
TABLEFS: Embedding a NoSQL Database Inside the
Local File System

Kai Ren, Garth Gibson

CMU-PDL-12-103

May 2012

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Conventional file systems are optimzed for large file transfers instead of workloads that are dominated by metadata and small file
accesses. This paper examines using techniques adopated from NoSQL databases to manage file system metadata and small files,
which feature high rate of changes and efficient out-of-core data representation. A FUSE file system prototype was built by storing
file system metadata and small files into a modern key-value store LevelDB. We demonstrate that such techniques can improve the
performance of modern local file systems in Linux as much as an order of magnitude for workloads dominated by metadata and
tiny files.

Acknowledgements: This research is supported in part by The Gordon and Betty Moore Foundation, NSF under award, SCI-0430781 and
CCF-1019104, Qatar National Research Foundation 09-1116-1-172, DOE/Los Alamos National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of the Intel Science and Technology Center for Cloud Computing (ISTC-CC), by gifts from Yahoo!, APC,
EMC, Facebook, Fusion-IO, Google, Hewlett-Packard, Hitachi, Huawei, IBM, Intel, Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Sam-
sung, Seagate, STEC, Symantec, and VMware. We thank the member companies of the PDL Consortium for their interest, insights, feedback, and
support.

Keywords: TableFS, File System, File System Metadata, NoSQL Database, LSM Tree

Introduction

While parallel and Internet service file systems have demonstrated effective scaling for high bandwidth,
large file transfers in the last decade [26, 33, 17, 25, 8, 10], the same is not true for workloads that are
dominated by metadata and tiny file access [23, 34]. Instead there has emerged a large class of scalable
small-data storage systems, commonly called key-value stores, that emphasize simple (NoSQL) interfaces
and large in-memory caches [2, 21, 16].

Some of these key-value stores feature high rates of change and efficient out-of-memory log-structured
merge (LSM) tree structures [22, 5, 29]. We assert that file systems should adopt techniques from modern
key-value stores for metadata and tiny files, because these systems are “thin” enough to provide the per-
formance levels required by file systems. We are not attempting to improve semantics (e.g. transactions
[27, 12]). To motivate our assertion, in this paper we present experiments in the most mature and restrictive
of environments: a local file system managing one magnetic hard disk. Our results show that for workloads
dominated by metadata and tiny files, it is possible to improve the performance of the most modern local file
systems in Linux by as much as an order of magnitude by adding an interposed file system layer [1] that rep-
resents metadata and tiny files in a LevelDB key-value store [15] that stores its LSM tree and write-ahead
log segments in these same local file systems. Perhaps it is finally time to accept the old refrain that file
systems should at their core use more database management representations and techniques [30], now that
database management techniques have been sufficiently decoupled from monolithic database management
system (DBMS) bundles [31].

1 Background

Even in the era of big data, most things in a file system are small [19, 6]. Inevitably, scalable systems should
expect the numbers of small files to soon achieve and exceed billions, a known problem for both the largest
[23] and most local file systems [34].

Embedded Databases File system metadata is structured data, a natural fit for relational database tech-
niques. However, because of large size, complexity and slow speed, file system developers have long been
reluctant to incorporate traditional databases into the lower levels of file systems [30, 20]. Modern stacked
file systems often expand on the limited structure in file systems, hiding structures inside directories meant
to represent files [9, 13, 4], although this may increase the number of small files in the file system. In this pa-
per, we return to the basic premise: file system metadata is natural for table-based representation, and show
that today’s lightweight data stores may be up to the task. We are concerned with an efficient representation
of huge numbers of small files, not strengthening transactional semantics [27, 12].

Local File System Techniques Early file systems stored directory entries in a linear array in a file and
inodes in simple on-disk tables. Modern file systems such as Ext4 uses hash tables, and XFS, ZFS, and
Btrfs use B-Trees, for indexing directories [14, 18, 32]. Moreover, LFS, WAFL, ZFS and Btrfs [24, 11, 3]
use non-overwrite or log structured methods to batch metadata changes and write them sequentially. Such
techniques may group all the metadata needed to access a file together on-disk to exploit temporal locality.
C-FFS [7], however, explicitly groups the inodes of files with their directory entries, and small files from
the same directory in adjacent data blocks. And hFS [35] uses log structuring to manage metadata and
update-in-place to manage large files.

LevelDB and LSM Trees LevelDB [15] is an open-source key-value database library that features Log-
Structured Merge (LSM) Trees [22]. It provides simple APIs such as GET, PUT, DELETE and SCAN.

1

Unlike BigTable, single row transactions are not supported in LevelDB. Because TABLEFS uses LevelDB,
we will review its design in greater detail in the next section.

The basic technique used by LSM-Trees and LevelDB is to manage multiple large sorted arrays of
on-disk data (called SSTables) in a log-structured way. When inserting or updating, elements are write-back
buffered in memory, and then sorted and written to disk as an SSTable. When the memory buffer grows
and exceeds a threshold (4MB by default), the buffer is dumped into disk in SSTables. When querying an
element, it requires searching for the element in a list of SSTables and returning the most up-to-date. To
reduce the number of SSTables it searches, LevelDB maintains a memory index that records the key range
of each SSTable, and uses bloom-filters to reduce false positive lookups. To improve read query speed and
remove deleted data, it periodically merge-sorts a list of SSTables. This process is called “compaction”, and
is similar to online defragmentation in file systems, and cleaning in log-structured file system [24].

2 TABLEFS

As shown in Figure 1(a), TABLEFS exploits the FUSE user level file system infrastructure to interpose
on top of the local file system, represent directories, inodes and small files in one all encompassing table,
and only write to the local disk large objects such as write-ahead logs, SSTables containing changes to the
metadata table, and files whose size is large.

FUSE lib

Large File Store

Metadata Store

VFS

Local Filesystem FUSE Kernel Module

Benchmark
Process

TableFS

Kernel

User Space

User Space

Kernel

Benchmark
Process

VFS

Local Filesystem

(a)

(b)

LevelDB

Figure 1: (a) shows the architecture of TABLEFS. A FUSE kernel module redirects file system calls from
a benchmark process to TABLEFS, and TABLEFS stores objects into either LevelDB and a large file store.
(b) shows the case architecture an experiment compare against in Section 3. These figures suggest the large
overhead TABLEFS experiences relative to the traditional local file systems.

Local File System as Object Store There is no explicit space management in TABLEFS, instead it uses
the local file systems for allocation and storage of objects. Because TABLEFS packs directories, inodes and
small files into a LevelDB table, and LevelDB stores sorted logs of about 2MB each, the local file system
sees many fewer, larger objects.

Large File “Blob” Store Files larger than T bytes are stored directly in the object store according to their
inode number. Today’s object store uses a two-level directory tree in the local file system, storing a file
with inode number I as “/LargeFileStore/J/I” where J = I÷10000. In TABLEFS today, T , the threshold for

2

blobbing a file is 4KB, which is the median size of files in desktop workloads [19], although others have
suggested it be 256KB to 1MB [28].

Table Schema TABLEFS’s metadata store aggregates directory entries, inode attributes and small files
into one LevelDB table. Each file is given an inode number, to represent the hierarchical structure of the
user’s namespace, each row in the table is ordered by a 128-bit key consisting of the 64-bit inode number of
its parent directory and a 64-bit hashing value of its filename string (final component of its pathname). The
value of a row contains the full name and inode attributes such as inode number, ownership, access mode,
file size, timestamps (struct stat in Linux). For small files, the row value also contains the file’s data. Figure
2 shows an example of storing a sample file system’s metadata into one LevelDB table.

Key Value
<0,h1> 1, “home”, struct stat

<1,h2> 2, “foo”, struct stat

<1,h3> 3, “bar”, struct stat

<2,h4> 4, “apple”, hard link

<2,h5> 5, “book”, struct stat,
inline small file (<4KB)

<3,h6> 4, “pear”, hard link

<4,null> 4, struct stat,
large file pointer (> 4KB)

Le
xi

co
gr

ap
hi

c
or

de
r

book
hash(“book”)=h5

/
Home

hash(“home”)=h1

foo
hash(“foo”)=h2

bar
hash(“bar”)=h3

apple
hash(“apple”)=h4

pear
hash(“pear”)=h6

0

32

1

4
5

Figure 2: An example illustrates table schema used by TABLEFS’s metadata store. The file with inode
number 4 has two hard links, one called “apple” from directory foo and the other called “orange” from
directory bar.

All the entries in the same directory share the same first 64 bits of the table’s key. For readdir opera-
tions, once the inode number of the target directory has been retrieved, a scan sequentially lists all entries
having the directory’s inode number as the first 64 bits of the table’s key. To resolve a single pathname,
TABLEFS starts searching from the root inode, which has a well-known inode number (0). Traversing
the user’s directory tree involves constructing a search key by concatenating the inode number of current
directory with the hash of next component name in the pathname.

Hard Link The above schema results special case hard links because two ore more rows must have the
same inode attributes and data. As shown in Figure 2, TABLEFS marks some rows as hard links, and
maintain only one row, whose key is its inode number with no name hash value, for the attributes and data.

Inode Number Allocation TABLEFS uses a global counter for allocating inode numbers. The counter
increments when creating a new file or a new directory. Since we use 64-bit inode numbers, it is not soon
necessary to recycle the inode number of delete entries. Coping with for 32-bit Linux operating systems
requiring inode number recycling, is beyond the scope of this paper.

Locking LevelDB provides atomic row writes but does not support atomic row read-modify-write oper-
ations. Since all inode attributes are stored in one key-value pair, TABLEFS must often read-modify-write
attributes. We implemented a light-weight locking mechanism in the TABLEFS core layer to ensure correct-
ness under concurrent accesses.

3

Journaling TABLEFS relies on LevelDB and the local file system to achieve journaling. LevelDB has its
own write-ahead log that journals all updates to the table. LevelDB can be set to commit the log to disk
synchronously or asynchronously. To achieve a consistency guarantee similar to “ordered mode” in Ext4,
TABLEFS forces LevelDB to commit the write-ahead log to disk synchronously every 5 seconds.

3 Evaluation

Evaluation System We evaluate our TABLEFS prototype a Linux desktop equipped with:

Linux Ubuntu 10.04, Kernel 2.6.32-33
CPU Intel Core2 Quad Q9550 @ 2.83GHz
DRAM DDR SDRAM 4GB, using only 512 MB
Hard Disk Seagate ST31000340NS

SATA, 7200rpm, 1TB
Using only a 5GB partition
Random Seeks 145 seeks/sec peak
Sequential Reads 121.6 MB/sec peak
Sequential Writes 106.4 MB/sec peak

We limit the machine’s available memory to only 512 MB (setting boot parameters of Linux), to pro-
hibit any cache in a user process or kernel cache from using much more memory than it competition, because
we cannot easily control all cache sizes.

We compare TABLEFS with Linux’s most sophisticated local file systems: Ext4, XFS, and Btrfs, whose
versions are 1.41.11, 3.1.0, and 0.19 respectively. Ext4 is mounted with “ordered” journaling to force
all data to be flushed out to disk before its metadata is committed to the journal. We believe this is the
same fault semantics we achieve in TABLEFS. By default, the journal of Ext4 is synchronously committed
to disks every 5 seconds. XFS and Btrfs uses similar policies to synchronously update journals. Btrfs,
by default, duplicates metadata and also calculates checksums for data and metadata. We disable both
features (unavailable in the other file systems) when benchmarking Btrfs. TABLEFS always uses Btrfs as
the underlying file system. Since the tested filesystems have different inode sizes (Ext4 and XFS use 256
bytes and Btrfs uses 136 bytes), we pessimistically punish TABLEFS by padding its inode attributes to 256
bytes. This slows down TABLEFS quite a bit, but it still performs quite well.

All benchmarks are simple “create and query” micro-benchmarks intended only to show that even with
the overhead of FUSE, LevelDB, LevelDB compaction, and padded inode structures, TABLEFS can improve
performance on the local file system. All benchmarks were run of three times with very little variation.

Benchmark with Metadata Only We first micro-benchmark the efficiency of pure metadata operations.
The micro-benchmark consists of two phases. The first phase (“creation”) generates a file system of one
million files, all zero length. This file system has the same namespace as one author’s personal Ubuntu
desktop, trimmed back to one million files. The benchmark creates this test namespace in the tested file
systems in depth first order. The second phase (“query”) issues 2 million random read or write queries
to random (uniform) files or directories. A read query calls stat on the file, a write query randomly does
either a chmod or utime to update the mode or the timestamp fields. Between the two phases, we force local
filesystems to drop their cache, so that the second phases starts with a cold cache.

Figure 3 shows the performance in operations per second, averaged over the query phase, for three
different ratios of read and write queries: (1) read-only queries, (2) 50% read and 50% write queries, and
(3) write-only queries. TABLEFS is 1.5X to almost 10X faster than the other tested file systems in all three
workloads. Figure 4 shows the total disk traffic (sectors and requests) during the query phase in the 50%

4

3139.7!

611.4!

496.0!

440.7!

257.5!

218.5!

1142.9!

400.2!

354.9!

516.9!

373.7!

320.0!

0! 1000! 2000! 3000! 4000!

Read
Only!

50%R
+50%W!

Write
Only!

ops/sec!

Btrfs!
Ext4!
XFS!
TableFS!

Figure 3: Performance of each file system in the query phase of the metadata-only benchmark.

read and 50% write workload. These numbers are extracted from Linux proc file system (/proc/diskstats).
Compared to other file systems, TABLEFS reduces write disk traffic a lot, and has only about 10127 disk
write requests. This shows that using LevelDB effectively batches small random writes into large sequential
writes. TABLEFS, however, incurs more read traffic, and more total number of requests which still running
faster.

0!

2!

3!

0!

6!

13!

0!

7!

11!

0!

6!

8!

1.27!

19.69!

24.04!

4.64!

5.47!

5.84!
8.66!

5.78!

6.23!
1.91!

3.04!

2.43!

0! 10! 20! 30!

TableFS-RO!
TableFS-RW!
TableFS-WO!

Ext4-RO!
Ext4-RW!
Ext4-WO!
Btrfs-RO!
Btrfs-RW!
Btrfs-WO!
XFS-RO!
XFS-RW!
XFS-WO!

GB!

Data Read!
Data Written!

(a) Total data read from / written to disk

0.00!

0.01!

0.02!

0.00!

0.52!

1.02!

0.00!

0.88!

1.35!

0.00!

0.66!

0.96!

0.17!

1.51!

1.93!

0.99!

1.19!

1.26!

1.50!

1.29!

1.42!
0.30!

0.47!

0.39!

0! 0.5! 1! 1.5! 2! 2.5!

TableFS-RO!
TableFS-RW!
TableFS-WO!

Ext4-RO!
Ext4-RW!
Ext4-WO!
Btrfs-RO!
Btrfs-RW!
Btrfs-WO!
XFS-RO!
XFS-RW!
XFS-WO!

M !

Number of Read
Requests!
Number of Write
Requests!

(b) Total number of disk read / write requests

Figure 4: Total disk traffic during the query phase of metadata-only benchmark, when 50% of queries are
reads and 50% are writes.

Benchmark with Small Files The second micro-benchmark is similar to first except that we create one
million 1KB files in 1000 directories, each directory containing 1000 files. In the query phase, read queries
retrieves the content of a file, and write queries overwrite the whole file. Files in the query phase are still
randomly picked, and distributed uniformly in the namespace. Figure 5 shows the results with a 50%read-
50%write workload of one million queries. In creation phase, TABLEFS is much slower than Ext4 and
Btrfs, probably because the FUSE overhead is more significant with non-zero file size. In the query phase,
however, TABLEFS outperforms all other file systems by 2X.

5

177.0!

91.6!

80.8!

92.4!

10204.1!

38461.5!

537.5!

32786.9!

1! 10! 100! 1000! 10000! 100000!

TableFS!

Ext4!

XFS!

Btrfs!

ops/sec!

Creation!

50%R+50%W!

Figure 5: Performance during the query phase of a small files benchmark. The workload is 1 million
50%Read-50%Write queries on 1 million 1KB files.

4 Conclusion

File systems have long suffered low performance when accessing huge collections of small files because
caches cannot hide all disk seeks. TABLEFS uses modern key-value store techniques to pack small things
(directory entries, inode attributes, small file data) into large on-disk files with the goal of suffering fewer
seeks when seeks are unavoidable. Our implementation, even hampered by FUSE overhead, LevelDB code
overhead, LevelDB compaction overhead, and pessimistically padded inode attributes, performs much better
than state-of-the-art local file systems when the workload is pure metadata and much better during the query
phase for small file workloads.

References

[1] FUSE. http://fuse.sourceforge.net/.

[2] Memcached. http://memcached.org/.

[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] John Bent and et al. Plfs: a checkpoint filesystem for parallel applications. In SC, 2009.

[5] Fay Chang and et al. Bigtable: a distributed storage system for structured data. In OSDI, 2006.

[6] Shobhit Dayal. Characterizing HEC storage systems at rest. Technical report, Carnegie Mellon Uni-
versity, 2008.

[7] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Exploiting disk
bandwidth for small files. In USENIX ATC, 1997.

[8] Sanjay Ghemawat and et al. The Google file system. In SOSP, 2003.

[9] Tyler Harter and et al. A file is not a file: understanding the I/O behavior of Apple desktop applications.
In SOSP, 2011.

[10] HDFS. Hadoop file system. http://hadoop.apache.org/.

6

http://fuse.sourceforge.net/
http://memcached.org/
http://www.opensolaris.org/os/community/zfs
http://hadoop.apache.org/

[11] Dave Hitz and et al. File system design for an NFS file server appliance. In USENIX Winter, 1994.

[12] Aditya Kashyap and et al. File system extensibility and reliability using an in-kernel database. Master
Thesis, Computer Science Department, Stony Brook University, 2004.

[13] Hyojun Kim and et al. Revisiting storage for smartphones. In FAST, 2012.

[14] Jan Kra. Ext4, btrfs, and the others. In Proceeding of Linux-Kongress and OpenSolaris Developer
Conference, 2009.

[15] LevelDB. A fast and lightweight key/value database library. http://code.google.com/p/

leveldb/.

[16] Hyeontaek Lim and et al. SILT: a memory-efficient, high-performance key-value store. In SOSP,
2011.

[17] Lustre. Lustre file system. http://www.lustre.org/.

[18] Avantika Mathur and et al. The new ext4 lesystem: current status and future plans. In Ottawa Linux
Symposium, 2007.

[19] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In FAST, 2011.

[20] Michael A. Olson. The design and implementation of the inversion file system. In USENIX Winter,
1993.

[21] Diego Ongaro and et al. Fast crash recovery in ramcloud. In SOSP, 2011.

[22] Patrick ONeil and et al. The log-structured merge-tree (LSM-tree). Acta Informatica, 1996.

[23] Swapnil Patil and Garth A. Gibson. Scale and concurrency of GIGA+: File system directories with
millions of files. In FAST, 2011.

[24] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. In SOSP, 1991.

[25] Robert B. Ross and et al. PVFS: a parallel file system. In SC, 2006.

[26] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file system for large computing clusters.
In FAST, 2002.

[27] Russell Sears and Eric A. Brewer. Stasis: Flexible transactional storage. In OSDI, 2006.

[28] Russell Sears and et al. To blob or not to blob: Large object storage in a database or a filesystem?
Microsoft Technique Report, 2007.

[29] Jan Stender and et al. BabuDB: Fast and efficient file system metadata storage. In SNAPI ’10, 2010.

[30] Michael Stonebraker. Operating system support for database management. Commun. ACM, 1981.

[31] Michael Stonebraker and Ugur Çetintemel. ”one size fits all”: An idea whose time has come and gone.
In ICDE, 2005.

[32] Adam Sweeney. Scalability in the xfs file system. In USENIX ATC, 1996.

[33] Brent Welch and et al. Scalable performance of the panasas parallel file system. In FAST, 2008.

7

http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
http://www.lustre.org/

[34] Ric Wheeler. One billions files: pushing scalability limits of linux filesystem. In Linux Foudation
Events, 2010.

[35] Zhihui Zhang and et al. hFS: A hybrid file system prototype for improving small file and metadata
performance. In EuroSys, 2007.

8

	Background
	TableFS
	Evaluation
	Conclusion

