog.jasony.me/random/tool/2023/08/01/distributed-computation

136



S3-FIFO
TinyLFU

TinyLFU-0.1LIRS 2Q
SLRU ARC

CACHEUS
LeCaR LHD

FIFO-Merge
Clock

B-LRU LRU

0.0

0.1

0.2

0.3

M
iss

 ra
tio

 re
du

ct
io

n 
fro

m
 F

IF
O P10 P25 Median Mean P75 P90

(a) Large cache size, 10% trace footprint

S3-FIFO
TinyLFU

TinyLFU-0.1LIRS 2Q
SLRU ARC

CACHEUS
LeCaR LHD

FIFO-Merge
Clock

B-LRU LRU

0.0

0.1

0.2

M
iss

 ra
tio

 re
du

ct
io

n 
fro

m
 F

IF
O P10 P25 Median Mean P75 P90

(b) Small cache size, 0.1% trace footprint

Figure 6. Each algorithm’s miss ratio reduction (from FIFO) at different percentiles across all traces. A larger reduction is better.

objects. For byte miss ratio evaluation, we considered object
size and used the trace footprint in bytes instead of objects.

Because the large number of traces used in the evaluation
have a very wide range of miss ratios, we choose to present
the miss ratio reduction compared to FIFO: 𝑀𝑅𝑓 𝑖 𝑓 𝑜−𝑀𝑅𝑎𝑙𝑔𝑜

𝑀𝑅𝑓 𝑖 𝑓 𝑜

where𝑀𝑅 stands for miss ratio. If an algorithm has a miss
ratio higher than FIFO, we calculate FIFO’s miss ratio reduc-
tion compared to the algorithm and take the negative value:
−𝑀𝑅𝑎𝑙𝑔𝑜−𝑀𝑅𝑓 𝑖 𝑓 𝑜

𝑀𝑅𝑎𝑙𝑔𝑜
, which bounds the value between -1 and 1.

This avoids the impact of outliers on the mean value.
Prototype. We have implemented S3-FIFO in Cache-
lib [47]. Cachelib uses slab memory management, which
pre-allocates all memory during initialization and is highly
optimized for LRU-based eviction algorithms. Its extensive
usage of metaprogramming and many LRU-based optimiza-
tions (e.g., compressed pointers) tightly couple different com-
ponents. Therefore, we implemented S andM using linked
lists and G using a hash table. We implemented a trace replay
tool that replays traces in a closed loop for benchmarking.
Because the backend often decides the latency and through-
put of cache misses, we focus on the cache hit performance
and on-demand fill cache misses using pre-generated data
object value. We compared S3-FIFO with three algorithms
implemented by Cachelib developers: LRU, a variant of 2Q,
and TinyLFU. Cachelib developers have devoted huge efforts
to improving the throughput and scalability of the three al-
gorithms with techniques such as lock combining, delayed
LRU promotion, try-lock-based promotion, and compressed
pointers. Besides Cachelib, we also evaluated Segcache, the
state-of-the-art scalable key-value cache using open-source
code [158].
Open source.We have open-sourced the code and data with
more information at the end of the paper.
Evaluation setup. We performed all evaluations on Cloud-
lab [53]. The simulations used multiple types of nodes from
the Clemson site, depending on node availability. The pro-
totype evaluation used c6420 nodes from the Clemson site.
We turned off turbo boost, pinned one thread to one core,
and used numactl to allocate all memory pages on the same
NUMA node.

5.2 Efficiency (miss ratio)

Miss ratio. The primary criticism of the FIFO-based eviction
algorithms is their efficiency, the most important metric for
a cache. We compare S3-FIFO with state-of-the-art eviction
algorithms designed in the past few decades. The algorithms
used in the comparison are either deployed in production
or commonly used in other papers. We use all efficiency
results from simulation because it allows us to (1) study
different types of cache workloads, e.g., block, key-value,
and object, (2) focus on and isolate the impact of the eviction
algorithm, and (3) requires fewer computation resources
to scale up to evaluate the huge datasets. Fig. 6 shows the
(request) miss ratio reduction (compared to FIFO) of different
algorithms across traces. At the large cache size, S3-FIFO
has the largest reductions across almost all percentiles than
other algorithms. For example, S3-FIFO reduces miss ratios
by more than 32% on 10% of the traces (P90) with a mean of
14% on the large cache size.
TinyLFU [54] is the closest competitor. TinyLFU uses a
1% LRU window to filter out unpopular objects and stores
most objects in a SLRU cache. TinyLFU’s good performance
corroborates our observation that quick demotion is critical
for efficiency. However, TinyLFU does not work well for all
traces, with miss ratios being lower than FIFO on almost 20%
of the traces (the P10 point is below -0.05 and not shown in
the figure). This phenomenon is more pronounced when the
cache size is small, where TinyLFU is worse than FIFO on
close to 50% of the traces.
There are two reasons why TinyLFU falls short. First,

the 1% window LRU is too small, evicting objects too fast.
Therefore, increasing the window size to 10% of the cache
size (TinyLFU-0.1) significantly improves the efficiency at the
tail (bottom of the figure). However, increasing the window
size reduces its improvement on the best-performing traces
(Fig. 6a). Second, when the cache is full, TinyLFU compares
the least recently used entry from the window LRU and
main SLRU, then evicts the less frequently used one. This
allows TinyLFU to be more adaptive to different workloads.
However, if the tail object in the SLRU happens to have a very
high frequency, it may lead to the eviction of an excessive
number of new and potentially useful objects.

137



LIRS [77] uses LRU stack (reuse) distance as the metric to
choose eviction candidates. Because one-hit wonders do not
have reuse distance, LIRS utilizes a 1% queue to hold them.
This small queue performs quick demotion and is the se-
cret source of LIRS’s high efficiency. Similar to TinyLFU, the
queue is too small, and it falls short on some cache work-
loads. However, compared to TinyLFU, fewer traces show
higher-than-FIFO miss ratios because the inter-recency met-
ric in LIRS is more robust than the frequency in TinyLFU.
In particular, TinyLFU cannot distinguish between many
objects with the same low frequency (e.g., 2), but these ob-
jects will have different inter-recency values. The downside
is that LIRS requires a more complex implementation than
TinyLFU.
2Q [79] has the most similar design to S3-FIFO. It uses 25%
cache space for a FIFO queue, the rest for an LRU queue,
and also has a ghost queue. Besides the difference in queue
size and type, objects evicted from the small queue are not
inserted into the LRU queue. Having a large probationary
queue and not moving accessed objects into the LRU queue
are the primary reasons why 2Q is not as good as S3-FIFO.
Moreover, the LRU queue does not provide observable bene-
fits compared to the FIFO queue (with reinsertion) in S3-FIFO.
SLRU [67, 80] uses four equal-sized LRU queues. Objects are
first inserted into the lowest-level LRU queue and promoted
to higher-level queues upon cache hits. An inserted object
is evicted if not reused in the lowest LRU queue, which
performs quick demotion and allows SLRU to show good
efficiency. However, unlike other schemes, SLRU does not use
a ghost queue, making it not scan-tolerant because popular
objects mixed in the scan cannot be distinguished. Therefore,
we observe that SLRU performs poorly on many block cache
workloads (not shown).
ARC uses four LRU queues: two for data and two for ghost
entries. The two data queues are used to separate recent and
frequent objects. Cache hits on objects in the recency queue
promote the objects to the frequency queue. Objects evicted
from the two data queues enter the corresponding ghost
queue. The sizes of queues are adaptively adjusted based on
hits on the ghost queues. When the recency queue is small,
newly inserted objects are quickly evicted, enabling ARC’s
high efficiency. However, ARC is less efficient than S3-FIFO
because the adaptive algorithm is not sufficient. We discuss
with more details in §6.2.
Recent algorithms, including CACHEUS [119],
LeCaR [132], LHD [21], and FIFO-Merge [158], are
also evaluated. However, we find these algorithms are often
less competitive than the traditional ones. In particular,
FIFO-merge was designed for log-structured storage
and key-value cache workloads without scan resistance.
Therefore, similar to SLRU, it performs better on web cache
workloads but much worse on block cache workloads.
Common algorithms, such as B-LRU (Bloom Filter LRU),
CLOCK, and LRU, are weaker than the ones discussed.

CLOCK and LRU do not allow quick demotion, so their miss
ratio reductions are small. B-LRU rejects all one-hit wonders
at the cost of the second request for all objects being cache
misses. Because of these misses, B-LRU is worse than LRU in
most cases. Because an object’s second request often arrives
soon after the first request (temporal locality), the small FIFO
queue in S3-FIFO allows these requests to be served as cache
hits.
Adversarial workloads for S3-FIFO.We studied the lim-
ited number of traces on which S3-FIFO performed poorly
and identified one pattern. Most objects in these traces are
accessed only twice, and the second request falls out of the
small FIFO queueS, which causes the second request to these
objects to be cache misses. We remark that these workloads
are adversarial for most algorithms that partition the cache
space, e.g., TinyLFU, LIRS, 2Q, and CACHEUS. Because the
partition for newly inserted objects is smaller than the cache
size, it is possible that the second request is a cache hit in
LRU and FIFO, but not in these advanced algorithms.

This request pattern resembles a scan becausemost objects
are not requested very soon after the first request. However,
it is not a typical scan because any object may show this
pattern, and the objects showing this pattern may not be
requested consecutively. In our large datasets, we find that
the second request often arrives within one minute in these
workloads. Therefore, the second request being a miss is a
problem only when the cache size is very small, e.g., 1000s of
objects. Moreover, using an adaptive algorithm to adjust the
queue size can often mitigate the problem, and we discuss
more in §6.2.
Miss ratio per dataset.We have shown the results across all
6594 traces. However, the number of traces from each dataset
differs, and the result could be affected by the dominating
dataset. Fig. 7 shows the mean miss ratio reduction on each
dataset using selected algorithms. We observe that S3-FIFO
often outperforms all other algorithms by a large margin.
Moreover, it is the best algorithm on 10 out of the 14 datasets
using a large cache size and 7 out of the datasets using a
small cache size. As a comparison, no other algorithm is the
best on more than 3 datasets.

Besides being the best on most datasets, S3-FIFO is also more

robust than other algorithms — S3-FIFO is among the top
three most efficient algorithms on 13 of the 14 datasets at
the large cache size. As a comparison, TinyLFU and LIRS are
among the top algorithms on some datasets, but on other
datasets, they are among the worst algorithms. While it is
hard to explain why S3-FIFO is more robust, we conjecture
that simplicity contributes to its robustness. In conclusion,
we find that quick demotion is a key factor for an efficient
eviction algorithm. By leveraging this observation, S3-FIFO,
a simple algorithm with only FIFO queues, can outperform
state-of-the-art.
Byte miss ratio. While (request) miss ratio is important
for most cache deployments, CDNs also widely use byte

138



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Miss ratio reduction from FIFO

fiu (block)
MSR (block)

CloudPhysics (block)
Systor (block)

Tencent (block)
Alibaba (block)

Social Network KV
Meta KV

Twitter KV
CDN1
CDN2

TencentPhoto CDN
Meta CDN

Wikimedia CDN
S3-FIFO ARC 2Q TinyLFU-0.1 LIRS CACHEUS LHD

(a) Large cache size

0.00 0.05 0.10 0.15
Miss ratio reduction from FIFO

fiu (block)
MSR (block)

CloudPhysics (block)
Systor (block)

Tencent (block)
Alibaba (block)

Social Network KV
Meta KV

Twitter KV
CDN1
CDN2

TencentPhoto CDN
Meta CDN

Wikimedia CDN
S3-FIFO ARC 2Q TinyLFU-0.1 LIRS CACHEUS LHD

(b) Small cache size

Figure 7. The mean miss ratio reduction of different algorithms on each dataset. TinyLFU on the TencentPhoto dataset at the large size is
-0.11 and not shown.

1 2 4 8 16
Number of threads

0

8

16

24

32

40

Th
ro

ug
hp

ut
 (M

op
s/

se
c) S3-FIFO

LRU
Segcache

Optimized LRU
Optimized TinyLFU

(a) Large cache, LRU miss ratio 0.02

1 2 4 8 16
Number of threads

0
4
8

12
16
20
24

Th
ro

ug
hp

ut
 (M

op
s/

se
c) S3-FIFO

LRU
Segcache

Optimized LRU
Optimized TinyLFU

(b) Small cache, LRU miss ratio 0.21

Figure 8. Throughput scaling with CPU cores on synthetic Zipf
(𝛼 = 1.0) trace.

miss ratio to measure bandwidth reduction. We evaluated
the same set of eviction algorithms on byte miss ratio. We
used the object sizes from each trace and set the cache size
to 10% and 0.1% of trace footprint in bytes. The results (not
shown due to space limit) are not significantly different from
the miss ratio in Fig. 6. Compared to other algorithms, S3-
FIFO presents larger byte miss ratio reductions at almost all
percentiles. We have also compared S3-FIFO with LRB [126],
a machine-learn-based eviction algorithm designed for CDN
cache workloads. We used ten random traces (LRB took too
long to run on the full dataset), including the Wikimedia
traces used in LRB’s evaluation. We observe that S3-FIFO
and LRB have similar efficiency, although S3-FIFO is much
simpler than LRB.

5.3 Performance (throughput)

S3-FIFO consists of only FIFO queues without locking on
either read or write. As a comparison, LRU-based eviction
algorithms, such as LRU, 2Q, and TinyLFU, require locking
on both cache hits and cache misses. We implemented S3-
FIFO in Cachelib to compare the throughput of different
algorithms. Because prototype experiments run much longer
and cannot be run in parallel, we only evaluated using a
synthetic Zipf trace similar to previous work [57]. Moreover,
we verified that the miss ratio results from the prototype
are consistent with the simulator using a few randomly se-
lected traces. The Zipf workload contains 100 ·𝑛𝑡ℎ𝑟𝑒𝑎𝑑 million
requests for 𝑛𝑡ℎ𝑟𝑒𝑎𝑑 million 4 KB objects. Fig. 8 shows that

compared to (strict) LRU, the optimized LRU has both higher
throughput and better scalability. However, it cannot scale
beyond two cores. Compared to LRU, TinyLFU needs to
check and update the count-min sketch on cache hits and
move objects between the window LRU and the main SLRU
on cache misses. Therefore, we observe a lower throughput
than LRU due to the extra operations. The optimized 2Q in
Cachelib has a similar result (not shown).

Compared to LRU-based eviction algorithms, S3-FIFO per-
forms fewer operations during cache hits, with a higher
throughput on a single thread. Moreover, the lock-free im-
plementation enables the throughput to scale with the num-
ber of CPU cores. Under both small and large cache sizes,
S3-FIFO runs more than 6× faster than the optimized LRU
in Cachelib with 16 threads.

Segcache [158] is the state-of-the-art key-value cache us-
ing log-structured storage with the FIFO-Merge eviction al-
gorithm. It uses macro management and FIFO-based eviction
to achieve close-to-linear scalability. Themacromanagement
enables Segcache to perform much less synchronization —
Segcache needs atomic updates only when a segment-chain
is changed, which is 100-1000× less frequent than cache
misses. However, Segcache is slower than S3-FIFO on a sin-
gle thread because the merge-based eviction needs to copy
data. Moreover, Segcache does not have a comparable effi-
ciency as S3-FIFO as we have shown in Fig. 6.

5.4 Flash-friendliness

In many flash cache deployments, the flash stores all the
cached objects, and DRAM is used for hot objects (and in-
dex) [14, 25]. However, writing all data to the flash reduces
its lifetime.
The surprising finding that using a small FIFO queue to

perform quick demotion can achieve the state-of-the-art miss
ratio has an implication for flash cache design. Because most
objects evicted from the S are not worthwhile to be kept
inM, we can place S in DRAM andM on flash. Objects
evicted from DRAM are not written to the flash. Only objects
requested in S and G are written to the flash. This setup
reduces both flash writes and miss ratio.

139



0.2 0.3 0.4 0.5
Miss ratio

0

1

2

3

W
rit

e 
by

te
s (

no
rm

al
ize

d)

DRAM size 0.1%: 
DRAM size 1%: 
DRAM size 10%: 
DRAM size agostic (no admission policy): 

Probabilistic
Probabilistic
Probabilistic

Flashield
Flashield
Flashield
FIFO

S3-FIFO
S3-FIFO
S3-FIFO

0.2 0.4 0.6 0.8
Miss ratio

0.0

0.5

1.0

1.5

W
rit

e 
by

te
s (

no
rm

al
ize

d)

Figure 9. The write bytes and miss ratio of no admission control
and using different admission algorithms. Both metrics are better
when they are lower. Write bytes are normalized to the number of
bytes in the trace. Left: Wikimedia CDN trace, right: Tencent Photo
CDN trace.

Because CDN caches are often deployed using flash,
we compare the miss ratio and write bytes using open-
source CDN traces fromWikimedia [140] and Tencent Photo
CDN [168]. We compare with three schemes. FIFO does not
use an admission control and writes everything to the flash.
Probabilistic admission uses an LRU DRAM cache and a 20%
probability to admit DRAM-evicted objects into the flash
cache randomly. Flashield uses a machine learning model
(SVM) to predict which objects are worthwhile writing to the
flash. S3-FIFO uses a small FIFO and ghost queue in DRAM
(0.1%, 1%, 10%) to filter objects, and objects requested at least
twice in the DRAM are admitted onto flash. Because the flash
cache eviction algorithm is orthogonal to the admission pol-
icy, we used FIFO [14, 24, 102] in all experiments (including
in S3-FIFO). We have also evaluated other flash-friendly algo-
rithms, such as FIFO-Reinsertion [159], and observed similar
results. We set the cache size to 10% of the trace footprint in
bytes. We further normalize the write bytes to the number
of unique bytes in the trace.

Fig. 9 shows that compared to no admission control (FIFO),
an admission policy can significantly reduce the number
of write bytes. However, both probabilistic admission and
Flashield trade-off the miss ratio for the reduced write bytes.
In contrast, using a small FIFO queue for admission is sur-
prisingly effective at reducing both write bytes and miss
ratios. Unlike probabilistic admission, which has almost no
dependency on the DRAM size, S3-FIFO and Flashield make
admission decisions based on access in DRAM. With a large
DRAM (10% of flash cache size), Flashield achieves close to
S3-FIFOmiss ratio with slightly more writes. However, when
the DRAM size is small, objects do not accumulate enough
access for the machine-learning model to predict accurately.
Meta engineers have also made a similar observation [24].

100 101 102
Normalized demotion speed

0.60

0.65

0.70

0.75

0.80

De
m

ot
io

n 
pr

ec
isi

on

LRU ARC TinyLFU S3-FIFO

(a) Twitter trace, large cache

100 101 102
Normalized demotion speed

0.82

0.84

0.86

0.88

0.90

De
m

ot
io

n 
pr

ec
isi

on

LRU ARC TinyLFU S3-FIFO

(b) Twitter trace, small cache

100 101 102
Normalized demotion speed

0.78

0.79

0.80

0.81

De
m

ot
io

n 
pr

ec
isi

on

LRU ARC TinyLFU S3-FIFO

(c) MSR trace, large cache

100 101 102
Normalized demotion speed

0.94

0.95

0.96

0.97

0.98

De
m

ot
io

n 
pr

ec
isi

on

LRU ARC TinyLFU S3-FIFO

(d)MSR trace, small cache

Figure 10. The normalized mean quick demotion speed and pre-
cision of different algorithms. TinyLFU and S3-FIFO use different
S sizes (1%, 2%, 5%, 10%, 20%, 30%, and 40% of cache size) and
have multiple points with lighter colors representing larger S. The
marker of 10% small queue size is highlighted with a larger size.

Table 2. Miss ratio when using different S sizes (as a fraction of
cache size). Increasing S sizes leads to slower but more accurate
quick demotion. Thus miss ratio for S3-FIFO first decreases, then
increases with S size. But TinyLFU sometimes shows anomalies.
The table should be read together with Fig. 10. The font color
matches the color in Fig. 10, and the italics show the miss ratio
anomaly of TinyLFU.

S size 0.40 0.30 0.20 0.10 0.05 0.02 0.01

Twitter trace, large cache, ARC miss ratio 0.0483, LRU miss ratio 0.0488 (Fig. 10a)

TinyLFU 0.0451 0.0445 0.0441 0.0530 0.0586 0.0437 0.0437
S3-FIFO 0.0455 0.0442 0.0432 0.0424 0.0422 0.0422 0.0423

Twitter trace, small cache, ARC miss ratio 0.1941, LRU miss ratio 0.2005 (Fig. 10b)

TinyLFU 0.1744 0.1718 0.1697 0.1766 0.1688 0.1775 0.1722
S3-FIFO 0.1846 0.1802 0.1765 0.1743 0.1740 0.1752 0.1768

MSR trace, large cache, ARC miss ratio 0.2891, LRU miss ratio 0.3188 (Fig. 10c)

TinyLFU 0.2990 0.2949 0.2936 0.2900 0.2893 0.2904 0.2895
S3-FIFO 0.2989 0.2936 0.2896 0.2891 0.2884 0.2887 0.2889

MSR trace, small cache, ARC miss ratio 0.4899, LRU miss ratio 0.5263 (Fig. 10d)

TinyLFU 0.4952 0.4923 0.4903 0.4907 0.4922 0.4993 0.5120
S3-FIFO 0.4940 0.4903 0.4890 0.4910 0.4926 0.4953 0.4970

6 Discussion

6.1 Why is S3-FIFO effective?

The key to S3-FIFO’s efficiency is the small probationary
FIFO queueS that filters out one-hit wonders. Removing low-
value items is not new. Admission algorithms, e.g., Bloom Fil-
ter, Adaptsize [25], are designed for a similar purpose. How-
ever, they reject objects too early and show low efficiency for
most cache workloads. Besides admission algorithms, many
cache eviction algorithms designed to be scan-resistant, e.g.,

140



ARC and 2Q, share a similar idea. They separate new and
frequent objects into two queues (denote using S andM)
so that popular objects are not affected by scan requests.
This work shows that a small static FIFO queue, one of the
simplest designs to filter out low-value objects, works better
than many more advanced alternatives.
But why? We take a closer look at demotion speed and

precision using the same trace from §3 to get a deeper un-
derstanding. The normalized quick demotion speed measures
how long objects stay in S before they are evicted or moved
toM. We use the LRU eviction age as a baseline and calcu-
late the speed as LRU eviction age

time in S . We use logical time measured
in request count. The quick demotion precisionmeasures how
many objects evicted from S are not reused soon. Using an
idea similar to previous work [126], if the number of requests
till an object’s next reuse is larger than cache size

miss ratio , then we say
the quick demotion results in a correct early eviction.
An algorithm with both faster and more precise quick

demotion exhibits a lower miss ratio. Fig. 10 shows that
ARC, TinyLFU, and S3-FIFO can quickly demote new objects
and have lower miss ratios compared to LRU (Table 2).
ARC uses an adaptive algorithm to decide the size of S. We
find that the algorithm can identify the correct direction to
adjust the size, but the size it finds is often too large or too
small. For example, Fig. 10a shows that ARC chooses a very
small S on the Twitter trace, causing most new objects to be
evicted too quickly with low precision. This happens because
of two trace properties. First, objects in the Twitter trace of-
ten have many requests; Second, new objects are constantly
generated. Therefore, objects evicted fromM are requested
very soon, causing S to shrink to a very small size (around
0.01% of cache size). Meanwhile, constantly generated new
(and popular) objects in S face more competition and of-
ten have to suffer a miss before being inserted inM, which
causes low precision and a high miss ratio (Table 2). On the
MSR trace, ARC has a reasonable speed with relatively high
precision, which correlates with its low miss ratio.
TinyLFU and S3-FIFO have a predictable quick demotion
speed — reducing the size of S always increases the demo-
tion speed. When using the same S size, TinyLFU demotes
slightly faster than S3-FIFO because it uses LRU, which keeps
some old but recently-accessed objects, squeezing the avail-
able space for newly-inserted objects.
Besides, S3-FIFO often shows higher precision than

TinyLFU at a similar quick demotion speed, which explains
why S3-FIFO has a lower miss ratio. TinyLFU compares
the eviction candidates from S andM, then evicts the less-
frequently-used candidate.When the eviction candidate from
M has a high frequency, it causes many worth-to-keep ob-
jects from S to be evicted. This causes not only a low pre-
cision but also unpredictable precision and miss ratio cliffs.
For example, the precision shows a large dip at 5% and 10%

in Fig. 10a, corresponding to a sudden increase in the miss
ratio (Table 2).
Although S3-FIFO does not use advanced techniques, it

achieves a robust and predictable quick demotion speed and
precision. As S size increases, the speed decreases mono-
tonically (moving towards the left in the figure), and the
precision also increases until it reaches a peak. When S
is very small, popular objects do not have enough time to
accumulate a hit before being evicted, so the precision is
low. Increasing S size leads to higher precision. When S is
very large, many unpopular objects are requested in S and
moved toM, leading to reduced precision as well. Table 2
shows that at similar quick demotion speed, higher precision
always leads to lower miss ratios.
In summary, S3-FIFO guarantees that newly inserted un-

popular objects are evicted in a predictably short time. The
quick demotion is often more precise and robust compared
to existing approaches. This combination allows S3-FIFO to
obtain better than state-of-the-art miss ratios.

6.2 How about adaptive eviction algorithms?

Is queue size sensitive?We choseS to use 10% of the cache
size based on results from ten traces and found that it gener-
alizes well across the 6594 traces. Fig. 11 shows how the miss
ratios change with S size. We observe that a smaller S leads
to larger miss ratio reductions, confirming the importance of
quick demotion. For example, when the cache size is large,
the best-performing traces (P90) have the largest reduction
when S uses 1% of the cache size. However, a smaller S also
causes more traces to have miss ratios higher than FIFO. This
aligns with the observation in §6.1 where we see smaller S
leads to faster quick demotion, but the precision decreases
after the peak. Overall, the predictability between efficiency
and S size makes it easy to choose the S size. And the ef-
ficiency does not change much for most traces if S size is
between 5% and 20% of the cache size.
Making queue size adaptive! We designed and imple-
mented an algorithm that adaptively changes the FIFO queue
sizes, which we call S3-FIFO-d, S3-FIFO with dynamic queue
sizes. S3-FIFO-d maintains a balance between marginal hits
on the evicted objects from S andM. It uses two small ghost
queues to track objects evicted from S andM. Each ghost
queue is sized to store 5% of the cached objects (without data).
Each time the two ghost queues have more than 100 hits, and
one has 2× more hits than the other, S3-FIFO-d moves 0.1%
of cache space to the queue whose evicted objects receive
more hits. By balancing the marginal hits on the evicted ob-
jects, S3-FIFO minimizes the gradient of hits on the evicted
objects. If S is too small, its evicted objects will receive many
hits causing an expansion of S. Vice versa. Besides the algo-
rithm described above, we also experimented with another
adaptive algorithm similar to ARC, which increases queue
size by one upon a hit on the ghost. However, we find this
algorithm less robust than S3-FIFO-d.

141



0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Probationary FIFO size (in fraction of cache size)

0.0

0.1

0.2

0.3

0.4

M
iss

 ra
tio

 re
du

ct
io

n 
fro

m
 F

IF
O P10 P25 Median Mean P75 P90

(a) Large cache size

0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Probationary FIFO size (in fraction of cache size)

0.0

0.1

0.2

0.3

M
iss

 ra
tio

 re
du

ct
io

n 
fro

m
 F

IF
O P10 P25 Median Mean P75 P90

(b) Small cache size

Figure 11. Miss ratio reduction percentiles using different sizes for the small FIFO. Left: large cache size, right: small cache size.

We compare S3-FIFO-d and S3-FIFO (not shown) and find
that S3-FIFO is better than S3-FIFO-d on most traces except
the 2% traces at the tail, on which using 10% cache size for S
is far from optimal. In other words, the adaptive algorithm is
only useful when the workload is adversarial (which is rare).
We tried to tune the parameters in the adaptive algorithm.
However, tuning for a few traces is easy, but obtaining good
results across traces is very challenging 3.
Where do adaptive algorithms fail?The parameter tuning
problem is not unique to S3-FIFO-d. Most, if not all, adap-
tive algorithms have many parameters. For example, queue
resizing requires several parameters, e.g., the frequency of
resizing, the amount of space moved each time, the lower
bound of queue sizes, and the threshold for trigger resizing.
This is not unique for S3-FIFO-d, but also for algorithms
such as ARC, whose parameters are less obvious. For exam-
ple, ARC moves one slot upon a hit on the ghost. But the
question remains why one slot instead of half or two? And
is it better to handle the hit at the head and tail of the ghost
queue differently?
Besides the many hard-to-tune parameters, adaptive al-

gorithms adapt based on observation of the past. However,
the past may not predict the future. We find that small per-
turbations in the workload often cause the adaptive algo-
rithm to overreact. It is unclear how to balance between
under-reaction and overreaction without introducing more
parameters. Moreover, some adaptive algorithms, including
S3-FIFO-d, implicitly assume that the miss ratio curve is
convex because following the gradient direction leads to
the global optimum. However, the miss ratio curves of scan-
heavy workloads are often not convex [23, 135].

Although we have shown that S3-FIFO is not sensitive to
S size, and the queue size is easier to choose than tuning an
adaptive algorithm. We believe adaptations are still impor-
tant, but how to adapt remains to be explored. For systems
that need to find the best parameter, downsized simulations
using spatial sampling can be used [135, 136].

3We believe algorithm design should not be tuned on the traces used for
evaluation (test dataset), but rather on a validation dataset.

6.3 LRU or FIFO?

S3-FIFO only uses FIFO queues, but do LRU queues provide
better efficiency? We experimented with different queue-
type combinations by replacing both the small FIFO queue
and the main FIFO queue with LRU queues. And we have also
experimented with moving objects from S toM upon cache
hits and during evictions. Due to space limits, the results are
not shown, but we observe that LRU queues do not improve
efficiency. In particular, using two LRU queues, such as in
ARC, is worse than S3-FIFO most of the time. In conclusion,
with quick demotion, the queue type does not matter.

7 Related Work

We have discussed many related works throughout the §2
and §5.2. We discuss the rest in this section.
Efficiency-oriented cache design. Besides the eviction
algorithms we compared with, many other algorithms are
designed to improve the cache efficiency [18, 26, 41, 70, 82,
87, 97, 131, 166]. S3-FIFO differs from existing algorithms in
the following way. First, S3-FIFO uses only FIFO queues and
does not require promotion on cache hits. Second, S3-FIFO
explicitly guarantees the time one-hit wonders stay in the
cache before testing popularity. Third, this work shows why
a very small probationary cache is needed and uses a smaller
probationary queue than most previous works.

Quickly removing one-hit wonders is similar to removing
scan/streaming/sequential/looping requests that motivated
many previous works [21, 79, 100, 119]. Moreover, similar
ideas have also been applied to removing low-priority blocks
from lower cache layers in a cache hierarchy [106, 142, 147].
Our previous work also discussed two techniques to improve
cache efficiency and scalability — lazy promotion and quick
demotion [155]. S3-FIFO is an example of applying the two
techniques on FIFO queues to design simple, efficient, and
scalable cache eviction algorithms. SIEVE is another eviction
algorithm focusing on simplicity, efficiency, and scalability.
However, SIEVE is not scan-resistant and only works on web
workloads [162].

Besides eviction algorithms, several other works improved
cache efficiency via removing cliffs in miss ratio curves [22],
space partitioning [42–44, 66], prefetching [49, 62, 91, 127,

142



134, 153], exploiting spatial locality [75], compression [72,
145], leveraging application hints [71, 90, 94, 113, 120, 147],
cooperative caching [46, 76, 78, 149], read-write separa-
tion [20], reducing metadata, and removing expired ob-
jects [158]. These works complement the eviction algorithm
designs. However, we remark that integrating multiple de-
signs, e.g., eviction and prefetching are non-trivial and re-
quires additional exploration [17, 31, 34, 62, 127].
Scalability-oriented cache design. Segmented FIFO was
designed to achieve low overhead; however, the tradeoff is
lower efficiency than LRU [130]. Segcache [158] improves
a cache’s throughput and scalability by eliminating promo-
tions and locking. Segcache uses log-structured storage to
improve scalability. However, Segcache is more efficient for
workloads using TTLs. MemC3 [57] and Tricache [60] use
CLOCK for scalable data access. However, CLOCK has lower
efficiency than S3-FIFO because it cannot quickly remove
one-hit wonders. FrozenHot [115] freezes part of the cached
data to provide scalable data access and does not improve
the eviction algorithm’s efficiency.

Besides improving an eviction algorithm, sharding is com-
monly used to improve scalability. Sharding partitions the
key space, and each CPU core serves a slice of the keys.
However, cache workloads often follow Zipfian popularity,
so sharding leads to load imbalance [58, 65, 68, 95, 116] and
limits the whole system’s throughput. Besides improving the
cache eviction algorithm’s scalability, several other works
have improved other parts in a key-value cache/store [93].
Compared to these works, S3-FIFO focuses on the eviction
algorithm.
Flash endurance. Endurance is a well-known problem
for caching on flash. Many works have designed flash-
friendly cache eviction algorithms, such as RIPQ [129], Spa-
tialClock [81], and offline algorithms [40]. FlashTier [121],
DIDACache [123], Pannier [86] studied the flash cache design
beyond eviction algorithms to improve flash cache perfor-
mance and endurance. Flash cache admission control (also
called selective caching in some works) has been explored
in LARC [69], WEC [36], S-RAC [107] and SieveStore [114],
which use window-based or ghost-based frequency thresh-
old to selectively cache objects on flash. Such designs are
similar to using counting Bloom Filter LRU. However, they
do not explicitly consider the role of DRAM to cache new (and

unpopular) objects. This is particularly important as we have
shown that B-LRU cannot achieve the optimal efficiency (§5).
Flashield [55] and ML-QP [165] track object access in the
DRAM cache and use a machine-learning model to decide
admission. However, Flashield requires too much DRAM to
work. Besides, several works used social features to predict
object access patterns [137, 138], which are only applicable
in social network cache workloads. While early eviction, se-
lective caching, and selective placement can help with flash
endurance, they are also widely used in hierarchical caches
to achieve exclusive caching and address the lack of locality.

Different algorithms [39, 73, 148, 169], interfaces and sys-
tems [61, 142, 146, 147] have been designed to improve the
efficiency of hierarchical caches.

8 Conclusion

We demonstrate that a cache often experiences a higher
one-hit-wonder ratio than common full trace analysis. Our
study on 6594 traces reveals that quickly removing one-hit
wonders (quick demotion) is the secret weapon of many
advanced algorithms. Motivated by this, we design S3-FIFO,
a simple and scalable cache eviction algorithm composed
of only static FIFO queues. Our evaluation shows that S3-
FIFO achieves better and more robust efficiency than state-
of-the-art algorithms. Meanwhile, it is more scalable than
LRU-based algorithms.

Availability

The code and data used in this work are open-sourced at
https://github.com/TheSys-lab/sosp23-s3fifo. This includes
the simulator, the prototype, and our fault-tolerant dis-
tributed computation platform.

We have also developed cache libraries using S3-FIFO for
different programming languages. More information is avail-
able at https://s3fifo.com, which provides documentation
and tracks the adoptions of S3-FIFO in production systems.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back and our shepherd Gala Yadgar for her constructive
suggestions. We also would like to thank the people and or-
ganizations that have open-sourced and shared production
traces. We thank Cloudlab [53] for the infrastructure sup-
port for running experiments. This work is funded in part
by a Meta Fellowship, and NFS grants CNS 1901410 and CNS
1956271. We also thank the members of the PDL Consortium
for their interest, insights, feedback, and support.

References

[1] Adaptive replacement cache implementation in python. https://gist.
github.com/pior/da3b6268c40fa30c222f. Accessed: 2023-07-28.

[2] Alibaba block-trace. https://github.com/alibaba/block-traces. Ac-
cessed: 2023-01-12.

[3] Cache implementation in python. https://github.com/trauzti/cache.
Accessed: 2023-07-28.

[4] Cacheus implementation. https://github.com/sylab/cacheus. Ac-
cessed: 2023-07-28.

[5] Caffeine java cache package. https://github.com/ben-manes/caffeine.
Accessed: 2023-07-28.

[6] libcachesim: a high-performance cache simulator. https://github.com/
1a1a11a/libCacheSim. Accessed: 2023-07-28.

[7] Lirs implementation and discussion. https://github.com/facebook/
CacheLib/discussions/99. Accessed: 2023-07-28.

[8] Lrb implementation. https://github.com/sunnyszy/lrb. Accessed:
2023-07-28.

[9] Themulti-generational lru. https://lwn.net/Articles/851184. Accessed:
2023-07-28.

143

https://github.com/TheSys-lab/sosp23-s3fifo
https://s3fifo.com
https://gist.github.com/pior/da3b6268c40fa30c222f
https://gist.github.com/pior/da3b6268c40fa30c222f
https://github.com/alibaba/block-traces
https://github.com/trauzti/cache
https://github.com/sylab/cacheus
https://github.com/ben-manes/caffeine
https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim
https://github.com/facebook/CacheLib/discussions/99
https://github.com/facebook/CacheLib/discussions/99
https://github.com/sunnyszy/lrb
https://lwn.net/Articles/851184


[10] Page frame reclamation. https://www.kernel.org/doc/gorman/html/
understand/understand013.html. Accessed: 2023-02-06.

[11] Running cachebench with the trace workload. https://cachelib.org/
docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval. Ac-
cessed: 2023-02-12.

[12] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,
Mark Manasse, and Rina Panigrahy. Design Tradeoffs for SSD Perfor-
mance. In USENIX 2008 Annual Technical Conference, ATC’08, pages
57–70, USA, 2008. USENIX Association.

[13] AMD. Epyc™ 9654p. https://www.amd.com/en/products/cpu/amd-
epyc-9654p. Accessed: 2023-02-06.

[14] Apache. Apache traffic server. https://trafficserver.apache.org/. Ac-
cessed: 2023-02-06.

[15] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload Analysis of a Large-Scale Key-Value Store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint In-

ternational Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’12, pages 53–64, New York, NY, USA, 2012.
Association for Computing Machinery.

[16] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S. Berger.
Caching with Delayed Hits. In Proceedings of the Annual Confer-

ence of the ACM Special Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’20, pages 495–513, New York, NY, USA,
2020. Association for Computing Machinery.

[17] Sung Hoon Baek and Kyu Ho Park. Prefetching with adaptive cache
culling for striped disk arrays. In USENIX 2008 Annual Technical

Conference, ATC’08, pages 363–376, USA, June 2008. USENIX Associ-
ation.

[18] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with Adaptive
Replacement. In 3rd USENIX Conference on File and Storage Technolo-

gies, FAST’04, 2004.
[19] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai,

and Ramesh Sitaraman. Adaptive TTL-Based Caching for Content
Delivery. In Proceedings of the 2017 ACM SIGMETRICS / International

Conference on Measurement and Modeling of Computer Systems, pages
45–46, Urbana-Champaign Illinois USA, June 2017. ACM.

[20] Alexandros Batsakis, Randal Burns, Arkady Kanevsky, James Lentini,
and Thomas Talpey. AWOL: an adaptive write optimizations layer. In
Proceedings of the 6th USENIX Conference on File and Storage Technolo-

gies, FAST’08, pages 1–14, USA, February 2008. USENIX Association.
[21] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving

cache hit rate by maximizing hit density. In 15th USENIX symposium

on networked systems design and implementation, NSDI’18, pages
389–403, 2018.

[22] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to
remove cliffs in cache performance. In 2015 IEEE 21st International

Symposium on High Performance Computer Architecture, HPCA’15,
pages 64–75, Burlingame, CA, USA, February 2015. IEEE.

[23] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-
time characteristics of certain programs running in a paging machine.
Communications of the ACM, 12(6):349–353, June 1969.

[24] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory R. Ganger. The CacheLib caching
engine: Design and experiences at scale. In 14th USENIX symposium

on operating systems design and implementation, OSDI’20, pages 753–
768. USENIX Association, November 2020.

[25] Daniel S Berger, Ramesh K Sitaraman, andMor Harchol-Balter. Adapt-
Size: Orchestrating the hot object memory cache in a content delivery
network. In 14th USENIX symposium on networked systems design

and implementation, NSDI’17, pages 483–498, 2017.
[26] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyper-

bolic caching: Flexible caching for web applications. In 2017 USENIX

annual technical conference, ATC’17, pages 499–511, Santa Clara, CA,
July 2017. USENIX Association.

[27] Simona Boboila and Peter Desnoyers. Write Endurance in Flash
Drives: Measurements and Analysis. In Proceedings of the 8th USENIX

conference on File and stroage technologies, FAST’10, pages 115–128,
2010.

[28] Bradfitz. group cache. https://github.com/golang/groupcache. Ac-
cessed: 2023-02-06.

[29] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching
and Zipf-like distributions: evidence and implications. In Proceedings.

Eighteenth Annual Joint Conference of the IEEE Computer and Com-

munications Societies, pages 126–134 vol.1, New York, NY, USA, 1999.
IEEE.

[30] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
On the implications of Zipf’s law for web caching. Technical report,
University of Wisconsin-Madison Department of Computer Sciences,
1998.

[31] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The performance impact
of kernel prefetching on buffer cache replacement algorithms. In
Proceedings of the 2005 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, SIGMETRICS
’05, pages 157–168, New York, NY, USA, June 2005. Association for
Computing Machinery.

[32] John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav
Rost. Informed content delivery across adaptive overlay networks.
In Proceedings of the 2002 conference on Applications, technologies,

architectures, and protocols for computer communications, SIGCOMM
’02, pages 47–60, New York, NY, USA, August 2002. Association for
Computing Machinery.

[33] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster slab reassign-
ment in memcached. In Proceedings of the International Symposium

on Memory Systems, pages 353–362, Washington District of Columbia
USA, September 2019. ACM.

[34] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Imple-
mentation and performance of integrated application-controlled file
caching, prefetching, and disk scheduling. ACM Transactions on

Computer Systems, 14(4):311–343, November 1996.
[35] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching Algo-

rithms. In USENIX Symposium on Internet Technologies and Systems,
USITS’97, Monterey, CA, December 1997. USENIX Association.

[36] Yunpeng Chai, Zhihui Du, Xiao Qin, and David A. Bader. WEC:
Improving Durability of SSD Cache Drives by CachingWrite-Efficient
Data. IEEE Transactions on Computers, 64(11):3304–3316, November
2015. Conference Name: IEEE Transactions on Computers.

[37] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin
Levandoski, James Hunter, and Mike Barnett. FASTER: A Concur-
rent Key-Value Store with In-Place Updates. In Proceedings of the

2018 International Conference on Management of Data, pages 275–290,
Houston TX USA, May 2018. ACM.

[38] H. Che, Z. Wang, and Y. Tung. Analysis and design of hierarchical
Web caching systems. In Proceedings IEEE INFOCOM 2001. Conference

on Computer Communications. Twentieth Annual Joint Conference of

the IEEE Computer and Communications Society (Cat. No.01CH37213),
volume 3, pages 1416–1424, Anchorage, AK, USA, 2001. IEEE.

[39] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based Cache
Placement for Storage Caches. In USENIX Annual Technical Confer-

ence, General Track, ATC’03, pages 269–281, 2003.
[40] Yue Cheng, Fred Douglis, Philip Shilane, GrantWallace, Peter Desnoy-

ers, and Kai Li. Erasing Belady’s Limitations: In Search of Flash Cache
Offline Optimality. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), ATC, pages 379–392, 2016.
[41] Jongmoo Choi, Sam H Noh, Sang Lyul Min, and Yookun Cho. An

implementation study of a detection-based adaptive block replace-
ment scheme. In USENIX annual technical conference, ATC’99, pages

144

https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://www.amd.com/en/products/cpu/amd-epyc-9654p
https://www.amd.com/en/products/cpu/amd-epyc-9654p
https://trafficserver.apache.org/
https://github.com/golang/groupcache


239–252, 1999.
[42] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Dynacache: Dynamic cloud caching. In 7th USENIX workshop on hot

topics in cloud computing, HotCloud’15, 2015.
[43] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Cliffhanger: Scaling performance cliffs in webmemory caches. In 13th
USENIX symposium on networked systems design and implementation,
NSDI’16, pages 379–392, 2016.

[44] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX

annual technical conference, ATC’17, pages 321–334, Santa Clara, CA,
July 2017. USENIX Association.

[45] Fernando J Corbato. A paging experiment with the multics system.
Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE
PROJECT MAC, 1968.

[46] Michael D Dahlin, Randolph Y Wang, Thomas E Anderson, and
David A Patterson. Cooperative caching: Using remote client mem-
ory to improve file system performance. In Proceedings of the 1st

USENIX conference on Operating Systems Design and Implementation,
OSDI’94, pages 19–es, 1994.

[47] Meta developers. Cachelib - pluggable caching engine to build and
scale high performance cache services. https://cachelib.org/. Ac-
cessed: 2023-04-06.

[48] Pelikan developers. Pelikan. https://github.com/pelikan-io/pelikan.
Accessed: 2023-02-06.

[49] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong
Zhang. DiskSeen: Exploiting Disk Layout and Access History to En-
hance I/O Prefetch. In USENIX Annual Technical Conference, volume 7,
pages 261–274, 2007.

[50] Siying Dong. Reducing lock contention in rocksdb. https://rocksdb.
org/blog/2014/05/14/lock.html. Accessed: 2023-02-06.

[51] Donghee Lee, JongmooChoi, Jong-HunKim, S.H. Noh, Sang LyulMin,
Yookun Cho, and Chong Sang Kim. LRFU: a spectrum of policies that
subsumes the least recently used and least frequently used policies.
IEEE Transactions on Computers, 50(12):1352–1361, December 2001.

[52] Rémi Dulong, Rafael Pires, Andreia Correia, Valerio Schiavoni, Pedro
Ramalhete, Pascal Felber, and Gaël Thomas. NVCache: A Plug-and-
Play NVMM-based I/O Booster for Legacy Systems. In 2021 51st

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pages 186–198, June 2021. arXiv:2105.10397 [cs].
[53] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference

(ATC), pages 1–14, July 2019.
[54] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU: A Highly

Efficient Cache Admission Policy. ACM Transactions on Storage,
13(4):1–31, December 2017.

[55] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich,
Ryan Stutsman, Mohammad Alizadeh, and Sachin Katti. Flashield:
a hybrid key-value cache that controls flash write amplification. In
16th USENIX symposium on networked systems design and implemen-

tation, NSDI’19, pages 65–78, Boston, MA, February 2019. USENIX
Association.

[56] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat.
It’s time to revisit LRU vs. FIFO. In 12th USENIX workshop on hot

topics in storage and file systems, hotStorage’20. USENIX Association,
July 2020.

[57] Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Com-
pact and concurrent MemCache with dumber caching and smarter
hashing. In 10th USENIX symposium on networked systems design and

implementation, NSDI’13, pages 371–384, 2013.

[58] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky.
Small cache, big effect: provable load balancing for randomly parti-
tioned cluster services. In Proceedings of the 2nd ACM Symposium on

Cloud Computing - SOCC ’11, SOCC’11, pages 1–12, Cascais, Portugal,
2011. ACM Press.

[59] Qilin Fan, Xiuhua Li, Jian Li, Qiang He, Kai Wang, and Junhao
Wen. PA-Cache: Evolving Learning-Based Popularity-Aware Content
Caching in Edge Networks, December 2020.

[60] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu, Yuanwei Wang,
Zixuan Ma, Shengqi Chen, and Wenguang Chen. TriCache: A User-
Transparent Block Cache Enabling High-Performance Out-of-Core
Processing with In-Memory Programs. In 16th USENIX Symposium

on Operating Systems Design and Implementation, OSDI’22, pages
395–411, Carlsbad, CA, July 2022. USENIX Association.

[61] Binny S Gill. On Multi-level Exclusive Caching: Offline Optimality
and Why promotions are better than demotions. In FAST, volume 8
of FAST’08, pages 1–17, 2008.

[62] Binny S Gill and Luis Angel D Bathen. AMP: Adaptive multi-stream
prefetching in a shared cache. In FAST, volume 7, pages 185–198,
2007.

[63] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha,
Riza O. Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S.
Gunawi. MittOS: Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’17, pages 168–183, New
York, NY, USA, October 2017. Association for Computing Machinery.

[64] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S Gunawi. LinnOS: Predictability
on Unpredictable Flash Storage with a Light Neural Network. In
Proceedings of the 14th USENIX Symposium on Operating Systems

Design and Implementation, OSDI, 2020.
[65] Yu-Ju Hong and Mithuna Thottethodi. Understanding and mitigating

the impact of load imbalance in the memory caching tier. In Proceed-

ings of the 4th annual Symposium on Cloud Computing, pages 1–17,
Santa Clara California, October 2013. ACM.

[66] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen
Ding, Song Jiang, and Zhenlin Wang. LAMA: Optimized locality-
aware memory allocation for key-value cache. In 2015 USENIX Annual

Technical Conference, ATC’15, pages 57–69, 2015.
[67] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev

Kumar, and Harry C. Li. An analysis of Facebook photo caching.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, SOSP ’13, pages 167–181, New York, NY, USA,
November 2013. Association for Computing Machinery.

[68] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A. Freed-
man, Ken Birman, and Robbert van Renesse. Characterizing Load
Imbalance in Real-World Networked Caches. In Proceedings of the

13th ACM Workshop on Hot Topics in Networks, HotNets’14, pages
1–7, Los Angeles CA USA, October 2014. ACM.

[69] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and Cheng Chen.
Improving Flash-Based Disk Cache with Lazy Adaptive Replacement.
ACM Transactions on Storage, 12(2):8:1–8:24, February 2016.

[70] Andhi Janapsatya, Aleksandar Ignjatovic, Jorgen Peddersen, and Sri
Parameswaran. Dueling CLOCK: Adaptive cache replacement policy
based on the CLOCK algorithm. In 2010 Design, Automation & Test in

Europe Conference & Exhibition (DATE 2010), pages 920–925, Dresden,
March 2010. IEEE.

[71] R. Jauhari, Michael J. Carey, and Miron Livny. Priority-hints: an
algorithm for priority-based buffer management. In Proceedings of

the sixteenth international conference on Very large databases, pages
708–721, San Francisco, CA, USA, September 1990. Morgan Kaufmann
Publishers Inc.

[72] Yichen Jia, Zili Shao, and Feng Chen. SlimCache: Exploiting Data
Compression Opportunities in Flash-Based Key-Value Caching. In

145

https://cachelib.org/
https://github.com/pelikan-io/pelikan
https://rocksdb.org/blog/2014/05/14/lock.html
https://rocksdb.org/blog/2014/05/14/lock.html


2018 IEEE 26th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 209–222, Milwaukee, WI, September 2018. IEEE.

[73] S. Jiang and X. Zhang. ULC: a file block placement and replace-
ment protocol to effectively exploit hierarchical locality in multi-level
buffer caches. In 24th International Conference on Distributed Com-

puting Systems, 2004. Proceedings., pages 168–177, March 2004. ISSN:
1063-6927.

[74] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an effec-
tive improvement of the CLOCK replacement. In Proceedings of the

annual conference on USENIX Annual Technical Conference, ATC’05,
page 35, USA, April 2005. USENIX Association.

[75] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong
Zhang. DULO: an effective buffer cache management scheme to
exploit both temporal and spatial locality. In Proceedings of the 4th

conference on USENIX Conference on File and Storage Technologies,
volume 4 of FAST’05, pages 8–8, 2005.

[76] Song Jiang, F. Petrini, Xiaoning Ding, and Xiaodong Zhang. A
Locality-Aware Cooperative Cache Management Protocol to Improve
Network File System Performance. In 26th IEEE International Confer-

ence on Distributed Computing Systems (ICDCS’06), pages 42–42, July
2006. ISSN: 1063-6927.

[77] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance.
In ACM SIGMETRICS Performance Evaluation Review, volume 30 of
SIGMETRICS’02, pages 31–42, June 2002.

[78] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang.
Cooperative content distribution and traffic engineering in an ISP
network. In Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems, SIGMETRICS
’09, pages 239–250, New York, NY, USA, June 2009. Association for
Computing Machinery.

[79] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In Pro-

ceedings of the 20th International Conference on Very Large Data Bases,
VLDB’94, pages 439–450, San Francisco, CA, USA, September 1994.
Morgan Kaufmann Publishers Inc.

[80] R. Karedla, J.S. Love, and B.G. Wherry. Caching strategies to improve
disk system performance. Computer, 27(3):38–46, March 1994.

[81] Hyojun Kim, Moonkyung Ryu, and Umakishore Ramachandran.
What is a good buffer cache replacement scheme for mobile flash
storage? ACM SIGMETRICS Performance Evaluation Review, 40(1):235–
246, 2012.

[82] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. A low-overhead high-
performance unified buffer management scheme that exploits sequen-
tial and looping references. In 4th USENIX Symposium on Operating

Systems Design and Implementation, OSDI’00, USA, 2000. USENIX
Association.

[83] Ricardo Koller and Raju Rangaswami. I/o deduplication: Utilizing
content similarity to improve i/o performance. ACM Transactions on

Storage (TOS), 6(3):1–26, 2010.
[84] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo,

Naoto Fukumoto, and Mariko Sugawara. Systor ’17 traces (SNIA
IOTTA trace 5102). In Geoff Kuenning, editor, SNIA IOTTA Trace

Repository. Storage Networking Industry Association, March 2016.
[85] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo,

Naoto Fukumoto, and Mariko Sugawara. Understanding storage
traffic characteristics on enterprise virtual desktop infrastructure.
In Proceedings of the 10th ACM International Systems and Storage

Conference, SYSTOR ’17, pages 1–11, New York, NY, USA, May 2017.
Association for Computing Machinery.

[86] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pannier:
Design and Analysis of a Container-Based Flash Cache for Compound

Objects. ACM Transactions on Storage, 13(3):1–34, October 2017.
[87] Cong Li. CLOCK-pro+: improving CLOCK-pro cache replacement

with utility-driven adaptation. In Proceedings of the 12th ACM Interna-

tional Conference on Systems and Storage, SYSTOR ’19, pages 1–7, New
York, NY, USA, May 2019. Association for Computing Machinery.

[88] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sri-
ram Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini,
Haryadi S. Gunawi, and Anirudh Badam. LeapIO: Efficient and
Portable Virtual NVMe Storage on ARM SoCs. In Proceedings of

the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’20, pages
591–605, New York, NY, USA, March 2020. Association for Computing
Machinery.

[89] Jinhong Li, QiupingWang, Patrick PC Lee, and Chao Shi. An in-depth
analysis of cloud block storage workloads in large-scale production.
In 2020 IEEE International Symposium on Workload Characterization

(IISWC), pages 37–47. IEEE, 2020.
[90] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and

Shaobo Gao. {Second-Tier} Cache Management Using Write Hints.
2005.

[91] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and Yuanyuan
Zhou. C-Miner: mining block correlations in storage systems. In Pro-

ceedings of the 3rd USENIX conference on File and storage technologies,
FAST’04, page 13, USA, March 2004. USENIX Association.

[92] Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata Ausavarung-
nirun, Xianzhang Chen, Changlong Li, Tei-Wei Kuo, and Chun Jason
Xue. CacheSifter: Sifting Cache Files for Boosted Mobile Perfor-
mance and Lifetime. In 20th USENIX Conference on File and Storage

Technologies, FAST’22, pages 445–459, 2022.
[93] Hyeontaek Lim, DongsuHan, David G. Andersen, andMichael Kamin-

sky. MICA: A holistic approach to fast In-Memory Key-Value storage.
In 11th USENIX symposium on networked systems design and imple-

mentation, NSDI’14, pages 429–444, Seattle, WA, April 2014. USENIX
Association.

[94] Xin Liu, Ashraf Aboulnaga, Kenneth Salem, and Xuhui Li. CLIC:
CLient-Informed Caching for Storage Servers. In FAST, pages 297–
310, 2009.

[95] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon
Kim, Vladimir Braverman, Xin Jin, and Ion Stoica. DistCache: Prov-
able load balancing for Large-Scale storage systems with distributed
caching. In 17th USENIX conference on file and storage technologies,
FAST’19, pages 143–157, Boston, MA, February 2019. USENIX Asso-
ciation.

[96] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic Nuggets in
Content Delivery. ACM SIGCOMM Computer Communication Review,
45(3):52–66, July 2015.

[97] Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel Campello, Andy
Rudoff, and Raju Rangaswami. MULTI-CLOCK: Dynamic Tiering
for Hybrid Memory Systems. In 2022 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), pages 925–937,
April 2022. ISSN: 2378-203X.

[98] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng
Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beck-
mann, and Gregory R. Ganger. Kangaroo: Caching billions of tiny
objects on flash. In Proceedings of the ACM SIGOPS 28th symposium

on operating systems principles, SOSP ’21, pages 243–262, New York,
NY, USA, 2021. Association for Computing Machinery.

[99] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng
Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beck-
mann, and Gregory R. Ganger. Kangaroo: Theory and practice of
caching billions of tiny objects on flash. In ACM Transactions on

Storage, volume 18 of TOS’22, August 2022.
[100] Nimrod Megiddo and Dharmendra S Modha. ARC: A self-tuning, low

overhead replacement cache. In 2nd USENIX conference on file and

146



storage technologies, FAST’03, 2003.
[101] Memcached. Extstore. https://github.com/memcached/memcached/

wiki/Extstore. Accessed: 2023-02-06.
[102] Memcached. Memcached - a distributed memory object caching

system. http://memcached.org/. Accessed: 2023-02-06.
[103] Kianoosh Mokhtarian and Hans-Arno Jacobsen. Caching in video

CDNs: building strong lines of defense. In Proceedings of the Ninth

European Conference on Computer Systems - EuroSys ’14, EuroSys’14,
pages 1–13, Amsterdam, The Netherlands, 2014. ACM Press.

[104] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. MSR
Cambridge traces (SNIA IOTTA trace set 388). In Geoff Kuenning,
editor, SNIA IOTTA Trace Repository. Storage Networking Industry
Association, March 2007.

[105] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron.
Write off-loading: Practical power management for enterprise storage.
In 6th USENIX Conference on File and Storage Technologies (FAST 08),
San Jose, CA, February 2008. USENIX Association.

[106] Raymond Ng, Christos Faloutsos, and Timos Sellis. Flexible buffer
allocation based on marginal gains. ACM SIGMOD Record, 20(2):387–
396, April 1991.

[107] Yuanjiang Ni, Ji Jiang, Dejun Jiang, Xiaosong Ma, Jin Xiong, and
Yuangang Wang. S-RAC: SSD Friendly Caching for Data Center
Workloads. In Proceedings of the 9th ACM International on Systems

and Storage Conference, pages 1–12, Haifa Israel, June 2016. ACM.
[108] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, and others. Scaling memcache at facebook. In 10th USENIX Sym-

posium on Networked Systems Design and Implementation, NSDI’13,
pages 385–398, 2013.

[109] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Akamai
network: a platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review, 44(3):2–19, August 2010.

[110] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The
LRU-K page replacement algorithm for database disk buffering. ACM
SIGMOD Record, 22(2):297–306, June 1993.

[111] Cheng Pan, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. pRedis:
Penalty and Locality Aware Memory Allocation in Redis. In Proceed-

ings of the ACM Symposium on Cloud Computing, SOCC’19, pages
193–205, Santa Cruz CA USA, November 2019. ACM.

[112] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros,
Manolis Marazakis, and Angelos Bilas. Optimizing memory-mapped
I/O for fast storage devices. In Proceedings of the 2020 USENIX Con-

ference on Usenix Annual Technical Conference, pages 813–827, 2020.
[113] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.

Informed prefetching and caching. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP ’95, pages 79–95,
New York, NY, USA, December 1995. Association for Computing
Machinery.

[114] Timothy Pritchett and Mithuna Thottethodi. SieveStore: a highly-
selective, ensemble-level disk cache for cost-performance. In Pro-

ceedings of the 37th annual international symposium on Computer

architecture, ISCA ’10, pages 163–174, New York, NY, USA, June 2010.
Association for Computing Machinery.

[115] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li, Xiaosong Ma,
Qi Chen, Mao Yang, and Yinlong Xu. FrozenHot Cache: Rethinking
Cache Management for Modern Hardware. In Proceedings of the Eigh-

teenth European Conference on Computer Systems, EuroSys ’23, pages
557–573, New York, NY, USA, May 2023. Association for Computing
Machinery.

[116] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and
Kannan Ramchandran. EC-Cache:load-balanced,low-latency cluster
caching with online erasure coding. In 12th USENIX symposium on

operating systems design and implementation, OSDI’16, pages 401–417,
2016.

[117] RocksDB. Lock-free clock cache. https://github.com/facebook/
rocksdb/issues/10306. Accessed: 2023-02-06.

[118] Liana V. Rodriguez, Alexis Gonzalez, Pratik Poudel, Raju Rangaswami,
and Jason Liu. Unifying the data center caching layer: Feasible?
Profitable? In Proceedings of the 13th ACM workshop on hot topics in

storage and file systems, HotStorage ’21, pages 50–57, New York, NY,
USA, 2021. Association for Computing Machinery.

[119] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju
Rangaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. Learning
Cache Replacement with CACHEUS. In 19th USENIX Conference

on File and Storage Technologies, FAST’21, pages 341–354. USENIX
Association, February 2021.

[120] Prasenjit Sarkar and John Hartman. Efficient Cooperative Caching
Using Hints. 1996.

[121] Mohit Saxena, Michael M. Swift, and Yiying Zhang. FlashTier: a
lightweight, consistent and durable storage cache. In Proceedings of

the 7th ACM european conference on Computer Systems - EuroSys ’12,
page 267, Bern, Switzerland, 2012. ACM Press.

[122] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq
Muhaimen, and Ramesh K. Sitaraman. Akamai DNS: Providing Au-
thoritative Answers to the World’s Queries. In Proceedings of the

Annual conference of the ACM Special Interest Group on Data Commu-

nication on the applications, technologies, architectures, and protocols

for computer communication, SIGCOMM ’20, pages 465–478, New
York, NY, USA, July 2020. Association for Computing Machinery.

[123] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. DIDACache:
An Integration of Device and Application for Flash-based Key-value
Caching. ACM Transactions on Storage, 14(3):26:1–26:32, October
2018.

[124] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. EELRU: simple
and effective adaptive page replacement. ACM SIGMETRICS Perfor-

mance Evaluation Review, 27(1):122–133, May 1999.
[125] Hyunsub Song, Shean Kim, J. Hyun Kim, Ethan JH Park, and Sam H.

Noh. First Responder: Persistent Memory Simultaneously as High
Performance Buffer Cache and Storage. pages 839–853, 2021.

[126] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd,
Soudeh Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishna-
murthy, Emmett Witchel, and others. Learning relaxed belady for
content distribution network caching. In 17th USENIX symposium

on networked systems design and implementation, NSDI’20, pages
529–544, 2020.

[127] Gokul Soundararajan, Madalin Mihailescu, and Cristiana Amza.
Context-aware prefetching at the storage server. In USENIX 2008

Annual Technical Conference, ATC’08, pages 377–390, USA, June 2008.
USENIX Association.

[128] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and
Ramesh K. Sitaraman. Footprint Descriptors: Theory and Practice
of Cache Provisioning in a Global CDN. In Proceedings of the 13th

International Conference on emerging Networking EXperiments and

Technologies, CoNEXT’17, pages 55–67, Incheon Republic of Korea,
November 2017. ACM.

[129] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
RIPQ: Advanced photo caching on flash for facebook. In 13th USENIX

Conference on File and Storage Technologies, FAST’15, pages 373–386,
2015.

[130] Rollins Turner and Henry Levy. Segmented FIFO page replacement.
ACM SIGMETRICS Performance Evaluation Review, 10(3):48–51, Sep-
tember 1981.

[131] Cristian Ungureanu, Biplob Debnath, Stephen Rago, and Akshat
Aranya. TBF: A memory-efficient replacement policy for flash-based
caches. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 1117–1128, April 2013. ISSN: 1063-6382.

[132] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.

147

https://github.com/memcached/memcached/wiki/Extstore
https://github.com/memcached/memcached/wiki/Extstore
http://memcached.org/
https://github.com/facebook/rocksdb/issues/10306
https://github.com/facebook/rocksdb/issues/10306


Driving cache replacement with ML-based LeCaR. In 10th USENIX

workshop on hot topics in storage and file systems, hotStorage’18,
Boston, MA, July 2018. USENIX Association.

[133] Vimeo. Galaxy cache. hhttps://github.com/vimeo/galaxycache. Ac-
cessed: 2023-02-06.

[134] Geoffrey M. Voelker, Eric J. Anderson, Tracy Kimbrel, Michael J.
Feeley, Jeffrey S. Chase, Anna R. Karlin, and Henry M. Levy. Imple-
menting cooperative prefetching and caching in a globally-managed
memory system. In Proceedings of the 1998 ACM SIGMETRICS joint

international conference on Measurement and modeling of computer

systems, SIGMETRICS ’98/PERFORMANCE ’98, pages 33–43, New
York, NY, USA, June 1998. Association for Computing Machinery.

[135] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. Cache modeling and optimization using miniature simulations.
In 2017 USENIX annual technical conference, ATC’17, pages 487–498,
Santa Clara, CA, July 2017. USENIX Association.

[136] Carl A.Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan
Ahmad. Efficient MRC construction with SHARDS. In 13th USENIX

conference on file and storage technologies, FAST’15, pages 95–110,
Santa Clara, CA, February 2015. USENIX Association.

[137] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and Ke Zhou. Efficient
SSD Caching by Avoiding Unnecessary Writes using Machine Learn-
ing. In Proceedings of the 47th International Conference on Parallel

Processing, ICPP’18, pages 1–10, Eugene OR USA, August 2018. ACM.
[138] Hua Wang, Jiawei Zhang, Ping Huang, Xinbo Yi, Bin Cheng, and

Ke Zhou. Cache What You Need to Cache: Reducing Write Traf-
fic in Cloud Cache via “One-Time-Access-Exclusion” Policy. ACM
Transactions on Storage, 16(3):1–24, August 2020.

[139] Qiuping Wang, Jinhong Li, Tao Ouyang, Chao Shi, and Lilong Huang.
Separating data via block invalidation time inference for write am-
plification reduction in {Log-Structured} storage. In 20th USENIX

Conference on File and Storage Technologies (FAST 22), pages 429–444,
2022.

[140] wikimedia. Analytics/data lake/traffic/caching. https://wikitech.
wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching. Accessed:
2023-02-06.

[141] WikiMedia. Better handling for one-hit-wonder objects. https://
phabricator.wikimedia.org/T144187. Accessed: 2023-02-06.

[142] Theodore M Wong and John Wilkes. My cache or yours?: Making
storage more exclusive. In USENIX Annual Technical Conference,
ATC’02, pages 161–175, 2002.

[143] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagap-
pan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. The storage hierarchy is not a hierarchy:
Optimizing caching on modern storage devices with orthus. In 19th

USENIX conference on file and storage technologies, FAST’21, pages
307–323. USENIX Association, February 2021.

[144] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. NyxCache:
Flexible and Efficient Multi-tenant Persistent Memory Caching. pages
1–16, 2022.

[145] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, and
Song Jiang. zExpander: a key-value cache with both high perfor-
mance and fewer misses. In Proceedings of the Eleventh European

Conference on Computer Systems, Eurosys’16, pages 1–15, London
United Kingdom, April 2016. ACM.

[146] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. MC2: Mul-
tiple Clients on a Multilevel Cache. In 2008 The 28th International

Conference on Distributed Computing Systems, pages 722–730, June
2008. ISSN: 1063-6927.

[147] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. Management
of Multilevel, Multiclient Cache Hierarchies with Application Hints.
ACM Transactions on Computer Systems, 29(2):5:1–5:51, May 2011.

[148] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: Know-it-All
Replacement for a Multilevel Cache. 2007.

[149] Gala Yadgar, Michael Factor, and Assaf Schuster. Cooperative caching
with return on investment. In 2013 IEEE 29th Symposium on Mass

Storage Systems and Technologies (MSST), pages 1–13, May 2013. ISSN:
2160-1968.

[150] Gang Yan and Jian Li. RL-Bélády: A Unified Learning Framework
for Content Caching. In Proceedings of the 28th ACM International

Conference on Multimedia, pages 1009–1017, SeattleWAUSA, October
2020. ACM.

[151] Gang Yan and Jian Li. Towards Latency Awareness for Content
Delivery Network Caching. ATC’22, pages 789–804, 2022.

[152] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi.
Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail
Latencies in NAND SSDs. ACM Transactions on Storage, 13(3):1–26,
October 2017.

[153] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani Wildani,
and Ymir Vigfusson. Mithril: mining sporadic associations for cache
prefetching. In Proceedings of the 2017 Symposium on Cloud Com-

puting, SoCC ’17, pages 66–79, New York, NY, USA, September 2017.
Association for Computing Machinery.

[154] Juncheng Yang, Ziming Mao, Yao Yue, and K. V. Rashmi. GL-Cache:
Group-level learning for efficient and high-performance caching. In
21st USENIX Conference on File and Storage Technologies (FAST 23),
FAST’23, pages 115–134, 2023.

[155] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and K. V. Rashmi.
FIFO can be Better than LRU: the Power of Lazy Promotion and
Quick Demotion. In Proceedings of the 19th Workshop on Hot Topics

in Operating Systems, HOTOS ’23, pages 70–79, New York, NY, USA,
June 2023. Association for Computing Machinery.

[156] Juncheng Yang, Anirudh Sabnis, Daniel S. Berger, K. V. Rashmi, and
Ramesh K. Sitaraman. C2DN: How to harness erasure codes at the
edge for efficient content delivery. In 19th USENIX symposium on

networked systems design and implementation, NSDI’22, pages 1159–
1177, Renton, WA, April 2022. USENIX Association.

[157] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of
hundreds of in-memory cache clusters at Twitter. In 14th USENIX

symposium on operating systems design and implementation, OSDI’20,
pages 191–208. USENIX Association, November 2020.

[158] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-
efficient and scalable in-memory key-value cache for small objects.
In 18th USENIX Symposium on Networked Systems Design and Im-

plementation, NSDI’21, pages 503–518. USENIX Association, April
2021.

[159] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer
Wolfmeister. CacheSack: Admission Optimization for Google Data-
center Flash Caches. In 2022 USENIX Annual Technical Conference,
ATC’22, pages 1021–1036, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[160] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal
Data Placement for Heterogeneous Cache, Memory, and Storage
Systems. In Proceedings of the ACM on Measurement and Analysis of

Computing Systems, volume 4 of SIGMETRICS’20, pages 1–27, May
2020.

[161] Lei Zhang, Juncheng Yang, Anna Blasiak, Mike McCall, and Ymir
Vigfusson. When is the Cache Warm? Manufacturing a Rule of
Thumb. 2020.

[162] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and K .V.
Rashmi. Sieve is simpler than lru: an efficient turn-key eviction
algorithm for web caches. In 21st USENIX Symposium on Networked

Systems Design and Implementation (NSDI 24). USENIX Association,
2024.

148

hhttps://github.com/vimeo/galaxycache
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://phabricator.wikimedia.org/T144187
https://phabricator.wikimedia.org/T144187


[163] Yu Zhang, Ping Huang, Ke Zhou, HuaWang, Jianying Hu, Yongguang
Ji, and Bin Cheng. Tencent block storage traces (SNIA IOTTA trace
set 27917). In Geoff Kuenning, editor, SNIA IOTTA Trace Repository.
Storage Networking Industry Association, October 2018.

[164] Yu Zhang, Ping Huang, Ke Zhou, HuaWang, Jianying Hu, Yongguang
Ji, and Bin Cheng. OSCA: An Online-Model based cache allocation
scheme in cloud block storage systems. In 2023 U2ENIXAnnual Techni-

cal Conference (USENIX ATC 20), pages 785–798. USENIX Association,
July 2023.

[165] Yu Zhang, Ke Zhou, Ping Huang, Hua Wang, Jianying Hu, Yangtao
Wang, Yongguang Ji, and Bin Cheng. A Machine Learning Based
Write Policy for SSD Cache in Cloud Block Storage. In 2020 De-

sign, Automation & Test in Europe Conference & Exhibition (DATE),
DATE’20, pages 1279–1282, Grenoble, France, March 2020. IEEE.

[166] Chen Zhong, Xingsheng Zhao, and Song Jiang. LIRS2: an improved
LIRS replacement algorithm. In Proceedings of the 14th ACM Inter-

national Conference on Systems and Storage, SYSTOR’21, pages 1–12,

Haifa Israel, June 2021. ACM.
[167] Ke Zhou, Si Sun, HuaWang, Ping Huang, Xubin He, Rui Lan, Wenyan

Li, Wenji Liu, and Tianming Yang. Tencent photo cache traces (SNIA
IOTTA trace set 27476). In Geoff Kuenning, editor, SNIA IOTTA Trace

Repository. Storage Networking Industry Association, February 2016.
[168] Ke Zhou, Si Sun, HuaWang, Ping Huang, Xubin He, Rui Lan, Wenyan

Li, Wenjie Liu, and Tianming Yang. Demystifying cache policies for
photo stores at scale: A tencent case study. In Proceedings of the 2018

International Conference on Supercomputing, ICS ’18, page 284–294,
New York, NY, USA, 2018. Association for Computing Machinery.

[169] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replace-
ment algorithm for second level buffer caches. In Proceedings of the

annual conference on USENIX Annual Technical Conference, ATC’01,
pages 91–104, USA, 2001. USENIX Association.

149


	Abstract
	1 Introduction
	2 Background
	2.1 Metrics of a cache
	2.2 Prevalence of LRU-based cache

	3 Motivation
	3.1 More one-hit wonders than expected
	3.2 The need for quick demotion

	4 Design and implementation
	4.1 S3-FIFO design
	4.2 Implementation
	4.3 Overhead analysis

	5 Evaluation
	5.1 Evaluation setup
	5.2 Efficiency (miss ratio)
	5.3 Performance (throughput)
	5.4 Flash-friendliness

	6 Discussion
	6.1 Why is S3-FIFO effective?
	6.2 How about adaptive eviction algorithms?
	6.3 LRU or FIFO?

	7 Related Work
	8 Conclusion
	References

