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Abstract

High-Performance Computing (HPC) is synonymous to massive concurrency. But it can be challenging on a large computing plat-
Sform for a parallel filesystem’s control plane to utilize CPU cores when every process’s metadata mutation is globally synchronized
and serialized against every other process’s mutation. We present DeltaFS, a new paradigm for distributed filesystem metadata.

DeltaFS allows jobs to self-commit their namespace changes to logs, avoiding the cost of global synchronization. Followup jobs
selectively merge logs produced by previous jobs as needed, a principle we term No Ground Truth which allows more efficient
data sharing. By following this principle, DeltaFS leans on the parallelism found when utilizing resources at the nodes where job
processes run, improving metadata operation throughput up to 98X, a number rising as job processes increase. DeltaFS enables

efficient inter-job communication, reducing overall workflow runtime by significantly improving client metadata operation latency,
and resource usage up to 52.4x.
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support.
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1 Introduction

It is easy to slow down a C program — just define every variable of the program as _Atomic and rerun the
program. Atomic variables are globally synchronized across all compute cores. Every load on a compute
node reads from memory the latest store, except that doing so is not always necessary and can significantly
slow down a modern program [31, 36, 1]. In C, variables are not atomic by default. Applications explicitly
request it when needed.

Unfortunately, while a parallel C application running on a modern HPC platform is able to request
memory atomicity on an as-needed basis, its persistent state — stored as files and accessed through a shared
underlying parallel filesystem [55, 67, 56] — remains globally synchronized at all times even on the world’s
largest computers: every process sees every other process’s latest file metadata mutations all the time re-
gardless of whether these processes communicate and despite possibly huge performance penalties. Alas,
today’s parallel filesystems are old-fashioned and unilaterally fully coordinate metadata for all accesses
across all nodes. This results in scalability issues and performance bottlenecks that reduce the effectiveness
of HPC parallelism.

We propose DeltaFS, a new way of providing distributed filesystem metadata on modern parallel com-
puting platforms. DeltaFS re-imagines the roles filesystems play in delivering performance and consistency
to applications. First, today’s filesystem clients tend to synchronize too frequently with their servers for
metadata reads and writes. We show deep relaxation of filesystem namespace synchronization and serializa-
tion through client logging and subsequent merging of filesystem namespace changes on an as-needed basis.
Second, today’s filesystems map all application jobs to a single filesystem namespace. Our work enables
jobs to self-manage their synchronization scopes to avoid false sharing and to minimize per-job filesys-
tem namespace footprint to improve performance. Finally, modern filesystems achieve scaling primarily
by dynamic namespace partitioning over multiple dedicated metadata servers [65, 67, 50, 71]. Filesystem
metadata performance is a function of, and is fundamentally limited by, the amount of compute resources
that are dedicated to servers. We show that dynamic instantiation of filesystem metadata processing func-
tions on client nodes enables highly agile scaling of filesystem metadata performance beyond a fixed set of
dedicated servers.

The core of DeltaFS is a transformation of today’s globally synchronized filesystem metadata to per-
job metadata log records that can be dynamically merged to form new filesystem namespace views when
requested by a followup job. To achieve this, DeltaFS defines an efficient log-structured filesystem metadata
format that an application job process can use to log its namespace changes as a result of its execution.
DeltaFS does not require all client changes to be merged back to a server-managed global tree for a consistent
view of the filesystem. Instead, a job selectively merges logs produced by previous jobs for sequential data
sharing. Unrelated application jobs never have to communicate.

With DeltaFS we envision a full reduction of today’s parallel filesystems to scalable object stores. On
top of these stores, applications independently instantiate services for per-job filesystem namespace man-
agement. There is no longer a global namespace. Instead, applications communicate only when they need
to and communication is done primarily through sharing and publishing immutable log records stored in
a shared underlying object store for minimum synchronization. Meanwhile, there no longer needs to be
any dedicated metadata servers. With DeltaFS, jobs dynamically utilize their compute nodes for metadata
processing enabling them to overcome limitations and bottlenecks seen in today’s parallel filesystem meta-
data designs. We call this new way of managing distributed filesystem metadata No Ground Truth, as it
requires no global synchronization. Unrelated jobs are no longer forced to see each other’s files and pay for
each other’s metadata updates. Despite not having a global filesystem namespace, jobs using DeltaFS can
still perform inter-job communication through it. In fact, decoupling and parallelizing metadata accesses
in DeltaFS vastly reduces a metadata-intensive workflow’s inter-job communication latency compared to
today’s filesystems.



DeltaFS is designed for massively-parallel computing jobs [5] and scales to exascale computing plat-
forms. Our work builds upon DeltaFS [76], but intensively extends it to include a more complete design,
implementation, and comparison. Our experiments show that DeltaFS improves metadata performance by
using the parallelism that can be found when utilizing resources at the nodes where job processes run. This
parallelism is unlocked due to DeltaFS’s no-ground-truth property that allows jobs to selectively merge logs
produced by previous jobs as needed. We show up to 98x faster metadata operation throughput compared to
the current state-of-the-art, a number that rises as job processes increase. DeltaFS further enables efficient
inter-job communication, vastly reducing overall workflow runtime by significantly reducing the latency of
client filesystem operations and the CPU time clients are blocked on such operations by up to 52.4x.

The rest of this paper is structured as follows. Section 2 shows the motivation and rationale behind our
work. Section 3-7 detail our design. We report experiment results in Section 8, related work in Section 9,
and conclude in Section 10.

2 Motivation

Three factors motivate our work: (1) the high cost of global synchronization for strong consistency in today’s
massively-parallel computing environments, (2) the inadequacy of the current state-of-the-art for scalable
parallel metadata performance, and (3) the promise of a relaxed “no ground truth” parallel filesystem for
today’s non-interactive parallel computing workloads.

Global Synchronization Filesystems are the main way applications interact with persistent data. While
a local filesystem manages the files of a single node, distributed parallel filesystems such as Lustre [56],
GPFS [55], PVFS [14], and the Panasas filesystem [67] manage the files of today’s largest supercomputers
[63]. By stripping data across a large pool of object storage devices, parallel filesystems have long enabled
fast concurrent access to file data [16, 21]. However, in terms of metadata management, a strategy not too
different from early network filesystems is used: all client metadata mutations are synchronously processed;
they are first sent to a server, checked and serialized by it, and then appended to the server’s write-ahead log
for eventual merging into the filesystem’s on-disk metadata representation managed by the server [42, 26,
54].

While not necessarily the best way to handle file metadata on a large supercomputer, an important
reason modern parallel filesystems continue to use this old strategy is that it enables distributed application
processes to communicate as if they were on a local machine thanks to constant global synchronization [51].
Unfortunately, early network filesystems were not developed with today’s massively-parallel computing
environments in mind. While the early CM-5 computer at LANL — the fastest machine of its time — had
only 1024 CPU cores, the fastest computer today has as many as 7 million CPU cores [25, 41]. As the
best way to utilize a modern supercomputer is to keep all of its compute cores busy, global synchronization
in modern parallel filesystems has become a growing source of performance bottlenecks in today’s leading
computing systems, increasingly nullifying the very parallelism that these systems enable in the first place.
This needs to be changed.

Inadequacy of the Current State-of-the-Art To attain high metadata performance, modern scalable par-
allel metadata services use dynamic namespace partitioning over multiple metadata servers [65, 67, 50, 71].
In these filesystems, each metadata server manages a partition of the filesystem’s namespace. The overall
metadata performance is a function of the number and compute power of these servers. However, dynamic
namespace partitioning does not remove global synchronization; it partitions it. Meanwhile, even these scal-
able filesystems can require a significant number of dedicated metadata servers to achieve high performance.
Worse, as not all applications use the filesystem the same way, the amount of compute resources devoted
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Figure 1: Motivation for no ground truth. Rather than synchronously communicating with a slow global
filesystem namespace, jobs communicate instead by publishing and sharing filesystem namespace snapshots
on an as-needed basis through a public registry for high performance.

to the filesystem can be difficult to determine beforehand. This leads to performance bottlenecks when the
demand of the application is too high compared with the estimated amount, and a waste of resources when
otherwise.

In addition to dynamic namespace partitioning, another way to improve performance is to employ
an efficient log-structured metadata format that hides the processing delay associated with today’s parallel
filesystem metadata servers [50, 39]. Such a system is able to quickly absorb a large amount of client changes
without immediately optimizing them for fast reads; a separate set of server threads do so asynchronously in
the background so that the client need not be blocked. However, in cases in which the background process
cannot keep up with the foreground insertion, the time required for these background operations will have
to be amortized immediately. When the server compute resources are insufficient for the said workload, a
client still experiences delays.

Recent work has also showed ultra fast file creation speed through deep client logging [8, 50, 74]. Yet
client logging alone does not address read performance and does not support inter-job communication.

From One-Size-Fits-All to No Ground Truth As we keep increasing the capacity and parallelism of our
computers, an emerging reality we need to confront is that we are fast approaching a point in time when there
will be no one-size-fits-all parallel metadata systems [60, 2]. While the high cost of global synchronization
will continue to be necessary in cases where the applications use the filesystem to communicate, it is also
important to realize that many of today’s parallel applications are no longer a group of laboratory scientists
sharing their text files. Instead, they are for the most part non-interactive batch jobs that do not necessarily
benefit from many of the semantic obligations that early network filesystems carried in their computing
environments [42, 26, 54].

A modern HPC application is first submitted to a job scheduler queue [63]. When scheduled, it reads
from the parallel filesystem, writes to the parallel filesystem, and then ends. Looking at the job, the input
it reads is likely ready and static at the time the job is submitted. The output it generates is probably not
examined, except possibly by the job owner trying to figure out how the job is progressing, until after the
job is done [5, 38, 8]. This is effectively sequential data sharing. We argue that a parallel filesystem could
serve this through simple publication and sharing of filesystem namespace snapshots without requiring any
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Figure 2: Architecture of DeltaFS. An DeltaFS cluster consists of per-job DeltaFS client/server instances and
dynamically instantiated compaction runners on compute nodes reading, merging, and publishing filesystem
namespace snapshots to a public registry that maps snapshot names to snapshot data stored in a shared
underlying object store.

global synchronization as we show in Figure 1. To achieve this, we imagine running a public namespace
registry to which all jobs can publish their namespaces as snapshots. When a job starts, it selects a subset of
these snapshots as input and ends by publishing a new snapshot comprising all of the job’s output. This new
snapshot can then be used by an interested followup job to serve as its input, achieving efficient inter-job
data propagation.

Namespace snapshots can be compact, and easy to generate given a log-structured filesystem metadata
format: each snapshot is simply pointers to a set of filesystem namespace change logs [48, 50, 75]. In
addition, with jobs each referencing a snapshot to start, there need not even be a global filesystem namespace.
When a job needs to access data from multiple input snapshots, it simply merges all of these snapshots to
form a new, flattened representation for fast metadata read performance. Better, the job can start its own
server processes on its own compute nodes to perform the merge and then to serve these reads, achieving
scalable read performance not restricted by the resources dedicated by the cluster administrators and better
utilizing the massive parallelism enabled by today’s computing platforms. Plus, unrelated jobs never have
to communicate: they simply work on different snapshots. Out of this relaxed, scalable, log-structured, no
global namespace, no ground truth, parallel filesystem metadata principle, we have designed DeltaFS as we
now discuss.

3 System Overview

DeltaFS is a service that can be dynamically instantiated as threads or as standalone processes running on
compute nodes within a job to provide scalable parallel metadata access private to the job on top of a shared
underlying object store [66, 29, 9]. In addition to jobs, the building blocks of the DeltaFS filesystem include
also public Namespace Registries and dynamically instantiated parallel Compaction Runners as Figure 2
illustrates.
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Figure 3: Locating snapshots in DeltaFS. A job, a compaction runner, or an interactive user uses namespace
registries to locate snapshots according to their names. One or more secondary indexes may be built to allow
for richer queries.

Jobs Jobs are parallel programs or scripts that we submit to run on compute nodes [63]. In DeltaFS,
jobs are managers of their own filesystem metadata — each job self-defines its filesystem namespace at job
bootstrapping (by looking up and potentially merging namespace snapshots published by previous jobs),
allocates compute cores to serve the namespace, and may release its namespace as a public snapshot for
sequential data sharing at the end of the job. This approach contrasts with today’s parallel filesystems
in which a single global filesystem namespace is provided to all jobs and dedicated metadata servers are
deployed to maintain it.

To access and manage metadata, a job instantiates DeltaFS client and server instances in the job’s
processes. A job may have many processes (e.g., a parallel simulation). Each of these processes can act as
a client, and additionally as a server — the DeltaFS library code linked into them is capable of being both a
client and a server. Clients communicate with servers using RPCs [10, 58]. Addresses of the servers are sent
to clients through a bootstrapping mechanism [23, 53] at the beginning of each job. When these addresses
need to be known by code other than the job (e.g., the owning user’s job monitoring program), they may be
published at an external coordination service [27, 12, 34] for subsequent queries.

When a set of related jobs form a workflow and are scheduled to run consecutively (e.g., a simulation
directly followed by post processing and then data analytics), it is possible to use a single DeltaFS filesystem
instance to serve the entire workflow to improve performance — no need to repeatedly acquire and release
filesystem namespace snapshots within a workflow and repeatedly restart from an empty filesystem metadata
cache. To achieve this, the workflow manager (can be as simple as a job script) spawns DeltaFS servers as
standalone processes (not embedded in a job process) on compute nodes. These standalone servers can then
outlive each individual job and be reused by them for efficient metadata access. The workflow manager
de-allocates the servers when the last job ends concluding the workflow.

Within a job, application code interacts with DeltaFS by making DeltaFS library calls. DeltaFS handles
all metadata operations (e.g., mkdir and create). Data operations (e.g., read and write) are redirected
to the underlying object storage for scalable processing [21, 65, 50]. A newly created but growing file may
be transparently stripped across multiple data objects for parallel data operations within a single file [16,
14]. When a file is opened for writing, some of its attributes (e.g., file size and last access time) may change
relative to DeltaFS’s per-open copy of the attributes. DeltaFS captures these changes on file close using its
metadata path.



To attain high metadata performance, DeltaFS aggressively partitions a namespace to achieve fast reads,
uses client logging to quickly absorb bursts of writes, and packs metadata into large log objects (SSTables)
stored in the shared underlying object store for efficient storage accesses as we explain more in later sections.

Namespace Registries Registries are keepers of all published DeltaFS filesystem namespace snapshots.
A registry can be thought of as a Key-Value (KV) table mapping snapshot names (K) to pointers (V) to
the snapshots’ manifest objects stored in the shared underlying object store, as we show in Figure 2 and
3. As Section 5 will explain in more detail, DeltaFS namespace snapshots are made up of packed metadata
mutation logs that are stored on storage as SSTables [22]. The manifest is a special object that is inserted into
each snapshot to serve as its root index. It contains, among others, the names of all member logs (SSTables)
of a snapshot and the key range of each of these logs. The read path code uses this information to locate
snapshot data and to speed up queries against it.

In DeltaFS, unrelated jobs never have to communicate. Related jobs may communicate using DeltaFS
to achieve efficient sequential data sharing. This is done by a preceding job first publishing its namespace
as a snapshot and then by a followup job looking the snapshot up at a later point in time. To publish a
namespace as a snapshot, a job (at the end of its run) flushes its remaining in-memory state (MemTables) to
storage, writes the manifest, and then sends the object name of the manifest and the name of the snapshot to
the registry for publication. To read back a snapshot, a followup job sends the name of the snapshot to the
registry in exchange for the name of the snapshot’s manifest object. The job then reads the manifest object
and uses it to inform queries into the snapshot.

Namespace snapshots are named by jobs the same way as files are named by applications in today’s
filesystems — jobs present names; DeltaFS checks uniqueness. Similarly, just as today’s applications must
know the name of a file in order to operate on it, an DeltaFS job must know the name of a snapshot in
order to look it up at a registry. To obtain filenames, it is possible for today’s applications to list files under
a given parent filesystem directory. DeltaFS retains the same capability by allowing jobs to list snapshots
according to a job-specified prefix string (snapshot names are indexed as ordered strings). In addition to
simple snapshot listing, there can also be a secondary indexing tier where snapshots are indexed by attributes
other than their names (e.g., owner ID, create time, and even filenames within a snapshot) as Figure 3 shows.
Modern database techniques could do this and allow for rich SQL queries [37, 13, 6, 40, 33]. Meanwhile,
we also imagine running an Internet-style search engine where users can search snapshots as if they were
searching the web (e.g., “the latest App X’s input deck™).

Registries run on dedicated server nodes in a computing cluster. A cluster may be paired with one
or more registries. Each registry then manages a partition of the snapshots’ key space [15, 35]. While
running registries using dedicate resources limits performance to the machines dedicated, registries do not
sit on the critical path for filesystem metadata operations so their performance is less critical to the overall
metadata performance of DeltaFS even for metadata intensive workloads. In practice, we expect registries
to be as busy as today’s job scheduler queues for write operations (i.e., snapshot publications) [45, 3]. To
provide low-latency, interactive read access (i.e., snapshot queries) to users invoking DeltaFS commands
(e.g., DeltaFS-snap-1list and DeltaFS-snap-info) on login nodes, DeltaFS registries can be hardened
through established techniques such as bigger memory, replication, and an increase in registry count.

Compaction Runners Compaction runners are parallel log compaction code dynamically launched on
compute nodes to merge and re-partition the metadata mutation logs (SSTables) generated by one or more
previous jobs to form a flattened, read-optimized view of a filesystem namespace for efficient queries by a
followup job. The ability to run compaction over a large number of compute cores on an as-needed basis
is an important way DeltaFS differs from today’s parallel filesystems, in which global filesystem metadata
is maintained by a dedicated server process on behalf of all jobs, leaving the server often unable to keep



up with the clients under metadata-intensive workloads [2, 8]. To run parallel compaction, a user submits a
special DeltaFS program (DeltaFS-compaction-runner) to the job scheduler queue and waits for it to be
launched on compute nodes, as we discuss in Section 7.

4 No Ground Truth

DeltaFS does not provide a global filesystem namespace to all application jobs. Instead, it records the
metadata mutations each job generates as immutable logs in a shared underlying object store and allows
subsequent jobs to use these logs as “facts” to compose their own filesystem namespaces without requiring a
single global ordering for all logs and without requiring all logs to be merged. Enabling jobs to choose what
they see prevents unnecessary synchronization on top of a large computing cluster. A smaller filesystem
metadata footprint per job further improves performance.

A Log-Structured Filesystem In DeltaFS, filesystem metadata information is persisted as logs. A meta-
data write operation (e.g., mkdir and chmod) applies changes by writing new log entries to storage. A
metadata read operation (e.g., 1stat) recalls information by searching and reading related log entries from
storage. The DeltaFS library code linked into each job process knows the format of the log. Logs written by
one job can be understood by all jobs, making inter-job data propagation possible.

Without assuming a global filesystem namespace, an DeltaFS job starts by defining a base filesystem
namespace. In the simplest case, a job starts with an empty base and ends with a log recording all filesystem
metadata mutations that the job has performed on the base. When a job needs to see the data output of a
previous job, it uses the log produced by the previous job to instantiate its base namespace, absorbing all
files and directories created by that job into its own filesystem namespace view. As the job later executes,
it records all of its changes as new log entries and can elect to publish them at the end of the job. When
published, these log entries can then be used by a subsequent job for instantiating its base namespace,
achieving efficient sequential data sharing.

We call the log entries that a job generates, across all its processes, a change set. We call the final
filesystem namespace view with which a job ends a snapshot. Thus each DeltaFS job can be thought of as
a big log append operation: it appends a change set onto a previous snapshot producing a new snapshot, as
Figure 4 shows. We call the change set a job appends in producing a new snapshot the root change set of
the snapshot, with the manifest of it representing both the root change set itself and the entire snapshot it
encompasses.

Multi-Inheritance & Name Resolution When instantiating a base, it is possible for a job to use multiple
input snapshots. To ensure consistency within a job, a job specifies a priority ordering for all its input
snapshots such that records from a higher priority snapshot take precedence. Figure 5 shows an example
where jobs A, B, C, and D each take 0, 1, or more preceding jobs’ snapshots as input (by referencing their root
change sets), append a new change set onto it, and conclude by producing a new snapshot (namely snapshot
A, B, C, and D). While both job B and C have created a “/p/y” in their respective namespaces, D sees the
/p/y created in B rather than that in C due to B having a higher priority than C in D.

Custom client filesystem namespace views are also available from systems such as UnionFS [70] and
OverlayFS [44]. DeltaFS differs from them in that it allows complex client namespace views to be efficiently
materialized for fast reads through parallel compaction (§7) that can be dynamically invoked on compute
nodes on an as-needed basis. Meanwhile, DeltaFS’s log-structured metadata format (§5) enables efficient
recording of client metadata mutations without being limited by copy-on-write and other overlay filesystem
techniques. Finally, as a parallel filesystem, DeltaFS is able to spread workloads to distributed job processes
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Figure 4: Job execution in DeltaFS. Each job generates a change set, extending a previous namespace
snapshot and producing a new snapshot.
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Figure 5: Priority-based name resolution in DeltaFS. Job D sees the /p/y created in B rather than that in C
due to snapshot B having a higher priority than C.

to achieve scaling (§6) while a local overlay filesystem is fundamentally limited by the capacity of the local
machine to attain high performance.

5 Per-Job Log Management

An DeltaFS job executes metadata operations by recording them as logs on storage. To attain high perfor-
mance, DeltaFS uses a log format in which each filesystem metadata mutation is recorded as a KV pair in a
table constructed with a Log-Structured Merge (LSM) Tree [43]. Tree data is persisted as named SSTables
[22] indexed by a manifest object in a per-job change set. Background log compaction improves log storage
for fast reads and handles garbage collection.
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Figure 7: On-storage representation of an DeltaFS LSM-Tree in a per-job change set consisting of a manifest

object, a write-ahead log, and a set of SSTables with references to separately stored data objects for large
files.

Log Format DeltaFS logs a KV pair for each filesystem metadata mutation executed. The key stores the
name of the file involved in a mutation. The value stores the metadata information (i.e., the inode) of the file
after the change. A special tombstone bit is recorded in each key to indicate whether a logged mutation is
a delete. Additionally, each key is associated with a sequence number; keys with higher sequence numbers
supersede lower-numbered keys allowing newly logged changes to override older changes. All keys are
inserted into a per-job table constructed with an DeltaFS-modified LevelDB realization of an LSM-Tree for
high performance [43].

As Figure 6 illustrates, we use parent directory IDs and the base names of files to represent filenames.
Using parent directory IDs (instead of their full pathnames) as key prefixes prevents potentially massive key
updates when a user renames a directory [11, 71]. The metadata information we store for each file includes
file ID, file type, file permissions for hierarchical access control, and file data for small files [50]. DeltaFS
keys are ordered, allowing for efficient filesystem metadata lookups and directory scans [48, 39].
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On-Storage Log Management DeltaFS implements an LSM-Tree [43] — through reusing and modifying
open source LevelDB code to support DeltaFS semantics — to manage logged filesystem metadata muta-
tions in a per-job change set. As Figure 7 shows, when initializing an LSM-Tree for a change set, a job
first creates a manifest object in the underlying object store to record information of the change set. This
includes the name of the change set and the names of all its dependencies defined as the root change sets
of all the job’s input snapshots. Next, an in-memory buffer space is allocated in the job’s process to buffer
incoming metadata changes formatted as KV pairs as the job runs. Whenever the in-memory write buffer
is full, all KV pairs in the buffer will be sorted and written to storage as an SSTable [22]. The name of the
SSTable, as well as the key range of the table, is then recorded at the manifest for use by subsequent queries.
To prevent data loss, a write-ahead log is created in the underlying object store for failure recovery of the job
process’s in-memory write buffer. A KV pair is first recorded at the write-ahead log before it is inserted into
the in-memory buffer. The manifest, the write-ahead log, and the SSTables listed in the manifest constitute
the entire state of a change set.

Change sets can be deleted when they are no longer needed. A user deletes a change set by invoking
a special DeltaFS program (DeltaFS-changeset-delete) using the name of the change set as argument.
To prevent deleting a change set while others may still depend on it, DeltaFS has each change set hold
a reference to itself and to each of its dependencies. When a user deletes a change set, its reference to
itself is removed. All member objects of the set — the manifest, the write-ahead log, and all of its SSTa-
bles — will be deleted when no other change set has a reference to it. When a change set is deleted, all
its references to others will be removed enabling these change sets to be deleted too. A utility program
(DeltaFS-changeset-clean) is provided that a user can periodically run to delete change sets that are no
longer referenced. When a change set is deleted, DeltaFS deregisters its corresponding snapshot from the
registry. For large files, their data objects are referenced counted as well. A data object is deleted when all
the SSTables and write-ahead logs referencing it are deleted.

Log Compaction As a job runs, DeltaFS writes SSTables to persist changes whenever its in-memory write
buffer is full. Entries in these SSTables may then be candidates for LRU replacement in the job’s memory
and get reloaded later by querying SSTables on storage until the first match occurs. SSTables are queried
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backwards from the most recent to the oldest. Over time, the cost of finding a record that is not in the cache
increases as the number of SSTables increases. To improve read performance, DeltaFS runs compaction to
merge sort overlapping SSTables and decrease the number of SSTables that might share a key. As SSTables
are merged, new SSTables are generated and old deleted. Data objects no longer referenced by any SSTables
can then be deleted, achieving garbage collection.

Figure 8 shows an example where SSTable 2 and 3 are compacted to form SSTable 4. Before the
compaction, looking up key /c would require searching 2 SSTables. SSTable 3 is searched first as its key
range [/a-/e] overlaps key /c. Since SSTable 3 does not have the key, SSTable 2 is searched next finding
the key. With compaction merging SSTable 3 and 2 into 4, key /c can now be found with a single SSTable
lookup which improves read performance. When tables are merged, records sharing a same filename prefix
are merged such that only the one with the highest sequence number is copied into the new table. The rest
are discarded. After tables are merged, information on the newly constructed table is logged at manifest with
old tables dissociated. These tables are then deleted from the underlying storage along with their references
to the data objects for large files, enabling them to be garbage collected too.

6 Dynamic Service Instantiation

An DeltaFS filesystem consists of no dedicated metadata servers. Instead, a job dynamically instantiates
DeltaFS client and server instances in the job’s processes to provide parallel filesystem metadata access
private to the job. DeltaFS aggressively partitions a namespace across a job’s servers to achieve scalable
read performance, and uses client logging to quickly absorb bursts of writes.

Per-Job Metadata Processing Within a job, DeltaFS metadata operations are processed by DeltaFS
clients sending RPCs to servers. A server is capable of executing both read and write operations. Write
operations are executed by logging the resulting metadata mutation on storage using an LSM-Tree making
up the job’s change set. Read operations are executed first by queries into the job’s own change set, and then
by querying any change set that the job declares as a dependency in a priority ordering that is, too, defined
by the job (§4). A server performs log compaction asynchronously in the background as the job executes
(85).

When a job instantiates multiple DeltaFS servers, each server then manages a partition of the job’s
private filesystem namespace view. DeltaFS uses a namespace partitioning scheme derived from GIGA+
[46, 50] in which each newly created directory is randomly assigned to a server and gets gradually partitioned
to more servers as it grows. Per-server metadata mutations are logged such as they each form a separate
LSM-Tree in the job’s change set. Each LSM-Tree represents a partition, and is indexed by a dedicated
manifest object. The manifest object of the Oth partition additionally serves as the manifest of the entire
change set, and is referenced by registries in their mapping tables (§3).

Client Logging Synchronization between DeltaFS clients and servers within a parallel job ensures that
files created by one job process are immediately visible to all processes of the job. For workloads (e.g., N-N
checkpointing) where files are opened for per-process writing [8, 9], DeltaFS allows a client to defer even
job-wide synchronization and to directly log metadata mutations in a per-client LSM-Tree for ultra high
metadata write performance. A client could perform background log compaction against its private LSM-
Tree to improve its read performance. However, when files created by a client are known to be write-only
and are not opened for read until after the job completes, an DeltaFS client can elect to further defer its log
compaction and utilizes a subsequent parallel log compaction program to merge and re-partition all of the
job clients’ LSM-Trees in a single large batch enabling efficient job-wide read access, which we will discuss
in Section 7.
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Namespace Curation While a job logs its mutations in per-process logs for ultra high write performance,
read requests unrelated to these mutations can still be served through the job’s per-process DeltaFS servers
according to the partitioning of the job’s namespace. When the job’s compute cores are insufficient for
the workload at hand, a job could allocate a separate, larger set of compute nodes to run DeltaFS servers,
utilizing the compute cores and the memory on those nodes to scale reads and to achieve low-latency access
to the job’s metadata on storage. These separately allocated DeltaFS servers may be reused by multiple jobs
within a workflow, a project, or even a campaign [38], with the campaign manager requesting a persistent
allocation of a set of compute nodes for running DeltaFS servers for an extended period of time. We call
these read-only, job-specific, potentially long-running DeltaFS servers namespace curators. Critically, the
amount of compute resources available to these curator processes is not decided by the cluster administrators
— it is decided by the owners of the jobs, projects, or campaigns that are running, for high performance.

7 Cross-Job Parallel Log Compaction

All log-structured filesystems require compaction to achieve good read performance [52, 48, 49]. While
today’s parallel filesystem design limits compaction activities to only dedicated metadata servers, DeltaFS
allows a user to dynamically launch compaction on compute nodes utilizing a potentially large amount of
compute cores to minimize delays, and to perform compaction only on the job change sets that are known
to be read by a followup job to optimize per-compaction metadata footprint.

While per-job log compaction is done by DeltaFS servers embedded in the job’s processes as the job
runs, a user launches separate parallel compaction runners for cross-job log compaction to merge and re-
partition multiple job change sets on an as-needed basis. Typically, a user launches parallel compaction
when a complex job change set hierarchy needs to be flattened for efficient queries (§4), a large set of per-
client logged SSTables within a job change set needs to be merge-sorted for fast reads (§6), or a previously
flattened, re-partitioned change set contains too few partitions for sufficient load balance across the job
processes of a followup job.

We use parallel merge sort to perform cross-job compaction, with each compaction process acting as
a mapper for a subset of input SSTables, and simultaneously as a reducer responsible for a partition of the
target change set. Figure 9 shows an example where snapshot C — made up of a Directed Acyclic Graph
(DAG) of change set A, B, and C with C being the root change set — is parallel compacted to form snapshot
D. Note that change sets A, B, and C were originally partitioned by the jobs that generated them: jobs A, B,
and C had 1, 1, and 2 server partitions, resulting in their change sets to be partitioned accordingly. Before
parallel compaction, reading a key from snapshot C requires searching potentially 1 partition of change set
C, 1 partition of change set B, and then 1 partition of change set A. After flattening, each key lookup requires
searching only a single change set D and only 1 partition of it. In addition, change set D is expanded to have
8 parallel partitions — a followup job with 8 job processes can assign a partition to each of its per-process
DeltaFS server instances, fully load balancing its reads.

8 Experiments

We implemented a prototype of DeltaFS in C++. A modular design was used such that DeltaFS can be
layered on top of different object storage backends such as Ceph RADOS [66], PVFS [14], HDFS [57], and
other generic POSIX parallel filesystems [55, 67, 56].

Our experiments evaluate the performance of DeltaFS both in terms of a single application job (§8.1)
and multiple jobs sharing a single computing cluster (§8.2). We test cases in which jobs are related and use
the filesystem for sequential data sharing, and cases in which jobs are unrelated and do not read each other’s
files. We compare DeltaFS with current state-of-the-art approaches: IndexFS [50] for scalable parallel
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Figure 9: Example of one cross-job parallel log compaction in DeltaFS.

metadata performance, and PLFS [8] for ultra fast client-based metadata logging. We also compare against
a special mode in which IndexFS allows clients to log metadata mutations for later bulk insertion. We
run mdtest [30] to generate filesystem metadata operations. All our experiments store file metadata in a
shared underlying object store implemented with Ceph RADOS on top of 8 dedicated Ceph OSD nodes
along with 1 Ceph Manager and 1 Ceph Monitoring node. Each Ceph OSD features one 1GbE connection
for foreground communication between Ceph clients and OSD servers and another 1GbE connection for
background communication among Ceph OSDs, Managers, and Monitors.

8.1 Single-Job Performance

Today’s parallel filesystems use dedicated metadata servers. Their performance is limited by the compute
resources that a cluster admin assigns to the filesystem. With DeltaFS we show that parallel filesystems scale
better without dedicated metadata servers. DeltaFS enables jobs to self-instantiate their metadata services on
compute nodes, decoupling them from the decisions made by cluster admins and enabling scaling beyond a
fixed set of server machines. To demonstrate this, our first experiment compares DeltaFS with IndexFS [50],
a state-of-the-art approach for scalable parallel filesystem metadata performance using dynamic namespace
partitioning.

Dynamic Namespace Partitioning IndexFS is a scalable parallel filesystem whose metadata is partitioned
for load balancing across multiple dedicated metadata servers [50, 46]. To compare with it, our DeltaFS code
implements the same namespace partitioning strategy as used in IndexFS. We dedicate 1 server node to run
an DeltaFS server process to emulate an IndexFS filesystem with 1 dedicated metadata server and then 2
nodes (with 1 DeltaFS server process per node) to emulate an IndexFS with 2 dedicated metadata servers. In
the latter case, the filesystem’s namespace is partitioned and each dedicated DeltaFS server process manages
one of the two partitions.

We use PRODE’s Susitna cluster to run tests. Each Susitna compute node has four 16-core AMD
Opteron 6272 2.1GHz CPUs, 128 GB memory, one 40GbE NIC, and one 1GbE NIC. A total of 10 nodes
are used: 8 as client nodes (512 CPU cores), 2 as dedicated metadata servers. We use the 40GbE for
filesystem operations and the 1GbE for accessing the shared underlying RADOS storage. Each test consists
of running a parallel mdtest job that inserts empty files into a pool of parent directories and then queries
the files it just created using the stat command. All runs start with an empty filesystem namespace. Files
are created and stat’ed in random order in the namespace. Each job process creates and stats 200K files.
Our smallest run used 8 job processes and created 1.6M files. Our largest run consisted of 512 job processes
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Figure 10: Results of parallel mdtest runs against IndexFS and DeltaFS.

and created 102.4M files. For IndexFS runs, all filesystem metadata operations are processed by up to 2
dedicated metadata servers. For DeltaFS runs, filesystem metadata operations are handled by the DeltaFS
servers that have been instantiated dynamically by the job in its processes. Each job process launches 1
DeltaFS server instance, and manages a partition of the job’s filesystem namespace.

Figure 10a shows the file insertion performance. IndexFS runs are limited by their dedicated meta-
data servers to deliver high performance. Their performance reduces as job size grows due to increased log
compaction overhead at the server(s) as more files are inserted into the filesystem. Adding more dedicated
metadata servers to IndexFS would alleviate this bottleneck, but a large number of servers might have to be
dedicated permanently. DeltaFS decouples per-job metadata performance from dedicated resources. By dis-
tributing work across all available compute nodes within a job, DeltaF'S shows scalable performance
that increases as job size grows. At 512 job processes, DeltaFS is up to 98.1x faster than IndexFS, thanks
both to having more CPU cores for clients’ RPC requests and to less log compaction overhead due to names-
pace partitioning. Figure 10b shows file stat command performance. Similar to file creates, DeltaFS shows
scalable performance that is not limited by a dedicated set of machines. At 512 job processes, DeltaFS is up
to 8.9x faster.

Client Logging Ultra fast filesystem metadata insertion performance has been recently demonstrated
through client side logging for metadata-intensive workloads such as N-N checkpointing in which newly
created files are not immediately opened for read [8, 50]. Client logging allows for fast writes, but does not
necessarily address the performance of the reads following the writes. Our second experiment shows that,
by combining client logging with client-funded parallel log compaction (§7), DeltaFS is able to achieve not
only fast writes, but also fast reads, more completely addressing the metadata bottlenecks seen by today’s
extreme workloads.

We compare DeltaFS against IndexFS and PLFS. PLFS was developed for concurrently writing a sin-
gle file (e.g., N-1 checkpoints) [8]. It defers global synchronization of writes by logging the writes of each
process instead of processing them immediately. In addition to file data mutations, PLFS-like techniques
have also been used to record filesystem namespace mutations [7]. The IndexFS scalable parallel filesystem
includes an extension that allows a set of client processes to write-lock a newly created directory and instead
of synchronously integrating every filesystem metadata mutation beneath this directory, they each simply
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Figure 11: Comparison of client logging and subsequent read performance among IndexFS, PLFS, and
DeltaFS.

log operations to be applied later in a bulk insertion [50]. We implemented both PLFS and the IndexFS’s
bulk insertion extension in our DeltaFS code, taking advantage of DeltaFS’s log-structured metadata repre-
sentation and the presence of a shared underlying object store.

We run the same test as we did in our first experiment but this time with client-side logging enabled.
We focus on the configuration in which 512 job processes are launched creating 102.4M files. For IndexFS
bulk insertion runs, all clients log their file creates in per-client SSTables and inform the server of their
SSTables at the end of the write phase. Subsequent read operations are processed by the server, as in the
original IndexFS runs. For PLFS runs, per-client SSTables logged at the write phase are directly opened by
clients at the read phase. All clients open all other clients’ SSTables for random reads. Finally, for DeltaFS
runs, client logged SSTables at the write phase are merged and re-partitioned through a 512-way parallel log
compaction process invoked by DeltaFS in the job’s processes before moving to the read phase, allowing
for fast reads.

Figure 11 shows the results in the form of the time it takes for each run to finish the write, the parallel
log compaction (DeltaFS only), and the read phases. For reference, we included in the figure the original
IndexFS (1 MDS) results from our previous experiment. By not synchronously integrating every file create
operation to a dedicated server, client logging significantly improves a job’s write performance for all of
IndexFS, PLFS, and DeltaFS. Bulk-inserting IndexFS takes a little longer to finish due to having to report
to the server per-client SSTables at the end of the write phase.

On the read side, even with bulk insertion, IndexFS performance is limited due to having only a single
dedicated metadata server for reads. Worse, server-based background log (SSTable) compaction — which
asynchronously optimizes SSTables to a read-optimized representation — is now deferred to the read phase
after clients bulk inserting their tables, resulting in a much slower read phase overall. PLES spreads reads
across all of the job’s processes. However, each read is likely to have to query an excessive number of
SSTables due to their overlapping key ranges in the absence of any log compaction operations. DeltaFS
leans on the parallelism available by leveraging the job’s processes to complete log compaction faster,
speeding up subsequent reads. Specifically, DeltaFS queries files 5.9%, 47.8x, 24.1x faster than IndexFS,
IndexFS bulk insertion, and PLFS (Figure 11). It took DeltaFS longer to finish the reads (118s) than it did in
Figure 10b (80s) due to having to start from a cold metadata cache following client logging and parallel log
compaction. Nevertheless, through decoupling and parallelizing all of the write, read, and log compaction
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operations, DeltaFS managed a much shorter overall run time (write + read + compaction) compared with
IndexFS, IndexFS bulk insertion, and PLFS.

8.2 Multi-Job Performance

Enabling jobs to self-fund their metadata read, write, and compaction operations allows DeltaFS to vastly
improve per-job metadata performance. In this section, we show that the same DeltaFS techniques can be
applied to multi-job scenarios as effectively as they are for single jobs even in cases in which related jobs
use the filesystem for sequential data sharing in the absence of a global filesystem namespace.

No Ground Truth Freedom from global serialization comes at the cost of the additional need for jobs
to explicitly merge and compact related namespace snapshots before they can access them efficiently. It is
difficult to identify typical workflow patterns [69], so to measure this cost we devised a synthetic 7-stage
workflow shown in Figure 12. Each workflow stage takes a previous filesystem namespace snapshot as input,
inserts a certain number of files into it doubling the amount files in the namespace, and ends by publishing
it as a new snapshot. The workflow starts with a snapshot consisting of 0.8M files. It ends with 7 new
snapshots with the last one consisting of 102.4M files. We compare running the workflow using IndexFS (1
MDS) with running it using DeltaFS. For IndexFS runs, all files are directly inserted into the global IndexFS
namespace, with the namespace starting with 0.8M preexisting files and ending with 102.4M files.

We use PRObE’s Narwhal cluster to run tests. Each Narwhal compute node has 4 Dual-Core AMD
Opteron 2210 1.8GHz CPUs, 16 GB memory, and two 1GbE NICs. We use one NIC for filesystem oper-
ations and the other for accessing the shared underlying RADOS. Up to 128 nodes were allocated to run
workflow jobs. We use mdtest to create files. Each workflow stage runs an increasing amount of mdtest
job processes. The first workflow stage consists of 4 mdtest job processes inserting 0.8M files. The last
stage consists of 256 processes inserting 51.2M files. For IndexFS runs, all job processes synchronize with a
dedicated IndexFS metadata server to create files. For DeltaFS runs, file creates are first logged as per-client
SSTables. A parallel log compaction program follows each mdtest job. It merges both the per-client SSTa-
bles generated by the job and the SSTables belonging to the original input snapshot to form a combined,
read-optimized namespace view which is then published as a new snapshot. This new snapshot is then log-
ically equivalent to the IndexFS’s global filesystem namespace at the moment in that both contain all files
that have been created so far and that both are read-optimized (IndexFS server runs log compaction in the
background). Meanwhile, the extra processing time and compute resources that a job pays to run parallel
log compaction to generate this namespace captures the cost of no ground truth in DeltaFS.

Figure 13a shows the accumulative time it takes for each filesystem to finish the workflow stages.
Due to a lack of a global filesystem namespace and a dedicated metadata server to perform background
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Figure 13: Results of running a 7-stage workflow against IndexFS and DeltaFS.

log compaction, DeltaFS jobs must self-merge and compact logs to achieve sequential data sharing and for
fast reads. Nevertheless, by spreading the work across all job processes, DeltaFS still runs 50x faster than
IndexFS, which are limited by a dedicated metadata server to achieve high performance. The dotted line
in the figure depicts an DeltaFS run where jobs in the workflow are configured to be unrelated; they each
start with an empty input and end by publishing a snapshot made up only of its own files. Due to not having
to merge logs from previous snapshots, DeltaFS finished faster, although the difference is small due to the
efficiency of parallel compaction which increases with the job size. The difference between the two DeltaFS
runs demonstrates the cost of sequential data sharing in DeltaFS.

Figure 13b shows the accumulative resource usage (in the form of CPU cores X mins) each workflow
takes to process all of the filesystem metadata operations. For IndexFS, this is the usage of its dedicated
metadata server. For DeltaFS, this aggregates all of its job processes’ resource usage. DeltaFS used around
2x more compute resources than IndexFS due to aggressive deep client logging such that all metadata
changes of a job are first logged and then subsequently merged in their entirety through a parallel log
compaction program causing lots of I/O operations and job compute core usage. Even though IndexFS
spent fewer total CPU core-minutes at the server, it effectively wasted a massive amount of client-side
compute resources by having processes blocked on filesystem operations (plotted in Figure 13b as a
dotted line), since they cannot make progress until those operations complete. Specifically, DeltaFS uses
52.9x fewer CPU core-minutes than IndexFS in total, of which 98.9% were core-minutes spent on the clients
alone. This result is due to IndexFS limiting metadata processing to dedicated server machines.

9 Related Work

Large-scale parallel filesystems have long served as an important storage infrastructure in modern computing
data centers [63]. While the conventional wisdom is to put both namespace servers and file storage into a
single layered system [14, 55, 56], DeltaFS envisions them to be loosely related but separate systems. This
allows metadata to be accessed from a provisional service spawned by each application on-demand. Data
is placed on a set of unrelated traditional “forever-running” service silos that can be upgraded or extended
independently [53].

Prior on-compute filesystem research such as FusionFS [73] has focused on forming a scalable storage
tier using distributed compute node resources.

When local storage is available, DeltaFS can be configured to store data on compute nodes to achieve
the same effect. 1. reduce inteference 2. perjob communication
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Modern burst buffer software such as Cray’s DataWarp [24] provides data stage in and out services.
DeltaFS’s namespace publication mechanism works differently in that it does not require all changes to be
merged back to a single, global namespace at job completion and instead enables jobs to communicate only
on an as-needed basis.

Novel burst-buffer-based filesystems such as BurstFS [64] and GekkoFS [62] provide applications with
an ephemeral namespace that has the same life cycle as the job. While DeltaFS is able to provide the same
semantics as these filesystems, DeltaFS additionally allows namespaces to outlive their jobs as immutable
snapshots in a public registry for inter-job communication. Related snapshots can be efficiently merged as
needed through parallel log compaction on compute nodes.

Quickly absorbing a large amount of small files has become an important capability for modern parallel
filesystems. PLFS [8, 7] used an append-to-end format for high metadata write throughput, but at the
expense of reads. To achieve more balanced reads and writes, recent filesystems have leveraged more
advanced data structures for filesystem metadata management. Examples of these efforts include TABLEFS
[48], IndexFS [50], and XtreemFS [28, 59] which used LSM-Trees [43], BetrFS which used Fractal Trees
[32, 19], and LocoFS [39] which used a combination of hash tables and B-Trees for file and directory
management separately.

Many filesystems partition their namespaces for dynamic load balancing across their servers. Farsite
[18] used a strategy in which namespace is partitioned according to a novel tree structured file identifying
mechanism that minimizes data movement when directories are renamed. GIGA+ [46], IndexFS [50], and
skyFS [72] achieved load balancing by aggressively splitting a directory as it grows. Ceph [65] partitioned
its namespace on a per-subtree basis for improved locality. Finally, ShardFS [71], LocoFS [39], and MarFS
[29] decoupled file partitioning from directory management for improved access performance on files.

It is not new to have a cluster of computers collectively share a filesystem on a distributed data store
without requiring a dedicated metadata manager [34, 4, 61]. In these shared environments, each filesystem
client runs an embedded metadata manager. This manager serves both the client and other clients sharing
the same filesystem in a local area network. All metadata manager understand the filesystem’s on-storage
data format, and can dynamically assume responsibility for any files or directories in the filesystem when
accessed. To achieve synchronization, distributed locking is used to control access to the shared filesystem
and to client data and metadata caches.

Today, such a filesystem metadata approach is mostly seen in Storage Area Network (SAN) filesystems
[47, 20, 68], including the GPFS filesystem [55] widely used in HPC environments. Scalability is often an
issue due to the large amount of synchronization needed to access the filesystem [17]. To mitigate this prob-
lem, real world deployments typically dedicate a small set of nodes to run filesystem clients with embedded
metadata managers. These clients then act as filesystem servers, exporting the filesystem to a larger cluster
of filesystem users on job-running compute nodes without metadata managers. Notwithstanding many ben-
efits, such deployment approaches largely defeat the goal of having no dedicated metadata managers, and
fail to utilize compute node resources to operate on filesystem metadata.

10 Conclusion

It has been a tradition that, every once in a while, we stop and reassess whether we need to build our
next filesystems differently. A key previous effort was made by the NASD project [21], which decoupled
filesystem data communication from metadata management and leveraged object storage devices for scalable
data access. Similar bold ideas that reassess component communication are needed to advance parallel
filesystem performance if we are to keep with up the rapidly increasing scale of today’s massively-parallel
computing environments.

DeltaFS is based on the premise that at exascale and beyond, synchronization of anything global should
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be avoided. Conventional parallel filesystems, with fully synchronous and consistent namespaces, mandate
synchronization with every file create and other metadata operations. This has to stop. Moreover, the
idea of dedicating a single filesystem metadata service to meet the needs of all applications running on a
single computing environment, is archaic and inflexible. This too must stop. DeltaFS shifts away from
constant global synchronization and dedicated filesystem metadata servers, towards the notion of viewing
the filesystem as a service instantiated at each process of a running job, leveraging client resources to scale
its performance along with the job size. Synchronization is limited to an as-needed basis that is determined
by the needs of followup jobs, through an efficient, log-structured format that lends itself to deep metadata
writeback buffering and merging.

Our evaluation of DeltaFS suggests that its aggressive approach to handling filesystem metadata may be
the way forward in order to unlock scalable parallel metadata performance that is unattainable with today’s
monolithic, one-size-fits-all storage solutions.
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