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Abstract

In the past 15 years, stateless exploration, a collection of techniques for automated and systematic testing of concurrent programs,
has experienced wide-spread adoption. As stateless exploration moves into practice, becoming part of testing infrastructures of
large-scale system developers, new practical challenges are being identified.
In this paper we address the problem of efficient allocation of resources to stateless exploration runs. To this end, this paper presents
techniques for estimating the total runtime of stateless exploration runs and policies for allocating resources among tests based on
these runtime estimates.
Evaluating our techniques on a collection of traces from a real-world deployment at Google, we demonstrate the techniques’
success at providing accurate runtime estimations, achieving estimation accuracy above 60% after as little as 1% of the state space
has been explored. We further show that these estimates can be used to implement intelligent resource allocation policies that meet
testing objectives more than twice as efficiently as the round-robin policy.



1 Introduction

In the past 15 years, stateless exploration [5], a collection of techniques for automated and systematic testing
of concurrent programs, has witnessed wide-spread adoption [9, 20, 25] due to its ability to discover rare
concurrency errors better than stress testing [14].

As stateless exploration moves into wider practice, becoming part of testing infrastructures of large-
scale system developers [14, 15], new practical challenges are emerging. An example of such a practical
challenge is the problem of efficient allocation of resources to a collection of tests.

In our experience [15], a test suite typically consists of tens to hundreds of tests of varied, and initially
unknown, length. In the context of stateless exploration it is reasonable to assume that the resources available
for running these tests are not always sufficient to complete all tests by a deadline. In such cases, high-level
testing objectives, such as “maximize the number of completed tests” or “achieve even state space coverage
among tests” are used to drive the allocation of testing resources. Mapping these high-level testing objectives
into working allocation mechanisms is an important, practical, and yet unresolved problem.

In this paper, we propose a solution to this problem based on runtime estimation. In particular, we
design and evaluate techniques that estimate the time needed to complete an ongoing stateless exploration
run. Besides offering a measure of test complexity, our evaluation demonstrates that runtime estimation
enables efficient allocation of resources among a collection of tests.

In most implementations [5, 9, 17, 20, 25], the state space explored by a stateless exploration run is
represented as a tree that records the different executions of a test explored so far. Under this abstraction, the
problem of estimating the runtime of a stateless exploration run can be framed as the problem of estimating
the time needed to explore a tree.

The estimation techniques presented in this paper can be characterized as online – updating the estimate
as stateless exploration progresses – and passive – not mandating a particular order in which the exploration
proceeds.

The benefit of online estimation is that the estimate can be refined as new information about the state
space is gathered. The benefit of passive estimation is that it can be combined with any state state exploration
strategy. In addition, passive estimation techniques can be evaluated using traces of stateless exploration
runs. We took advantage of this fact in our evaluation, using a collection of stateless exploration traces from
a real-world deployment at Google [18].

The contributions of this paper are as follows. First, building on research on search tree size estima-
tion [8], this paper presents techniques for runtime estimation of stateless exploration. Second, this paper
evaluates the accuracy of the presented estimation techniques using a collection of stateless exploration
traces from a real-world deployment. Third, this paper demonstrates the practicality of runtime estimation
by using it to implement efficient resource allocation policies and evaluating the efficiency of these policies.

The rest of the paper is organized as follows. First, Section 2 provides an overview of stateless ex-
ploration and describes the syntax and semantics of exploration traces. Section 3 presents techniques for
runtime estimation of stateless exploration and resource allocation policies based on runtime estimation.
Section 4 describes a collection of exploration traces and uses the traces to evaluate the accuracy of the
runtime estimation techniques and the efficiency of resource allocation policies based on these runtime es-
timates in meeting testing objectives. Finally, we discuss related work in Section 5 work and conclude in
Section 6.

2 Background

In this section we first provide a brief overview of the state of the art stateless exploration and then define
the syntax and semantics of traces of stateless exploration.
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2.1 Stateless Exploration

Stateless exploration is a technique for systematic testing of concurrent programs. The goal of stateless
exploration is to explore the state space of different program states of a concurrent program by systematically
enumerating different orders in which concurrent events of the program can be exercised by a program test.

To keep track of the exploration progress, stateless exploration abstractly represents the state space of
the program test using an execution tree. Nodes of the execution tree represent non-deterministic choice
points and edges record non-deterministic choices representing program state transitions. A branch leading
from the root of the tree to a leaf thus encodes a unique test execution as a sequence of non-deterministic
choices.

In this model, a branch of the execution tree corresponds to a particular sequence of program state
transitions. Notably, the set of explored branches of a partially explored execution tree identifies the test ex-
ecutions that have been explored. Further, assuming that concurrency is the only source of non-determinism
in the program, the information collected by past executions can be used to generate schedules that describe
in what order to sequence program state transitions of future executions in order to explore new parts of the
execution tree.

Typically, stateless exploration uses depth-first search to explore the execution tree because depth-first
search results in space-efficient exploration. To mitigate the state space explosion problem, modern tools
for systematic testing of concurrent software [2, 17, 20, 25] combine stateless exploration with dynamic
partial order reduction [3] that avoids exploration of redundant parts of the execution tree. In particular,
when stateless exploration executes a program state transition, dynamic partial order reduction computes
the happens-before [11] and the independence [4] relations over the set of program state transitions and uses
this information to decide to also explore the program state transitions that could have been explored instead.

2.2 Exploration Traces

Given the passive nature of estimation techniques we study in this paper, we can describe the problem
of online runtime estimation of stateless exploration using the abstraction of an exploration trace, which
identifies events pertinent to runtime estimation.

An exploration trace is a sequence of exploration events, where an event is one of the following:

1. AddNode x y – A node x with parent y has been added to the execution tree (the root node is 0 and
the parent of the root node is -1).

2. Explore x – The node x has been marked for exploration (note that due to the nature of dynamic
partial order reduction, x does not need to be a child of the current node).

3. Transition x – The exploration transitioned from the current node to node x.

4. Start – New test execution, setting node 0 as the current node, has started.

5. End t – Current test execution finished after t time units.

Figures 1 and 2 give an example of a simple execution tree and an exploration trace describing its
exploration. Initially, the root node 0 is added and marked for exploration. Next, an execution is started
from the root node. The children 1, 2, and 3 of the root node are added and the child 1 is marked for
exploration. The execution then transitions to node 1. The children 4 and 5 of node 1 are added and the
child 4 is marked for exploration. The execution transitions to node 4. The child 6 of node 4 is added and
marked for exploration. Finally, the execution transitions to node 6 and for the sake of this example we
assume that the use of dynamic partial order reduction results in the node 3 being marked for exploration.
Since node 6 has no children, the execution ends, requiring a total of 0.42 time units. Next, a new execution
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Figure 1: Execution Tree Example
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Figure 2: Exploration Trace Example

is started from the root node. The second execution proceeds in a similar fashion, visiting node 3, exploring
a branch in its subtree, and requiring a total of 0.29 time units. Note that nodes 2, 5, and 8 are never marked
for exploration and consequently never explored.

3 Methods

In this section we present a number of techniques for estimating the runtime of stateless exploration. During
stateless exploration each execution starts from the root node of the execution tree (the initial state of the
program) and ends in a leaf node (a terminal state of the program). This allows us to describe an estimation
technique as an algorithm that operates over the exploration trace model. In particular, a sequential scan of
the exploration trace can be used to build up the execution tree, recording which nodes have been marked
for exploration, visited, and explored.

The estimation techniques proposed by this paper consist of several components. First, the strategy
component is used to determine how to treat nodes that have not been marked for exploration yet. Second,
the estimator component is used to determine how to combine a strategy and the exploration information
gathered so far to compute an intermediate runtime estimate. Third, the fit component is used to aggregate
the sequence of intermediate runtime estimates computed so far to produce the actual runtime estimate.
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3.1 Strategies

In general, stateless exploration does not explore all subtrees of an execution tree because dynamic partial
order reduction identifies the exploration of some parts of the tree as redundant. Further, the information
about which subtrees need to be explored is revealed only as stateless exploration progresses through the
state space. Consequently, to estimate the runtime of stateless exploration, one needs a strategy that deter-
mines how to treat nodes that have not been marked for exploration.

In this paper we consider three strategies for computing the function F : V → N, which for a node v
of a partially explored execution tree, estimates the number of unmarked (and thus unexplored) children of
node v that the strategy expects to be marked (and thus explored) in the future.

• Hindsight – Assumes perfect knowledge about which nodes will be explored, computing the function
F by pre-processing the exploration trace. This strategy is infeasible in practice but we consider it as
a best case scenario for comparison.

• Lazy – Assumes that a node will not be explored unless it has been marked for exploration. In other
words, F(v) = 0 for all nodes v irrespective of the exploration status of the execution tree.

• Eager – Assumes that a node will be explored unless the exploration has already backtracked from the
parent without exploring the node. In other words, F(v) is equal to the number of unmarked children
if the exploration has not backtracked from v and 0 otherwise.

Space and Time Complexity

The hindsight strategy, which we use for benchmarking purposes only, requires linear pre-processing time
and has O(n) space overhead, where n is the size of the execution tree. Neither the lazy nor the eager
strategies has any overhead.

3.2 Estimators

Having estimated which parts of a partially explored execution tree remain to be explored, we pass this
information onto an estimator. The estimator is responsible for producing an intermediate runtime estimate.
In this paper we consider two different estimators based on previous work by Kilby et al. [8]: the weighted
backtrack estimator and the recursive estimator.

3.2.1 Weighted Backtrack Estimator (WBE)

The weighted backtrack estimator WBE) is an online variant of Knuth’s offline technique [10] for tree size
estimation. WBE uses the length of each explored branch weighted by the probability it is explored (assum-
ing uniform distribution over edges) to predict the size of the tree. To adapt WBE to runtime estimation, we
replace the length of each branch with the time required to explore it.

Formally, the WBE updates its estimate every time it explores a branch, setting the estimate to:

estimate =
∑b∈B t(b)
∑b∈B p(b)

where B is the set of explored branches, t(b) is the time needed to explore a branch, and p(b) is the proba-
bility of exploring the branch. For a branch b = (v1, . . . ,vn), where vi is the i-th node along the branch b, the
probability p(b) is defined as:

n−1

∏
i=1

1
M(vi)+F(vi)

where M(vi) is the number of marked children of node vi and F(vi) is determined by the strategy.
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3.2.2 Recursive Estimator (RE)

The recursive estimator (RE) is an online technique that estimates the size of an unvisited subtree as the
average of the sizes of its visited siblings. To adapt RE to runtime estimation, we replace the size of each
subtree with the time required to explore its branches.

Formally, when RE explores a branch b = (v1, . . . ,vn), it updates the runtime estimate for every node
along the branch in a bottom-up manner, setting the estimate to:

estimate(vi) =

{
t(b) if i = n

Ei ·
(

1+ F(vi)
nvi

)
otherwise

where Ei is the sum of the runtime estimates of subtrees rooted at visited children of vi, nvi is the number of
visited children of vi, and F(vi) determined by strategy.

Space and Time Complexity

The WBE estimate needs to be updated upon two events: 1) when a new branch is explored and 2) when
a new node is marked for exploration. To avoid recomputation of all of the values p(b) and t(b) for each
update to the WBE, we store in each node v of the execution tree the sums:

∑
b∈B(v)

p(b) and ∑
b∈B(v)

t(b)

where B(v) is the set of explored branches that contain the node v. When a new branch is explored, the
aggregate probability and runtime values enable us to update the WBE estimate by changing only the values
for the nodes along the current branch. Thus, although the time complexity of updating the WBE estimate
for a new branch is linear in the length of the branch, it is amortized to O(1) over the time needed to explore
the branch. When a new node is marked for exploration, we need to update the aggregate probability
and runtime values of the nodes along the current branch. The worst time complexity of this operation
is O(d), where d is the depth of the execution tree. Contrary to the case of exploring a new branch, the
cost associated with marking node for exploration does not have constant amortized complexity. Thus, the
overhead of computing the WBE estimate is potentially non-constant.

In contrast to the WBE estimate, the RE estimate needs to be updated only when a new branch is
explored. The time complexity of this operation is linear in the depth of the execution tree but, as explained
above, it is amortized to O(1) over the time needed to explore the branch.

3.3 Fits

As the exploration progresses, new and presumably more accurate intermediate runtime estimates are com-
puted. Previous work [8] considers the intermediate runtime estimates produced at distinct time points in
a stateless exploration run in isolation, using only the latest estimate for decision making. In comparison,
this paper treats the intermediate runtime estimates obtained in the course of a stateless exploration run as a
sequence. We fit a function f (t) to the sequence and then compute the actual runtime estimate by solving
the equation f (t) = t.

Both intuition and experience suggests that the estimates produced by our techniques are initially inac-
curate but converge to the correct value. Consequently, we choose a method that interpolates the estimates’
behavior over time.

The method used in this paper is based on the Marquardt-Levenberg algorithm [13, 12] for weighted
non-linear least-square fitting. We use the algorithm to find the values for coefficients of the function that
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best fit the sequence of intermediate runtime estimates. To reflect the increasing confidence in estimates
over time, the least-square fitting is weighted, using t as the weight for an estimate at time t.

In the context of this paper we consider four different fits:

• Empty fit: This scheme actually does no fitting. Rather, it emulates previous work [8], using the latest
intermediate runtime estimate as the actual runtime estimate.

• Constant fit: f (t) = c. The advantage of using a constant fit is that the solution to the equation f (t) = t
is very likely to be a positive number (and thus meaningful). The disadvantage of using a constant fit
is that it does not detect trends.

• Linear fit: f (t) = a ∗ t + b. The advantage of using a linear fit is its ability to detect linear trends in
the sequence of intermediate runtime estimates. However, the solution to the equation f (t) = t can be
negative and thus of no value.

• Logarithmic fit: f (t) = a ∗ ln(t)+ b. The advantage of using a logarithmic fit is its ability to detect
non-linear trends in the sequence of intermediate runtime estimates. Further, if a solution to the
equation f (t) = t exists, it is guaranteed to be positive. The disadvantage of using a logarithmic fit is
that a solution to the equation f (t) = t may not exist.

Space and Time Complexity

The space and time complexity of the empty fit is O(1). The space complexity of the other fits is linear in the
length of the sequence being fitted. As for the time complexity of the other fits, the Marquardt-Levenberg
algorithm uses a hill climbing technique. A single iteration of the algorithm is linear in the number of length
of the sequence being curve. The number of iterations is potentially unbounded and depends on the desired
precision. In other words, re-computing a fit with every new intermediate runtime estimate results in time
complexity that is quadratic in the length of the sequence being fitted. For long sequences of intermediate
runtime estimates, this overhead can be reduced by employing reservoir sampling [24].

3.4 Resource Allocation Mechanisms

Because stateless exploration might need a considerable amount of time to complete and a test suite of a
large-scale system developer is expected to consist of many tests, it is not unreasonable to expect that the
resources available for testing purposes are insufficient to complete all tests by a deadline. In this subsection
we describe how to use runtime estimation to intelligently allocate machine cycles to a collection of stateless
explorations to maximize testing objectives in the context of limited testing resources.

The generic mechanism maintains a priority queue of stateless exploration runs and the queue is used
to identify which run to advance next. After a stateless exploration run is identified, a new branch of its
underlying execution tree is explored, and its runtime estimate and its priority queue position are updated.
This process is repeated for as long as there are unexplored branches and machine cycles available.

The order of the priority queue depends on the testing objective in use. In the context of this paper, we
consider two intuitive objectives:

• Maximize number of completed tests: This testing objective is motivated by the guarantee realized
upon completion of a stateless exploration run.

• Achieve even coverage across tests: This testing objective is motivated by balancing the values dif-
ferent tests provide towards establishing the confidence in the correct operation of the program under
test.
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For the first objective, stateless explorations are ordered by the remaining time estimate, which is
computed by subtracting the elapsed time from the runtime estimate, following the “shortest remaining time
first” policy.

For the second objective, stateless explorations are ordered by the coverage estimate, which is computed
by dividing the elapsed time by the runtime estimate, following the “smallest coverage first” policy.

Space and Time Complexity

The space complexity of maintaining a priority queue is O(k), where k is the number of stateless explo-
rations. The time complexity of identifying the top element of a priority queue is O(1), while the time
complexity of updating the value of the top element is O(logk), where k is again the number of stateless
explorations.

4 Evaluation

The goal of this section is to evaluate the following two hypotheses:

1. Accuracy: The estimation techniques described in Section 3 generate accurate runtime estimates.

2. Efficiency: The resource allocation mechanisms described in Section 3 outperform a baseline mech-
anism based on a round-robin policy.

To evaluate these hypotheses, we use a set of 10 exploration traces recently released by Google [18]. We
wrote a trace simulator that reads these traces, simulates the exploration of the execution tree, and computes
an intermediate runtime estimate every time a branch of the execution tree is explored. Additionally, we
also created a program that inputs a sequence of intermediate runtime estimates and a fit type and uses the
Marquardt-Levenberg algorithm to determine a function of that type with the best fit to the sequence.

The rest of this section first provides details about the exploration traces used for the evaluation and
then addresses the above hypotheses.

4.1 Exploration Traces

The set of exploration traces used for our evaluation is summarized in Table 1. The table identifies the name
of a test, the number of nodes of its execution tree, the number of branches of its execution tree, and the
total time needed for the exploration. The unit of time is abstract as the timing of the exploration traces has
been scaled by a magic constant as part of the trace anonymization process [18].

TEST NAME # NODES # BRANCHES TIME

RESOURCE(2) 110 8 2.42
RESOURCE(3) 4,914 279 86.15
RESOURCE(4) 248,408 12,054 4,438.54
SCHEDULING(6) 29,578 720 250.80
SCHEDULING(7) 237,528 5,040 1,956.32
SCHEDULING(8) 2,142,164 40,320 19,868.90
STORE(3,3,7) 20,577 924 392.78
STORE(3,3,8) 88,386 3,790 1,715.49
STORE(3,3,9) 230,747 9,230 2,613.85
TLP 4,201,044 27,200 24,197.60

Table 1: Test Statistics
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The RESOURCE(x) tests are representative of a class of tests that evaluate interactions of x different
users that acquire and release resources from a pool of x resources. The SCHEDULING(x) tests are repre-
sentative of a class of tests that evaluate handling of x concurrent scheduling requests. The STORE(x,y,z)
tests are representative of a class of tests that evaluate interactions of x users of a distributed key-value store
with y front-end nodes and z back-end nodes. Finally, the TLP test is representative of a class of tests that
perform scheduling work.

4.2 Accuracy Evaluation

To evaluate the first hypothesis, we compare several estimation techniques based on different combinations
of strategies, estimators, and fits. In the context of this subsection, accuracy of an estimation technique is
evaluated by advancing a stateless exploration run for some time, generating intermediate runtime estimates
after each test execution, using a fit to compute a prediction, and comparing the prediction to the correct
value.

The experiment collected sequences of estimated runtimes computed during the simulation of the ex-
ploration traces RESOURCE(4), SCHEDULING(8), STORE(3,3,9), and TLP that are representative of the
full set. For each test a sequence of runtime estimates was collected for all possible combinations of the RE
and WBE estimators and the eager, hindsight, and lazy strategies.

For each combination of a test, a strategy, an estimator, and a sequence of runtime estimates, we then
computed the empty, constant, linear, and logarithmic fit using the initial 1%, 5%, and 25% of the sequence.

Results

Figure 3 depicts the results of our initial accuracy measurements. The accuracy of the runtime estimate e
with respect to the actual runtime a is computed as follows:

accuracy(e,a) =
{

100∗ (a/e)% if e > a
100∗ (e/a)% otherwise

For example, the accuracy of a runtime estimate that is 50% of the actual runtime is 50% while the accuracy
of a runtime estimate that is 400% of the actual runtime is 25%. In other words, the graphs do not distinguish
between under-estimation and over-estimation.

Figure 3 consists of three bar graphs, one for each percentage at which the fit was computed. Each of
the bar graphs depicts the accuracy achieved for the 96 different combinations of test, strategy, estimator,
and fit, with the results clustered by fit and test. Note that the vertical axis depicting the accuracy is in
logarithmic scale. In some cases, the application of a fit did not generate a positive solution for the runtime
estimate and in such cases the bar is missing.

Analysis

Our evaluation indicates that, unlike the eager strategy, the lazy strategy is consistent with the hindsight
strategy. In other words, the lazy and the hindsight strategies tend to agree on which unmarked children will
be marked in the future; in fact, in the case of the SCHEDULING tests and the TLP test, the lazy strategy and
the hindsight strategy are indistinguishable. At the same time our evaluation indicates that the the hindsight
strategy does not always produce the most accurate results. Surprisingly, the eager strategy occasionally
produces the most accurate results and we attribute this fact to inaccuracy introduced by estimators and fits.

As for the estimators, our evaluation does not indicate that either of the two estimators consistently
outperforms the other one. The weighted backtrack estimator, however, produces estimates that are, except
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Figure 3: Accuracy of Runtime Estimation Techniques

for two cases, within an order of magnitude from the actual runtime. This cannot be said about the recursive
estimator, which makes the weighted backtrack estimator more dependable.

Turning now to fits, the linear fit often fails to generate a positive solution, which makes it undepend-
able. Comparing the empty fit to the constant fit, the empty fit produces better or equivalent results in most
of the cases, which confirms our intuition that the intermediate runtime estimates grow more accurate with
time. The logarithmic fit generates a solution in all but two cases, and compared to the empty fit, produces
better or equivalent results in most of the cases.

To analyze the overall accuracy, we took a closer look at the best-performing techniques. Tables 2, 3,
and 4 report the estimation error of the best performing estimation techniques after 1%, 5%, and 25% of the
exploration respectively. The acronyms in the TECHNIQUE column have the following meaning: E+W+E

means eager strategy, WBE, and empty fit, L+R+E means lazy strategy, RE, and empty fit, L+R+L means
lazy strategy, RE, and logarithmic fit, and L+W+L means lazy strategy, WBE, and logarithmic fit.

Interestingly, the accuracy of the E+W+E technique does not improve over time, while the accuracies of
the other techniques do. To understand this phenomenon, Figure 4 depicts the sequence of runtime estimates
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TECHNIQUE

R
ESOURCE(4)

SCHEDULING(8)

STORE(3,3,9)
TLP

M
EAN

E+W+E 62.11% 75.19% 93.46% 55.87% 68.97%
L+R+E 16.95% 86.21% 16.45% 9.24% 16.69%
L+R+L 48.78% 0.00% 75.19% 27.70% 42.92%

L+W+L 14.03% 89.29% 52.91% 13.18% 22.57%

Table 2: Accuracy of Best Techniques after 1%

E+W+E 45.66% 80.65% 91.74% 84.03% 69.93%
L+R+E 30.68% 92.59% 94.34% 15.22% 33.44%
L+R+L 63.69% 87.72% 40.82% 23.42% 42.37%

L+W+L 51.02% 94.34% 41.15% 23.58% 41.32%

Table 3: Accuracy of Best Techniques after 5%

E+W+E 42.19% 85.47% 59.17% 74.07% 60.61%
L+R+E 66.67% 99.01% 97.09% 47.39% 70.92%
L+R+L 93.46% 90.91% 91.74% 85.47% 90.09%

L+W+L 85.47% 95.24% 60.61% 62.50% 72.99%

Table 4: Accuracy of Best Techniques after 25%

over time for selected tests and best-performing techniques. Each graph also includes a horizontal line that
identifies the correct runtime.

As expected, the eager strategy leads to over-estimation, while the lazy strategy leads to under-estimation.
Further, the value of the runtime estimate can change quickly over time, which suggests that the performance
of the estimation techniques based on the empty fit is sensitive to the time at which the fit is evaluated.

Thus, although at first glance the E+W+E technique seems to be the best, our further investigation
suggests that the L+W+L technique might be a more robust choice. We base this conclusion on two facts:
1) the resilience to spikes and drops in the sequence of the runtime estimate provided by the logarithmic fit
and 2) the accuracy of fitting a logarithm to a sequence of runtime estimates generated by the combination
of the lazy strategy and WBE.

In summary, the most accurate techniques examined in this paper consistently achieve average accuracy
above 60% after exploring as little as 1% of the state space. If we were to choose a technique to deploy in
production, our recommendation would be to use a technique that combines the lazy strategy, the weighted
backtrack estimator, and the logarithmic fit.

4.3 Efficiency Evaluation

In this subsection, we evaluate the potential of runtime estimation to implement allocation policies that
target the testing objectives introduced in Section 3.

4.3.1 Maximizing # of Completed Tests

To evaluate how well runtime estimation techniques aid in maximizing the number of completed tests,
we extended our trace simulator with a priority queue that tracks the remaining time for each stateless
exploration run and a scheduler that advances stateless exploration runs according to the priority queue.
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Figure 4: Evolution of Runtime Estimates Over Time
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Figure 5: Maximizing # of Completed Tests

C
OM

PLETED

RE-EAGER

RE-LAZY

W
BE-EAGER

W
BE-LAZY

OPTIM
AL

1 0.29 0.29 0.29 0.29 0.08
2 0.38 0.09 0.09 0.09 0.08
3 0.30 0.20 0.13 0.20 0.13
4 8.08 0.24 0.22 0.25 0.22
5 2.58 0.27 0.23 0.31 0.21
6 2.03 0.49 1.82 0.50 0.30
7 1.47 0.45 2.00 0.46 0.30
8 1.24 0.46 1.79 0.48 0.40
9 1.11 0.73 1.10 0.73 0.64

10 1.00 1.00 1.00 1.00 1.00
MEAN 1.85 0.42 0.87 0.43 0.34

Figure 6: Performance of Allocation Algorithms Relative
to the Baseline Algorithm (lower is better)

We examine all combinations of the RE and WBE estimators and the eager, hindsight, and lazy strate-
gies. Given the frequency of runtime estimate computations in this experiment, we only consider the empty
fit, which is the only fit with constant time and space complexity.

For the sake of comparison, we also examine two additional scheduling algorithms: 1) a baseline
algorithm, which selects the next test to run using round-robin, representing an approach commonly used in
practice, and 2) an optimal algorithm, which cheats by knowing the actual runtime of each tests and executes
tests from the shortest to the longest.

Lastly, we provided the simulator with unlimited time and the 10 exploration traces and recorded the
times at which different techniques completed each. In other words, instead of using a fixed time budget,
we recorded data that allows us to derive the results for an arbitrary fixed time budget.

Results

Figure 5 presents a bar graph, which for each of the allocation algorithms plots the time needed to complete
a number of tests. The horizontal axis shows the number of completed tests, while the vertical axis shows
time in logarithmic scale. Note that the measurement is indifferent to the order in which the tests finish and
only compares the times required by different algorithms to complete a certain number tests.

Analysis

Our results indicate that the algorithms that incorporate the eager strategy tend to perform poorly and, in
some cases, need more time to complete a certain number of tests than the baseline algorithm. In contrast to
that, the algorithms that incorporate the hindsight and the lazy strategies perform comparably to the optimal
algorithm. In most cases, these algorithms require a fraction of the time required by the baseline algorithm
to complete a certain number of tests. Further, our results indicate than in the context of this experiment, the
choice of the estimator is not significant.

Figure 6 reports the fractions of the time required by the best performing algorithms with respect to the
baseline algorithm. The rows of the table report these fractions for each number of completed tests and the
last row reports the average.

Thus, our experiments indicate that the allocation algorithms based on a combination of the lazy strat-
egy, either of the two estimators, and the empty fit, reduce the time needed by the baseline approach to
complete a certain number of tests by 2.38× on average, while the theoretical maximum is 2.94×.
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Figure 7: Achieving Even Coverage

TEST

ROUND-ROBIN

RE-EAGER

RE-LAZY

W
BE-EAGER

W
BE-LAZY

RESOURCE(2) 11.11 1.36 1.36 1.36 1.36
RESOURCE(3) 11.11 2.77 3.26 2.77 4.05
RESOURCE(4) 1.31 3.17 1.51 1.80 2.87
SCHEDULING(6) 11.11 1.35 1.96 1.38 2.09
SCHEDULING(7) 3.19 1.13 1.92 1.23 2.02
SCHEDULING(8) 2.59 1.12 2.00 1.33 2.07
STORE(3,3,7) 11.11 1.61 1.59 1.22 1.20
STORE(3,3,8) 4.12 2.01 2.00 1.35 1.15
STORE(3,3,9) 2.35 1.78 1.75 1.01 1.22
TLP 1.67 1.71 8.15 1.71 7.12
MEAN 5.97 1.80 2.55 1.52 2.51

Figure 8: Coverage Error of Allocation Algorithms

4.3.2 Achieving Even Coverage

To evaluate how well the runtime estimation techniques aid in achieving even coverage across the test suite,
we modified the ordering the priority queue uses to order elements from an ordering based on estimated
remaining time to an ordering based on estimated coverage.

Similarly to the previous experiment, we examined all combinations of the strategies and estimators
discussed in this paper and the empty fit. Further, we examined a baseline algorithm that selects the tests to
run using a round-robin policy. In contrast to the previous experiment, we simulated the scarcity of testing
resources by setting the machine time budget to 5,000 time units.

For each test, we measured the coverage error that is, the relative difference between the realized and
the optimal coverage. Formally, let t be sum of the actual runtimes of all tests in a test suite and m ≤ t be
the amount of available machine time, then the even coverage is e = m

t . Further, let t be the time needed to
fully explore the test and t∗ be the time spent exploring the test, then the realized coverage is r = t∗

t and the
coverage error of the realized coverage r with respect to the even coverage e, denoted error(r,e) is defined
as:

error(r,e) =
{

r/e if e > r
e/r otherwise

Results

Figure 7 presents a bar graph, which for each of the allocation algorithms and each of the tests plots the
achieved coverage error. The horizontal axis is used to cluster the results by test, while the vertical axis plots
the coverage error. Note that the graphed data does not distinguish between under-shooting or over-shooting
the even coverage.

Analysis

Our results indicate that the algorithms that incorporate the hindsight and the lazy strategies tend to perform
poorly and in some cases even achieve higher coverage error than the baseline algorithm. In contrast to that,
the algorithms based on the eager strategy often produce the best result, always achieving a coverage error
of less than 3. Further, the algorithms that incorporate the weighted backtrack estimator tend to perform
marginally better than those that incorporate the recursive estimator.

Table 8 compares the coverage errors of the best performing algorithms to that of the baseline algorithm.
The rows report the coverage errors for individual tests and the last row reports the average. Thus, our
experiments indicate that allocation algorithms based on a combination of the eager strategy, either of the
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two estimators, and the empty fit, reduce the coverage error of the baseline approach by 3.31× on average,
while the theoretical maximum is 5.97×.

5 Related Work

The related work comes from two categories: research on state space estimation and research on resource
allocation.

State Space Estimation

The estimators in this paper adapt the work on estimating search tree size of Kilby et al. [8] to the prob-
lem of estimating stateless exploration runtime. In their evaluation, Kilby et al. present the accuracy of
their estimation techniques achieved during exploration of search trees corresponding to both decision and
optimization problems.

Similar to our work, the techniques of Kilby et al. can be described as online and passive. However, in
contrast to search tree size estimation of Kilby et al., our techniques address the non-linear nature of stateless
exploration due to DPOR. Nonetheless, comparing the accuracy of our estimation techniques on stateless
exploration runs to Kilby et al. estimation techniques on search trees, our techniques perform equally well
on a harder problem.

In related work, Taleghani and Atlee [19] studied the problem of state space coverage estimation for
explicit-state model checking. Their solution is based on Monte Carlo techniques and complements a state
space exploration with random walks to estimate the ratio between visited and unvisited states. In their eval-
uation, Taleghani and Atlee implemented their technique inside of Java PathFinder (JPF) [23] and evaluated
it using a collection of Java programs.

In contrast to our work, the technique of Taleghani and Atlee is limited to stateful approaches and
can be described as offline and active. More precisely, the estimate is computed only once at the end of the
exploration and the computation relies on a particular state space exploration algorithm. Although Taleghani
and Atlee do not explicitly mention whether their experiments were carried out in the context of state space
reduction, since JPF supports it, we assume they were. If that is the case, our technique performs equally
well on a similar problem but does not rely a specific exploration algorithm.

Resource Allocation

Dynamic allocation of resources to a collection of independent tasks is both a well studied theoretical prob-
lem [21] and a practical problem addressed by a range of systems ranging from batch schedulers such as the
Maui scheduler [7] to platforms for sharing resources in a data center [6].

While in practice [6, 7] tasks are usually running concurrently on a cluster, this paper experiments with
a simple model that schedules tasks sequentially. This simplification is justified by the unique nature of a
stateless exploration run, which typically consists of many executions of the same test. Recording progress
of each stateless exploration run using an execution tree thus enables low-overhead fine-grained interleaving
of concurrent stateless exploration runs. In addition, different executions of the same test can be explored in
parallel, enabling linear speed-up [16]. In other words, representing a collection of machines as a sequence
of machine cycles is a reasonable abstraction for a large collection of very small independent tasks.

Another unique aspect of allocation of resources among stateless exploration runs is how value accrues.
In general, value of a task accrues only upon its completion, which is reflected in scheduling objectives that
minimize average task latency [7] or maximize task throughput [21]. In the case of a stateless exploration
run, value can accrue at any point in time and a part of our evaluation is based on an objective that uses
coverage as a measure of value.
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Interestingly, the problem of deciding which stateless exploration run to advance next is similar to the
problem of multi-armed bandit [22]. In short, a multi-armed bandit problem for a gambler is to decide which
arm of an n-slot machine to pull to maximize his total reward in a series of trials. To bridge the research on
multi-armed bandits with our work, we need to define a reward function for stateless exploration runs. The
search for a good reward function definition seems to be an interesting avenue for future work.

6 Conclusion

This paper presents a solution to the problem of allocating resources to a collection of stateless exploration
runs. The solution comes in the form of different allocation algorithms that are based on testing objectives
and techniques for estimating the runtime of a stateless exploration run.

In this paper, an estimation technique consists of three components: a strategy, an estimator, and a
fit. We investigated three strategies: eager, hindsight (infeasible in practice), and lazy; two estimators:
weighted backtrack and recursive; and four fits: empty, constant, linear, and logarithmic; for a total of 16
feasible estimation techniques.

In the course of our experimental evaluation of these estimation techniques, we arrived at a number
of conclusions: 1) the eager strategy tends to over-estimate the total runtime, 2) an estimate based on the
eager strategy can decrease sharply if DPOR backtracks from a node with unexplored children, 3) the lazy
strategy tends to under-estimate the total runtime, 4) a sequence of runtime estimates produced by WBE in
the course of a stateless exploration run is more stable than a sequence of runtime estimates produced by
RE, 5) the empty fit is sensitive to spikes and drops in the sequence of runtime estimates, while the other fits
are not, 6) the empty fit generates more accurate estimates than the constant fit, 7) the linear fit often fails to
generate an estimate, 8) the logarithmic fit is a good match for the combination of the lazy strategy and the
weighted backtrack estimator.

Further, we observed the overall average accuracy of our best estimation techniques to be above 60%
after exploring as little as 1% of the state space. Although such accuracy is sufficient for making manual
or automated decision based on the estimated runtime, we would like to do better in the future. We believe
the sub-optimal accuracy of our best estimation techniques stems from 1) the non-linear nature of DPOR
progress through an execution tree and 2) from unexpected patterns in the structure of an execution tree.

We conjecture that, similar to power-law in random networks graphs [1], execution trees generated
by stateless exploration of concurrent programs have common structural patterns. In our future work, we
plan to identify these common structural patterns and use them to improve the accuracy of our estimation
techniques.

Besides evaluating the accuracy of our estimation techniques, this paper also investigated the ability of
these techniques to allocate resources to a collection of stateless exploration runs heeding a testing objec-
tive. We considered two testing objectives: 1) maximizing the number of completed tests and 2) achieving
even coverage between different tests. For each of these objectives we designed an allocation algorithm
parametrized by an estimation technique. We then evaluated the performance of our estimation techniques
against a baseline algorithm based on a round-robin policy and against the theoretical optimum.

In the course of our experimental evaluation of these allocation algorithms, we arrived at the following
conclusion. While, the lazy strategy outperformed the eager strategy at meeting the first testing objective,
the eager strategy outperformed the lazy strategy at meeting the second testing objective. We believe that
this is an indication of the absolute estimates being more accurate when generated using the lazy strategy,
while the ratios between these absolute estimates for different stateless exploration being more accurate
when generated using the eager strategy.

Further, our evaluation demonstrated that, for the two testing objectives considered in this paper, our
allocation algorithms narrow the gap between the baseline approach and the theoretical optimum. In future
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work, we would like to experiment with other testing objective, such as maximizing the number of bugs
found, which we did not consider in this paper since the exploration traces from Google do not contain such
information.
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