
MemC3: Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing

Bin Fan, David G. Andersen, Michael Kaminsky⇤

Carnegie Mellon University, ⇤Intel Labs

CMU-PDL-12-116

November 2012

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

This paper presents a set of architecturally and workload-inspired algorithmic and engineering improvements to the
popular Memcached system that substantially improve both its memory e�ciency and throughput. These techniques—
optimistic cuckoo hashing, a compact LRU-approximating eviction algorithm based upon CLOCK, and comprehensive
implementation of optimistic locking—enable the resulting system to use 30% less memory for small key-value pairs,
and serve up to 3x as many queries per second over the network. We have implemented these modifications in a
system we call MemC3—Memcached with CLOCK and Concurrent Cuckoo hashing—but believe that they also apply
more generally to many of today’s read-intensive, highly concurrent networked storage and caching systems.

Keywords: hashing, performance, memory e�ciency, key-value store

1 Introduction

Low-latency access to data has become critical for many Internet services in recent years. This
requirement has led many system designers to serve all or most of certain data sets from main
memory—using the memory either as their primary store [21, 28, 23, 27] or as a cache to deflect
hot or particularly latency-sensitive items [12].

Two important metrics in evaluating these systems are performance (throughput, measured
in queries served per second) and memory e�ciency (measured by the overhead required to store
an item). Memory consumption is important because it directly a↵ects the number of items that
system can store, and the hardware cost to do so.

This paper demonstrates that careful attention to algorithm and data structure design can
significantly improve throughput and memory e�ciency for in-memory data stores. We show that
traditional approaches often fail to leverage the target system’s architecture and expected workload.
As a case study, we focus on Memcached [21], a popular in-memory caching layer, and show how
our toolbox of techniques can improve Memcached’s performance by 3⇥ and reduce its memory
use by 30%.

Standard Memcached, at its core, uses a typical hash table design, with linked-list-based
chaining to handle collisions. Its cache replacement algorithm is strict LRU, also based on linked
lists. This design relies heavily on locking to ensure consistency among multiple threads, and leads
to poor scalability on multi-core CPUs [13].

This paper presents MemC3 (Memcached with CLOCK and Concurrent Cuckoo Hashing), a
complete redesign of the Memcached internals. This re-design is informed by and takes advantage
of several observations. First, architectural realities can hide memory access latencies and provide
performance improvements. In particular, our new hash table design exploits CPU cache locality to
minimize the number of memory fetches required to complete any given operation; and it exploits
instruction-level and memory-level parallelism to overlap those fetches when they cannot be avoided.

Second, MemC3’s design also leverages workload characteristics. Many Memcached workloads
are predominately reads, with few writes. This observation means that we can replace Mem-
cached’s exclusive, global locking with an optimistic locking scheme targeted at the common case.
Furthermore, many important Memcached workloads target very small objects, so any per-byte
overheads have a significant impact on memory e�ciency. For example, Memcached’s strict LRU
cache replacement requires significant metadata—often more space than the object itself occupies;
in MemC3, we instead use a compact CLOCK-based approximation.

The specific contributions of this paper include:

• A novel hashing scheme called optimistic cuckoo hashing. Conventional cuckoo hashing [25]
achieves space e�ciency, but is unfriendly for concurrent operations. Optimistic cuckoo hash-
ing (1) achieves high memory e�ciency (e.g., 93% table occupancy [19]); (2) supports highly
concurrent accesses to the hash table with read-intensive workloads; and (3) keeps hash table
operations cache-friendly. (Section 3).

• A compact LRU cache eviction algorithm that requires only 1 bit of extra space per cache entry
and supports concurrent cache operations (Section 4).

• Optimistic locking that eliminates inter-thread synchronization while ensuring consistency. The
optimistic cuckoo hash table operations (lookup/insert) and the LRU cache eviction operations
both use this locking scheme for high-performance access to shared data structures (Section 4).

Finally, we implement and evaluate MemC3, a networked, in-memory key-value cache, based

1

function std Memcached MemC3

Hash Table

concurrency serialized
concurrent lookup,
serialized insert

throughput
lookup O(log n/ log log n) O(1)
insert O(1) O(1)

space 13.3n Bytes ⇠ 9.7n Bytes

Cache Mgmt

concurrency serialized
concurrent update,
serialized eviction

throughput
update O(1) O(1)
eviction O(1) O(1)

space 18n Bytes n bits

Table 1: Comparison of operations. n is the number of existing key-value items.

on Memcached-1.4.13.1 As shown in Table 1, our system provides higher throughput while requiring
significantly less memory and computation than standard Memcached.

2 Background

2.1 Memcached Overview

Interface Memcached implements a simple and light-weight key-value interface where all key-
value tuples are stored and served from DRAM. Clients communicate with the Memcached servers
over the network using the following commands:

• SET/ADD/REPLACE(key, value): add a (key, value) object to the cache;

• GET(key): retrieve the value associated with a key;

• DELETE(key): delete a key.

Internally, Memcached uses a hash table to index all the key-value entries. These entries are
also in a linked list sorted by their most recent access time. The least recently used (LRU) entry
is evicted and replaced by a newly inserted entry when the cache is full.

Hash Table To lookup keys quickly, the location of each key-value entry is stored in a hash
table. Hash collisions are resolved by chaining: if more than one key maps into the same hash table
bucket, they form a linked list. Chaining is e�cient for inserting or deleting single keys. However,
lookup may require scanning the entire chain.

Memory Allocation Naive memory allocation (e.g., malloc/free) could result in significant
memory fragmentation. To address this problem, Memcached uses slab-based memory allocation.

1Our prototype does not yet provide the full Memcached API.

2

Slab1 header

Slab2 header

Hash table
w/ chaining per-slab LRU Linked-list

Figure 1: Memcached data structures.

Memory is divided into 1 MB pages, and each page is further sub-divided into fixed-length chunks.
Key-value objects are stored in an appropriatedly-size chunk. The size of a chunk, and thus the
number of chunks per page, depends on the particular slab class. For example, by default the chunk
size of slab class 1 is 72 bytes and each page of this class has 14563 chunks; while the chunk size of
slab class 43 is 1 MB and thus there is only 1 chunk spanning the whole page.

To insert a new key, Memcached looks up the slab class whose chunk size best fits this key-value
object. If a vacant chunk is available, it is assigned to this item; if the search fails, Memcached will
execute cache eviction.

Cache policy In Memcached, each slab class maintains its own objects in an LRU queue (see
Figure 1). Each access to an object causes that object to move to the head of the queue. Thus,
when Memcached needs to evict an object from the cache, it can find the least recently used object
at the tail. The queue is implemented as a doubly-linked list, so each object has two pointers.

Threading Memcached was originally single-threaded. It uses libevent for asynchronous network
I/O callbacks [26]. Later versions support multi-threading but use global locks to protect the core
data structures. As a result, operations such as index lookup/update and cache eviction/update
are all serialized. Previous work has shown that this locking prevents current Memcached from
scaling up on multi-core CPUs [13].

Performance Enhancement Previous solutions [4, 22, 15] have been proposed to improve Mem-
cached performance [13] by sharding the in-memory data to di↵erent cores. Sharding eliminates the
inter-thread synchronization and thus permits higher concurrency, but under skewed workloads it
may also exhibit imbalanced load across di↵erent cores or waste the (expensive) memory capacity.
Instead of simply sharding, we explore how to scale performance to many threads which share and
access the same memory space; one could then apply sharding to further scale the system.

2.2 Real-world Workloads: Small and Read-only Requests Dominate

Our work is strongly informed by several key-value workload characteristics published recently by
Facebook [3].

First, queries for small objects dominate. Most keys are smaller than 32 bytes and most values
no more than a few hundred bytes. In particular, there is one common type of request that almost
exclusively uses 16 or 21 Byte keys and 2 Byte values.

3

The consequence of storing such small key-value objects is high memory overhead. Memcached
always allocates a 56-Byte header (on 64-bit servers) for each key-value object regardless of the size.
The header includes two pointers for the LRU linked list and one pointer for chaining to form the
hash table. For small key-value objects, this space overhead can not be amortized. Therefore we
seek more memory e�cient data structures for the index and cache.

Second, queries are read heavy. In general, a GET/SET ratio of 30:1 is reported for the
Memcached workloads in Facebook. Important applications that can increase cache size on demand
show even higher fractions of GETs (e.g., 99.8%). Note that this ratio also depends on the GET hit
ratio, because each GET miss is usually followed by a SET to update the cache by the application.

Though most queries are GETs, this operation is not optimized: locks are used extensively on
the query path. It must acquire (1) a lock for exclusive access to this particular key, (2) a global
lock for exclusive access to the hash table; and (3) after reading the relevant key-value object, it
must again acquire the global lock to update the LRU linked list. We aim to completely remove
all locks on the GET path to boost the concurrency of Memcached.

3 Optimistic Concurrent Cuckoo Hashing

In this section, we present a compact, concurrent and cache-aware hashing scheme called optimistic
concurrent cuckoo hashing. Compared with Memcached’s original chaining-based hash table, our
design significantly improves memory e�ciency by applying cuckoo hashing [25]—a practical, ad-
vanced hashing scheme with high memory e�ciency and O(1) amortized insertion time and re-
trieval. However, basic cuckoo hashing does not support concurrent access; it also requires multiple
memory references for each insertion or lookup. To overcome these limitations, we propose a col-
lection of new techniques that improve basic cuckoo hashing in concurrency, memory e�ciency and
cache-friendliness:

• An optimistic version of cuckoo hashing that supports multiple-reader/single writer concur-
rent access, while preserving its space benefits [concurrency, memory e�ciency, cache-
friendliness];

• A technique using a short summary of each key to improve the cache locality of hash table
operations [memory e�ciency, cache-friendliness]; and

• An optimization for cuckoo hashing insertion that improves the throughput and the table occu-
pancy [memory e�ciency].

As we show in Section 5, combining these techniques creates a hashing scheme that is attractive
in practice: its hash table achieves over 90% occupancy compared to 50% for linear probing [2].
Each lookup requires only two parallel cacheline reads followed by (up to) one memory reference
on average. In contrast naive cuckoo hashing requires two parallel cacheline reads followed by
(up to) 2N parallel memory references if each bucket has N keys; and chaining requires (up to) N
dependent memory references to scan a bucket of N keys. The hash table supports high concurrency
for read-heavy workloads, while maintaining equivalent performance for write-heavy workloads.

Interface The hash table provides Lookup, Insert and Delete operations for indexing all key-
value objects. On Lookup, a pointer is returned referencing the relevant key-value object, or “does
not exist” if the key can not be found. On Insert, the hash table returns true on success, and

4

false to indicate the hash table is too full.2 Delete simply removes the key’s entry from the hash
table. We focus on Lookup and Insert as Delete is very similar to Lookup.

Cuckoo hash table

tag ptr

key version
counters

key x
key

KV object

value
metadata

Figure 2: Hash table overview: The hash table is 4-way set-associative. Each key is mapped to 2
buckets by hash functions and associated with 1 version counter; Each slot stores a tag of the key
and a pointer to the key-value item. Values in gray are used for optimistic locking and must be
accessed atomically.

Basic Cuckoo Hashing Before presenting our techniques in detail, we first briefly describe how
to perform basic cuckoo hashing on a 4-way set-associative hash table.3 As shown in Figure 2, our
hash table is an array of buckets. Each bucket consists of 4 slots and each slot contains a pointer
to the key-value object and a short summary of the key called a tag. To support keys of variable
length, the full keys and values are not stored in the hash table, but stored with the associated
metadata outside the table and referenced by the pointer. A null pointer indicates this slot is not
used.

Each key is mapped to two random buckets each having 4 slots, thus Lookup checks all 8
candidate keys from every slot. To insert a new key x into the table, if either of the two buckets
has an empty slot, it is then inserted in that bucket; if neither bucket has space, Insert selects a
random key y from one candidate bucket and relocates y to its own alternate location. Displacing
y may also require kicking out another existing key z, so this procedure may repeat until a vacant
slot is found, or until a maximum number of displacements is reached (e.g., 128 times in our
implementation). If no vacant slot found, the hash table is considered too full to insert and an
expansion process is scheduled. Though it may execute a sequence of displacements, the amortized
insertion time of cuckoo hashing is still O(1) [25].

3.1 Tag-based Lookup/Insert

To support keys of variable length and keep the index compact, the actual keys are not stored in
the hash table and must be retrieved by following a pointer. We propose a cache-aware technique

2As in other hash table designs, an expansion process can increase the cuckoo hash table size to allow for additional
inserts.

3 Without set-associativity, basic cuckoo hashing allows only 50% of the table entries to be occupied before
unresolvable collisions occur. It is possible to improve the space utilization to over 90% by using a 4-way (or higher)
set associativie hash table. [11]

5

to perform cuckoo hashing with minimum memory references by using tags—a short hash of the
keys (one-byte in our implementation). This technique is inspired by “partial-key cuckoo hashing”
which we proposed in previous work [19], but eliminates the prior approach’s limitation in the
maximum table size.

Cache-friendly Lookup The original Memcached lookup is not cache-friendly. It requires mul-
tiple dependent pointer dereferences to traverse a linked list:

K V K V K Vlookup

Neither is the basic cuckoo hashing cache-friendly: checking two buckets on each Lookup makes
up to 8 (parallel) pointer dereferences. In addition, displacing each key on Insert also requires
a pointer dereference to calculate the alternate location to swap, and each Insert may perform
several displacement operations.

Our hash table eliminates the need for pointer dereferences in the common case. We compute
a 1-Byte tag as the summary of each inserted key, and store the tag in the same bucket as its
pointer. Lookup first compares the tag, then retrieves the full key only if the tag matches. This
procedure is as shown below (T represents the tag)

T T T T K V
lookup

It is possible to have false retrievals due to two di↵erent keys having the same tag, so the fetched
full key is further verified to ensure it was indeed the correct one. With a 1-Byte tag by hashing,
the chance of tag-collision is only 1/28 = 0.39%. After checking all 8 candidate slots, a negative
Lookup makes 8⇥0.39% = 0.03 pointer dereferences on average. Because each bucket fits in a CPU
cacheline (usually 64-Byte), on average each Lookup makes only 2 parallel cacheline-sized reads for
checking the two buckets plus either 0.03 pointer dereferences if the Lookup misses or 1.03 if it hits.

Cache-friendly Insert We also use the tags to eliminiate retrieving full keys on Insert, which
were originally needed to derive the alternate location to displace keys. To this end, our hashing
scheme computes the two candidate buckets b1 and b2 for key x by

b1 = HASH(x) //based on the entire key

b2 = b1 �HASH(tag) //based on b1 and tag of x.

b2 is still a random variable uniformly distributed4; more importantly b1 can be computed by the
same formula from b2 and tag. This property ensures that to displace a key originally in bucket
b—no matter b is b1 or b2— it is possible to calculate its alternate bucket b0 from bucket index b
and the tag stored in bucket b by

b0 = b�HASH(tag) (1)

As a result, Insert operations can operate using only information in the table and never has to
retrieve keys.

4 b2 is no longer fully independent from b1. For a 1-Byte tag, there are up to 256 di↵erent values of b2 given a
speicific b1. Microbenchmarks in Section 5 show that our algorithm still achieves close-to-optimal load factor, even if
b2 has some dependence on b1.

6

3.2 Concurrent Cuckoo Hashing

E↵ectively supporting concurrent access to a cuckoo hash table is challenging. The previously
proposed scheme improved concurrency by trading space [14]. Our hashing scheme is, to our
knowledge, the first approach to support concurrent access (multi-reader/single-writer) while still
maintaining the high space e�ciency of cuckoo hashing (e.g., > 90% occupancy).

key x
a

b

c

0

1

2

3

4

5

6

7

Figure 3: Cuckoo path. ↵ represents an empty slot.

For clarity of presentation, we first define a cuckoo path as the sequence of displaced keys in
an Insert operation. In Figure 3 “a) b) c” is one cuckoo path to make one bucket available to
insert key x.

There are two major obstacles to making the sequential cuckoo hashing algorithm concurrent:

1. Deadlock risk (writer/writer): An Insert may modify a set of buckets when moving the keys
along the cuckoo path until one key lands in an available bucket. It is not known before swapping
the keys how many and which buckets will be modified, because each displaced key depends on
the one previously kicked out. Standard techniques to make Insert atomic and avoid deadlock,
such as acquring all necessary locks in advance, are therefore not obviously applicable.

2. False misses (reader/writer): After a key is kicked out of its original bucket but before it is
inserted to its alternate location, this key is unreachable from both buckets and temporarily
unavailable. If Insert is not atomic, a reader may complete a Lookup and return a false miss
during a key’s unavailable time. E.g., in Figure 3, after replacing b with a at bucket 4, but
before b relocates to bucket 1, b appears at neither bucket in the table. A reader looking up b
at this moment may return negative results.

The only scheme previously proposed for concurrent cuckoo hashing [14] that we know of breaks
up Inserts into a sequence of atomic displacements rather than locking the entire cuckoo path.
It adds extra space at each bucket as an overflow bu↵er to temporarily host keys swapped from
other buckets, and thus avoid kicking out any existing keys. Hence, its space overhead (typically
two more slots per bucket as bu↵er) is much higher than the basic cuckoo hashing.

Our scheme instead maintains high memory e�ciency and also allows multiple-reader concur-
rent access to the hash table. To avoid writer/writer deadlocks, it allows only one single writer at
a time—a tradeo↵ we accept as our target workloads are read-heavy. To eliminate false misses, our
design changes the order of the basic cuckoo hashing insertion by:

1) separating discovering a valid cuckoo path from the execution of this path. We first search for a
cuckoo path, but do not move keys during this search phase.

2) moving keys backwards along the cuckoo path. After a valid cuckoo path is known, we first move

7

the last key on the cuckoo path to the free slot, and then move the second to last key to the
empty slot left by the previous one, and so on. As a result, each swap a↵ects only one key at a
time, which can always be successfully moved to its new location without any kickout.

Intuitively, the original Insert always moves a selected key to its other bucket and kicks out
another existing key unless an empty slot is found in that bucket. Hence, there is always a victim
key “floating” before Insert completes, causing false misses. In constrast, our scheme first discovers
a cuckoo path to an empty slot, then propagates this empty slot towards the key for insertion along
the path. To illustrate our scheme in Figure 3, we first find a valid cuckoo path “a) b) c”
for key x without editing any buckets. After the path is known, c is swapped to the empty slot
in bucket 3, followed by relocating b to the original slot of c in bucket 1 and so on. Finally, the
original slot of a will be available and x can be directly inserted into that slot.

3.2.1 Optimization: Optimistic Locks for Lookup

Many locking schemes can work with our proposed concurrent cuckoo hashing, as long as they ensure
atomic displacements along the cuckoo path with respect to the readers. The most straightforward
scheme is to lock two relevant buckets before each displacement and each Lookup. Though simple,
this scheme requires locking twice for every Lookup. The buckets must also be locked in a careful
order to avoid deadlock.

Optimizing for the common case, our approach takes advantage of having a single writer to
implement lock-free Lookups. Instead of locking on buckets, it maintains a version counter for each
key, updates it on each displacement, and looks for a version change during Lookup.

Lock Striping [14] To store all the key versions, we create an array of counters (Figure 2); each
counter is initialized to 0 and only read/updated by atomic memory operations. There could be
millions of keys in our hash table, so to keep the counter array small, each counter is shared among
multiple keys by hashing. Our implementation uses 8192 counters by default to fit the array in
cache, but also permit enough parallelism.

Optimistic Locking [16] Before displacing a key, the Insert process first increases the relevant
counter by one, indicating to the other Lookups an on-going update for this key; after the key is
moved to its new location, the counter is again increased by one to indicate the completion. As a
result, the key version is increased by 2 after each displacement.

Before the Lookup process reads the buckets for a given key, it first checks the counter. If the
version is odd, there must be a concurrent writer working on the same key (or another key sharing
the same counter), and the reader should wait and retry; otherwise Lookup proceeds to the two
buckets. After it finishes reading both buckets, it checks the counter again and compares this new
version with the old version. If two versions di↵er, it indicates that the writer has modified this key,
and the reader should retry. We attach a proof of correctness in the Appendix in detail including
all corner cases.

3.2.2 Optimization: Multiple Cuckoo Paths

Our revised Insert process first looks for a valid cuckoo path before swapping the key along the
path. Due to the separation of search and execution phases, we apply the following optimization
to speed path discovery and increase the chance of finding an empty slot.

8

Instead of searching for an empty slot along one cuckoo path, our Insert process keeps track of
multiple paths in parallel. At each step, multiple victim keys are “kicked out”, each key extending
its own cuckoo path. Whenever one path reaches an available bucket, this search phase completes.

With multiple paths to search, insert may find an empty slot earlier and thus improve the
throughput. In addition, it improves the chance for the hash table to store a new key before
exceeding the maximum number of displacements performed and thus increase the load factor.
The e↵ect of having more cuckoo paths is evaluted in Section 5.

4 Concurrent Cache Management

Cache management is the second important component of MemC3. It evicts keys when space is
full, but aims to maintain a high hit ratio. Surprisingly, when serving small key-value objects, it
also becomes a major source of space overhead. For example, in Memcached it requires 18 Bytes
for each key (i.e., two pointers and a 2-Byte reference counter) to ensure that keys can be safely
evicted in an strict LRU order. In addition, it is also a synchronization bottleneck as all updates
to the cache for LRU maintainace are serialized in Memcached.

This section presents our e↵orts to make the cache management extremely space e�cient (1
bit per key) and concurrent (no synchronization to update LRU) by implementing an approximate
LRU cache based on the CLOCK replacement algorithm [7]. CLOCK is a well-known algorithm;
our contribution lies in integrating CLOCK replacement with the optimistic, striped locking in our
cuckoo algorithm to reduce both locking and space overhead.

As our target workloads are dominated by small objects, the space saved by trading perfect
LRU for approximated LRU allows the cache to store siginifcantly more entries, and in turn im-
proves the hit ratio. As we will show in Section 5, our cache management achieves 3⇥ to 10⇥ of
the throughput of query the default cache of Memcached, while also improves the hit ratio.

CLOCK Replacement A cache must implement two functions:

• Update to keep track of the recency after quering a key in the cache; and

• Evict to select keys to purge when inserting keys into a full cache.

In Memcached, each key-value entry is kept in a doubly-linked-list based LRU queue within
its own slab class. After each cache query, Update moves the accessed entry to the head of its own
queue; to free space for inserting new keys when the cache is full, Evict replaces the entry on the
tail of the queue by the new key-value pair. This ensures strict LRU eviction in each queue, but
unfortunately it also requires two pointers per key for the doubly-linked list and, more importantly,
all Updates to one linked list are serialized. Every read access requires an update, and thus the
queue permits no concurrency even for read-only workloads.

CLOCK approximates LRU with improved concurrency and space e�ciency. For each slab
class, we maintain a circular bu↵er and a virtual hand ; each bit in the bu↵er represents the recency
of a di↵erent key-value object: 1 for “recently used” and 0 otherwise. Each Update simply sets the
recency bit to 1 on each key access; each Evict checks the bit currently pointed by the hand: if it
is 0, Evict selects the corresponding key-value object; otherwise we reset this bit to 0 and move
forward the hand in the circular bu↵er until we see a bit of 0.

Integration with Optimistic Cuckoo Hashing The Evict process must coordinate with other
reader threads to ensure the eviction is safe. Otherwise, a key-value entry may be overwritten by

9

Algorithm 1: Psuedo code of SET and GET

SET(key, value) //insert (key,value) to cache;
begin

lock();
ptr = Alloc(); //try to allocate space;
if ptr == NULL then

ptr = Evict(); //cache is full, evict old item;

memcpy key, value to ptr;
Insert(key, ptr); //index this key in hashtable;
unlock();

GET(key) //get value of key from cache;
begin

while true do
vs = ReadCounter(key); //key version;
ptr= Lookup(key); //check hash table;
if ptr == NULL then return NULL ;
prepare response for data in ptr;
ve = ReadCounter(key); //key version;
if vs & 1 or vs != ve then

//may read dirty data, try again;
continue

Update(key); //update CLOCK;
return response

a new (key,value) pair after eviction, but some other threads are still accessing this entry for the
evicted key and get dirty data. To this end, the original Memcached adds to each entry a 2-Byte
reference counter to avoid this rare case. Reading this per-entry counter, the Evict process knows
how many other threads are accessing this entry concurrently and avoids evicting those busy entries.

Our cache integrates cache eviction with our optimistic locking scheme for cuckoo hashing.
When Evict selects a victim key x by CLOCK, it first increases key x’s version counter to inform
other threads currently reading x to retry; it then deletes x from the hash table to make x unreach-
able for later readers, including those retries; and finally it increases key x’s version counter again
to complete the change for x. Note that Evict and the hash table Insert are both serialized so
when updating the counters they can not a↵ect each other.

With Evict as above, our cache ensures consistent GETs by version checking: each GET first
snapshots the version of the key before accessing the hash table; if the hash table returns a valid
pointer, it followes the pointer and reads the value assoicated; afterwards GET compares the latest
key version with the snapshot. If the verions di↵er, then GET may have observed an inconsis-
tent intermediate state and must retry. The pseudo-code of function GET and SET is shown in
Algorithm 1.

.

10

5 Evaluation

This section investigates how the proposed techniques and optimizations contribute to performance
and space e�ciency, by “zooming out” the evaluation targets from the hash table, to the cache
(including the hash table and cache eviction management) and finally to the full MemC3 system
(including the cache and network). The throughput of MemC3 is much higher than Memcached
with its default hash table. With all optimizations combined, MemC3 achieves 3⇥ the throughput
of Memcached. Our proposed core hash table if isolated can achieve 5 million lookups/sec per
thread and 35 million lookups/sec when accessed by 12 threads.

5.1 Platform

All experiments run on a machine with following configuration: The CPU of this server is optimized
for energy e�ciency rather than high performance, and our system is CPU intensive, so we expect
the absolute performance would be higher on more “beefy” servers.

CPU 2⇥ Intel Xeon L5640 @ 2.27GHz
cores 2⇥ 6
LLC 2⇥ 12 MB L3-cache
DRAM 2⇥ 16 GB DDR SDRAM
NIC 10Gb Ethernet

5.2 Hash Table Microbenchmark

 0

 1

 2

 3

 4

 5

 6

chaining

+hugepage

+int keycmp

cuckoo
+tag

+2path
chaining

+hugepage

+int keycmp

cuckoo
+tag

+2path

Th
ro

ug
hu

t (
m

ill
io

n
re

qs
 p

er
 s

ec
)

100% lookup

1.75
2.16

4.12

3.25

5.16
5.6590% lookup

1.90
2.36

4.26

3.33
3.99

5.65

(a) Single thread performance (all locks disabled)

 0

 5

 10

 15

 20

 25

chaining

+hugepage

+int keycmp

cuckoo
+tag

+opt locking

+2path
chaining

+hugepage

+int keycmp

cuckoo
+tag

+opt locking

+2path

Th
ro

ug
hu

t (
m

ill
io

n
re

qs
 p

er
 s

ec
)

100% lookup

1.58 1.84 2.29

12.04

17.14

23.86 23.87
90% lookup

1.31 1.45 2.41

11.48

14.61
16.67

18.22

(b) Aggregate performance of 6 threads, with locking

Figure 4: Contribution of optimizations to the hash table performance. Optimizations are cumu-
lative. Each data point is the average of 10 runs.

11

Workload In the following experiments, we benchmark two types of workloads: one workload
has only Lookup queries, and the other workload consists of 90% Lookup and 10% Insert. We first
focus on the optimizations not contributing to concurrency by benchmarking the hash table using
a single thread without any locks. Then we examine the performance benefit with concurrency
optimizations included by measuring the aggregate throughput of 6 threads all accessing the same
hash table.

Factor Analysis To investigate how much each optimization in Section 3 improves hash table
performance, we break down the performance gap between the basic chaining hash table used by
Memcached and the final optimistic cuckoo hash table we proposed, and measure a set of hash
tables—starting from the basic chaining and adding optimiztions cumulatively as follows:

• Chaining is the default hash table of Memcached, serving as the baseline.

• +hugepage enables 2MB x86 hugepage support in Linux to reduce TLB misses.

• +int keycmp replaces the default memcmp (used for full key comparison) by casting each key
into an integer array and then comparing based on the integers.

• cuckoo applies the concurrent cuckoo hashing to replace chaining, using bucket-based locking
to coordinate multiple threads (Section 3.2).

• +tag stores the 1-Byte hash for each key to improve cache-locality for both Insert and Lookup

(Section 3.1).

• +opt locking replaces the per-bucket locking scheme by optimistic locking to ensure atomic
displacement (Section 3.2.1).

• +2path searches two cuckoo paths for Insert in parallel (Section 3.2.2). We justify the choice
of two paths in a later experiment.

Single-thread performance is shown in Figure 4a. In general, combining all optimizations
improves performance by ⇠ 3⇥ compared to the naive chaining in Memcached, and the hash
table performs similarly for both workloads. Enabling “hugepage” improves the baseline perfor-
mance by about 24%; while using “int keycmp” shows a significant improvement (80% to 90%
over “hugepage”) for both workloads. This is because our keys are relatively small, so the startup
overhead in the builtin memcmp becomes relatively large. Directly applying cuckoo hashing with-
out using “tag” and “2-path” insertion reduces performance compared to “int keycmp”, due to
increased memory references. The “tag” optimization significantly improves the throughput of
read-only workloads by eliminating comparing every candidate key, and “2-path” optimization
greatly helps the 10% Insert workload.

Multi-thread performance is shown in Figure 4b, measured by aggregating the throughput
from 6 threads accessing the same hash table. Di↵erent from the previous experiment, a global
lock is used for chaining (as in Memcached by default) and optimistic locking is included as one
optimization for cuckoo hash table.

First of all, there is a huge performance gap (⇠ 15⇥ for read-only, and ⇠ 14⇥ for read-intensive)
between our proposed hashing scheme and the default Memcached hash table. In Memcached, all
hash table operations are serialized by a global lock, thus the basic chaining hash table in fact
performs worse than its single-thread throughput in Figure 4a. The slight improvement (< 80%)
from “hugepage” and “int keycmp” indicates that most performance benefit is from making the
data structures concurrent. Using the basic concurrent cuckoo improves throughput by 5⇥ to 6⇥,

12

Hash table Size (MB)
keys
(million)

Byte/key Load factor
insert tput
(MOPS)

largest
bucket

Chaining 1280 100.66 13.33 � 14.38 13
Cuckoo 1path 1152 121.91 9.91 90.84% 6.46 4
Cuckoo 2path 1152 124.52 9.70 92.78% 6.66 4
Cuckoo 3path 1152 126.80 9.53 94.48% 6.19 4
Cuckoo 4path 1152 127.76 9.45 95.19% 6.03 4

Table 2: Comparison of two types of indexes. Results in this table are independent of the key-value
size. Each data point is the average of 10 runs.

while optimistic locking further improves the throughput, especially for read-only workloads. For
the workload with 90% Lookup, having multiple cuckoo paths again improves the throughput.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

M
ill

io
n

re
qs

/s
ec

Number of threads

cuck. 100% rd
cuck. 90% rd

chain. 100% rd
chain. 90% rd

Figure 5: Throughput vs. number of threads. Each data point is the average of 10 runs.

Multi-core Scalability Figure 5 illustrates how the total hash table throughput changes as
more threads access the same hash table. The throughput of the default hash table does not scale
for either workload, because all hash table operations are serializied. Due to lock contention, the
throughput is actually lower than the single-thread throughput without locks.

Using our proposed cuckoo hashing for the read-only workload, the performance scales linearly
to 6 threads because each thread is pinned on a dedicate physical core on the same 6-core CPU.
The next 6 threads are pinned to the other 6-core CPU in the same way. The slope of the curve
becomes lower due to cross-CPU memory tra�c. Threads after the first 12 are packed with early
threads (hyper-threading is enabled), and thus performance does not increase after 12 threads.

With 10% Insert, our cuckoo hashing reaches a peak performance of 20 MOPS at 10 threads.
Each Insert requires a lock to be serialzied, and after 10 threads the lock contention becomes
intensive.

Space E�ciency This experiment measures space e�ciency by inserting new keys—uniformly
distributed in a 16-Byte key space—to an empty hash table (either a cuckoo or a chaining hash
table) using a single thread, until the hash table reaches maximum capacity. To prevent imbalanced
load across buckets, by default Memcached stops insertion if 1.5n objects are inserted to a table
of n buckets, whereas our cuckoo hash table stops when a single Insert fails to find a empty slot
after 128 displacements.

13

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0% 20% 40% 60% 80% 100%

of
 d

is
pl

ac
em

en
ts

 p
er

 in
se

rt
Load factor

1 cuckoo path
2 cuckoo paths
3 cuckoo paths
4 cuckoo paths

Figure 6: Number of cuckoo operations vs. load factor, with di↵erent number of parallel searches.
Each data point is the average of 10 runs.

Table 2 shows that the cuckoo hash table is significantly more compact. Chaining requires
1280 MB to store 100.66 million items; while cuckoo hash tables are both smaller in size (1152 MB)
but and contain at least 20% more items. Indexing each key, on average, reqiures 13.33 Bytes with
chaining, but no more than 10 Bytes by cuckoo hashing. Note that this result is independent of
the key-value size as the hash table only stores pointers rather than the real data.

Table 2 also compares cuckoo hash tables using di↵erent number of cuckoo paths to search
for empty slots. In general, cuckoo hashing ensures high occupancy (> 90%); having more cuckoo
paths improves the load factor from 90% with a single path to 95% with 4 paths, because this helps
reach an empty slot within the search depth of 128. Accordingly, the average overhead to index
one key is reduced to 9.4 Bytes with 4 paths.

In terms of insert throughput, chaining achieves 2x the performance compared to cuckoo
hashing. On the other hand, its most loaded bucket contains 13 objects in a chain where on
average each bucket only hosts 1.5 objects. In contrast, bucket size in a cuckoo hash table is fixed
(i.e., 4 slots), making it a better match for our targeted read-intensive workloads. Cuckoo insert
achieves the best throughput (6.66 MOPS) with 2-way search, as searching on two cuckoo paths
balances the chance to find an empty slot, and the resource required to keep track of all paths.

Cuckoo Insert Inserting one key with cuckoo hashing is, on average O(1), in theory. We measure
the average insertion cost—in terms of the number of displacements per insert— to a hash table
with a fraction (x%) of all slots filled, and vary x from 0% to the maximum possible load factor.
Figure 6 shows a good property of cuckoo insert: the cost remains low (< 0.1) before the table is
80% filled. Even when the hash table is full, the average cost is still below 0.4 displacements per
insert. Using two cuckoo paths further reduces the insertion cost; but using more than two paths
has diminishing space benefits and reduces insertion speed.

5.3 Cache Microbenchmark

Workload We use YCSB [6] to generate 100 million key-value queries, following a zipf distri-
bution. Each key is 16 Bytes and each value 32 Bytes. We evaluate caches with following three
di↵erent configurations:

• LRU+chaining: the default Memcached cache configuration, using chaining hash table to
index keys and LRU for replacement;

14

• LRU+cuckoo: keeping the LRU part but replacing the hash table by concurrent optimistic
cuckoo hashing with all optimizations proposed;

• CLOCK+cuckoo: the data structure of MemC3, using cuckoo hashing to index keys and
CLOCK for replacement.

We vary the cache size from 64 MB to 10 GB. Note that, the cache size does not count the space
for hash table, only the space available to store key-value objects.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hu

t (
m

ill
io

n
re

qs
 p

er
 s

ec
)

Number of threads

CLOCK+cuckoo
LRU+cuckoo

LRU+chaining

(a) 10GB cache(> working set), read-ony: 100% GETs
hit

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 2 4 6 8 10 12 14 16
Th

ro
ug

hu
t (

m
ill

io
n

re
qs

 p
er

 s
ec

)

Number of threads

CLOCK+cuckoo

LRU+cuckoo

LRU+chaining

(b) 1GB cache(< working set), 95% GET + 5% SET: 85%
GETs hit

Figure 7: Throughput vs. number of threads. Each data point is the average of 10 runs.

Throughput The total insertion rate to a cache depends not only on the SETs requested by the
application but also on the hit ratio of GETs, because each GET miss is followed by an insertion.
Therefore, even a GET-only workload at the application level may still result in a high insert rate at
the cache if most GETs miss. To understand the cache performance with heavier or lighter insertion
load, we evaluate two di↵erent settings:

• a GET-only workload on a “big” cache (i.e., 10 GB, larger than the working set), which leads
no cache miss or insert and is the best case for performance;

• a GET(95%)/SET(5%) mixed workload on a “small” cache (i.e., 1 GB, ⇠10% of the total
working set). About 85% GETs hit the cache, and each miss triggers an insert in turn, which
is worse than the typical real-world workload reported by Facebook [3].

Figure 7a shows the results of benchmarking the “big cache”. Though there are no inserts,
the throughput does not scale for the default cache, due to the intensive lock contention on each
LRU update (moving an object to the head of the linked list). Replacing default chaining with
the concurrent cuckoo hash table improves the peak throughput slightly. This suggests that only
having a concurrent hash table is not enough for high performance. After removing the LRU
synchronization bottleneck by using CLOCK, the throughput achieves 30 MOPS at 16 threads.

Figure 7b shows that peak performance is achieved at 4.5 MOPS for the “small cache” by
combining CLOCK and cuckoo hashing. The throughput drop is because the 5% SETs and 15%
GET misses result in about 20% hash table inserts, so throughput drops after 6 threads due to
serialized inserts.

15

cache size
64 MB 128 MB 256 MB 512 MB 1 GB 2 GB

items stored (million)
LRU+chaining 0.60 1.20 2.40 4.79 9.59 19.17
LRU+cuckoo 0.65 1.29 2.58 5.16 10.32 20.65

CLOCK+cuckoo 0.84 1.68 3.35 6.71 13.42 26.84
hit ratio (95% GET, 5% SET, zipf distribution)

LRU+chaining 63.66% 68.09% 72.73% 77.70% 83.20% 89.56%
LRU+cuckoo 64.13% 68.58% 73.24% 78.26% 83.84% 90.20%

CLOCK+cuckoo 63.54% 68.14% 73.08% 78.62% 85.32% 92.11%

Table 3: Comparison of three types of caches. Results in this table is independent of the key-value
size. Bolded entries are the best in their columns. Each data point is the average of 10 runs.

Space E�ciency Table 3 compares the maximum number of items (16-Byte key and 32-Byte
value) a cache can store. The default LRU with chaining is the least memory e�cient scheme.
Replacing chaining with cuckoo hashing improves the space utilization slightly (7%), noting that
the hash table size is not counted in the cache, and the small improvement is due to the pointer
eliminated for chaining. Combining CLOCK with cuckoo increases the space e�ciency by 30% over
the default. The space benefit arises from eliminating three pointers (two used for LRU linked list
and one used for chaining) and one refcount per key.

Hit ratio Compared to the linked list based approach in Memcached, CLOCK approximates
LRU eviction with much lower space overhead. Table 3 shows the cache hit ratios measured for
GET queries by three di↵erent configures. When the cache size is smaller than 256 MB, LRU based
cache provides higher hit ratio than CLOCK. LRU with cuckoo hashing improves upon LRU with
chaining, because it can store more items. In this experiment, 256MB is only about 2.6% of the
10GB working set. Therefore LRU wins only if the cache size is very small, causing popular items to
have too large a chance to be evicted. For larger cache, CLOCK with cuckoo hashing outperforms
the other two schemes because the extra space improves the hit ratio more than the loss of precision
decreases it.

5.4 Full System Performance

Workload This experiment uses the same workload as in Section 5.3, with 95% GETs and 5%
SETs generated by YCSB. MemC3 server runs on the same server as before, but the clients are
50 di↵erent nodes connected by a 10GB Ethernet. The clients uses libmemcached 1.0.7 [18] to
communicate with our MemC3 server over the network. To amortize the network overhead, we use
multi-get supported by libmemcached by batching 100 GETs.

In this experiment, we compare three di↵erent systems: original Memcached, optimized Mem-
cached (with non-algorithmic optimizations such as “hugepage”, “in keycmp” and tuned CPU
a�nity), and MemC3 with all optimizations enabled. Each system is allocated with 1GB memory
space (hash table space not included).

Throughput Figure 8 shows the throughput as more server threads are used in MemC3. Overall,
the maximum throughput of MemC3 (4.4 MOPS) is almost 3⇥ that of the original Memcached (1.5

16

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 2 4 6 8 10 12 14 16
Th

ro
ug

hu
t (

m
ill

io
n

re
qs

 p
er

 s
ec

)

Number of threads

MemC3
modified MC

original MC

Figure 8: Throughput v.s. number of server threads

MOPS). The non-algorithmic optimizations improve throughput, but their contribution is dwarfed
by the algorithmic and data structure-based improvements.

6 Related Work

This section presents the work most related to MemC3 in three parts: e↵orts to improve individual
key-value storage nodes in terms of throughput and space e�ciency; the broader context of systems
where our techniques might apply; and the related work applying cuckoo hashing.

Flash-based key-value stores such as Bu↵erHash [1], FAWN-DS [2], SkimpyStash [9] and SILT [19]
are optimized to better utilize I/O to external storage such as SSDs (e.g., by batching, or log-
structuring small writes). Without slow I/O, the optimization goals for MemC3 are saving memory
and eliminating synchronization. Previous work in memory-based key-value stores [4, 22, 15] speed
the performance on multi-core CPUs or GP-GPUs by sharding data to dedicated cores and thereby
avoid synchronization. MemC3 instead targets read-mostly workloads and thus applies optimistic
locking to boost performance. Similar to MemC3, Mastree [20] also applied extensive optimizations
for cache locality and optimistic concurrency control, but used very di↵erent techniques because it
was a variation of B+-tree to support range queries. Ramcloud [24] focused on fast data recon-
struction from on-disk replicas. In contrast, as a cache, MemC3 specifically takes advantage of the
transience of the data it stores to improve space e�ciency.

Recent distributed key-value systems such as Google’s Bigtable [5], Amazon’s Dynamo [10],
Apache’s Cassandra [17], FAWN-KV [2] and Ramcloud [24] aimed primarily for high availability,
scalability and load balancing among a large number of storage nodes. Our system focuses on
boosting the performance on a single multi-core server. MemC3 could serve as a building block for
large scale distributed key-value systems.

Cuckoo hashing [25] is an open-addressing hashing scheme with high space e�ciency that
assigns multiple candidate locations to each item and allows inserts to kick existing items to their
candidate locations. FlashStore [8] applied cuckoo hashing by assigning each item 16 locations so
that each lookup checks up to 16 locations. SILT [19] proposed partial key cuckoo hashing to achieve
high occupancy with only two hash functions, but in doing so, limited the maximum hash table
size. Our improved algorithm eliminates this limitation while still retaining high memory e�ciency.
To make cuckoo operations concurrent, the prior approach of Herlihy and et. al. [14] traded space
for concurrency. In contrast, our optimistic locking scheme achieves high read concurrency without

17

losing space e�ciency.

7 Conclusion

MemC3 is an in-memory key-value store that is designed to provide caching service for read-
mostly workloads. It is built on carefully engineered algorithms and data structures with a set of
architecture-aware and workload-ware optimizations to achieve high concurrency, space-e�ciency
and cache-locality. In particular, MemC3 uses a new hashing scheme—optimistic cuckoo hashing—
that achieves over 90% space occupancy and allows concurrent read access without locking. MemC3
also employs a CLOCK-based cache management with only 1-bit per entry to approximate LRU
eviction. Compared to Memcached, it reduces space overhead by more than 20 Bytes per-entry.
Our evaluation shows the throughput of our system is 3⇥ higher than the original Memcached
while stores 30% more key-value pairs.

References

[1] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath. Cheap and large CAMs for
high performance data-intensive networked systems.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan. FAWN:
A Fast Array of Wimpy Nodes. Communications of the ACM, 54(7):101–109.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload Analysis of a
Large-Scale Key-Value Store.

[4] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core key-value store.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured Data.

[6] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB.

[7] F. Corbato and M. I. O. T. C. P. MAC. A Paging Experiment with the Multics System. Defense
Technical Information Center.

[8] B. Debnath, S. Sengupta, and J. Li. FlashStore: high throughput persistent key-value store.
Proc. VLDB Endow., 3:1414–1425. VLDB Endowment.

[9] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM Space Skimpy Key-Value Store on
Flash.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store.

[11] U. Erlingsson, M. Manasse, and F. Mcsherry. A COOL AND PRACTICAL ALTERNATIVE
TO TRADITIONAL HASH TABLES. Pages 1–6.

[12] Scaling memcached at Facebook.

18

[13] N. Gunther, S. Subramanyam, and S. Parvu. Hidden Scalability Gotchas in Memcached and
Friends.

[14] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Pub-
lishers Inc.

[15] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt. Characterizing
and Evaluating a Key-value Store Application on Heterogeneous CPU-GPU Systems.

[16] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226. ACM.

[17] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. ACM
SIGOPS Operating System Review, 44:35-40.

[18] libMemcached.

[19] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A Memory-E�cient, High-
Performance Key-Value Store.

[20] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage.
Pages 183–196.

[21] A distributed memory object caching system.

[22] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHASH: a cache-partitioned hash table.

[23]

[24] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum. Fast crash recovery
in RAMCloud.

[25] R. Pagh and F. Rodler. Cuckoo Hashing. Journal of Algorithms, 51(2):122–144.

[26] N. Provos. libevent.

[27]

[28] VoltDB, the NewSQL database for high velocity applications.

19

